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The energy-loss spectra in large-angle Li++N2 scatterings are analyzed with the hard-potential model re-
cently proposed, along with the previous hard-shell model. The respective roles of rotational and vibrational
excitations are revealed through systematic comparisons of experimental spectra with the models in a wide
range of energiess8–100 eVd and angless40°–120°d. The effect of vibrational excitation is found to manifest
itself in the shifts of double peaks. Their energy dependence is accounted for by the shape of the equipotential
surface as well as by the vibrational suddenness in a collision. The peak position is shown to be sensitive to the
curvature of the surface at the orientation angle of 90°, hence to the three-body potential. The unacceptable
result of a previous semiclassical calculation is suggested to come from the inappropriate potential taken.
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I. INTRODUCTION

More than two decades ago, Beck and co-workers pro-
posed thehard-shell modelfor rotational excitation in colli-
sions of an atomsor an iond with a diatomic moleculef1g.
The model treats the molecule as a classical rigid rotor with
the ellipsoidal surface accounting for the emergence of a
rotational rainbow through the instantaneous torque. Because
of its simplicity, the model has been widely applied to the
energy-loss spectra with individual vibrational-rotational lev-
els left unresolvedf2,3g. According to Massey’s criterion
with the collision timetcol, however, vibrational excitation
should be also crucial to the spectra when the collision en-
ergy is as high as 10–102 eV.

In a recent paperf4g, we have developed a model of an
ideally sudden character for rotationaland vibrational exci-
tations; it is a natural extension of the hard-shell model to a
vibrational-rotor molecule. In thishard-potential model, the
energy-loss spectra are analytically related to a deformable
shape of the equipotential surface at the collision energy. It
leads to a spectral profile of double peakssrotational rain-
bowsd for a homonuclear molecule, though their positions
are affected by vibrational excitation. It is demonstrated in
the classical trajectorysCTd calculationf4g that the spectra
are reduced to the hard-potential model when the vibrational
periodtvib is artificially taken astvib@tcol, while reduced to
the hard-shell model whentvib!tcol. This finding suggests
that the combined application of the two models would be
useful for analyzing the mechanism of vibrational-rotational
excitation through the spectral profiles.

For Li++N2 collisions, the energy-loss spectra have been
measured at large scattering angles in a wide range of center-
of-mass energies such asE=4–17 eVf5,6g and 57–280 eV

f7,8g. Several theoretical works have been done for analyzing
the spectra, though restricted to the lower energiessE
ø17 eVd Among them is the CT calculationf6g with a
model potential, indicating that the double-peak structure ob-
served is dominated by rotational excitation. Quantum me-
chanical calculations have been also carried out with the
infinite- order sudden approximationf9g, the distorted-wave
impulse approximationf10g, and the semiclassical time-
correlation-function methodf11,12g. However, none of them
has reproduced the measured spectra satisfactorily; no sys-
tematic understanding has been given yet all through the
observations.

In the present paper, we make a systematic analysis of
gross energy-loss spectra for Li++N2 scatterings in a wide
range of energies and angles. Using a realistic potential, we
calculate the spectra with the hard-potential model and with
the hard-shell model. To make the analyses sounder, we also
carry out the CT calculations for a vibrational-rotor molecule
and for a rigid-rotor molecule. The results of these calcula-
tions are compared with the experimentsf6–8g and with the
previous semiclassical calculationf12g. It is revealed how
the effects of rotational and vibrationl excitations manifest
themselves in the spectra and how the spectral profiles vary
with the energy, the angle, and the potential.

The methods of calculations are described in the follow-
ing section. We examine the systematic spectral behaviors in
Sec. III and analyze the previous experimental and theoreti-
cal results in Sec. IV. Concluding remarks are given in the
final section.

II. METHODS OF CALCULATIONS

The interaction potentialVsr ,x,Rd in Li+
uN2 collisions

has been obtained by severalab initio calculations
f7,13–15,20g as a function of the relative distancer, the ori-
entation angleg sx;cosgd, and the bond lengthR. How-
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ever, their results are inappropriate for the present analysis
because thex and R dependences are poorly given for the
short-range repulsive force. Instead, we construct the poten-
tial as a sum of two-body and three-body terms. The two-
body Li+-N potential is taken in the Yukawa form as
Vs2dsrd=A exps−r /ld with A=230 eV andl=0.32 Å from
the statistical electron modelf16g. The three-body correction
arises because the electron cloud in the middle of the two N
atoms is pushed out when they form an N2 molecule, hence
mimicked by an average ofVs2d over the orientations as

Vs3dsr,Rd =
4dAl

rR
sinhS R

2l
DexpS−

r

l
D , s1d

whered is a strength parameter to be adjusted. This form is
similar to that proposed by Tanumaet al. f17g in the analysis
of Na++N2 collisions. The NuN bonding potential is taken
in the Morse form as UsRd=U0hexpf−2sR−Reqd /b0g
−2 expf−sR−Reqd /b0gj with U0=9.8 eV, Req=1.10 Å, and
b0=0.37 Å.

In view of the comparison with experiments, we calculate
the energy-loss spectrum at a fixed scattering angleulab in the
laboratory frame and convolute it as

K ds

dedVlab
L

De

=E
0

1

de* ds

de*dVlab
IDese* − ed, s2d

where the energy transferDE is scaled ase=DE/E. The
instrumental functionIDese* −ed is taken in the Gaussion
form with the full width of half maximumsFWHMd of De.
The width is taken in common among the model and CT
calculations for respective spectra so that the comparisons
are made on the same ground. The spectra shown below are
normalized asfsed=fkds /dVlabdelDeg / fds /dVlabg.

In the hard-potential modelf4g, the specta are determined
by the inelasticity function qsxd on the equipotential surface
at the collision energyE with the equilibrium bond length
Req. The inelasticity is decomposed into the rotational and
vibrational contributions asqsxd=qrotsxd+qvibsxd; the hard-
shell model is derived by settingqsxd=qrotsxd. The conve-
nient expressions adapted to Eq.s2d are given in the Appen-
dix.

III. SYSTEMATICS OF THE SPECTRAL PROFILES

The inelasticity functionqsxd generally takes one mini-
mum and one maximum, which lead to a spectral profile with
double peaks—i.e., the nearly elastic peak and the deeply
inelastic peak. We examine their dependences on the poten-
tial and on the energy.

A. Effect of the three-body potential

The potentialsVsr ,x,Reqd by different values of the three-
body strengthd are compared in Fig. 1 with a result of the
self-consistent fieldsSCFd calculation f7g in the collinear
sx=1d and isosceles triangularsx=0d configurations. It is
seen that the potential is sensitive tod at x=0, while insen-
sitive at x=1. The SCF potential in the energy range ofE
=10–100 eV is well reproduced by the strength ofd=0.2.

The equipotential surfaces atE=16.8 eV are plotted in Fig.
2. It is seen that the curvature atx=0 is sensitive tod. A cave
is formed by the pairwise potentialsVs2d but filled in by the
three-body correctionVs3d. In particular, the surface withd
=0.2 gives a convex shape. The addition ofVs3d is crucial to
the spectra as demonstrated below.

Figure 3 shows the inelasticity functions atE=16.8 eV. It
is seen that the rotational inelasticityqrotsxd takes a maxi-
mum at x, ±0.6 and a vanishing minimum atx=0 andx
= ±1. The maximum value decreases asd increases, reflect-
ing a more isotropic shape of the surface. However, the total
inelasticityqsxd takes a maximumqmax at x= ±1 and a mini-
mum qmin at x=0, both contributed exclusively from vibra-
tional excitation. In fact, they are expressed from Eq.sA7d as

qmax=
m

M
S ]V/]R

]V/]r
D

r=ri,x=±1

2

, qmin =
m

M
S ]V/]R

]V/]r
D

r=r',x=0

2

,

with the major sminord semiaxisr isr'd of the surface. In
these equations, the numerator in the parentheses represents
a force upon vibration, while the denominator upon intermo-
lecular repulsion. As observed in the figure,qmax is almost
insensitive tod because the two-body termVs2d dominates
the potential in the collinear configuration. On the other
hand,qmin rapidly decreases asd increases, almost vanishing
at d=0.2. This is because the force upon vibration rapidly

FIG. 1. Intermolecular potentialsVsr ,x,Reqd for Li++N2 in the
collinear sx=1d and isosceles triangularsx=0d configuration with
the three-body strength ofd=0.2 ssolid linesd and with d=0, 0.1,
and 0.3sdashed linesd. They are compared with the SCF calculation
f7g ssolid circlesd.

FIG. 2. Equipotential surfaces for Li++N2 at E=16.8 eV with
the three-body strength ofd=0, 0.1, 0.2, and 0.3. The surface ex-
pands asd increases. The equilibrium nuclear positions in N2 are
shown by open circles. Scales are shown in Å.
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decreases asr' increases and also because the force due to
Vs3d acts to shorten the N-N distancefsee Eq.s1dg while Vs2d

to elongate.
Figure 4 shows the energy-loss spectra atE=16.8 eV with

ulab=90° in the model and CT calculations, together with the
experimental spectrumf6g. It is seen that, in the hard-shell
model, the deeply inelastic peak moves towards smallere as
d increases, while the nearly elastic peak is located identi-
cally ate=0. In the hard-potential model, the deeply inelastic

peak is almost insensitive tod, while the nearly elastic peak
moves widely towards smallere as d increases. These fea-
tures are derived from the behaviors ofqrotsxd and qsxd de-
scribed above. It is also seen that the spectra given by the
vib-rotor srigid-rotord CT calculation almost follow those by
the hard-potentialshard-shelld model, though giving notice-
able shifts towards smallere for the deeply inelastic peak.
This last point is related to the suddenness in a collisionssee
the following subsectiond. It is further noted that the experi-
mental spectrum is well reproduced by the vibrational-rotor
CT calculation with the potential ofd=0.2 but not at all with
d=0. This result confirms that the former potential is realistic
and that the three- body correction is essential. We use the
potential withd=0.2 through the analyses below.

B. Energy dependence

Figure 5 shows the equipotential surfaces at three energies
in a geometrical progression. As the energy increases, the
surface shrinks almost uniformly to give a more anisotropic
shape, convex atE=2.1 eV and 16.8 eV but slightly concave
aroundx=0 at E=134 eV. The inelasticity functions at the
three energies are shown in Fig. 6 along with the lower panel
in Fig. 3. Corresponding energy-loss spectra atulab=90° by
the model and CT calculations are shown in Fig. 7 along
with the lower panel in Fig. 4.

In the models, the energy dependence of the spectra
comes exclusively from that ofqsxd ssee the Appendixd. As
seen from the figures, in the hard-shell model, the deeply
inelastic peak moves towards largere as E increases. This
behavior reflects the increase of the maximum inqrotsxd,
which is due to the increase of the anisotropy in the surface.
In the hard-potential model, on the other hand, the nearly
elastic peak moves towards largere as E increases. This
behavior reflects the increase of the minimum inqsxd, which
is related to the decrease of the surface curvature atx=0. It is
noted in addition that, asE varies, the nearly elastic peak is
almost unmovedsat e,0d in the hard-shell model and so is
the deeply inelastic peaksat e,0.35d in the hard-potential
model. Consequently, the model derives a shift due to vibra-
tional excitation more conspicuously at lower energies for
the deeply inelastic peak and at higher energies for the nearly
elastic peak.

FIG. 3. Inelasticity functions for7Li++N2 at E=16.8 eV using
the three-body strength ofd=0 supperd and d=0.2 slowerd. In re-
spective panels are plottedqsxd ssolid curvesd, qrotsxd sdashed
curvesd, andqvibsxd sdot-dashed curvesd.

FIG. 4. Energy-loss spectrafsed in 7Li++N2 at E=16.8 eV with
ulab=90° using the three-body strength ofd=0 supperd and d=0.2
slowerd. Thick solid sdashedd curves indicate the hard-potential
shard-shelld model, while thin solid sdashedd curves show the
vibrational-rotorsrigid-rotord CT calculation. The FWHM of con-
volution is De=0.10. Solid circles indicate the experimental spec-
trum f6g.

FIG. 5. Equipotential surfaces for Li++N2 at E=2.1, 16.8, and
134 eV. Open circles indicate the equilibrium nuclear positions in
N2. Scales are shown in Å.
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Through the spectra shown, the rigid-rotor CT calculation
almost follows the hard-shell model though a small deviation
is noticeable at higher energies. The vibrational-rotor CT cal-
culation indicates a good agreement with the hard-potential
model for the nearly elastic peak but a remarkable deviation
for the deeply inelastic peak; the latter shows a good accor-
dance at the highet energys134 eVd but a wide shift at the
lowest energys2.1 eVd. At E=2.1 eV, the vibrational-rotor
CT calculation rather obeys the hard-shell model. These be-
haviors reflect the energy-dependent effect of vibrational ex-
citation. This effect is also confirmed in the comparison be-
tween the rigid-rotor and vibrational-rotor CT calculations;
they show a difference more significantly asE increases.

The findings above are understandable in terms of the
suddenness in a collision. The rotational and vibrational sud-
denness parameters are introducedf4,18g and estimated in
Table I using respective angular frequenciessvrot and vvibd
together with a collision timetcol given by a passing range
2l. It is expected from the table that rotational excitation
fully occurs through the energies becausevrottcol!1 srota-
tionally suddend, though getting less perfect asE increases.
In addition, at the highest energys134 eVd, vibrational exci-
tation also fully occurs becausevvibtcol!1 svibrationally
suddend. This situation is near the sudden limittcol→0 de-
scribed by the hard-potential model. In reality, while the ex-
ternal impulsive forceVsr ,x,Rd causes a departure from the
equilibrium lengthReq, the restoring forceUsRd acts as a
brake on vibrational excitation during a finite collision time
tcol. Thus, vibrational excitation takes place less conspicu-
ously asE decreases, reflecting worse vibrational sudden-
ness. At the lowest energys2.1 eVd, vibrational excitation
hardly occurs becausevvibtcol@1 svibrationally adiabaticd.
This situation is described by the hard-shell model.

We add a remark that the shift of the deeply inelastic peak
between the hard-shell and hard-potential models is dimin-
ished asE increasesssee Figs. 6 and 7d. In consequence,
even atE=134 eV, the shift between the rigid-rotor and
vibrational-rotor CT calculations is as small as 10% of the
maximum energy loss in spite of good vibrational sudden-
ness.

IV. RESULTS AND DISCUSSION

A. Analysis of experimental spectra

Experimental energy-loss spectraf6–8g at different ener-
gies and angles are compared with the model and CT calcu-
lations in Figs. 8 and 9. It is seen that the spectra measured
persistently indicate a profile with double peaks and that they
are well reproduced by the vibrational-rotor CT calculation.

Figure 8 along with the lower panel of Fig. 4 shows the
spectra in a wide range of anglessulab=60°, 90°, and 120°d at
E=16.8 eV. It is seen that the angle dependence is virtually
explained by the hard-potential model, where the spectra are
derived from a common inelasticity functionqsxd ssee the
lower panel in Fig. 3d. In particular, the deeply inelastic peak
moves towards largere with the angle according to the kine-
matical relation of Eq.sA4d, which gives the approximate
scaling behavior with 1−cosulab. It is further noted that the

FIG. 6. Inelasticity functions for7Li++N2 at E=2.1 eV supperd
and 134 eVslowerd. In respective panels are plottedqsxd ssolid
curvesd, qrotsxd sdashed curvesd, andqvibsxd sdot-dashed curvesd.

FIG. 7. Energy-loss spectrafsed in 7Li++N2 at ulab=90° with
E=2.1 eVsupperd and 134 eVslowerd. Thick solidsdashedd curves
indicate the hard-potentialshard-shelld model, while thin solid
sdashedd curves show the vibrational-rotorsrigid-rotord CT calcula-
tion. The FWHM of convolution isDe=0.10.

TABLE I. Rotational and vibrational suddenness parameters at
different energiesE.

E seVd vrottcol vvibtcol Fig. No.

2.1 0.09 3.2 Fig. 7

8.4 0.10 1.6 Fig. 9

16.8 0.10 1.1 Figs. 4 and 8

57 0.10 0.60 Fig. 9

99 0.11 0.46 Fig. 9

134 0.14 0.40 Fig. 7
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relative heights of the double peaks vary with the angle. In
the measurementf6g and in the vibrational-rotor calculation,
the deeply inelastic peak is higherslowerd than the nearly
elastic peak at 60°sat 120°d. This trend is explained by the
hard-potential model, though inperfectly, as coming from the
Jacobian for solid angle elements between the center-of-mass
and laboratory frames. In fact, Eq.sA3d indicates an increase
sa decreased of the Jacobian with increasinge at 60° sat
120°d.

Figure 9 shows the spectra in a wide range of energies
sE=8–100 eVd at ulab=40° and 60°. The measurement at
E=8.4 eVf6g indicates a spectral profile much more like the
hard-shell model than like the hard-potential model. This
comparison means that the spectrum is dominantly contrib-
uted from rotational excitation. It is explainable with the vi-
brational suddenness parameter asvvibtcol.1 ssee Table Id.
On the other hand, the spectra measured atE=57 eVf8g and
99 eV f7g evidently depart from the hard-shell model and
behave rather like the hard-potential model. This means that
vibrational excitation occurs conspicuously, explainable with
vvibtcol,1 ssee Table Id.

B. Analysis of a previous calculation

The soundest theoretical analysis for Li++N2 collisions so
far has been made by Vilallonga and Michaf12g. They de-
veloped the time-correlation-functionsTCFd methodf11g us-
ing the Magnus expansionf19g for vibrational excitation and
a sudden approximation for rotational excitation along with
the classical trajectories for intermolecular motion. They
took a potential calculated by Staemmlerf20g and fitted by
Billing f21g with the Legendre expansion. Applying these
methods, Vilallonga and Michaf12g have analyzed the

energy-loss spectra atE=4–17 eV andderived gross profiles
with double peaks. However, they are not quite alike the
measurementsf6g, in particular at larger angles. As a typical
example, the spectrum atulab=90° withE=16.8 eV is shown
in the lower panel of Fig. 10, where the deeply inelastic peak
calculated by them is widely shifted towards higher energy
loss in comparison with the experiment. Such a deviation
does not occur in the present analysisssee the corresponding
spectrum shown in the lower panel of Fig. 4d. It has been
unclear whether this unacceptable result is due to the method
of dynamical calculation or to the potential taken.

To get insight into this problem, we apply the hard-
potential model with the samesStaemmler-Billingd potential
that Vilallonga and Michaf12g took in the TCF calculation.
As seen from the figure the model derives a spectrum similar
to the TCF calculation, reproducing the deeply inelastic peak
at e=0.53 and a slightly concave structure arounde=0.45.
These observations suggest that the potential taken was re-
sponsible.

To further illuminate this point, we plot the inelasticity
functions by the Staemmler-Billing potential in the upper

FIG. 8. Energy-loss spectrafsed in 7Li++N2 with E=16.8 eV at
ulab=60° supperd and 120° slowerd. Thick solid sdashedd curves
indicate the hard-potentialshard-shelld model, while thin solid
sdashedd curves show the vibrational-rotorsrigid-rotord CT calcula-
tion. The FWHM of convolution isDe=0.067 for ulab=60° and
De=0.13 for ulab=120°. Solid circles indicate the experimental
spectraf6g.

FIG. 9. Energy-loss spectrafsed for sad 7Li++N2 at ulab=60°
with E=8.4 eV supperd, sbd 6Li++N2 at ulab=60° with E=57 eV
smiddled, and scd 6Li++N2 at ulab=40° with E=99 eV slowerd.
Thick solid sdashedd curves indicate the hard-potentialshard-shelld
model, while thin solidsdashedd curves show the vibrational-rotor
srigid-rotord CT calculation. The FWHM of convolution isDe
=0.067 forsad, 0.050 forsbd, and 0.025 forscd. Solid circles indi-
cate the experimental spectraf6g for sad, f8g for sbd, andf7g for scd.
Note that the experimental spectrum inscd is accompanied ine
.0.12 by an extra bump due to electronic excitationsseef7gd.
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panel of Fig. 10 and contrast them with the spectra shown in
the lower panel. It is seen that the deeply inelastic peak
comes from a maximum ofqsxd at x. ±0.7 while the can-
cave structure arises from a contribution aroundx= ±1. The
latter is accounted for by a “step” structuref22g, which ac-
companies the deeply inelastic peak when dq/duxu,0 at x
= ±1. These features are obviously far from the present
analysis, where dq/duxu.0 near uxu=1 and the maximum
appears atx= ±1 ssee the lower panel in Fig. 3 forE
=16.8 eVd. While giving similar qrotsxd, the two potentials
derive completely differentqvibsxd; their potential leads to a
rise asuxu departs from 1, while ours to a steep fall. It is thus
concluded that the unacceptable spectra obtained in the TCF
calculation f12g are ascribable to the character of the
Staemmler-Billing potential relevant to vibrational excita-
tion. It is also remarked that this difficulty in the potential is
not remedied by the proceduref12g of reducing the vibra-
tional coupling strength because it does not alter the func-
tional form of qvibsxd.

The potential originally obtained by Staemmlerf20g is
almost consistent with ours used in the present analysis.
However, his calculation was applied only to the equilibrium
bond lengthReq except at the orientations ofx=0 and x
= ±1. Hence, we guess that the poor sampling points lead to
the inaccurate fitting potentialf21g for vibrational excitation.

V. CONCLUDING REMARKS

We have analyzed the energy-loss spectra in Li++N2 scat-
terings for a wide range of energiessE=8–100 eVd and
anglessulab=40° –120°d. The respective roles of rotational
and vibrational excitations have been revealed through sys-

tematic comparisons of the experimental spectra with the
model and CT calculations. The spectral profile and its en-
ergy dependence are related to the shape of the equipotential
surface. The effect of vibrational excitation manifests itself
in the shifts of double peaks. The nearly elastic peak is sen-
sitive to the surface curvature at the orientation angle of 90°,
hence to the three-body potential; the deeply inelastic peak
reflects the vibrational suddenness in a collision. It is found
that rotational excitation is dominant at lower energies
s,10 eVd, while vibrational excitation is remarkable at
higher energiess,100 eVd. The unacceptable result of a pre-
vious semiclassical calculation by Vilallonga and Micha is
suggested to come from the inappropriate potential taken.

The combined application of the hard-shell and hard-
potential models has been demonstrated to be useful for ex-
amining how rotational and vibrational excitations contribute
to the spectra and how the spectral profile varies with ener-
gies, angles, and potentials. The analysis in this way will be
promising for different diatomic molecules including hetero-
nuclear ones.
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APPENDIX: ENERGY-LOSS SPECTRA IN THE HARD-
POTENTIAL MODEL

The convoluted energy-loss spectrumfEq. s2dg at the
laboratory angleulab is written as an integral over the equi-
potential surface,

K ds

dedVlab
L

De

=E
−1

1

dx
dS

dx
F„qsxd;e,ulab…, sA1d

where the integrand is given by a composite function ofqsxd
and

Fsq;e,ulabd

= U ]sVd
]sVlabd

U
e*

s1 + qd2f1 − e*sqdgIDese*sqd − ed
16pus1 + qdÎ1 − e*sqd − q cosu*sqdu

,

sA2d

with the Jacobian for solid-angle elements

U ]sVd
]sVlabd

U
e*

= Ssinu*sqd
sinulab

D2 1

cosfu*sqd − ulabg
. sA3d

In these equations, the scaled energy-loss and the center-of-
mass angle are determined as

FIG. 10. Analysis with the Staemmler-Billing potentialf21g for
the energy-loss spectrum in7Li++N2 at ulab=90° with E=16.8 eV.
In the upper panel are plotted the inelasticity functions,qsxd ssolid
curved, qrotsxd sdashed curved, and qvibsxd sdash-dotted curved. In
the lower panel are plotted the results of the experimentf6g ssolid
circlesd, the time-correlation-function methodf12g sa thin solid
curved, the hard-potential modelsa thick solid curved, and the hard-
shell modelsa thick dashed curved. The spectra in the models are
convoluted with the FWHM ofDe=0.083.
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e*sqd =
2q

s1 + qd2f1 + q̃ sin2 ulab − cosulab
Î1 − q̃2 sin2 ulabg,

sA4d

cosu*sqd = −
m

Î1 − e*sqd
sin2 ulab

+ cosulabÎ1 −
m2

1 − e*sqd
sin2 ulab, sA5d

where m is the projectile-to-target mass ratio andq̃=q+m

+qm. The surface element and the inelasticity function are
given by a representationr =rSsx,Rd of the surface as

dS

dx
= 2pReq

2 usxdÎu2sxd + s1 − x2du82sxd, sA6d

qsxd =
m

M
u2sxd

v2sxd + s1 − x2du82sxd
u2sxd + s1 − x2du82sxd

, sA7d

whereusxd=rS/Req andvsxd=]rS/]R at R=Req, with m and
M denoting the inter- and intramolecular reduced masses,
respectively.
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