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Variationally calculating the ground state of a many-electron quantum system using only the two-electron
reduced-density-matrixs2-RDMd requiresN-representability conditions that constrain the 2-RDM to corre-
spond to anN-electron wave function. A systematic hierarchy ofN-representability conditions, known as
p-positivity conditions, has been developedfD. A. Mazziotti and R. M. Erdahl, Phys. Rev. A63, 042113
s2001dg, and many-electron atoms and molecules in nonminimal basis sets have been solved with useful
accuracy by a variational 2-RDM method with 2-positivity conditionsfD. A. Mazziotti, Phys. Rev. Lett.93,
213001s2004dg. This paper considers two forms ofpartial 3-positivity conditions, the lifting conditions and the
T1/T2 conditions, to further enhance the accuracy of the 2-RDM methods without the computational cost of
full 3-positivity conditions. Variational 2-RDM methods with differentN-representability constraints including
2-positivity conditions, the two types of partial 3-positivity conditions, as well as the complete 3-positivity
conditions are applied to compute the ground state of the Lipkin spin model. The energies and 2-RDMs are
compared to the results from full and truncated configuration interaction, many-body perturbation theory, and
couple cluster theory with single and double excitations. Implications of using partial 3-positivity for varia-
tional 2-RDM calculations of many-electron atoms and molecules will be discussed.
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I. INTRODUCTION

Although a two-particle reduced density matrixs2-RDMd
provides most of the useful information contained in the
N-electron wave functionf1g, direct minimization of the en-
ergy as a functional of the 2-RDM has been elusive because
the 2-RDM must be constrained to correspond to an
N-electron system where the search for the appropriate con-
ditions has been called theN-representability problemf2–4g.
Significant progress in the realization of the variational
2-RDM method has been made along two fronts with the
development of:sid a systematic hierarchy for enforcing the
approximateN-representability of the 2-RDMf5–9g and sii d
new optimization algorithms for minimizing the energy with
respect to a 2-RDM constrained by positivity conditions
f5,10–21g.

Three different representations of the 2-RDM for a many-
electron system should be constrained to bepositive
semidefinitewhere a matrix is positive semidefinite if and
only if all of its eigenvalues are non-negative. These neces-
sary restrictions, known as the 2-positivity conditions, were
originally derived by Garrod and Percusf5g. A variational
2-RDM method with the 2-RDM restricted by 2-positivity
conditions was applied to Be and He2 in the 1970s. The
minimization of the energy subject to several matrices con-
strained to be positive semidefinite constitutes an optimiza-
tion problem known as a semidefinite program. Using
interior-point methods developed in the 1990s, Nakatsuji and
co-workersf11,14g and Mazziotti f12,13g applied a varia-
tional 2-RDM method to compute the ground-state energies
of atoms and molecules in equilibrium and nonequilibrium
geometries. Calculations of bond stretching and dissociation
showed that the 2-RDM method treats both single- and
multi-reference correlation effects with similar accuracy

f12–14,16,19,20g. Multireference effects, which arise when
multiple reference determinants contribute significantly to
the correlated wave function, are difficult to treat with tradi-
tional approaches to electron correlation and yet are espe-
cially important for describing nonequilibrium geometries as
in transition-state structures and dissociation.

Erdahl and Jinf7g and Mazziotti and Erdahlf8g general-
ized the 2-positivity conditions top-positivity conditions in
which p+1 p-particle matrices are constrained to be positive
semidefinite. Thep-positivity conditions enforce the gener-
alized uncertainty relations for allp/2-body operatorsf8g.
Using a spin model, Mazziotti and Erdahl demonstrated that
3-positivity produced highly accurate correlation energies for
correlation strengths where perturbative methods fail. A par-
tial set of 3-positivity conditions was derived by Mazziotti
f12g using lifting operators; applications of only a portion of
these partial 3-positivity restrictions, which we calllifting
conditions, to BH improved upon the accuracy of
2-positivity. Recently, Zhaoet al. f18g applied another subset
of 3-positivity, proposed by Erdahlf6g and achieved an order
of magnitude increase in accuracy for molecular ground-state
energies.

The goals of the present paper aresid to develop further
the partial 3-positivity constraints known as the lifting con-
ditions f12g, sii d to compare these partial 3-positivity condi-
tions with the conditions proposed by Erdahlf6g, andsiii d to
examine both sets of partial 3-positivity conditions by appli-
cation to the Lipkin quasispin model for which exact solu-
tions are known. The lifting conditions arise from inserting
projection operators for the 1-particle basis set into the met-
ric matrices that generate theD, Q, and G conditions of
2-positivity. These conditions comprise an incomplete subset
of the 3-positivity conditions and yet, computationally, they
are much less expensive both in storage and floating-point
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operations. The partial 3-particle positivity conditions per-
form well on the Lipkin model. Implications of using partial
3-positivity within a variational 2-RDM method for atomic
and molecular calculations will be discussed.

II. THEORY

The energy for a system ofN indistinguishable particles
with p-particle interactions may be written as a linear func-
tional of thep-RDM,

E = TrfHNDg = TrfpKpDg, s1d

where pK is the p-particle reduced Hamiltonian matrix and
the p-RDM is defined as

pDj1,j2,. . .,jp

i1,i2,. . .,ip = kCuâi1
† âi2

†
¯ âip

† âjp
¯ âj2

âj1
uCl s2d

in second quantization. For each type of Hamiltonian there is
a minimum value ofp. In particular, for electronic systemsp
must be at least 2. Direct minimization of the energy in Eq.
s1d with respect to thep-RDM requiresN-representability
conditions on thep-RDM to ensure that it derives from an
N-particle density matrix. For atoms and molecules, because
electrons interact pairwise, we are interested in the
N-representability conditions for the 2-RDM.

A. Positivity conditions via metric matrices

Different representations of thep-RDMs are easily de-
fined within second quantization. Consider the metricsor
overlapd matricesM,

Mj
i = kFiuF jl = kCuĈiĈj

†uCl, s3d

from the set of basis functions

kFiu = kCuĈi , s4d

where eachĈi is a product ofp creation and/or annihilation

operators. When theĈi are products ofp creation operators,
the metric matrix in Eq.s4d becomes the definition for the
p-RDM in Eq. s2d. However, there arep additional metric

matrices where theĈi are products ofp second-quantized
operators with different numbers of creation and annihilation
operators. Thesep+1 metric matrices may be interconverted
by rearranging the creation and annihilation operators, and
each of the metric matrices must be positive semidefinite. We
refer to restricting allp+1 metric matrices to be positive
semidefinite as thep-positivity conditionsf8g. The three met-
ric matrices of 2-positivity can be generated from the opera-

tors Ĉi that are products of two creation operators, two anni-
hilation operators, and one creation and one annihilation
operator. Explicitly, the three metric matrices of 2-positivity,
known as theD-, Q-, andG-matrices, are given by

2Dkl
ij = kFi j

DuFkl
Dl = kcuâi

†âj
†âlâkucl, s5d

2Qkl
ij = kFi j

QuFkl
Ql = kcuâiâjâl

†âk
†ucl, s6d

2Glj
ik = kFik

GuFl j
Gl = kcuâi

†âkâj
†âlucl, s7d

where uFkl
Dl, uFkl

Ql, and uFkl
Gl, are sN−2d-, sN+2d-, and

N-particle basis functions, respectively.
The four metric matrices of 3-positivityf8g can be written

as

3Dlmn
ijk = kcuâi

†âj
†âk

†ânâmâlucl, s8d

3Elmn
ijk = kcuâi

†âj
†âkân

†âmâlucl, s9d

3Flmn
ijk = kcuâi

†âjâkân
†âm

† âlucl, s10d

3Qlmn
ijk = kcuâiâjâkân

†âm
† âl

†ucl, s11d

where3D and 3Q are the 3-particle and 3-hole reduced den-
sity matrices, respectively, and3E and3F are 3-particle gen-
eralizations of the2G matrix.

B. The lifted conditions

The lifted 3-RDMsf12g are defined by taking the expec-
tation values of particlesor holed projection operatorsn̂k
= âk

†âk sor 1−n̂k= âkâk
†d over the space spanned by the basis

functions in Eqs.s5d–s7d. An example of this type of expec-
tation value is

kFi j
Dus1 − n̂kduFlm

D l = kCuâi
†âj

†âkâk
†âmâluCl, s12d

which is the3E matrix in Eq. s9d with k=n. Summing over
the particle projection operators for all orbital basis functions

gives the number operatorN̂k=okn̂k. Hence because Eq.s12d
contracts to theG-condition, it includes theN-repre-
sentability restrictions from theG-condition as well as addi-
tional constraintsf12g. The lifted conditions are part of the
3-positivity conditions since every principle submatrix of a
positive semidefinite matrix must also be positive semidefi-
nite f22g. By inserting either the particle or hole projection
sor liftingd operator between the basis functionsuFDl, we
generate two lifted metric matrices3D and 3E. Similarly,
from the basis functions for2Q and 2G we generate four
more conditions for a total ofsix partial 3-positive condi-
tions:

kFi j
Duâk

†âkuFlm
D l = kCuâi

†âj
†âk

†âkâmâluCl = 3Dlmk
ijk , s13d

kFi j
Duâkâk

†uFlm
D l = kCuâi

†âj
†âkâk

†âmâluCl = 3Elmk
ijk , s14d

kFi j
Guâk

†âkuFlm
G l = kCuâi

†âjâk
†âkâm

† âluCl = 3Ẽlmk
ijk , s15d

kFi j
Guâkâk

†uFlm
G l = kCuâi

†âjâkâk
†âm

† âluCl = 3F̃lmk
ijk , s16d

kFi j
Quâk

†âkuFlm
Q l = kCuâiâjâk

†âkâm
† âl

†uCl = 3Flmk
ijk , s17d

kFi j
Quâkâk

†uFlm
Q l = kCuâiâjâkâk

†âm
† âl

†uCl = 3Qlmk
ijk . s18d

Three distinct sets of linear mappings for the partial
3-positivity matrices in Eqs.s13d–s18d are important:sid the
contraction mappings which relate the lifted metric matrices
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to the 2-positive matrices in Eqs.s5d–s7d, sii d the linear in-
terconversion mappings from rearranging creation and anni-
hilation operators to interrelate the lifted metric matrices, and
siii d antisymmetrysor symmetryd conditions which enforce
the permutation of the creation operators for fermionssor
bosonsd. Note that the correct permutation of the annihilation
operators is automatically enforced from the permutation of
the creation operators insiii d by the Hermiticity of the ma-
trices.

C. Comparison with T1 and T2

Addition of any two positive semidefinite matrices pro-
duces a positive semidefinite matrix. Hence the four
3-positivity conditionsf8g imply the following two less strin-
gent conditions:

T1 = 3D + 3Q ù 0, s19d

T2 = 3E + 3F ù 0, s20d

which were originally proposed by Erdahlf6g and recently
implemented for small atoms and molecules by Zhaoet al.
f18g. For fermions theT1 andT2 matrices have the interest-
ing property that they may be exactly evaluated from a
knowledge of the 2-RDM. To see this forT1, we recall the
cumulant expansionf9,23–29g for the 3-particle and 3-hole
RDMs

3D/6 = 1D ∧ 1D ∧ 1D + 3s2D/2 − 1D ∧ 1Dd ∧ 1D + 3D

s21d

and

3Q/6 = 1Q ∧ 1Q ∧ 1Q + 3s2Q/2 − 1Q ∧ 1Qd ∧ 1Q − 3D

s22d

where the wedge∧ denotes the antisymmetric tensor prod-
uct, known as the Grassmann wedge productf30g, and the
symbol3D represents theconnectedsor cumulantd portion of
the 3-RDM which cannot be expressed as wedge products of
the lower RDMs. Upon addition of the 3-particle and the
3-hole RDMs to formT1, the connected 3-RDMs3D exactly
cancelf9g, and hence theT1 matrix depends only upon the
2-particle RDM. Similarly, because the elements of theT2
matrix can be expressed as

sT2dlmn
ijk = s2Dlm

ij + 2Qij
lmddn

k − s3Dlmk
ijn + 3Qlmk

ijn d, s23d

it follows that the connected parts of the 3-RDM again can-
cel in the addition of3D and 3Q. For bosons restricting the
T1 and theT2 matrices to be positive semidefinite also en-
forces a subset of 3-positivity, but because bosons exchange
symmetrically, these matrices still depend upon the 3-RDM.

III. APPLICATIONS

A. Summary of N-representability conditions

In variational density matrix theory the energy is mini-
mized with respect to a 2-RDM restricted by necessary
N-representability conditions. Each representation of the re-

duced density matrices is constrained to besid Hermitian,sii d
normalized,siii d positive semidefinite, andsivd antisymmet-
ric sfermionsd or symmetricsbosonsd in particle exchange.
For example, with 2-positivity there are three metric-matrix
representations of the 2-RDM,2D, 2Q, and2G, that are con-
strained to satisfy these four conditions. Furthermore, each
representation must be consistent with the other matrix rep-
resentations according to the linear mappings generated from
either contracting or rearranging the creation and annihila-
tion operators.

B. Description of the model

The Lipkin modelf31g is a soluble, two-level quasispin
system with two-body interactions, which has proven useful
for evaluating computational methodsf8,9,23,32–39g. The
model demonstrates the breakdown of perturbative methods
at large correlation as well as the size-consistency errors of
truncated CI methodsf8g. The Lipkin model forN spin-1/2
particles consists of two distinct levels denoted by the quan-
tum numberm= ±1 where each level containsN states de-
noted by the quantum numberp. Only one of theN spin
fermions can occupy each of the 2N states. When interpreted
according to the states, the Lipkin model describes a quan-
tum system ofN spin-1/2 fermions. In second quantization
the Hamiltonian for the Lipkin model is given by

Ĥ =
e

N
o

m=±1,p
mâm,p

† âm,p

+
V

NsN − 1d o
m=±1,p1,p2

â+m,p1

† â+m,p2

† â−m,p2
â−m,p1

s24d

where the parametere controls the weight of the one-particle
number operator and the parameterV controls the weight of
the interaction which is minimized when the spins are
equally distributed between the two energy levels. However,
becauseN particles can occupy each level, the Lipkin model
may also be interpreted as a two-level bosonic system. The
Hamiltonian for the boson formulation of the Lipkin model
may be written as

Ĥ =
e

N
o

m=±1
mb̂m

† b̂m +
V

NsN − 1d o
m=±1

b̂+m
† b̂+m

† b̂−mb̂−m,

s25d

where b̂i
† and b̂j are the bosonic creation and annihilation

operators which obey the commutation relationsfbj ,bi
†g=d j

i

and fbj ,big=0. Because the Hamiltonians in Eqs.s24d and
s25d represent the same physical system, they have the same
ground-state energies and wave functions where the boson
wave functions are more compact since they directly include
the indistinguishability of thep states. Within the fermionic
interpretation the 2-RDM scales as 2N2. To avoid this scaling
by incorporating symmetry of thep-states within the RDMs,
we represent the RDMs with the boson creation and annhi-
lation operators. For example, with the boson operators the
D, Q, andG matrices are

Dk,l
i,j = kcubi

†bj
†blbkucl, s26d
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Qk,l
i,j = kcubibjbl

†bk
†ucl, s27d

and

Gk,l
i,j = kcubi

†bjbl
†bkucl. s28d

Similar expressions are readily constructed for the metric
matrices of partial and full 3-positivity. A more detailed de-
scription of the Lipkin model is available in the literature
f8,9,23,32–35g.

C. Computational details

Minimizing the energy as a functional of the 2-RDM sub-
ject to the 2-positivity conditions requires the solution of an
optimization problem known as a semidefinite program. We
solve the program using theprimal-dual interior-point algo-
rithm implemented in the program SeDuMif40g. The primal
form of the algorithm is stated as

minimize kcuxl

such thatAuxl = ubl,

Msxd ù 0, s29d

wherekcu contains information about the unconstrained sys-
tem, which for this specific application includes the matrix
elements of the reduced Hamiltonian2K. The vectoruxl con-
tains the elements of the matrices2D, 2Q, and2G, as well as
the lifted matrices or the 3-positive matrices, such thatkcuxl
corresponds to Trf2K2Dg and them3n constraint matrixA
in Auxl− ubl=0, wherem andn are the number of constraints
and number of elements inuxl, respectively, enforces the
trace, antisymmetrysor symmetry in the boson formulationd,
and contraction conditions, as well as the linear mappings
which relate different representations of the 2-RDM and the
lifted matrix. Msxd is a block-diagonal matrix containing in
each block one representation of the 2-RDM that is being
constrained to be positive semidefinite. Holding the matrix
M positive semidefinite constrains all the necessary matrices
to be positive semidefinite.

D. Results

The ground-state energies and 2-RDMs of the Lipkin spin
model are determined by variational 2-RDM methods using
different N-representability conditions including the
2-positivity conditions, two types of partial 3-positivity con-
ditions, the liftingfEqs.s13d–s18dg and theT1/T2 constraints,
as well as the complete 3-positivity conditions. In Eq.s24d
we sete=1 andV=0.99 to make the interaction strengthV
slightly less than the absolute value of the one-particle en-
ergy e. These results are compared to the energies and
2-RDMs from full configuration interactionsFCId f9g and
approximate wave-function methods including configuration
interaction with single and double excitationssCISDd f8g,
configuration interaction with single, double, triple, and qua-
druple excitationssCISDTQd f8g, second-order many-body
perturbation theorysMP2d, and coupled cluster with single-
double excitationssCCSDd f8,39g.

In Table I the percentages of the recovered correlation
energysCEd are presented for the numberN of spins ranging
from 10 to 100. Because theN-representability conditions
are necessary but not sufficient, the correlation energies from
the variational 2-RDM methods arelower boundsto the FCI
results. The 2-RDM method with 2-positivity conditions
yields between 108.47% and 105.24% of the CE forN be-
tween 10 and 100. The lifting conditions improve the results
to 107.56% and 104.98% forN equal to 10 and 100, respec-
tively, while the T1 and T2 conditions do not exhibit any
improvement. Full 3-positivity provides a dramatic increase
in accuracy with recovery of 100.15% and 100.07% of the
CE at N=10 and 100. AtN=50 the approximate wave-
function methods, CISD, CISDTQ, MP2, and CCSD, capture
64.16%, 86.04%, 71.37%, and 106.17% of the CE, respec-
tively. The CCSD method, yielding the most accurate ener-
gies of the approximate wave-function techniques, gives
slightly better correlation energies at lowN and slightly
worse energies at highN than the 2-RDM method with
2-positivity or lifting conditions. In contrast to the 2-RDM
methods which improve asN increases, each of the approxi-
mate wave-function methods becomes less accurate with in-
creasingN. The 2-RDM method with 3-positivity produces
energies that are better by one-and-a-half to three orders-of-

TABLE I. Comparison of RDM methods to wave-function methods as a means for calculating correlation energy in the Lipkin model
f31g. Configuration interaction, many-body perturbation theory, and coupled-cluster singles-doubles are compared to 2-positivity, 3-positivity
and two variants of partial 3-positivity discussed in the text. The correlation parameter isV=0.99. Numbers in square brackets denote powers
of ten.

N

FCI
correlation

energy

Percentage of correlation energy

Wave-function methods RDM methods

CISD CISDTQ MP2 CCSD 2-Pos T1/T2 Lifting 3-Pos

10 −6.1214f−2g 79.32 97.46 88.95 103.03 108.47 108.47 107.56 100.15

25 −2.6397f−2g 69.41 91.02 77.35 105.39 107.36 107.36 106.77 100.13

50 −1.4012f−2g 64.16 86.04 71.37 106.17 106.33 106.33 105.93 100.10

75 −9.6456f−3g 61.76 83.43 68.66 106.23 105.69 105.69 105.38 100.15

100 −7.3874f−3g 60.29 81.76 67.01 106.12 105.24 105.23 104.98 100.07
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magnitude than those from either 2-positivity or CCSD.
The eigenfunctions of the 1- and 2-RDMs are known as

the natural orbitalsfis1d and natural geminalsgis1,2d, re-
spectively. In Table II for the Lipkin model withN=10 we
present for the ground state the occupation numbers of the
natural orbitals and geminals from variational 2-RDM meth-
ods with different levels ofN-representability as well as from
the wave-function methods CISD and FCI. The sums of the
occupation numbers for the 1-RDM and the 2-RDM are nor-
malized to one. Note that as many asN spin fermions can
occupy a given natural orbital such asf1 because there are
actuallyN orbitalsf1 that are distinguished by the quantum
numberp in the Lipkin Hamiltonian in Eq.s24d. The lifting
conditions provide consistent improvement of the occupation
numbers from the 2-positivity values towards the FCI values.
The occupation numbers from each of the 2-RDM methods
are significantly more realistic than the occupation numbers
from CISD. The 2-RDM method with 3-positivity repro-
duces the occupation numbers of the natural orbitals and
geminals to an accuracy on the order of 10−4.

IV. DISCUSSION AND CONCLUSIONS

The variational calculation of the 2-RDM without the
many-electron wave function has been performed for a vari-
ety of atoms and molecules in minimal basis sets
f5,10–14,18,19g, and recently, the variational 2-RDM
method has been applied to larger molecules and basis sets
through the development of a first-order algorithm for
semidefinite programmingf19–21g. There exists a systematic
hierarchy of N-representability conditions, known as
p-positivity conditions, which enforce the generalized uncer-
tainty relations for all pairs ofp/2-body operatorsf8g. Each
of the recent variational 2-RDM calculations has employed
the 2-positivity conditions, but only two previous calcula-
tions on atoms and molecules have explored higher positivity
conditions f12,18g. The variational calculations with
2-positivity have been shown to treat single- and multirefer-
ence correlation effects with similar accuracy which permits
the generation of realistic potential energy surfaces
f12–14,16,19–21g. While calculations of potential energy
curves and organic molecules with different functional
groups also reveal some correlation effects within molecules
that are not captured with sufficient chemical accuracy by
2-positivity, the addition of complete 3-positivity conditions

within molecular calculations is computationally expensive.
Two differentpartial 3-positivityconditions, therefore, have
been proposed:sid the lifting conditions of Mazziotti andsii d
the T1/T2 conditions of Erdahlf6g implemented by Zhaoet
al. f18g. In Mazziotti f12g the lifting conditions were applied
to boron hydridesBHd, but their formulation required ma-
nipulation and storage of the 3-RDM. The present paper de-
velops a variational RDM method with lifting conditions that
incorporates these conditions without the complete 3-RDM.
The lifting conditions are compared theoretically with the
T1/T2 conditions of Erdahl, and both of these partial
3-positivity conditions are implemented for a Lipkin spin
model where they are compared with 2- and 3-positivity as
well as with approximate wave-function methods.

The six lifting conditions for partial 3-positivity arise
from inserting one-particle and one-hole projection operators
into theD-, Q-, andG-matrices within 2-positivity. Because
many-electron Hamiltonians contain only pairwise interac-
tions, an important subset of 3-positivity conditions should
be the constraints that map or “lift” the metric matrices of
2-positivity to the three-particle space specifically to target
quantum systems with pairwise interactions. In contrast to
the lifting conditions each of theT1 andT2 conditions arises
from constraining a sum of two 3-positive metric matrices to
be positive semidefinite as shown in Eqs.s19d and s20d.
These sums of the 3-positive metric matrices cause theT1
and T2 conditions to depend only upon the 2-RDM. Using
the cumulant expansions of the 3-particle and 3-hole RDMs
f9,23–29g, we show that their addition to form theT1 condi-
tion causes thecumulantor connectedparts of the 3-particle
and 3-hole RDMs to cancel. Within cumulant theory the con-
nected part of an RDM is the portion that cannot be written
as wedge products of lower RDMs. In the literature on the
contracted Schrödinger equationf9,13,41,42g it has been
shown that the connected part of the 3-hole RDM equals the
negative of the connected part of the 3-particle RDM
f9,23–29g, and hence upon addition in theT1 condition they
cancel, and we obtain a formula that depends only upon the
lower 1- and 2-RDMs. A similar analysis holds for theT2
condition. The recent introduction of a first-order semidefi-
nite programming algorithm for the 2-RDM variational
method with 2-positivity conditions reduced the scaling of
the method by orders of magnitude fromr16 f43g to r6 where
r is the number of spatial orbitals in the basis setf19,20g. In
the context of a similar first-order algorithm for atoms and

TABLE II. Comparison of natural orbital and natural geminal occupation numberssdensity matrix eigenvaluesd for different levels of
theory, including configuration interaction and the positivity methods discussed in the text. The parameters areN=10, V=0.99.

Matrix Orbital/geminal

Occupation numbers

FCI CISD 2-Pos T1/T2 Lifting 3-Pos

1D f0 0.9625 0.9023 0.9520 0.9520 0.9535 0.9622

f1 0.03750 0.09768 0.04802 0.04804 0.04653 0.03784
2D g1 0.9364 1.0000 0.9187 0.9187 0.9211 0.9358

g2 0.06235 0.00000 0.08127 0.08130 0.07887 0.06304

g3 0.001235 0.000000 0.000000 0.000000 0.000048 0.001172
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molecules the lifting conditions would scale computationally
as r7 while theT1 andT2 conditions would scale asr9. The
scaling of the T1 and T2 conditions within the 2-RDM
method is presently similar to 3-positivity, but further reduc-
tion in the scaling may be possible.

In an application to the Lipkin spin model the variational
2-RDM method with partial 3-positivity conditions is com-
pared to the 2-RDM methods with 2- and 3-positivity condi-
tions as well as approximate wave-function techniques. For
the number of particles ranging from 10 to 100 fermions and
a strong interaction strength ofV=0.99 the 2-RDM method
with 2-positivity overestimates the correlation energy by
5–9% while with 3-positivity the method overestimates the
correlation energy by a maximum of only 0.15%. For the
Lipkin model theT1 and T2 conditions do not improve the
correlation energy. In contrast, for atoms and molecules in
minimal basis sets theT2 condition corrects the correlation
energy of 2-positivity by one or two orders of magnitude
to produce energy errors largely between 0.1 and
0.001 millihartreesf18g. Because the positivity conditions
correct the energies exactly for certain classes of Hamilto-
nians and interactions regardless of the strength of the per-
turbationf16,17,20g, the strength of the conditions depends
importantly upon the nature of the interaction. The computa-

tional results indicate that theT2 condition restricts a class of
Hamiltonians that is more appropriate for treating the two-
electron Coulomb interactions in atoms and molecules than
the spin-spin interactions of the Lipkin model. The partial
3-positivity conditions known as the lifting conditions, how-
ever, reduce the overestimation of the correlation energy by
as much as 1%. These results show that the lifting conditions
without storing the 3-RDM contain nontrivial
N-representability conditions that are not contained in the
2-positivity constraints. The calculations with the Lipkin
model demonstrate that the lifting conditions can be more
stringent than theT1 and T2 conditions. Although it is not
possible to draw conclusions from these calculations about
their performance for atoms and molecules, the dramatic im-
provement of molecular correlation energies from theT2
condition suggests that a similar or better improvement may
be observed from the lifting conditions.
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