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Semirelativistic model for ionization of atomic hydrogen by electron impact
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We present a semirelativistic model for the description of the ionization process of atomic hydrogen by
electron impact in the first Born approximation by using the Darwin wave function to describe the bound state
of atomic hydrogen and the Sommerfeld-Maue wave function to describe the ejected electron. This model,
accurate to first order iZ/c in the relativistic correction, shows that, even at low kinetic energies of the
incident electron, spin effects are small but not negligible. These effects become noticeable with increasing
incident electron energies. All analytical calculations are exact and our semirelativistic results are compared
with the results obtained in the nonrelativistic Coulomb Born approximation both for the coplanar asymmetric
and the binary coplanar geometries.
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I. INTRODUCTION domain. Daset al. [10,11] employed a semirelativistic
Sommerfeld-Maue wave function to describe the ejected
electron. JakubaRa-Amundsen evaluated the first-order tran-
sition matrix elementS;; using semirelativistic Coulomb
&have functions times a free spinor, i.e., neglecting the rela-
tivistic contraction of the bound state and approximating the
continuum Coulomb state by a relativistic Coulomb wave
fimes a free spinor. This model did well in predicting inte-

Relativistic (e,2e) processes have been reviewed both
from the experimental and theoretical points of Vigl. As
one deals with atomic hydrogen, the value of the paramet
Za is much lower than 1, wher& is the atomic charge
number andw is the fine-structure constant. Therefore, it is
convenient and sufficient to use approximate wave function
of a mathematically simpler structure than the exact analyt"grated cross sectiof$2] but yielded a value for the absolute
cal wave functlon_s needed to describe relat|V|ém,(2_e) pro- triple differential cross sectiofTDCS) too large. For the
cesses. A _numen_cal approa_ch to an exact descrlpthn of thesulomb approximation, JakubaRa-Amundgas] argued
relativistic ionization of atomic hydrogen by electron impact 4t gne could not neglect the Coulomb potential in the treat-
could be carried out, but we will focus instead on an alter~jant of inner-shell ionization of highi-atoms. Agreement
native apprqagh thgt will give ngarly the same r'es.ults as thgitn experiment was encouraging for intermediate values of
exact description if the conditioZa<1 is satisfied. I 7 The 'merits and shortcomings of this theory have been
(€,2¢) processes, relativistic effects are important and allnajyzed in[14]. Thereafter, a fully relativistic version was
electrong(the incident, scattered, and ejeqtedn have very  nroduced[15], which showed that the original physical in-
high velocities. One has to consider many mteractlon%ight was essentially correct.

(namingly, retardation interaction, magnetic interaction, and i, this contribution, we present a theoretical semirelativ-
spin-dependent interactiprFor atomic hydrogen, many ex- stic model, the semirelativistic Coulomb Born approxima-
perimental and theoretical contributions hgve peen_ madggn (SRCBA) in a closed and exact form for the description
[2,3]. Some were successf_ul but the theoretical situation fops the ionization of atomic hydrogen by electron impact in
all setups and kinematics is far from resolved, at least anane first Born approximation that is valid for all geometries.
Iytlc_ally. Many calculations have resorted to various approxi-j;  the nonrelativistic Coulomb Born approximation
mations. For example, plane-wave moddis7] are success- (NRCBA), a well-known integral occurkL6] and is usually
ful in the coplanar binary geometriegt] and for fast genoted byi(\). In this article, we show that the main con-
scattered and ejected electrons. The first Born approximatiofition to the spin-unpolarized triple differential cross sec-
(FBA) has been used to describe asymmetric geometries gh, in the SRCBA corresponding to the ionization of atomic
nonrelativistic energiegs,9]. In this approximation, the inci- hydrogen in its ground state by electron impact comes from

dent and scattered electrons are described by plane Wavg§s term added to relativistic corrections valid to first order
whereas the ejected electron is treated as a Coulomb wavgy 7/¢ These relativistic corrections contain a new integral,

Many authors extended this approximation to the relativisticyhich we have denoted(\) and in the appendix, we give
the formal derivation of this integral. All numerical appropri-
ate tests to check the validity of the analytical result we have

*Electronic address: attaourti@ucam.ac.ma found have been carried out with a very good degree of
"Electronic address: souad_taj@yahoo.fr accuracy. It turns out that spin effects can be accounted for
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even at low kinetic energies of the incident electron in the @ i @
case of the Ehrhardt coplanar asymmetric geomgtig] ¢H(ry = 14—Z:a-V(2) U o(r) (4)
where, for a given kinetic energl of the fast incident elec-
tron, a fast(“scattered] electron of kinetic energif; is de- is a quasirelativistic bound-state wave function accurate to
tected in coincidence with a slofejected”) electron of ki-  first order inZ/c in the relativistic correctiongand normal-
netic energylg. These spin effects, as well as the relativisticized to the same ordemwith ¢y being the nonrelativistic
effects, become noticeable with increasing incident electroound-state hydrogenic function. The spinaf¥ are such
kinetic energy. thatu™=(1,0,0,0" andu”=(0,1,0,9" and represent the
The organization of this paper is as follows: in Sec. Il, webasic four-component spinors for a particle at rest with spin
present the semirelativistic formalism @, 2e) reaction and up and spin down, respectively. The wave functipx(t,r,)
give a detailed account of the various terms that contribute tin Eq. (1) is the Sommerfeld-Maue wave function for con-
the spin-unpolarized TDCS. In Sec. Ill, we discuss the retinuum state$18], also accurate to the ord&/c in the rela-
sults we have obtained and end by a brief conclusion in Segivistic corrections. We haveqﬁf(t,rz):exri—iEBt)c,b;')(rz)
IV. The formal derivation of the integral(\) is given in the 54 5

appendix. Throughout this work, atomic unfsu,) are used

(h=me=e=1), wherem, is the electron rest mass. Yoo (o) = expmne/2)T(L +img)explipg - 1)
ic
II. THE SPIN-UNPOLARIZED TRIPLE DIFFERENTIAL X{14— Ea . V(Z)}
CROSS SECTION B
: , . u(pg,
In this section, we calculate the exact analytical expres- X1F (= ing,1,~i(pgra+ pg-ro) (’@) (5)
sion of the semirelativistic spin-unpolarized TDCS in the V2EgV

SRCBA corresponding to the ionization of atomic hydrogen ormalized to the volum&. The Sommerfeld parameter is
by electron impact. The spin-unpolarized TDCS is obtainecg

by averaging over the spins of the initial staig@sojectile ven by

electron plus atomic targeand summing over the spins of Eg

the final stategscattered electron plus ejected elecjrdrhe 8= cz_pB’ (6)
transition matrix element for the direct chanriekchange

effects are not considergd given by whereEg is the total energy of the ejected electron gnd

=|pg| is the norm of the ejected electron momentum. The
matrix differential operator-V is given by

Sri:‘ifdt<l//pf(xl)¢f(xz)|vd|¢pi(X1)¢i(Xz)>

B 0 0 o a-id,
:—if dtfdrlﬁ,f(t,rl)yﬁl)wpi(t,rl) oV = 0 0 ' d+ioy =4, @
= 4, d=id, O 0
Xt (%) [V i (X2)). (1) atidy =, 0 0
In Eq. (1), V4 is the direct interaction potential Performing the integration ovet'x, one obtains
Vd:rilz_r_ll’ @ Jdtexp[—i(Ei—Ef—EB—sb)t]=2775(Ei—Ef—EB—sb),

(8)

r, are the coordinates of the incident and scattered electron,
r, are the atomic electron coordinates,,=|r,—r,) ooy ) L1 4w

and ri=[ry]. The wave function g, (x)=pt,ry) fdrze“pl pf)rl{r_lz_r_l} _P{emz_l}’ 9
=u(p,s)exp(—ip-x)/V2EV is the electron wave function de- ]

scribed by a free-Dirac spinor normalized to the volushe Where we have used the well-known Bethe integtal. The
and ¢, (%)= ((t,r,) are the semirelativistic wave func- duantity A=p;—p; is the momentum transfer. We give the
tions of the hydrogen atom where the indestands for the final compact form of the Sommerfeld-Maue wave function
initial state, namely the ground state, and the inflexands

for the final state. The quantitp-x=p,x* is the Lorentz zpé,;)(rz)=exriwr;B/Z)F(lﬂnB)exp(ipB-rz){lFl(—inB,l,
scalar product. The semirelativistic wave function of the hy-

drogen atom used is the Darwin wave function for bound

) [ R
stateq 18] —i(par2+pg-ra) + ﬁ(a P+ Psa T
Hilt,ro) = exp—iept) @ (1), (3 . . u(pg, Sg)
I— X Fi(=ing+1,2,=i(para+ Pg o) ,pB %)
where g, =c71-Z%a?-1] is the atomic hydrogen binding V2EgV
energy in the ground state. (10
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In Eg. (10), the operatora-pg acts on the free spinor
u(pg,sg) and the operatot -, acts on the spinor part of the
Darwin function. The direct transition matrix element in Eq.

(1) becomes

Si:_ifdr

i n
+pB'r)14)_ﬁ(a"pB+pBa'r)

u(pg, Ss) o
2E V

u(prs) o "3
NIV

{1':1(' 7g, 1,1 (Pgr

X Fy(ing+1,2,i(pgr + pg - r))}so(i)(r)exp(— ipg-r)

u(p;,s)
7 O(Es+Eg—Ej —&p) /3_3

X[expliA -r) - 1]

xXexpmyg/2)['(1 —ing). (11
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—Ar

1) = | dr expliq - r)eTlFl(inB,l,upBr )

—4—7Texp{i In( o+ A )]
T+ ] B\ 22+ 2q - pg - 2inps/ |

17

The other integrals can be obtained by noting that

SR
cosfexplig-r)= rC7qzexp(|q r (18
and
sin 6 exp(i p)expli r)———(i |i>exp(i ‘r)
i I Iy s
(19

This transition matrix element contains three terms, one of

which is given by

(pB SB) o {1 1(”]8,

-1):—ifdri(,pf'sf) 1,i(pgr
gl 2EV Y ZE V (Ps
+pg - 1)}e(r)exp-ipg 1)

u(p;,s)
2EV

Xexp(mne/2)I'(1 —ing). (12

X[expiA -r)-1] 7T26(Ef+EB Ei - &p)

This term can be recast in the form

D = MG = A — pa) = Ho(q = — pryJRES)
S =~i[Hy(q=A - pg) - Hy(q=~pg)] e
ol u(pe,Sg) o u(p;,s) 87

VeV @ \EY A2
X 8(Es + Eg — E; — ep)exp(mng/2) (1 —ing).
(13

In the above expressiohi;(q) is given by

Hi(q) :fdr expliq - r),F4(i7g, 1,i(pgr + pg - N)e(r).
(14)

For instance, if one considers®(r), the quantityH,(q) is
given by

Ha(a) = (13,15,13,19)7, (15

and one has to evaluate

1 H — . .
1= o j dr expliq -r)e™ 1F(i7g,1,i(pgr +pg-r)).
\r
(16)

To do that, we introduce the well-known integfab]

The second term in the transition amplitude given in Eq.

(12) is
SHEE R (20
with
SCE. ar YPeS) o y<1)“$p"5) 1 u(ps,ss)
V2E:V " 2BV 2cps \2ERV
. 732)[ e~ "’B} (D), F 47+ 1, 2] (per
+pg - r))exp(—ipg - r)[expia -r) - 1]
xXexpmng/2)T'(1 ~ing) 7T25(Ef+EB Ei—ep)
(21)
and
222 | gr u(pr,s) o u(p,s) 1 u(vaSB) & ()

V2EV e 2EV 2¢ \2EV
X Fy(ing+1,2,i(pgr +pg-r))exp—ipg-r)

X[exp(iA -r) = Llexp(mng/2)I' (1 —i nB)SAlzzﬁ(Ef
+ EB - Ei - Sb) . (22)

In Eq. (22), ¢'™(r) for spin up is given by

i/2c
0 1
"®(r)=N —e, 23
¢"(r)=Np cosd) |Vm (23
sin(A)e'®

where Np=2c/y4c?+1 is a normalization constant. Using
the standard procedures of QHMDY], one obtains for the
spin-unpolarized TDCS
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-
dExdQgd(

e
SiSt S

evaluated forE;=E;+¢g,—Eg, WhereESt(---)/Z denotes the

24
dEBdQBde 29

averaged sum over the spin states of the target atomic hydro-

gen with
d; l ppr eXFX']T?]B) | )|2|$1)
dELd0edQ); 6457 p, A 8

R

In the expressions (fﬁﬁiz)'l and~$(”2)’2, a new integral occurs.
We have calculated this integral analytically. Details of its
derivation are given in the appendix. This integral is

(25)

—A\T
JN)= | dr expliq 1) Fy(i7s + 1,20 (Per +ps 1))

2)2F (

All the calculations in Eq(25) can be done analytically and

A1
(q +A

(q- pB mpB)

”78"'11112, 2 q ) (26)

only five terms out of nine are nonzero, the diagonal terms

S22 42, [5742, andS TSP, as well a2 &Y. in
Eq. (24), the different sums over spin states give the follow-
ing results:

1 2EE
52 [Ulpy, s0) Yy u(pi, )= 202(—'2f —(p; - py) + cz) ,
iS¢
_ E2
> |ul(pe.se) ‘}’(2)[ Yo L~ IZSB} = 4EB(C_2B - CZ> ,
S

2 |(U_(pB,SB)7?2)|2 =4Eg,
Sg

%2 (-)=12(-+). (27)
St

Ill. RESULTS AND DISCUSSION
A. Coplanar asymmetric geometries

We begin our discussion by considering well-known re-
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Experimental data
1—— SRCBA

TDCS (a.u)

-180

180

Angle 8, (degree)

FIG. 1. The two TDCSs. The solid line represents the relativistic
TDCS in the semirelativistic Coulomb Born approximation, the
long-dashed line represents the corresponding TDCS in the nonrel-
ativistic Coulomb Born approximation. The incident electron ki-
netic energy is;=250 eV and the ejected electron kinetic energy is
Tg=5 eV. Experimental data is froff24]. All these TDCSs were
obtained in the direct channel.

data of Ehrhardet al. [24]. As we are mainly interested in
our comparison by orders of magnitude and as it can be seen
in Fig. 1, the agreement between the nonrelativistic and
semirelativistic results is good since we obtain two identical
curves.

However, even in this nonrelativistic regime, small effects
due to the semirelativistic treatment of the wave functions
we have used are present and these can only be tracked back
to the spin. Indeed, if we plot the ratio of the semirelativistic
TDCS and the nonrelativistic TDCS, it emerges that, how-
ever small, these spin effects can reach 0, 45% for some
specific angles. We recall that the TDCS has extrema, in

sults in the nonrelativistic domain, namely the results ofparticular when the direction gfz coincides with that of the

Byron and Joachaifil7] and those of Berakdd®1].

vectorsA and A and this can be seen in Fig. 2. In the

All these results are obtained in the coplanar asymmetriformer case, the extremum is always a maximum and in the
geometry. Let us consider the process whereby an incidematter case the extremum is a local maximum. The two

electron with a kinetic energyg; =250 eV scatters with a
hydrogen atom. The ejected electron is observed to have

TDCSs exhibit in this geometry a forward or binary peak
with a maximum in the direction oA and a recoil or back-

kinetic energyEg=5 eV and the scattered electron is ob-ward peak in the opposite directionA-The locations of

served having an anglé;=3°. In this particular case, the

such extrema aréz~—-128° with a ratio equal to 1.002 34

CBA is not as accurate as the results obtained by Byron andnd ;= 52° with a ratio equal to 1.001 85. These mecha-
Joachain within the framework of the Eikonal Born seriesnisms for the emergence of the binary recoil peak structure
[17] which contain higher-order corrections. These authorsare also present even when one uses the simplest description
have pushed the numerical calculations up to the third ordein which plane waves for incoming and outgoing particles
to obtain a curve that is close to the absolute experimentadre assume¢i22]. Now, if we compare our result with the

062705-4
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1.005 14
—— TDCS(SRCBA)/TDCS(NRCBA) | ——— SRCBA
| ----NRCBA

W DS3C

e Experimental data

1.004

1.003

Ratio

1.002

1.001
0 90 180 270 360
) | 1 ] N | )
Angle degree
-180 -90 0 90 180 gle ¢, (degree)
Angle 6, (degree) FIG. 3. The two TDCSs. The solid line represents the relativistic

TDCS in the semirelativistic Coulomb Born approximation, the
long-dashed line represents the corresponding TDCS in the nonrel-
ativistic Coulomb Born approximation, the symbols square and
circle, respectively, represent the formalism of DS3C and the ex-
perimental data. We keep the same energies as in Fig. 1. Experi-
mental data is froni9]. The results of the DS3C model were ob-
result obtained by Berakdd2l], we also obtain a good tained by including exchange effects and using correlated wave
agreement. But before beginning the discussion proper, let Ygnctions.

recall the formalism used by Berakdar. His calculations were

performed within a model where the three-body final state i

FIG. 2. The ratio TDCSSRCBA)/TDCS (NRCBA) as a func-
tion of the anglefg with 6;=3°. The incident electron kinetic en-
ergy ist;=250 eV and the ejected electron kinetic energyTis
=5 eV. Both TDCSs were evaluated in the direct channel.

. . Svave functions that intervene in its description is still, nowa-
descrlbed by a product of thrge symmet_rlcal, COUIOrT.‘b'typedays, an unanswered question. The only method that can
functions. Each of these functions describes the motion of &,/ satisfactory answer to this question is the use of the

pﬁrtlcul(;;\r tV\t'_o'lbo_?_)r/] surl])s_y Stim n dth?c p:ﬁsence ofta thir ﬁ?}Lativistic R-matrix method. However, the orders of magni-
charged particie. 1he choice hé made for (n€ parameters USqGya of hoth results are similar and this is a second validity-
in his formalism to describe the correlated wave functions

. heck of | bearing in mind the relative simplicity of
stems from the threshold theory of Wann[&5] and is of check of our model bearing in mind the relative simplicity o

ti " hen th ies involved qﬂhe wave functions we have used. Another atypical result
paramount importance when the energies involved areé sm lelated to our calculations is the behavior of the ratio of the

or intermediate. Thereafter, he made a comprehensive COMpes (SRCBA)/TDCS (NRCBA)
parison with available experimental data and with other the ,

oretical models. He ended his study by concluding that ge DCS when plotted as a function of the anglg. However,

erally, QOOdt ?)grtetimteﬂt IS fognd with thed. abSOIUtethere is no rule that can be inferred from the behavior of this
[)netasuremen.s u th at, fow:aver, cljr'] \:;'ome casdes 'Scr.epantcﬁnaﬁo since when performing various simulations even in the
etween various theorelical prediclions and experimen ‘%oplanar asymmetric geometry but with increasing values of

fin(_jings are obvi_ous, which highlights the need for a th_eo'the incident electron kinetic energy, there are many regions
retical and experimental benchmark study of these reaction§ + cjose to the binary or secondary peaks that present
In Fig. 3, we compare our results with those obtained by,

Berakdar for an incident electron kinetic eneigy-250 eV maxima or minima.
for the case of a coplanar asymmetric geometric whgre
=603=90°. The ejected electron kinetic energyHg=5 eV
and ¢¢=357°. What is remarkable is the agreement between The relativistic regime can be defined as follows: when
our results and his, bearing in mind that he used the DS3the value of the relativistic parameter=[1—(8/c)?] "2 is
formalism (DS3C stands for dynamical screening theorygreater that 1.0053, there begins to be a difference between
with three Coulomb-type functionsAs it is a three-body the nonrelativistic kinetic energy and the relativistic kinetic
final state, the question of the correlations of the variousnergy.

where now the maxima
of this ratio correspond nearly to the local minima of the

B. Binary coplanar geometries

062705-5



ATTAOURTI, TAJ, AND MANAUT PHYSICAL REVIEW A 71, 062705(2009

25
—— SRCBA
N NRCBA
20|
6 -
15F
E 3
o 8
[7p]
2 8 at
Fok -
05| 2r
0.0 L— A N B : 0
30 35 40 45 50 55 60 10 s

Angle 6, (degree)

Angle 6, (degree)

FIG. 4. The three TDCSs scaled in"20The solid line repre-
sents the relativistic TDCS in the semirelativistic Coulomb Born

approximation, the Ion_g-_da}shed line represents the_ cor_respondinr%ation the long-dashed line represents the corresponding TDCS in
TDCS in the nonrelatlwstlc Coulomb _B_or_n approximation. The the nonrelativistic Coulomb Born approximation. The incident elec-
short-dashed line represents the relativistic plane-wave Born ap- L P . -

S L R ron kinetic energy i§;=25 000 eV and the ejected electron kinetic
proximation. The incident electron kinetic energyTis=2700 eV eneray isTa=12 499 5 eV andi=45°. All these results were ob-
and the ejected electron kinetic energyTig=1349.5 eV andé; gy 1s ‘e : f '

=45°. All these results were obtained in the direct channel. tained in the direct channel.

FIG. 5. The two TDCSs scaled in 70 The solid line represents
the relativistic TDCS in the semirelativistic Coulomb Born approxi-

This numerical value of the aforementioned relativistic
parameter corresponds to an incident electron kinetic energgan be applied to a wide range of kinematic geometries and
of E;=2700 eV. Because there is no experimental data availenergies. We have used simple semirelativistic Sommerfeld-
able for this regime, we simply compare our results withMaue wave functions that allow to obtain analytical results
those we have previously found when we introduced thén an exact and closed form within the framework of the first
relativistic plane-wave Born approximatidRPWBA) [23] Born approximation. This model gives good results if the
to study the ionization of atomic hydrogen by electron im-conditionZa<1 is fulfilled. We have compared our results
pact in the binary geometry. In Fig. 4, it is clearly visible that with previous nonrelativistic results and found that the agree-
the three model$NRCBA, SRCBA, and RPWBAgive the  ment between the different theoretical approaches is good
same results, which was to be expected since in this geongven if our model uses simple uncorrelated wave functions.
etry, the use of a Coulomb wave function is not necessary. It contains the coplanar asymmetric geometry, as well as the

In Fig. 5, there is a shift of the maximum of the TDCS in binary coplanar geometry as particular cases, and shows that
the SRCBA towards smaller values th@ig=45° and this the nonrelativistic treatment is no longer reliable for energies
remains the case for increasing values of the kinetic energlrigher than 25 keV. We hope that we will be able to compare
of the incident electron. The origin of this shift stems from our theoretical results with forthcoming experimental data.
the fact that the main contribution to the TDCS comes from
the termH(qg) given by Eqg.(14). This term contains a domi-
nant integral ;. When plotting the behavior df as function
of the angleédgz, and with increasing values d&;, one ob-
serves the shift we have mentioned as well as the fact that in
the relativistic regime, the TDCERCBA) is always lower

APPENDIX: ANALYTICAL CALCULATION OF THE
INTEGRAL J(A)

than the TDCSNRCBA). Before turning to the analytical calculation of the integral
J(\) proper, let us recall how the integrE(\) [16] can be
IV. CONCLUSION obtained. This is explained without any detail[R0]. Using

In this article, we have presented a semirelativistic modeparabolic coordinates, one has to evaluate the following in-
that does not rely on heavy numerical computations but yetegral:
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AT

I(\) = f dr exp(iQ -r)exp(—ipg - r)e—

X 4F1(ing, 1,i(pgr +pg ). (A1)
The choice of the scalar produ@-r chosen iJ6]
1 — .
Q-r= EQ(g— n)cosy—4dVéncosesiny.  (A2)
Performing the various integrals, one finds
27 *
I(\) = - f dé exp(— ué)
A =i(Qcosy+pg)Jo fomm e
X 1F(i 78, L,ipgé). (A3)
We use the well-known resul20]
J dtexp(- \t);F;(a, 1k =A*IA-K)™  (A4)
0
with
Q%sirty 1
A=u= +—[\+ +
A N =1(Qcosy+ po)] SIN+i(Qceosy+pg)]
(AS5)
and a=i7ng andk=ipg. This gives the result
A7
IN="""5">
(Q+\+ pg + 2QpsCoOSY)
24 0\24+ D2+ 2
Xexp{inBln(Q M ps Qchow)]‘
Q°+ N\~ pg—2IAps
(A6)

To recover the integrdl(\) given in Eq.(17) of the text, one
has to make the following substitutions:

-Q=q+pg
QPscosy=Q -Pg=-0 - Pg ~ Pa- (A7)
It is then straightforward to find that

Q?+ N2+ pg + 2Qpgeosy = 07 + N2

Q*+\2-pg - 2iApg = 0% + A2+ 2q - pg — 2I\pg, (A8)

so that

PHYSICAL REVIEW A 71, 062705(2005

I()\)—Lexp{i In( @A )]
T(@+N) L P\ @+ a2+ 2q - pg - 2inpg) |
(A9)
To calculate
e‘”
JN) = | dr expiQ -r)exp(—ipg - r)T
X F(img+1,2i(pgr +pg-r)) (A10)
one uses the same procedures to obtain
JN) =
= |(Q p—— f d expl- uf)
2T 1

XlFl(i ngt 1,2,|pB§) = N — |(Q cosy+ pB)/_'L

X ,F, <|1;5+ 1,1, 2'%3) (A11)

Performing the various substitutions, one gets the following
analytical integral:

wl
0= | dr explia -1)=—Fy(i7m + 1,21 (Per +pa 1)

q -pB—iApB]>
q2+)\2 "

47

= (qz_,_—}\z)ZFl(iﬂB"' 1,1,2,-

(A12)

We have tested this analytical result by performing the inte-
gral using two Gaussian quadratures because we have as-
sumed without loss of generality bothandpg to be parallel

to theOzaxis. The first one, a Laguerre Gaussian quadrature
(32 pointg to integrate over the radial variable and the
second one, using a Legendre Gaussian quadraie
pointg to integrate over the angular variabfe The agree-
ment between the analytical result and the numerical result is
excellent. To illustrate this point, we give as an example the
results obtained by the two methods for the following ran-
dom values of the relevant parameters: Forl, [qf
=1.015 055/p|=0.105 509 8. The exact result is

JexaciN) =(0.573558 96,0.124 585 10 (A13)
and the numerical result is
Jnum(N) =(0.573 558 99,0.124 585 D7  (Al4)
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