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We present a semirelativistic model for the description of the ionization process of atomic hydrogen by
electron impact in the first Born approximation by using the Darwin wave function to describe the bound state
of atomic hydrogen and the Sommerfeld-Maue wave function to describe the ejected electron. This model,
accurate to first order inZ/c in the relativistic correction, shows that, even at low kinetic energies of the
incident electron, spin effects are small but not negligible. These effects become noticeable with increasing
incident electron energies. All analytical calculations are exact and our semirelativistic results are compared
with the results obtained in the nonrelativistic Coulomb Born approximation both for the coplanar asymmetric
and the binary coplanar geometries.
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I. INTRODUCTION

Relativistic se,2ed processes have been reviewed both
from the experimental and theoretical points of viewf1g. As
one deals with atomic hydrogen, the value of the parameter
Za is much lower than 1, whereZ is the atomic charge
number anda is the fine-structure constant. Therefore, it is
convenient and sufficient to use approximate wave functions
of a mathematically simpler structure than the exact analyti-
cal wave functions needed to describe relativisticse,2ed pro-
cesses. A numerical approach to an exact description of the
relativistic ionization of atomic hydrogen by electron impact
could be carried out, but we will focus instead on an alter-
native approach that will give nearly the same results as the
exact description if the conditionZa!1 is satisfied. In
se,2ed processes, relativistic effects are important and all
electronssthe incident, scattered, and ejectedd can have very
high velocities. One has to consider many interactions
snamingly, retardation interaction, magnetic interaction, and
spin-dependent interactiond. For atomic hydrogen, many ex-
perimental and theoretical contributions have been made
f2,3g. Some were successful but the theoretical situation for
all setups and kinematics is far from resolved, at least ana-
lytically. Many calculations have resorted to various approxi-
mations. For example, plane-wave modelsf4–7g are success-
ful in the coplanar binary geometriesf4g and for fast
scattered and ejected electrons. The first Born approximation
sFBAd has been used to describe asymmetric geometries at
nonrelativistic energiesf8,9g. In this approximation, the inci-
dent and scattered electrons are described by plane waves
whereas the ejected electron is treated as a Coulomb wave.
Many authors extended this approximation to the relativistic

domain. Daset al. f10,11g employed a semirelativistic
Sommerfeld-Maue wave function to describe the ejected
electron. Jakubaßa-Amundsen evaluated the first-order tran-
sition matrix elementSfi using semirelativistic Coulomb
wave functions times a free spinor, i.e., neglecting the rela-
tivistic contraction of the bound state and approximating the
continuum Coulomb state by a relativistic Coulomb wave
times a free spinor. This model did well in predicting inte-
grated cross sectionsf12g but yielded a value for the absolute
triple differential cross sectionsTDCSd too large. For the
Coulomb approximation, Jakubaßa-Amundsenf13g argued
that one could not neglect the Coulomb potential in the treat-
ment of inner-shell ionization of high-Z atoms. Agreement
with experiment was encouraging for intermediate values of
Z. The merits and shortcomings of this theory have been
analyzed inf14g. Thereafter, a fully relativistic version was
producedf15g, which showed that the original physical in-
sight was essentially correct.

In this contribution, we present a theoretical semirelativ-
istic model, the semirelativistic Coulomb Born approxima-
tion sSRCBAd in a closed and exact form for the description
of the ionization of atomic hydrogen by electron impact in
the first Born approximation that is valid for all geometries.
In the nonrelativistic Coulomb Born approximation
sNRCBAd, a well-known integral occursf16g and is usually
denoted byIsld. In this article, we show that the main con-
tribution to the spin-unpolarized triple differential cross sec-
tion in the SRCBA corresponding to the ionization of atomic
hydrogen in its ground state by electron impact comes from
this term added to relativistic corrections valid to first order
in Z/c. These relativistic corrections contain a new integral,
which we have denotedJsld and in the appendix, we give
the formal derivation of this integral. All numerical appropri-
ate tests to check the validity of the analytical result we have
found have been carried out with a very good degree of
accuracy. It turns out that spin effects can be accounted for
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even at low kinetic energies of the incident electron in the
case of the Ehrhardt coplanar asymmetric geometryf17g
where, for a given kinetic energyTi of the fast incident elec-
tron, a fasts“scattered”d electron of kinetic energyTf is de-
tected in coincidence with a slows“ejected”d electron of ki-
netic energyTB. These spin effects, as well as the relativistic
effects, become noticeable with increasing incident electron
kinetic energy.

The organization of this paper is as follows: in Sec. II, we
present the semirelativistic formalism ofse,2ed reaction and
give a detailed account of the various terms that contribute to
the spin-unpolarized TDCS. In Sec. III, we discuss the re-
sults we have obtained and end by a brief conclusion in Sec.
IV. The formal derivation of the integralJsld is given in the
appendix. Throughout this work, atomic unitssa.u.d are used
s"=me=e=1d, whereme is the electron rest mass.

II. THE SPIN-UNPOLARIZED TRIPLE DIFFERENTIAL
CROSS SECTION

In this section, we calculate the exact analytical expres-
sion of the semirelativistic spin-unpolarized TDCS in the
SRCBA corresponding to the ionization of atomic hydrogen
by electron impact. The spin-unpolarized TDCS is obtained
by averaging over the spins of the initial statessprojectile
electron plus atomic targetd and summing over the spins of
the final statessscattered electron plus ejected electrond. The
transition matrix element for the direct channelsexchange
effects are not consideredd is given by

Sfi = − i E dtkcpf
sx1df fsx2duVducpi

sx1dfisx2dl

= − iE
−`

+`

dtE dr 1c̄pf
st,r 1dgs1d

0 cpi
st,r 1d

3kf fsx2duVdufisx2dl. s1d

In Eq. s1d, Vd is the direct interaction potential

Vd =
1

r12
−

1

r1
, s2d

r 1 are the coordinates of the incident and scattered electron,
r 2 are the atomic electron coordinates,r12= ur 1−r 2u
and r1= ur 1u. The wave function cpi

sx1d=cpst ,r 1d
=usp,sdexps−ip ·xd /Î2EV is the electron wave function de-
scribed by a free-Dirac spinor normalized to the volumeV
and fi,fsx2d=fi,fst ,r 2d are the semirelativistic wave func-
tions of the hydrogen atom where the indexi stands for the
initial state, namely the ground state, and the indexf stands
for the final state. The quantityp·x=pmxm is the Lorentz
scalar product. The semirelativistic wave function of the hy-
drogen atom used is the Darwin wave function for bound
statesf18g

fist,r 2d = exps− i«btdws±dsr 2d, s3d

where «b=c2fÎ1−Z2a2−1g is the atomic hydrogen binding
energy in the ground state.

ws±dsr 2d = F14 −
i

2c
a ·¹s2dGus±dw0sr 2d s4d

is a quasirelativistic bound-state wave function accurate to
first order inZ/c in the relativistic correctionssand normal-
ized to the same orderd with w0 being the nonrelativistic
bound-state hydrogenic function. The spinorsus±d are such
that us+d=s1,0,0,0dT andus−d=s0,1,0,0dT and represent the
basic four-component spinors for a particle at rest with spin
up and spin down, respectively. The wave functionf fst ,r 2d
in Eq. s1d is the Sommerfeld-Maue wave function for con-
tinuum statesf18g, also accurate to the orderZ/c in the rela-
tivistic corrections. We havef fst ,r 2d=exps−iEBtdcpB

s−dsr 2d
and

cpB

s−dsr 2d = expsphB/2dGs1 + ihBdexpsipB · r 2d

3H14 −
ic

2EB
a ·¹s2dJ

31F1„− ihB,1,− ispBr2 + pB · r 2d…
uspB,sBd
Î2EBV

s5d

normalized to the volumeV. The Sommerfeld parameter is
given by

hB =
EB

c2pB
, s6d

whereEB is the total energy of the ejected electron andpB
= upBu is the norm of the ejected electron momentum. The
matrix differential operatora ·¹ is given by

a · ¹ =1
0 0 ]z ]x − i]y

0 0 ]x + i]y − ]z

]z ]x − i]y 0 0

]x + i]y − ]z 0 0
2 . s7d

Performing the integration overd4x, one obtains

E dt expf− isEi − Ef − EB − «bdtg = 2pdsEi − Ef − EB − «bd,

s8d

E dr 2e
ispi−pfd·r 1H 1

r12
−

1

r1
J =

4p

D2 heiD·r 2 − 1j, s9d

where we have used the well-known Bethe integralf17g. The
quantity D=pi −p f is the momentum transfer. We give the
final compact form of the Sommerfeld-Maue wave function

cpB

s−dsr 2d = expsphB/2dGs1 + ihBdexpsipB · r 2dH1F1„− ihB,1,

− ispBr2 + pB · r 2d… +
i

2cpB
sa ·pB + pBa · r̂ 2d

3 1F1„− ihB + 1,2,−ispBr2 + pB · r 2d…JuspB,sBd
Î2EBV

.

s10d
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In Eq. s10d, the operatora ·pB acts on the free spinor
uspB,sBd and the operatora ·r̂ 2 acts on the spinor part of the
Darwin function. The direct transition matrix element in Eq.
s1d becomes

Sfi = − i E dr
ūspf,sfd
Î2EfV

gs1d
0 ūspB,sBd

Î2EBV
gs2d

0 H1F1„ihB,1,ispBr

+ pB · r d14… −
i

2cpB
sa ·pB + pBa · r̂ d

31F1„ihB + 1,2,ispBr + pB · r d…Jws±dsr dexps− ipB · r d

3fexpsiD · r d − 1g
8p2

D2 dsEf + EB − Ei − «bd
uspi,sid
Î2EiV

3expsphB/2dGs1 − ihBd. s11d

This transition matrix element contains three terms, one of
which is given by

Sfi
s1d = − i E dr

ūspf,sfd
Î2EfV

gs1d
0 ūspB,sBd

Î2EBV
gs2d

0 h1F1„ihB,1,ispBr

+ pB · r d…jws±dsr dexps− ipB · r d

3fexpsiD · r d − 1g
8p2

D2 dsEf + EB − Ei − «bd
uspi,sid
Î2EiV

3expsphB/2dGs1 − ihBd. s12d

This term can be recast in the form

Sfi
s1d = − ifH1sq = D − pBd − H1sq = − pBdg

ūspf,sfd
Î2EfV

3gs1d
0 ūspB,sBd

Î2EBV
gs2d

0 uspi,sid
Î2EiV

8p2

D2

3dsEf + EB − Ei − «bdexpsphB/2dGs1 − ihBd.

s13d

In the above expression,H1sqd is given by

H1sqd =E dr expsiq · r d1F1„ihB,1,ispBr + pB · r d…ws±dsr d.

s14d

For instance, if one considersws+dsr d, the quantityH1sqd is
given by

H1sqd = sI1,I2,I3,I4dT, s15d

and one has to evaluate

I1 =
1

Îp
E dr expsiq · r de−r

1F1„ihB,1,ispBr + pB · r d….

s16d

To do that, we introduce the well-known integralf16g

Isld =E dr expsiq · r d
e−lr

r 1F1„ihB,1,ispBr + pB · r d…

=
4p

q2 + l2expFihBlnS q2 + l2

q2 + l2 + 2q ·pB − 2ilpB
DG .

s17d

The other integrals can be obtained by noting that

cosu expsiq · r d = −
i

r

]

]qz
expsiq · r d s18d

and

sinu expsifdexpsiq · r d = −
i

r
S ]

]qx
+ i

]

]qy
Dexpsiq · r d.

s19d

The second term in the transition amplitude given in Eq.
s11d is

Sfi
s2d = Sfi

s2d,1 + Sfi
s2d,2, s20d

with

Sfi
s2d,1 = −E dr

ūspf,sfd
Î2EfV

gs1d
0 uspi,sid

Î2EiV

1

2cpB

ūspB,sBd
Î2EBV

3gs2d
0 Fgs2d

0 EB

c
− p/BGws±dsr d1F1„ihB + 1,2,ispBr

+ pB · r d…exps− ipB · r dfexpsiD · r d − 1g

3expsphB/2dGs1 − ihBd
8p2

D2 dsEf + EB − Ei − «bd

s21d

and

Sfi
s2d,2 = −E dr

ūspf,sfd
Î2EfV

gs1d
0 uspi,sid

Î2EiV

1

2c

ūspB,sBd
Î2EBV

gs2d
0 w8s±dsr d

31F1„ihB + 1,2,ispBr + pB · r d…exps− ipB · r d

3fexpsiD · r d − 1gexpsphB/2dGs1 − ihBd
8p2

D2 dsEf

+ EB − Ei − «bd. s22d

In Eq. s22d, w8s+dsr d for spin up is given by

w8s+dsr d = ND1
i/2c

0

cossud
sinsudeif

2 1
Îp

e−r , s23d

where ND=2c/Î4c2+1 is a normalization constant. Using
the standard procedures of QEDf19g, one obtains for the
spin-unpolarized TDCS
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ds̄

dEBdVBdV f
=

1

2o
si,sf

o
sB

1

2o
st

ds

dEBdVBdV f
s24d

evaluated forEf =Ei +«b−EB, where ost
s¯d /2 denotes the

averaged sum over the spin states of the target atomic hydro-
gen with

ds̄

dEBdVBdV f
=

1

64c6p3

pfpB

pi

expsphBd
D4 uGs1 − ihBdu2uS̃fi

s1d

+ S̃fi
s2d,1 + S̃fi

s2d,2u2. s25d

In the expressions ofS̃fi
s2d,1 and S̃fi

s2d,2, a new integral occurs.
We have calculated this integral analytically. Details of its
derivation are given in the appendix. This integral is

Jsld =E dr expsiq · r d
e−lr

r 1F1„ihB + 1,2,ispBr + pB · r d…

=
4p

sq2 + l2d 2F1SihB + 1,1,2,− 2
sq ·pB − ilpBd

q2 + l2 D . s26d

All the calculations in Eq.s25d can be done analytically and
only five terms out of nine are nonzero, the diagonal terms

uS̃fi
s1du2, uS̃fi

s2d,1u2, uS̃fi
s2d,2u2, andS̃fi

s1d†S̃fi
s2d,1, as well asS̃fi

s2d,1†S̃fi
s1d. In

Eq. s24d, the different sums over spin states give the follow-
ing results:

1

2o
si,sf

uūspf,sfdgs1d
0 uspi,sidu2 = 2c2S2EiEf

c2 − spi · pfd + c2D ,

o
sB

UūspB,sBdgs2d
0 Fgs2d

0 EB

c
− p/BGU2

= 4EBSEB
2

c2 − c2D ,

o
sB

usūspB,sBdgs2d
0 u2 = 4EB,

1

2o
st

s¯d = 1s¯d. s27d

III. RESULTS AND DISCUSSION

A. Coplanar asymmetric geometries

We begin our discussion by considering well-known re-
sults in the nonrelativistic domain, namely the results of
Byron and Joachainf17g and those of Berakdarf21g.

All these results are obtained in the coplanar asymmetric
geometry. Let us consider the process whereby an incident
electron with a kinetic energyEi =250 eV scatters with a
hydrogen atom. The ejected electron is observed to have a
kinetic energyEB=5 eV and the scattered electron is ob-
served having an angleu f =3°. In this particular case, the
CBA is not as accurate as the results obtained by Byron and
Joachain within the framework of the Eikonal Born series
f17g which contain higher-order corrections. These authors
have pushed the numerical calculations up to the third order
to obtain a curve that is close to the absolute experimental

data of Ehrhardtet al. f24g. As we are mainly interested in
our comparison by orders of magnitude and as it can be seen
in Fig. 1, the agreement between the nonrelativistic and
semirelativistic results is good since we obtain two identical
curves.

However, even in this nonrelativistic regime, small effects
due to the semirelativistic treatment of the wave functions
we have used are present and these can only be tracked back
to the spin. Indeed, if we plot the ratio of the semirelativistic
TDCS and the nonrelativistic TDCS, it emerges that, how-
ever small, these spin effects can reach 0, 45% for some
specific angles. We recall that the TDCS has extrema, in
particular when the direction ofpB coincides with that of the
vectors D and −D and this can be seen in Fig. 2. In the
former case, the extremum is always a maximum and in the
latter case the extremum is a local maximum. The two
TDCSs exhibit in this geometry a forward or binary peak
with a maximum in the direction ofD and a recoil or back-
ward peak in the opposite direction −D. The locations of
such extrema areuB<−128° with a ratio equal to 1.002 34
and uB<52° with a ratio equal to 1.001 85. These mecha-
nisms for the emergence of the binary recoil peak structure
are also present even when one uses the simplest description
in which plane waves for incoming and outgoing particles
are assumedf22g. Now, if we compare our result with the

FIG. 1. The two TDCSs. The solid line represents the relativistic
TDCS in the semirelativistic Coulomb Born approximation, the
long-dashed line represents the corresponding TDCS in the nonrel-
ativistic Coulomb Born approximation. The incident electron ki-
netic energy isTi =250 eV and the ejected electron kinetic energy is
TB=5 eV. Experimental data is fromf24g. All these TDCSs were
obtained in the direct channel.
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result obtained by Berakdarf21g, we also obtain a good
agreement. But before beginning the discussion proper, let us
recall the formalism used by Berakdar. His calculations were
performed within a model where the three-body final state is
described by a product of three symmetrical, Coulomb-type
functions. Each of these functions describes the motion of a
particular two-body subsystem in the presence of a third
charged particle. The choice he made for the parameters used
in his formalism to describe the correlated wave functions
stems from the threshold theory of Wannierf25g and is of
paramount importance when the energies involved are small
or intermediate. Thereafter, he made a comprehensive com-
parison with available experimental data and with other the-
oretical models. He ended his study by concluding that gen-
erally, good agreement is found with the absolute
measurements but that, however, in some cases discrepancies
between various theoretical predictions and experimental
findings are obvious, which highlights the need for a theo-
retical and experimental benchmark study of these reactions.

In Fig. 3, we compare our results with those obtained by
Berakdar for an incident electron kinetic energyEi =250 eV
for the case of a coplanar asymmetric geometric whereu f
=uB=90°. The ejected electron kinetic energy isEB=5 eV
andf f =357°. What is remarkable is the agreement between
our results and his, bearing in mind that he used the DS3C
formalism sDS3C stands for dynamical screening theory
with three Coulomb-type functionsd. As it is a three-body
final state, the question of the correlations of the various

wave functions that intervene in its description is still, nowa-
days, an unanswered question. The only method that can
give a satisfactory answer to this question is the use of the
relativistic R-matrix method. However, the orders of magni-
tude of both results are similar and this is a second validity-
check of our model bearing in mind the relative simplicity of
the wave functions we have used. Another atypical result
related to our calculations is the behavior of the ratio of the
TDCS sSRCBAd/TDCS sNRCBAd, where now the maxima
of this ratio correspond nearly to the local minima of the
TDCS when plotted as a function of the anglefB. However,
there is no rule that can be inferred from the behavior of this
ratio since when performing various simulations even in the
coplanar asymmetric geometry but with increasing values of
the incident electron kinetic energy, there are many regions
not close to the binary or secondary peaks that present
maxima or minima.

B. Binary coplanar geometries

The relativistic regime can be defined as follows: when
the value of the relativistic parameterg=f1−sb /cd2g−1/2 is
greater that 1.0053, there begins to be a difference between
the nonrelativistic kinetic energy and the relativistic kinetic
energy.

FIG. 2. The ratio TDCSsSRCBAd/TDCS sNRCBAd as a func-
tion of the angleuB with u f =3°. The incident electron kinetic en-
ergy is ti =250 eV and the ejected electron kinetic energy isTB

=5 eV. Both TDCSs were evaluated in the direct channel.

FIG. 3. The two TDCSs. The solid line represents the relativistic
TDCS in the semirelativistic Coulomb Born approximation, the
long-dashed line represents the corresponding TDCS in the nonrel-
ativistic Coulomb Born approximation, the symbols square and
circle, respectively, represent the formalism of DS3C and the ex-
perimental data. We keep the same energies as in Fig. 1. Experi-
mental data is fromf9g. The results of the DS3C model were ob-
tained by including exchange effects and using correlated wave
functions.
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This numerical value of the aforementioned relativistic
parameter corresponds to an incident electron kinetic energy
of Ei =2700 eV. Because there is no experimental data avail-
able for this regime, we simply compare our results with
those we have previously found when we introduced the
relativistic plane-wave Born approximationsRPWBAd f23g
to study the ionization of atomic hydrogen by electron im-
pact in the binary geometry. In Fig. 4, it is clearly visible that
the three modelssNRCBA, SRCBA, and RPWBAd give the
same results, which was to be expected since in this geom-
etry, the use of a Coulomb wave function is not necessary.

In Fig. 5, there is a shift of the maximum of the TDCS in
the SRCBA towards smaller values thanuB=45° and this
remains the case for increasing values of the kinetic energy
of the incident electron. The origin of this shift stems from
the fact that the main contribution to the TDCS comes from
the termH1sqd given by Eq.s14d. This term contains a domi-
nant integralI1. When plotting the behavior ofI1 as function
of the angleuB, and with increasing values ofEi, one ob-
serves the shift we have mentioned as well as the fact that in
the relativistic regime, the TDCSsSRCBAd is always lower
than the TDCSsNRCBAd.

IV. CONCLUSION

In this article, we have presented a semirelativistic model
that does not rely on heavy numerical computations but yet

can be applied to a wide range of kinematic geometries and
energies. We have used simple semirelativistic Sommerfeld-
Maue wave functions that allow to obtain analytical results
in an exact and closed form within the framework of the first
Born approximation. This model gives good results if the
condition Za!1 is fulfilled. We have compared our results
with previous nonrelativistic results and found that the agree-
ment between the different theoretical approaches is good
even if our model uses simple uncorrelated wave functions.
It contains the coplanar asymmetric geometry, as well as the
binary coplanar geometry as particular cases, and shows that
the nonrelativistic treatment is no longer reliable for energies
higher than 25 keV. We hope that we will be able to compare
our theoretical results with forthcoming experimental data.

APPENDIX: ANALYTICAL CALCULATION OF THE
INTEGRAL J„l…

Before turning to the analytical calculation of the integral
Jsld proper, let us recall how the integralIsld f16g can be
obtained. This is explained without any detail inf20g. Using
parabolic coordinates, one has to evaluate the following in-
tegral:

FIG. 4. The three TDCSs scaled in 10−3. The solid line repre-
sents the relativistic TDCS in the semirelativistic Coulomb Born
approximation, the long-dashed line represents the corresponding
TDCS in the nonrelativistic Coulomb Born approximation. The
short-dashed line represents the relativistic plane-wave Born ap-
proximation. The incident electron kinetic energy isTi =2700 eV
and the ejected electron kinetic energy isTB=1349.5 eV andu f

=45°. All these results were obtained in the direct channel.

FIG. 5. The two TDCSs scaled in 10−5. The solid line represents
the relativistic TDCS in the semirelativistic Coulomb Born approxi-
mation, the long-dashed line represents the corresponding TDCS in
the nonrelativistic Coulomb Born approximation. The incident elec-
tron kinetic energy isTi =25 000 eV and the ejected electron kinetic
energy isTB=12 499.5 eV andu f =45°. All these results were ob-
tained in the direct channel.
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Isld =E dr expsiQ · r dexps− ipB · r d
e−lr

r

31F1„ihB,1,ispBr + pB · r d…. sA1d

The choice of the scalar productQ ·r chosen isf6g

Q · r =
1

2
Qsj − hdcosg − 4Îjh cosw sing. sA2d

Performing the various integrals, one finds

Isld =
2p

l − isQ cosg + pBdE0

`

dj exps− mjd

3 1F1sihB,1,ipBjd. sA3d

We use the well-known resultf20g

E
0

`

dt exps− ltd1F1sa,1,ktd = la−1sl − kd−a sA4d

with

l = m =
Q2sin2g

2fl − isQ cosg + pBdg
+

1

2
fl + isQ cosg + pBdg

sA5d

anda= ihB andk= ipB. This gives the result

Isld =
4p

sQ2 + l2 + pB
2 + 2QpBcosgd

3 expFihBlnSQ2 + l2 + pB
2 + 2QpBcosg

Q2 + l2 − pB
2 − 2ilpB

DG .

sA6d

To recover the integralIsld given in Eq.s17d of the text, one
has to make the following substitutions:

− Q = q + pB

QpBcosg = Q ·pB = − q ·pB − pB
2 . sA7d

It is then straightforward to find that

Q2 + l2 + pB
2 + 2QpBcosg = q2 + l2

Q2 + l2 − pB
2 − 2ilpB = q2 + l2 + 2q ·pB − 2ilpB, sA8d

so that

Isld =
4p

sq2 + l2d
expFihBlnS q2 + l2

q2 + l2 + 2q ·pB − 2ilpB
DG .

sA9d

To calculate

Jsld =E dr expsiQ · r dexps− ipB · r d
e−lr

r

31F1„ihB + 1,2,ispBr + pB · r d… sA10d

one uses the same procedures to obtain

Jsld =
2p

l − isQ cosg + pBdE0

`

dj exps− mjd

31F1sihB + 1,2,ipBjd =
2p

l − isQ cosg + pBd
1

m

32F1SihB + 1,1,2,
ipB

m
D . sA11d

Performing the various substitutions, one gets the following
analytical integral:

Jsld =E dr expsiq · r d
e−lr

r 1F1„ihB + 1,2,ispBr + pB · r d…

=
4p

sq2 + l2d 2F1SihB + 1,1,2,− 2
fq ·pB − ilpBg

q2 + l2 D .

sA12d

We have tested this analytical result by performing the inte-
gral using two Gaussian quadratures because we have as-
sumed without loss of generality bothq andpB to be parallel
to theOzaxis. The first one, a Laguerre Gaussian quadrature
s32 pointsd to integrate over the radial variabler, and the
second one, using a Legendre Gaussian quadratures32
pointsd to integrate over the angular variableu. The agree-
ment between the analytical result and the numerical result is
excellent. To illustrate this point, we give as an example the
results obtained by the two methods for the following ran-
dom values of the relevant parameters: Forl=1, uqu
=1.015 055,upu=0.105 509 8. The exact result is

Jexactsld = s0.573 558 96,0.124 585 10d, sA13d

and the numerical result is

Jnumsld = s0.573 558 99,0.124 585 07d. sA14d
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