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We derive a formalism for the computation of resonance-scattering polarization of hydrogen lines in the
presence of simultaneous magnetic and electric fields, within a framework of the quantum theory of polarized
line formation in the limit of complete frequency redistribution and of collisionless regime. Quantum interfer-
ences between fine-structure levels are included in this formalism. In the presence of a magnetic field, these
interferences affect, together with the magnetic Hanle effect, the polarization of the atomic levels. In the
presence of an electric field, interferences between distinct orbital configurations are also induced, further
affecting the polarization of the hydrogen levels. In turn, the electric field is expected to affect the polarization
of the atomic levelsselectric Hanle effectd, in a way analogous to the magnetic Hanle effect. We find that the
simultaneous action of electric and magnetic fields give rise to complicated patterns of polarization and
depolarization regimes, for varying geometries and field strengths.
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I. INTRODUCTION

In this paper, we adopt the quantum theory of polarized
line formation in the limit of complete frequency redistribu-
tion sCRDd and of collisionless regime, developed by Landi
Degl’Innocentif1–4g, in order to derive a general formalism
for the description of resonance scattering polarization from
a hydrogen atom subject to simultaneous magnetic and elec-
tric fields. This formalism allows for the possibility that
quantum interferences between distinctJ levels within an
atomic termsgenerally specified by itsL and S values, as-
suming that the approximation ofL-S coupling is valid, and
by the principal quantum numbernd may be important. In the
additional presence of an electric field, in the case of the
hydrogen atomsand, more generally, of all one-electron at-
oms, which are sensitive to the linear Stark effectd, quantum
interferences between differentL levels are also induced, due
to the dipolar character of the electric Hamiltonian. A study
of the effect of electric fields on the atomic polarization of
hydrogenselectric Hanle effectd was presented in Ref.f5g,
for the special case of Lymana.

In order to meet the requirements of CRD, we must as-
sume that the incident radiation field has no spectral structure
over the frequency interval of the separation between inter-
fering levels sflat-spectrum approximationd. In the case of
hydrogen, CRD can be considered a reasonably good ap-
proximation, e.g., in solar plasmas, for the lines of the
Balmer and the Paschen series, because the line absorption
spectrum coming from the solar atmosphere typically is
Doppler broadened to widths much larger than the frequency
structure of the line multiplets. This is true also in the pres-
ence of external fields, so far thatuHE,Bu& uHFSu, whereHE
and HB are the electric- and magnetic-field Hamiltonians,
respectively, andHFS is the fine-structuresFSd contribution

to the atomic Hamiltonian.sWe neglect in this paper the
effect of the hyperfine structure; see the conclusive section.d
In the case of Lymana, instead, partial redistributionsPRDd
is known to play a role in the formation of the line emission
spectrum even in the solar atmosphere.1 Another limitation
of this work is that the formalism is developed for the colli-
sionless regime, so the statistical equilibrium of the atomic
system is completely determined by the incident radiation
only.2

In the CRD approximation, the problem of computing the
polarization of the scattered radiation by an atom subject to
external fields can be separated in two stages. The first stage
involves the solution of the statistical equilibrium of the
atom in the external fields, illuminated by the incident radia-
tion. Once this solution, which provides the excitation state
of the atom, is known, we are able to compute the re-emitted
sscatteredd radiation and its polarization characteristics. We
remark that the possibility of separating the scattering prob-
lem in such two-stage problem is a direct consequence of the
hypothesis of CRD. In fact, since CRD is equivalent to non-
coherent scattering of radiation, it becomes possible to de-
scribe scattering as the temporal succession of two first-order
atom-photon processes, one of absorption of radiation
swhich determines the excitation state of the atomic gasd, and
one of re-emissionswhere the excitation state previously de-
termined is used to calculate the scattered radiationd. PRD
requires instead the possibility of describing both coherent
and noncoherent scattering, and therefore higher-order atom-
photon processes must also be taken into account.

*The National Center for Atmospheric Research is sponsored by
the National Science Foundation.

1Inclusion of PRD effects in a self-consistent theory of resonance
scattering polarization for complex atoms is an ongoing effort. Until
it is accomplished, CRD is a necessary limitation of any theoretical
modeling.

2Within the limit of the impact approximationf6g, the extension of
the formalism to include collisions is straightforward, since the col-
lisional rates can simply be added to the rates for the corresponding
radiative processes.
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Following this scheme, in Sec. II, we derive the expres-
sions of the radiative rates that enter the equations of the
statistical equilibriumsSEd of a one-electron atom with FS.
The solution of the SE problem is given in terms of the
density-matrix elements of the atomic system, which de-
scribes both the population of the atomic levels, and their
state of polarization and of mutual interference. Next, in Sec.
III, we derive the expressions of the coefficients entering the
transfer matrix in the radiative-transfersRTd equation for po-
larized radiation. This equation governs the production and
the transport of polarized radiation through a gas that is gen-
erally optically thick, and it allows the computation of the
intensity and the polarization state of the scattered radiation,
when the density matrix of the atomic system is known at
every point in the gas, by having previously solved the SE
problem. In both Secs. II and III, we adopt the formalism of
the irreducible spherical tensorsf7,8g, because it provides a
more direct interpretation of the various quantities in terms
of physical symmetries of the interaction processes of the
atomic system with the radiation field. Similarly, for the de-
scription of the polarization state of the incident and scat-
tered radiation, we adopt the formalism of the Stokes param-
etersf9,10g.

In Sec. IV, we present some numerical examples of the
application of our formalism. We show how the simultaneous
action of electric and magnetic fieldssparallel to each other,
in the special case of these examplesd modifies the atomic
orientation of the hydrogen levels, and how this translates
into a characteristic polarization signature of the scattered
radiation in the limit of an optically thin gas permeated by
both fields. In particular, we show how the additional pres-
ence of even small electric fields can act as a “catalyst” of
the atomic orientation induced by a magnetic field. This
atomic orientation must translate observationally in an
amount of net circular polarization of the scattered radiation
significantly larger than in the case where only a magnetic
field is present, as it is clearly shown in Sec. IV. Finally, in
Sec. V, we summarize the main results of this paper.

II. EQUATIONS OF STATISTICAL EQUILIBRIUM

In this section we derive the statistical-equilibriumsSEd
equations. These represent the quantum-mechanical evolu-
tion equation for the statistical operator of the atomic system
rA, projected on some basis of choice for the Hilbert space of
the atom. If we select the basis of eigenstatesunl of the
atomic HamiltonianHA, wheren specifies a complete set of
commuting observables of the atomic system, the SE equa-
tions have the following formf1,4g:

d

dt
rnn8 = − ivnn8rnn8 − o

n9n-

fRAsn,n8;n9,n-d

+ RSsn,n8;n9,n-d + REsn,n8;n9,n-dg rn9n-

+ o
nlnl8

TAsn,n8;nl,nl8drnlnl8
+ o

nunu8

fTSsn,n8;nu,nu8d

+ TEsn,n8;nu,nu8dg rnunu8
. s1d

In Eq. s1d, only radiative processes are considered. The
meaning of the differenttransfer rates, TA,E,S, andrelaxation
rates, RA,E,S, associated with these processes is illustrated in
Fig. 1, in terms of absorption and emissionsspontaneous and
stimulatedd processes.

We will develop our formalism for the specific case of
one-electron atomsstypically, the hydrogen atomd, because
of the particular importance that electric fields have for such
systems, because of their sensitivity to the linear Stark effect.
For one-electron atoms, the general ket of the standard basis
of eigenstates ofHA, in the absence of external fields, can be
chosen in the form

unl = unLSJMl, s2d

having assumed that the conditions forL-S coupling are
valid and that the effects of hyperfine structure are negligible
ssee also the conclusive sectiond. Obviously S=1/2 in the
case of one-electron atoms.

When both magnetic and electric fields are present, only
the Bohr configuration numbern remains a good quantum
numbersif we limit our investigation to field strengths such
that configuration mixing can be neglected; see, e.g., Ref.
f11gd, besides the fixed spin quantum numberS. In other
words,HB+HE “mixes” states of the forms2d having differ-
ent L’s, J’s, andM’s. Because of this, the eigenstates ofHA
in the presence of arbitrarily orientedB andE can be written
as

unS,ml = o
LJM

Cm
LJMsnSdunLSJMl, s3d

with eigenvalueslmsnSd, wherem is a discrete index span-
ning the dimension of the Hilbert subspace of the leveln. If
we choose the frame of reference for the description of the
atomic states such that thez axis sthe quantization axisd is
directed likeB, and thex axis lies in the plane determined by
the two vectorsB and E ssee Fig. 2 later ond, then we can
prove thatHA is real symmetricf11g, so the coefficients
Cm

LJMsnSd can also be chosen to be real quantities, satisfying
the following orthogonality propertiessvalid within the Hil-
bert subspace of each Bohr levelnd:

o
m

Cm
LJMsnSdCm

L8J8M8snSd = dLL8dJJ8dMM8, s4ad

FIG. 1. Grotrian diagram illustrating the different radiative pro-
cesses in the multiterm atom. Straight arrows indicate spontaneous
emission processes, whereas wiggly lines indicate radiation-induced
processessabsorption and stimulated emissiond.
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o
LJM

Cm
LJMsnSdCm8

LJMsnSd = dmm8. s4bd

The atomic Hamiltonian can then be expressed through its
spectral representation,

HA = o
n

o
m

lmsnSdunS,mlknS,mu

= o
n

o
m

o
LJM

o
L8J8M8

lmsnSdCm
LJMsnSdCm

L8J8M8snSd

3unLSJMlknL8SJ8M8u, s5d

from which we derive the important sum rule

o
m

lmsnSdCm
LJMsnSdCm

L8J8M8snSd = knLSJMuHAunL8SJ8M8l.

s6d

In order to derive explicit expressions for the SE equa-
tions, we introduce the following correspondences:

n ; nS,m, n8 ; nS,m8, n9 ; nS,m9, n- ; nS,m-,

nl ; nlS,ml, nl8 ; nlS,ml8,

nu ; nuS,mu, nu8 ; nuS,mu8

by which the atomic density matrix becomes, with evident
notation,

rnn8 ; nSrsm,m8d ; knS,murunS,m8l

= o
LJM

o
L8J8M8

Cm
LJMsnSdCm8

L8J8M8snSd nSrsLJM,L8J8M8d,

s7ad

and conversely, using Eq.s4ad,
nSrsLJM,L8J8M8d = o

mm8

Cm
LJMsnSdCm8

L8J8M8snSd nSrsm,m8d.

s7bd

One task is to express the SE equations for the density matrix
in the standard representation,nSrsLJM ,L8J8M8d. In order to
do so, we must apply the double summation of Eq.s7bd,

o
mm8

Cm
LJMsnSdCm8

L8J8M8snSd 3 , s8d

to each side of Eq.s1d. Ultimately we want to work with the
irreducible spherical-tensor representation of the statistical
operator. For this, we will also need the transformation for-
mula,

nSrsLJM,L8J8M8d = o
KQ

s− 1dJ−MPKS J J8 K

M − M8 − Q
D

3nSrQ
KsLJ,L8J8d, s9ad

and its inverse

nSrQ
KsLJ,L8J8d = o

MM8

s− 1dJ−MPKS J J8 K

M − M8 − Q
D

3nSrsLJM,L8J8M8d, s9bd

having adopted the shorthand notationf12g

Pab̄ n = Îs2a + 1ds2b + 1d ¯ s2n + 1d. s10d

Both operationss8d and

o
MM8

s− 1dJ−MPKS J J8 K

M − M8 − Q
D s11d

must then be applied to each side of Eq.s1d.

A. Evaluation of the depolarization kernel

We first concentrate on the imaginary term in Eq.s1d,

vnn8rnn8 ; "−1flmsnSd − lm8snSdg nSrsm,m8d.

To this expression, we consecutively apply the substitutions
s7ad and s9ad, along with operationss8d and s11d. For this
transformation, the identitiess4ad and s6d are also needed.
We obtain in the end

vnn8rnn8 → o
L9J9

o
L-J-

o
K8Q8

NsnS;LJL8J8KQ;L9J9L-J-K8Q8d

3nSrQ8
K8sL9J9,L-J-d, s12d

where

FIG. 2. Geometry defining the propagation vectork and the
reference direction of linear polarizatione1skd in the frame of ref-
erence adopted for the diagonalization of the atomic Hamiltonian.
The plane of polarization, generated by the basis vectors for linear
polarization,e1skd ande2skd, is normal to the propagation vectork.
The position angleg corresponds to the position of the acceptance
axis of the linear polarizer through which12sI +Qd is measuredfsee
after Eq.s25d for the definition of the Stokes parametersI andQg.
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NsnS;LJL8J8KQ;L9J9L-J-K8Q8d = "−1 o
MM8

PKK8S J J8 K

M − M8 − Q
D

3FdL8L-dJ8J-o
M9

s− 1dJ−M+J9−M9S J9 J8 K8

M9 − M8 − Q8
DknLSJMuHAunL9SJ9M9l

− dLL9dJJ9o
M-

S J J- K8

M − M- − Q8
DknL-SJ-M-uHAunL8SJ8M8lG , s13d

is the depolarization kernelssee, e.g., Ref.f4g, Chap. 7d. In order to explicitly evaluate it, we need the expression for the
matrix elements of the atomic Hamiltonian in the presence of the external fields,B andE, for the particular reference frame
described in the previous section. From the Wigner-Eckart theorem and its corollariesf13g, this is given by

knLSJMuHAunL8SJ8M8l = dLL8dJJ8dMM8"vLJ
nS

+ dLL8dMM8m0BFdJJ8M + s− 1dL+S+J+J8+MPJJ8S
ÎSsS+ 1dS J J8 1

− M M 0
DHJ J8 1

S S L
JG

+ a0e0Es− 1dS−M8LsnL,nL8dPJJ8H L L8 1

J8 J S
Jo

Q
S J J8 1

− M M8 − Q
DseEdQ, s14d

whereseEdQ, for Q=0, ±1, are the spherical components of
the unit vector of the electric field, and where we also de-
fined

LsnL,n8L8d = PLL8knLur un8L8lSL L8 1

0 0 0
D , s15d

having expressed the dipole operatorr in units of the Bohr
radiusa0.

We notice that the functionLsnL,n8L8d is purely real, and
also symmetric, the dipole matrix element in it being calcu-
lated through the well-known Gordon formulaf14g, valid for
uL−L8u=1. In the case of the electric contribution to Eq.s13d,
this function is evaluated only forn=n8, in which case the
dipole matrix element in Eq.s15d has the much simpler ex-
pressionf14g

knLur unL − 1l =
3

2
nÎn2 − L2 = knL − 1ur unLl. s16d

The FS term in Eq.s14d determines a diagonal contribu-
tion to the depolarization kernel, which is simply evaluated
using the orthogonality properties of the 3j symbols, in order
to perform the summation over the magnetic quantum num-
bers. We find

NsnS;LJL8J8KQ;L9J9L-J-K8Q8dFS

= dLL9dJJ9dL8L-dJ8J-dKK8dQQ8vLJ,L8J8
nS . s17ad

The nondiagonal contribution to the depolarization kernel,
determined by the external fields, is instead evaluated with
the help of Eq.s6d on p. 454 of Ref.f12g. The magnetic and
electric contributions are, respectively,

NsnS;LJL8J8KQ;L9J9L-J-K8Q8dB = dLL9dL8L-dQQ8vBs− 1dJ+J8−Q PKK8S K K8 1

− Q Q 0
DFdJ8J-GLSsJ,J9dHK K8 1

J9 J J8
J

+ dJJ9s− 1dK+K8GL8SsJ-,J8dH K K8 1

J- J8 J
JG , s17bd

and

NsnS;LJL8J8KQ;L9J9L-J-K8Q8dE = vEs− 1dS−J−Q8+1PKK8o
Q9

S K K8 1

− Q Q8 − Q9
DseEdQ9

3FdL8L-dJ8J-s− 1dJ8−J9LsnL,nL9dPJJ9H J J9 1

L9 L S
JHK K8 1

J9 J J8
J

+ dLL9dJJ9s− 1dK+K8LsnL8,nL-dPJ8J-H J8 J- 1

L- L8 S
JH K K8 1

J- J8 J
JG , s17cd
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where we introduced the frequenciesvB=m0B/" and vE
=a0e0E/", and the function

GLSsJ,J8d = dJJ8PJ
ÎJsJ + 1d

− s− 1dL+S+JPJJ8S
ÎsS+ 1dSHJ J8 1

S S L
J .

s18d

B. Evaluation of the radiative rates

If we make the assumption that the radiation illuminating
the atom is spectrally flat over the frequency range where

quantum interferences within a term existsso to comply with
the limit of complete frequency redistribution, in which the
present theory is known to be valid; see Sec. Id, then the
radiative rates are independent of the strength of the external
fields, and we can evaluate their expressions directly in the
standard representation, without passing preliminarily
through the energy-eigenstate representation. Below, we give
the formal proof of this property in the case of the absorption
transition rateTA, but the same proof holds also for the other
transition rates, and for the relaxation rates as well, with only
a small modification.

Under the flat-spectrum approximation,TA satisfies the
following transformation property:

TAsnS,mm8;nlS,mlml8d = o
LJM

o
L8J8M8

o
Ll9Jl9Ml9

o
Ll-Jl-Ml-

Cm
LJMsnSdCm8

L8J8M8snSdCml

Ll9Jl9Ml9snlSdC
ml8
Ll-Jl-Ml-snlSd

3 TAsnS,LJM,L8J8M8;nlS,Ll9Jl9Ml9,Ll-Jl-Ml-d.

The above expression must be multiplied byrnlnl8
;nlSrsml ,ml8d, expressed through Eq.s7ad, and summed over the statesnl and

nl8. Use of the orthogonality propertys4ad gives

o
nlnl8

TAsnn8;nlnl8drnlnl8
; o

L̄J̄M̄

o
L̄8J̄8M̄8

Cm
L̄J̄M̄snSdCm8

L̄8J̄8M̄8snSd

3 o
nl

o
LlJlMl

o
Ll8Jl8Ml8

TAsnS,L̄J̄M̄,L̄8J̄8M̄8;nlS,LlJlMl,Ll8Jl8Ml8d
nlSrsLlJlMl,Ll8Jl8Ml8d,

where for convenience we renamedsLJMd→ sL̄J̄M̄d andsL8J8M8d→ sL̄8J̄8M̄8d. We then apply Eq.s8d to both sides of Eq.s1d
to pass to the standard representation, and use again the orthogonality propertys4ad, which brings a product of Kroneckerd’s
between barred and unbarred quantum numbers. Therefore we have proved our initial statement that, after operations8d,

o
nlnl8

TAsnn8;nlnl8drnlnl8
→ o

nl

o
LlJlMl

o
Ll8Jl8Ml8

TAsnS,LJM,L8J8M8;nlS,LlJlMl,Ll8Jl8Ml8d
nlSrsLlJlMl,Ll8Jl8Ml8d. s19d

For notational convenience, we now introduce the follow-
ing correspondences:

ñ ; nLSJM, ñ8 ; nL8SJ8M8, ñ9 ; nL9SJ9M9,

ñ- ; nL-SJ-M-,

ñl ; nlLlSJlMl, ñl8 ; nlLl8SJl8Ml8,

ñu ; nuLuSJuMu, ñu8 ; nuLu8SJu8Mu8.

Limiting the present derivation to electric-dipole transitions,
and expressing again the dipole operator in units ofa0, we
have

TAsñ,ñ8;ñl,ñl8d = 16p3e0
2a0

2

"2c
o
qq8

knLSJMurqunlLlSJlMllknL8SJ8M8urq8unlLl8SJl8Ml8l
*s− 1dq+q8J−q−q8svnnl

d, s20ad

TSsñ,ñ8;ñu,ñu8d = 16p3e0
2a0

2

"2c
o
qq8

knuLu8SJu8Mu8urqunL8SJ8M8lknuLuSJuMuurq8unLSJMl*s− 1dq+q8J−q−q8svnund, s20bd
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TEsñ,ñ8;ñu,ñu8d =
4

3

e0
2a0

2

"c3 vnun
3 o

q

knuLu8SJu8Mu8urqunL8SJ8M8lknuLuSJuMuurqunLSJMl* , s20cd

RAsñ,ñ8;ñ9,ñ-d = 8p3e0
2a0

2

"2c
o
sud

o
qq8

s− 1dq+q8J−q−q8svnundfdLL9dJJ9dMM9 knuLuSJuMuurqunL8SJ8M8lknuLuSJuMuurq8unL-SJ-M-l*

+ dL8L-dJ8J-dM8M-knuLuSJuMuurqunL9SJ9M9lknuLuSJuMuurq8unLSJMl*g, s20dd

RSsñ,ñ8;ñ9,ñ-d = 8p3e0
2a0

2

"2c
o
sld

o
qq8

s− 1dq+q8J−q−q8svnnl
dfdLL9dJJ9dMM9knL-SJ-M-urqunlLlSJlMllknL8SJ8M8urq8unlLlSJlMll*

+ dL8L-dJ8J-dM8M-knLSJMurqunlLlSJlMllknL9SJ9M9urq8unlLlSJlMll*g, s20ed

REsñ,ñ8;ñ9,ñ-d =
2

3

e0
2a0

2

"c3 o
sld

vnnl

3 o
q

fdLL9dJJ9dMM9 knL-SJ-M-urqunlLlSJlMllknL8SJ8M8urqunlLlSJlMll*

+ dL8L-dJ8J-dM8M- knLSJMurqunlLlSJlMllknL9SJ9M9urqunlLlSJlMll*g. s20fd

The general matrix element of the dipole operator can be evaluated through the Wigner-Eckart theorem and its corollaries
f13g,

knLSJMurqun8L8SJ8M8l = s− 1dL+S−MPJJ8LS J J8 1

− M M8 q
DH L L8 1

J8 J S
JknLir in8L8l = s− 1dS−MLsnL,n8L8dPJJ8S J J8 1

− M M8 q
D

3H J J8 1

L8 L S
J . s21d

Equations21d in particular shows that the electric-dipole ma-
trix elements in Eqs.s20ad–s20fd are purely real quantities
ssee comment at the end of Sec. II Ad. We see that this time
we need to evaluate the quantityLsnL,n8L8d for n8Þn, and
therefore we must adopt the Gordon formula to compute the
dipole matrix element. This quantity is proportional to the
square root of the Einstein coefficients for the transition
snLd−sn8L8d,

AsnL,n8L8d =
4

3

e0
2a0

2

"c3 vnL,n8L8
3 uknLir in8L8lu2

=
"

4p3c2vnL,n8L8
3 BsnL,n8L8d, s22d

when we consider that, because of Eq.s21d,

LsnL,n8L8d = s− 1dL PLknLir in8L8l. s23d

The polarization tensors of the incident radiation field,
Jqq8svuld, must be expressed in terms of their irreducible
spherical components,

Jqq8svuld = o
KQ

s− 1dq+1
PKr

Î3
S1 1 K

q − q8 − Q
DJQ

Ksvuld.

s24d

The definition of the irreducible spherical tensorsJQ
Ksvd is

the following:

JQ
Ksvd = o

i=0

3 R dk̂

4p
TQ

Ksi,k̂dSisv,k̂d, s25d

whereTQ
Ksi , k̂d are irreducible spherical tensors defining the

propagation directionk̂ and the reference direction of linear
polarization in the particular reference frame of the external
fields previously introduced, in which the solution density
matrix is calculatedssee Fig. 2d. These tensors are given in
Table I. Finally, sS0,S1,S2,S3d;sI ,Q,U ,Vd is the Stokes
vector of the radiation incident on the atom, whereI is the
radiation intensity,Q andU are the two parameters specify-
ing the linear polarization of the radiation, andV is the
Stokes parameter of circular polarizationf9,10g.

We illustrate in some detail the steps to calculate the ex-
pressions of the radiative rates in the irreducible spherical-
tensor representation. We explicitly refer to the case ofTA,
however, an analogous procedure applies also to the other
transition rates, and also to the relaxation rates with only
minor changes. We first apply Eq.s11d to the right-hand side
of Eq. s19d, with nlSrsLlJlMl ,Ll8Jl8Ml8d expressed through Eq.
s9ad, and TA given by Eq.s20ad. We then use Eq.s21d to
express the product of dipole matrix elements, and Eq.s24d
for the radiation-field tensors. We thus obtain a product of
five 3j symbols summed upon the sextuplet
sM ,M8 ,Ml ,Ml8 ,q,q8d, which is evaluated through Eq.s14d
on p. 456 of Ref.f12g. The procedure forTS is identical,
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whereas forTE we obtain a contraction of only four 3j sym-
bols, which is evaluated through Eq.s8d on p. 454 of Ref.
f12g. In the evaluation ofRA andRS, we also obtain contrac-
tions of five 3j symbols, but these are instead evaluated
through Eq.s13d on p. 456 of Ref.f12g. Finally, in the case
of RE, the contraction of four 3j symbols is directly evalu-
ated through the orthogonality relations. In the case of the
relaxation rates, it is also possible to sum over theJ quantum

number associated with the summations over terms that ap-
pear in Eqs.s20dd and s20ed. This is accomplished via Eq.
s18d on p. 466 of Ref.f12g, in the case ofRA and RS, and
through the orthogonality properties of 6j symbols in the
case ofRE.

Following this calculation procedure, the SE equations in
the formalism of the irreducible spherical tensors can finally
be written in the following form:

d

dt
nSrQ

KsLJ,L8J8d = − o
L9J9

o
L-J-

o
K8Q8

fiNsnS;LJL8J8KQ;L9J9L-J-K8Q8d + RAsnS;LJL8J8KQ;L9J9L-J-K8Q8d

+ RSsnS;LJL8J8KQ;L9J9L-J-K8Q8d + REsnS;LJL8J8KQ;L9J9L-J-K8Q8dg nSrQ8
K8sL9J9,L-J-d

+ o
nl

o
LlJl

o
Ll8Jl8

o
KlQl

TAsnS,LJL8J8KQ;nlS,LlJlLl8Jl8KlQld
nlSrQl

KlsLlJl,Ll8Jl8d

+ o
nu

o
LuJu

o
Lu8Ju8

o
KuQu

fTSsnS,LJL8J8KQ;nuS,LuJuLu8Ju8KuQud

+ TEsnS,LJL8J8KQ;nuS,LuJuLu8Ju8KuQudg nuSrQu

KusLuJu,Lu8Ju8d. s26d

In conclusion, we find the following expressions for the various radiative rates:

TAsnS,LJL8J8KQ;nlS,LlJlLl8Jl8KlQld =
16p3

3

e0
2a0

2

"2c
LsnlLl,nLdLsnlLl8,nL8ds− 1dJl8−Jl+Kl−Ql PJJlJ8Jl8H J Jl 1

Ll L S
JHJ8 Jl8 1

Ll8 L8 S
J

3 o
KrQr

Î3PKKlKr5K Kl Kr

J Jl 1

J8 Jl8 1
6S K Kl Kr

− Q Ql − Qr
DJQr

Krsvnnl
d, s27ad

TABLE I. Components of the polarization tensorsTQ
Ksi , k̂d, for i =0, 1, 2, 3, andQù0 f4g. The compo-

nents with negativeQ are obtained from the conjugation property,T−Q
K si , k̂d=s−1dQTQ

Ksi , k̂d* . The angular

parametersq , w, andg, for a given propagation directionk̂ and reference direction of linear polarization are
defined in Fig. 2.

T0
0s0,k̂d=1 T0

0s1,k̂d=0

T0
1s0,k̂d=0 T0

1s1,k̂d=0

T1
1s0,k̂d=0 T1

1s1,k̂d=0

T0
2s0,k̂d= 1

2Î2
s3 cos2q−1d T0

2s1,k̂d=− 3
2Î2

cos 2g sin2q

T1
2s0,k̂d=−

Î3
2 sinq cosq eiw T1

2s1,k̂d=−
Î3
2 scos 2g cosq+ i sin 2gdsinq eiw

T2
2s0,k̂d=

Î3
4 sin2q ei2w T2

2s1,k̂d=−
Î3
4 fcos 2gs1+cos2qd+ i2 sin 2g cosqgei2w

T0
0s2,k̂d=0 T0

0s3,k̂d=0

T0
1s2,k̂d=0 T0

1s3,k̂d=Î3
2cosq

T1
1s2,k̂d=0 T1

1s3,k̂d=−
Î3
2 sinq eiw

T0
2s2,k̂d= 3

2Î2
sin 2g sin2q T0

2s3,k̂d=0

T1
2s2,k̂d=

Î3
2 ssin 2g cosq− i cos 2gdsinq eiw T1

2s3,k̂d=0

T2
2s2,k̂d=

Î3
4 fsin 2gs1+cos2qd− i2 cos 2g cosqgei2w T2

2s3,k̂d=0
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TSsnS,LJL8J8KQ;nuS,LuJuLu8Ju8KuQud =
16p3

3

e0
2a0

2

"2c
LsnuLu,nLdLsnuLu8,nL8ds− 1dJu8−Ju+Ku−Qu PJJuJ8Ju8H J Ju 1

Lu L S
JHJ8 Ju8 1

Lu8 L8 S
J

3 o
KrQr

s− 1dKrÎ3PKKuKr5K Ku Kr

J Ju 1

J8 Ju8 1
6S K Ku Kr

− Q Qu − Qr
DJQr

Krsvnund, s27bd

TEsnS,LJL8J8KQ;nuS,LuJuLu8Ju8KuQud =
4

3

e0
2a0

2

"c3 vnun
3 LsnuLu,nLdLsnuLu8,nL8ddKKu

dQQu
s− 1dJ8+Ju8+K+1PJJuJ8Ju8H J Ju 1

Lu L S
J

3HJ8 Ju8 1

Lu8 L8 S
JH J J8 K

Ju8 Ju 1
J , s27cd

RAsnS;LJL8J8KQ;L9J9L-J-K8Q8d =
16p3

3

e0
2a0

2

"2c
o
nuLu

o
KrQr

s− 1dLu−S+J−Q8+1Î3PKK8Kr
SK K8 Kr

Q − Q8 Qr
DJQr

Krsvnund

3
1

2
FdLL9dJJ9s− 1dL8+L-PJ8J-LsnL8,nuLudLsnL-,nuLud

3HL8 L- Kr

J- J8 S
JHL8 L- Kr

1 1 Lu
JH K K8 Kr

J- J8 J
J

+ dL8L-dJ8J-s− 1dL+L9+J8−J9+K+K8+Kr PJJ9LsnL,nuLudLsnL9,nuLud

3H L L9 Kr

J9 J S
JHL L9 Kr

1 1 Lu
JHK K8 Kr

J9 J J8
JG , s27dd

RSsnS;LJL8J8KQ;L9J9L-J-K8Q8d =
16p3

3

e0
2a0

2

"2c
o
nlLl

o
KrQr

s− 1dLl−S+J+Kr−Q8+1Î3PKK8Kr
SK K8 Kr

Q − Q8 Qr
DJQr

Krsvnnl
d

3
1

2
FdLL9dJJ9s− 1dL8+L-PJ8J-LsnL8,nlLldLsnL-,nlLld

3HL8 L- Kr

J- J8 S
JHL8 L- Kr

1 1 Ll
JH K K8 Kr

J- J8 J
J

+ dL8L-dJ8J-s− 1dL+L9+J8−J9+K+K8+Kr PJJ9LsnL,nlLldLsnL9,nlLld

3H L L9 Kr

J9 J S
JHL L9 Kr

1 1 Ll
JHK K8 Kr

J9 J J8
JG , s27ed

REsnS;LJL8J8KQ;L9J9L-J-K8Q8d =
4

3

e0
2a0

2

"c3 dLL9dL8L-dJJ9dJ8J-dKK8dQQ8o
nlLl

vnnl

3 1

2
fPL

−2L2snL,nlLld + PL8
−2

L2snL8,nlLldg.

s27fd

We notice that the last equation can also be expressed in
terms of the EinsteinA coefficients, AsnL,nlLld and
AsnL8 ,nlLld, if we recall Eqs.s22d ands23d, and also observe
that vnL,nlLl

<vnL8,nlLl
<vnnl

. In fact, if only a magnetic field
is present, we can assume the diagonality overL of the above

equations.3 This implies L=L8 and Lu,l =Lu,l8 in the expres-
sions of the transition rates, andL=L8=L9=L- in the expres-

3This is only approximately true. In fact, even in the absence of
external fields, it is possible in principle to excite atomic coherences
between two distinct upper levelsL−1 andL+1, through absorp-
tion of radiation from a lower levelL. However, in the absence of
external electric fields, these coherences are normally negligible.
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sions of the relaxation rates. In such case, all products of two
L’s become perfect squares that can be replaced by the cor-
responding EinsteinA and B coefficientsfcf. Eqs.s22d and
s23dg. It is then immediate to verify that Eqs.s27ad–s27fd
reduce to the SE equations for the multiterm atom in the
L-S coupling schemef4g.

III. RADIATIVE TRANSFER EQUATION

In the previous section, we presented the equations that
govern the statistical equilibriumsSEd of a one-electron atom
subject to simultaneous electric and magnetic field, and illu-
minated by a radiation field that can be both anisotropic and
polarized. The solution of this problem, which is achieved by
solving Eq.s26d, is represented by the irreducible spherical
components of the density matrix operator for the atomic
system,nSrQ

KsLJ,L8J8d, which specifies the populations of
the atomic levels, but also the polarization of those levels, as
well as their mutual interference due to the effect of the
atomic fine structure and the applied fields.

When the atomic density matrix is known, it is possible to
compute the radiation that is emitted by an ensemble of at-
oms through both spontaneous and stimulated processes. In a
gas that is optically thick—that is, such that radiation is ab-
sorbed and re-emitted more than once before finally escaping
the gas towards the observer—the production and transport
of polarized radiation of angular frequencyv in the direction

k̂ are governed by the following radiative transfersRTd vec-
tor equation:

d

ds
I sv,k̂d = − fK sadsv,k̂d − K ssdsv,k̂dg I sv,k̂d + Jsv,k̂d,

s28d

where I ;sI ,Q,U ,Vd is the Stokes vector of the polarized
radiation f9,10g, K sad and K ssd are the absorption and
stimulated-emission matrices,

K sa,sd ; 1
hI

sa,sd hQ
sa,sd hU

sa,sd hV
sa,sd

hQ
sa,sd hI

sa,sd rV
sa,sd − rU

sa,sd

hU
sa,sd − rV

sa,sd hI
sa,sd rQ

sa,sd

hV
sa,sd rU

sa,sd − rQ
sa,sd hI

sa,sd
2 , s29d

and finally J;s«I ,«Q,«U ,«Vd is the emissivity vector. The
length parameters measures the distance along the line of

sight, in the direction of the propagation unit vectork̂.
If the gas is optically thin, one can rely on the so-called

single-scattering approximation, meaning that the radiation
incident on the gas of atoms is absorbed only once before
escaping the gas towards the observer. In such case, it is easy
to show that the Stokes vector of the radiation received by
the observer is simply proportional to the emissivity vector
J. In the illustrative examples presented in the next section,

we will only consider optically thin gases, and therefore we
will only use the expressions of the emission coefficients,«i
si =0, 1,2,3, for the four Stokes parametersI , Q, U, andVd.
However, because in this paper we are presenting the general
formalism, we derive the explicit expressions of all the quan-
tities involved in Eq.s28d.

The expressions for the various radiative coefficients,
hi , ri, and«i si =0, 1, 2, 3d, for a transition between a lower
level nl and an upper levelnu, and for an atomic gas density
N, are the followingf1,4g:

hi
sadsv,k̂d = 4p2e0

2a0
2

"c
Nvo

mu

o
mlml8

o
qq8

s− 1dq+q8

3RehT−q−q8si,k̂d nlSrsml,ml8dFsvnumu,nlml
− vd

3 knuS,muurqunlS,mllknuS,muurq8unlS,ml8l
*j,

s30ad

hi
ssdsv,k̂d = 4p2e0

2a0
2

"c
Nvo

ml

o
mumu8

o
qq8

s− 1dq+q8

3RehT−q−q8si,k̂d nuSrsmu8,mudFsvnumu,nlml
− vd

3 knuS,muurqunlS,mllknuS,mu8urq8unlS,mll*j,

s30bd

and

ri
sa,sdsv,k̂d = hi

sa,sdsv,k̂dhRe→ Imj si = 1,2,3d,

s31ad

«isv,k̂d =
"

4p3c2vnunl

3 hi
ssdsv,k̂d ;

Anunl

Bnunl

hi
ssdsv,k̂d.

s31bd

The geometric tensorsTqq8si , k̂d are expressed in terms of

their irreducible spherical componentsTQ
Ksi , k̂d ssee Table Id

through a transformation formula identical to Eq.s24d.
The line profile Fsvd is determined by the thermody-

namic properties of the emitting gas, and is generally given
by the normalized Voigt profile characteristic of the tempera-
ture and density of the gas. If pressure broadening is negli-
gible, the Lorentzian contribution to the Voigt profile must be
the one corresponding to the natural width of the spectral
line, which is determined by the sum of the EinsteinA coef-
ficients of the atomic levelsnl and nu ssee, e.g., Sec. 63 of
Ref. f15gd.

Using the same substitutions as in the derivation of the
radiative rates of the SE equations, we get, after some te-
dious but straightforward algebra,
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hi
sadsv,k̂d =

4p2

3

e0
2a0

2

"c
Nv o

LlJlMl

o
Ll8Jl8Ml8

o
Ll9Jl9Ml9

o
LuJuMu

o
Lu8Ju8Mu8

o
qq8

s− 1dJl9−Ml9+Mu−Mu8+q8+1

3 o
mlmu

Cml

LlJlMlsnlSdCml

Ll9Jl9Ml9snlSdCmu

LuJuMusnuSdCmu

Lu8Ju8Mu8snuSdo
KQ

o
KlQl

Î3PKKl
S Ju Jl 1

− Mu Ml q
DS Ju8 Jl8 1

− Mu8 Ml8 q8
D

3S 1 1 K

− q q8 − Q
DS Jl9 Jl8 Kl

Ml9 − Ml8 − Ql
DHLu Ll 1

Jl Ju S
JHLu8 Ll8 1

Jl8 Ju8 S
JPJuJu8JlJl8

LsnuLu,nlLldLsnuLu8,nlLl8d

3 RehTQ
Ksi,k̂d nlSrQl

KlsLl9Jl9,Ll8Jl8dFsvnumu,nlml
− vdj, s32ad

hi
ssdsv,k̂d =

4p2

3

e0
2a0

2

"c
Nv o

LuJuMu

o
Lu8Ju8Mu8

o
Lu9Ju9Mu9

o
LlJlMl

o
Ll8Jl8Ml8

o
qq8

s− 1dJu8−Mu+q8+1

3 o
muml

Cmu

LuJuMusnuSdCmu

Lu9Ju9Mu9snuSdCml

LlJlMlsnlSdCml

Ll8Jl8Ml8snlSdo
KQ

o
KuQu

Î3PKKu
S Ju Jl 1

− Mu Ml q
DS Ju8 Jl8 1

− Mu8 Ml8 q8
D

3S 1 1 K

− q q8 − Q
DS Ju8 Ju9 Ku

Mu8 − Mu9 − Qu
DHLu Ll 1

Jl Ju S
JHLu8 Ll8 1

Jl8 Ju8 S
JPJuJu8JlJl8

LsnuLu,nlLldLsnuLu8,nlLl8d

3 RehTQ
Ksi,k̂d nuSrQu

KusLu8Ju8,Lu9Ju9dFsvnumu,nlml
− vdj. s32bd

The above equations simplify considerably if one is only interested in the polarization signal integrated across the line
spectral range. In that case, if we approximatev<vnunl

in the overall factor in front of Eqs.s32ad and s32bd, the frequency
integral of the line profile is equal to 1, so all dependences on the energy-eigenvector expansion coefficients disappear thanks
to the orthogonality relations4ad. It then becomes possible to contract the product of four 3j symbolssusing Eq.s8d on p. 454
of Ref. f12gd, and also to perform the summation over theJ numbers of the final level of the transitionsusing Eq.s18d on p.
466 of Ref.f12gd. We finally obtainshere and in the following, we place a bar over frequency-integrated quantitiesd

h̄i
sadsk̂d =

4p2

3

e0
2a0

2

"c
Nvnunl o

LlLl8Lu

o
JlJl8

o
KQ

s− 1dLl+Ll8+Lu+S+Jl8+1LsnuLu,nlLldLsnuLu,nlLl8d

3Î3PJlJl8HLl Ll8 K

1 1 Lu
JHLl Ll8 K

Jl8 Jl S
JTQ

Ksi,k̂d nlSrQ
KsLlJl,Ll8Jl8d, s33ad

h̄i
ssdsk̂d =

4p2

3

e0
2a0

2

"c
Nvnunl o

LuLu8Ll

o
JuJu8

o
KQ

s− 1dLu+Lu8+Ll+S+Ju+K+1LsnuLu,nlLldLsnuLu8,nlLld

3Î3PJuJu8HLu Lu8 K

1 1 Ll
JHLu Lu8 K

Ju8 Ju S
JTQ

Ksi,k̂d nuSrQ
KsLu8Ju8,LuJud. s33bd

Using the conjugations properties,

TQ
Ksi,k̂d* = s− 1dQT−Q

K si,k̂d,

rQ
KsLJ,L8J8d* = s− 1dJ−J8+Qr−Q

K sL8J8,LJd,

we can easily demonstrate that the integrated quantities of
Eqs. s33ad and s33bd are purely real. In particular, this im-
plies that the frequency-integrated coefficientsr̄Q,U,V, which
are responsible for magneto-optical effects in the line pro-
files, vanish identicallyfsee Eq.s31adg.

Equations33bd, together with Eq.s31bd, will be used in
the following section to compute the integrated linear and
circular polarization of the radiation scattered by an en-
semble of hydrogen atoms subject to simultaneous electric
and magnetic fields.

Finally, we want to comment on the fact that the calcula-
tion of the radiative coefficients entering the RT equation for
polarized radiation requires the preliminary solution of the
SE equations, in order to determine the density matrix of the
atomic system. Because the SE of the atom is generally de-
pendent on the local radiation field, the self-consistent solu-
tion of the scattering problem typically entails an iteration
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scheme where the SE equations are solved at stepi after the
radiation tensorsJQ

K have been recalculated from the solution
of the RT equation at stepi −1. If the gas is only slightly
polarizing, a typical approach to this problem is to solve the
scalar transfer problemsi.e., for the radiation intensity onlyd
through ordinary iteration schemes, and then use the spatial
distribution of the radiation intensity in the gas to solve the
SE equations only once. The solution density matrix so cal-
culated is finally entered in the expressions of the radiative
coefficients to compute the scattered radiation at each point
in the gas.

IV. ILLUSTRATIVE RESULTS

In this section, we present some examples of the effect of
simultaneous magnetic and electric fields on the atomic po-
larization of hydrogen. In particular, we show how the addi-
tional presence of an electric field significantly modifies the
amplitude and the magnetic regime at which atomic orienta-
tion is produced. For the calculations in this section, we
adopted a model atom of hydrogen inclusive of all Bohr
levels up ton=4, and an incident radiation field correspond-
ing to a Planckian distribution atT=20 000 K. We also as-

sumed that the illumination is provided by a single pencil of
radiation incident on the atom, so that the radiation aniso-
tropy, J0

2/J0
0, attain its maximum value of 1/Î2.

We start by commenting that our formalism recovers all
the results of Ref.f5g for the scattering polarization of Ly-
man a in the presence of an electric field, once we restrict
the model atom to the Bohr levelsn=1, 2, and we impose
that the ground level be naturally populated, so to match the
approximations of that paper. The results that we present in
this section concern mostly theHa line instead, in the pres-
ence of both magnetic and electric fields, and also allowing
for atomic polarization in the ground level. However, we
limited our sample calculations to the case of parallel fields
only, in order to reduce the number of free parameters.

In Fig. 3 we plot the atomic orientationr0
1sLJd /r0

0sLJd, for
all Bohr levels in our hydrogen model, as a function of the
magnetic-field strength. For this figure we assumed a mag-
netic field aligned with the direction of the incident radiation.
In Fig. 3sad, we show the atomic orientation in the presence
of only a magnetic field. In Fig. 3sbd, we show how the
orientation is modified by the additional presence of an elec-
tric field, parallel toB, with strengthE=1 V cm−1. We notice
that the presence of an electric field modifies the magnetic
regime at which a local maximumsin absolute valued of the

FIG. 3. Atomic orientation,r0
1sLJd /r0

0sLJd, of
the levelsn=1, 2, 3, 4 of hydrogen, as a function
of the strengthB, of a vertical magnetic fieldsi.e.,
parallel to the direction of the incident radiationd.
sad without electric fields;sbd with E=1 V cm−1

parallel toB. The dotted lines indicate the higher
values ofJ in the corresponding panels.
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atomic orientation is attained. In the absence of electric
fields, magnetic fields of the order of 103 G or larger are
necessary to achieve a maximum of atomic orientation.
However, at those magnetic strengths, the resonance polar-
ization of hydrogen is typically dominated by the Zeeman
effect, especially for the circular polarization. The rearrange-
ment of the magnetic sublevels determined by the presence
of an electric field introduces instead a different set of level
crossings and anticrossings, and corresponding quantum in-
terferences, so that a significant peak of the atomic orienta-
tion is already attained forB<20 G, in the case of the level
32D3/2. The reason for this can be seen in Fig. 4, where we
show the energy of the 32P3/2 and 32D3/2 levels as a function
of B, sad in the absence of electric fields, andsbd in the
presence ofE=1 V cm−1 parallel to B. In the absence of
electric fields, the two levels are completely independent,
because of the diagonality of the magnetic Hamiltonian with
respect toL, so the level crossings that are visible in Fig. 4sad
do not contribute to the creation of atomic orientation in
those levels. On the contrary, when an electric field is
present, the two levels are coupled because of the dipolar
form of the electric Hamiltonian, and a different set of level
crossings is produced. In particular, we notice in Fig. 4sbd the
anticrossings atB<6 G andB<17 G. The latter is respon-
sible for the appearance of the significant peak of atomic
orientation in the 32D3/2 level for B<20 G. Because of the
smaller magnetic strengths at which a maximum of atomic
orientation is attained, the circular polarization emission this
time is dominated by the atomic polarization rather than the
Zeeman effect. Therefore one should expect strong devia-
tions of the circular polarization line profile from the anti-
symmetric shape characteristic of the longitudinal Zeeman
effect.

From Fig. 3, we also realize that the modifications of the
atomic orientation, determined by the presence of an electric
field, become more complex for larger principal quantum
numbers. This is easily understood, when we consider that
the complexity of the level structure increase withn, and also
that the fine structure of the level becomes less important, so
that more complicated patterns of level crossing and anti-
crossing must be expected for a given electric strength. As an
example, the secondary peak of the atomic orientation of the
level 32D3/2 is determined by a new anticrossing between the
same sublevels responsible for the primary peak atB
<20 G. This second anticrossing, atB<620 G, is shown in
the right panel of Fig. 5smarked as number 1d. Another
anticrossing visible in that same panelsat B<360 G; marked
as number 2d is responsible for the sharp secondary peak of
the atomic orientation of the level 32S1/2. In the left panel of
Fig. 5, we plot the energy diagram of the Bohr leveln=2.
There we marked the anticrossing resonance that is respon-
sible for the broad peak of the atomic orientation of the level
22S1/2 centered atB<1200 G.sWe notice that thex axis in
the plots of Fig. 5 is drawn in logarithmic scale.d

Finally, we notice that the atomic orientation of the
ground level and of then2PJ levels is mostly unaffected by
the additional presence of a small electric field. This is be-
cause the resonant Lyman transitions strongly couple the
population and atomic polarization of those levels with the
intensity and polarization of the incident radiation. Thus the

FIG. 4. Energy diagrams of the levels 32P3/2 scontinuous lined
and 32D3/2 sdotted lined as function of the magnetic strength.sad
without electric fields;sbd with E=1 V cm−1. The additional pres-
ence of an electric field determines a new set of level crossings and
anticrossings for the two multiplets, ultimately affecting the depen-
dence of atomic polarization on the field strengths.
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modifications to the atomic orientation determined by the
additional presence of a small electric field turn out to be
significant only for those levels that are connected to the
n2PJ levels via secondarysi.e., nonresonantd transitions.

Figures 6–8 show surface plots for the integrated linear

polarization, PL=ÎQ̄2+Ū2/ Ī sleft panelsd, and for the net
circular polarization,PV=V̄/ Ī sright panelsd, as functions of
both magnetic and electric fields. For the calculation of these
plots, we only considered the expression of the emission vec-
tor J fsee Eqs.s31bd ands33bdg. This is equivalent to assum-
ing that the emitting gas is optically thin, and that its ther-
modynamic properties, and the electric and magnetic fields
in it, are constant along the line of sight. As we anticipated in
Sec. III, under these conditions, we do not need to solve Eq.
s28d, since the emerging radiation is simply proportional to
J.

In Figs. 6–8, the case in which only a magnetic field is
present is obviously represented by the intersection of the
surfaces with the planeE=0. In particular, in such case we
notice the monotonic negative trend of the linear polarization
degree, and the very small net circular polarization that can
be expected in the presence of magnetic fields up to 100 G.
The modifications introduced by the additional presence of
an electric field are striking. First of all, for a given geometry
of the fields, one finds certain ranges of the electric field
where the linear polarization degree increases again with the
magnetic field after the initial descent from the field-free
value. Second, and more importantly, from the plots of the
net circular polarization we see that the presence of even a
very small electric fieldsnonhorizontald greatly enhances the
possibility of creating significant asymmetries in the Stokes-
V profile of Ha, without requiring very strong magnetic
fields. This is in agreement with the argument presented in
the discussion of Fig. 3. However, the surface plots of the net
circular polarization provide a more complete picture of this
phenomenon, as they also take into account mixed-level in-
terferences of the formrQ

1 sLJ,LJ8d.
We want to remark that the creation of a significant level

of atomic orientation at small magnetic strengths, induced by
the presence of an electric field, and the ensuing asymmetries
in the circular-polarization profile, truly are an effect of the
simultaneous action of the applied electric and magnetic
fields. We could say that the electric field acts here as a
“catalyst” for the creation of significant levels of atomic ori-
entation for relatively small magnetic strengths. This is par-
ticularly evident in the case of Fig. 3, since the electric field
by itself, no matter how strong, is unable to create any
amount of atomic orientation for that particular field geom-
etry. Even for field directions such that the electric field can
directly induce atomic orientation in the system, the strength
that are necessary to attain a significant level of orientation
in the absence of magnetic fields are of the order of
50 V cm−1 ssee Figs. 7 and 8d.

The fact that a small electric field can alter so radically
the amount of atomic orientation that can be created by an-
isotropic irradiation, for a given strength of a pre-existent
magnetic field, is of great diagnostic interest for the inference
of magnetic fields in laboratory and astrophysical plasmas
using polarimetric analysis of the scattered radiation in hy-

FIG. 5. Energy diagrams ofn=2 stop paneld and ofn=3 sbottom
paneld, for the same conditions of Fig. 4sbd. These plots show some
anticrossing resonances that are responsible for significant peaks of
the atomic orientation of the hydrogen levels involvedssee text for
more detailsd.
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drogen lines. A characteristic example is represented by re-
cent observations of an anomalously large degree of net cir-
cular polarization in Ha radiation emitted by solar
prominencesf16g, which cannot be explained in terms of
atomic orientation induced by the presence of magnetic
fields of strengths typical of these solar structuressB
&100 Gd. The additional presence of small electric fields in
the partly ionized hydrogen gas, of which these structures are
mostly composed, could provide a possible explanation for
the anomalous circular polarization signal observed.

V. CONCLUSIONS

In this paper we derived a formalism for the description of
resonance scattering in hydrogen lines, subject to the simul-
taneous presence of electric and magnetic fields. This work
generalizes previous investigations on the polarized emission
of hydrogen lines that were pursued in Ref.f11g, for the case
of naturally populated hydrogen atomssi.e., without inclu-
sion of atomic polarizationd in the presence of both electric
and magnetic fields of arbitrary geometry, and in Ref.f5g, for
the case of resonance scattering polarization of hydrogen Ly-

FIG. 6. Surface plots of the linear polarization

degree,PL=ÎQ̄2+Ū2/ Ī stopd, and of the net cir-

cular polarization,PV=V̄/ Ī sbottomd, for varying
magnetic and electric fields, and 90° scattering.
For this figure the fields are inclined of 45° from
the direction of the incident radiation, and are
lying on the scattering plane formed by this di-
rection and the line of sightswE,B=0°, wherewE,B

is the azimuth angle of the fields around the inci-
dent directiond.
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man a in the presence of electric fields onlyssee also Ref.
f17g, which confirm the results on the linear polarization of
Lyman a resonance radiation derived by Ref.f5gd.

For the derivation in this paper, we adopted the current
theory of polarized line formation presented in Refs.f1–4g,
which is valid in the limit of complete frequency redistribu-
tion snoncoherent scatteringd. We only focused on the role of
radiation in determining the statistical equilibrium of the hy-
drogen atom, so we did not derive a parallel formalism for
the description of collisional polarization, although it would
be possible in principle to do so in the limit of the impact
approximationf6g.

In the description of the hydrogen atom, we neglected the
contribution of the hyperfine structuresHFSd. This might be
an important limitation for some applications, because of the
known role of HFS depolarization in resonance scattering
se.g., Ref.f18gd. There are no additional conceptual difficul-
ties in rederiving the formalism presented in this paper also
including the contribution of HFS, although the numerical
problem becomes rapidly unmanageable for increasing val-
ues ofn.

The main result of this work is the realization that the
effect on resonance scattering polarization of simultaneous
magnetic and electric fields cannot be reconciled with the

FIG. 7. Same as Fig. 6, but forwE,B=45°.
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simple superposition of the separate effects of magnetic and
electric fields. The rearrangement of the atomic level struc-
ture in the presence of both fields, in fact, introduces a whole
different set of level crossings and anticrossings, which ulti-
mately determines completely different field-strength re-
gimes of polarization and depolarization with respect to the
magnetic-only and electric-only cases. A typical example is
the creation of a significant amount of atomic orientation for
relatively small fields, which would necessitate instead much
larger magnetic or electric strengths if only one of the two
fields were presentssee Fig. 3, and Figs. 6–8d. In particular,

we concluded that the electric field, even at small strengths,
acts as a “catalyst” for the atomic orientation induced by the
presence of a magnetic fieldsvia the alignment-to-orientation
conversion mechanism; see, e.g., Refs.f4,19gd. Remarkably,
this is true even for field directions such that the electric field
by itself could not produce any atomic orientationssee Figs.
3 and 6d.

This phenomenon has important observational effects,
since atomic orientation translates into net circular polariza-
tion of the scattered radiation. As an illustrative example, we
considered the case of hydrogen’sHa line. When this line is

FIG. 8. Same as Fig. 6, but forwE,B=90°.

ROBERTO CASINI PHYSICAL REVIEW A71, 062505s2005d

062505-16



formed in the presence of only a magnetic field, a significant
level of atomic orientation is only attained for magnetic
strengths of the order of 103 G, at which the circular polar-
ization signal is totally dominated by the antisymmetric sig-
nature of the Zeeman effect. If instead a small electric field
sof the order of 1 V cm−1d is also present, then, the same
amount of atomic orientation is attained for magnetic
strengths of the order of 10 G. Since the amplitude of the
Zeeman-effect signature in StokesV is now two orders of
magnitude smaller, the circular polarization this time is to-
tally dominated by the symmetric signature of the atomic
orientation.

We hope that this work will be useful to improve field
diagnostics of both laboratory and astrophysical plasmas. In
particular, it might provide an explanation of the anomalous
snon-Zeeman-liked circular polarization signals ofHa recur-
rently observed in solar prominencesf16g.
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