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Variationally calculating the ground state of a many-electron quantum system using only the two-electron
reduced-density-matrix2-RDM) requiresN-representability conditions that constrain the 2-RDM to corre-
spond to anN-electron wave function. A systematic hierarchy Nfrepresentability conditions, known as
p-positivity conditions, has been developdd. A. Mazziotti and R. M. Erdahl, Phys. Rev. &3, 042113
(2001)], and many-electron atoms and molecules in nonminimal basis sets have been solved with useful
accuracy by a variational 2-RDM method with 2-positivity conditiobs A. Mazziotti, Phys. Rev. Lett93,
213001(2004)]. This paper considers two forms pértial 3-positivity conditions, the lifting conditions and the
T,/T, conditions, to further enhance the accuracy of the 2-RDM methods without the computational cost of
full 3-positivity conditions. Variational 2-RDM methods with differeNtrepresentability constraints including
2-positivity conditions, the two types of partial 3-positivity conditions, as well as the complete 3-positivity
conditions are applied to compute the ground state of the Lipkin spin model. The energies and 2-RDMs are
compared to the results from full and truncated configuration interaction, many-body perturbation theory, and
couple cluster theory with single and double excitations. Implications of using partial 3-positivity for varia-
tional 2-RDM calculations of many-electron atoms and molecules will be discussed.

DOI: 10.1103/PhysRevA.71.062503 PACS nuntber31.10:+z, 31.25-v

I. INTRODUCTION [12-14,16,19,2D Multireference effects, which arise when
multiple reference determinants contribute significantly to
Although a two-particle reduced density matt2RDM) the correlated wave function, are difficult to treat with tradi-
provides most of the useful information contained in thetional approaches to electron correlation and yet are espe-
N-electron wave functiofl], direct minimization of the en- cially important for describing nonequilibrium geometries as
ergy as a functional of the 2-RDM has been elusive becaus@ transition-state structures and dissociation.
the 2-RDM must be constrained to correspond to an Erdahl and Jirj7] and Mazziotti and ErdaHI8] general-
N-electron system where the search for the appropriate conzed the 2-positivity conditions tp-positivity conditions in
ditions has been called tid-representability problerf2—4].  which p+1 p-particle matrices are constrained to be positive
Significant progress in the realization of the variationalsemidefinite. Thep-positivity conditions enforce the gener-
2-RDM method has been made along two fronts with thealized uncertainty relations for af)/2-body operator$8].
development off{i) a systematic hierarchy for enforcing the Using a spin model, Mazziotti and Erdahl demonstrated that
approximateN-representability of the 2-RDNI5-9] and (ii) 3-positivity produced highly accurate correlation energies for
new optimization algorithms for minimizing the energy with correlation strengths where perturbative methods fail. A par-
respect to a 2-RDM constrained by positivity conditionstial set of 3-positivity conditions was derived by Mazziotti
[5,10-21. [12] using lifting operators; applications of only a portion of
Three different representations of the 2-RDM for a many-these partial 3-positivity restrictions, which we céfting
electron system should be constrained to pesitive conditions to BH improved upon the accuracy of
semidefinitewhere a matrix is positive semidefinite if and 2-positivity. Recently, Zhaet al.[18] applied another subset
only if all of its eigenvalues are non-negative. These necesef 3-positivity, proposed by Erdaf6] and achieved an order
sary restrictions, known as thepbsitivity conditionswere  of magnitude increase in accuracy for molecular ground-state
originally derived by Garrod and Perc(i§]. A variational energies.
2-RDM method with the 2-RDM restricted by 2-positivity =~ The goals of the present paper dreto develop further
conditions was applied to Be and Hée the 1970s. The the partial 3-positivity constraints known as the lifting con-
minimization of the energy subject to several matrices conditions[12], (ii) to compare these partial 3-positivity condi-
strained to be positive semidefinite constitutes an optimizations with the conditions proposed by Erd#8], and(iii ) to
tion problem known as a semidefinite program. Usingexamine both sets of partial 3-positivity conditions by appli-
interior-point methods developed in the 1990s, Nakatsuji an@ation to the Lipkin quasispin model for which exact solu-
co-workers[11,14] and Mazziotti[12,13 applied a varia- tions are known. The lifting conditions arise from inserting
tional 2-RDM method to compute the ground-state energieprojection operators for the 1-particle basis set into the met-
of atoms and molecules in equilibrium and nonequilibriumric matrices that generate the, Q, and G conditions of
geometries. Calculations of bond stretching and dissociatio8-positivity. These conditions comprise an incomplete subset
showed that the 2-RDM method treats both single- andf the 3-positivity conditions and yet, computationally, they
multi-reference correlation effects with similar accuracyare much less expensive both in storage and floating-point

1050-2947/2005/16)/0625037)/$23.00 062503-1 ©2005 The American Physical Society



J. R. HAMMOND AND D. A. MAZZIOTTI PHYSICAL REVIEW A 71, 062503(2005

operations. The partial 3-particle positivity conditions per- 2(3::.(:@& q)ﬁ>:<,r/,|é1.’fékajffé+|¢,>, (7)
form well on the Lipkin model. Implications of using partial o o G
3-positivity within a variational 2-RDM method for atomic Where (@), |®g), and |y, are (N-2)-, (N+2)-, and

and molecular calculations will be discussed. N-particle basis functions, respectively. _
The four metric matrices of 3-positivify8] can be written
as
Il. THEORY )
*Dilnn = (V3888080 ), 8)

The energy for a system @ indistinguishable particles
with p-particle interactions may be written as a linear func-

tional of thep-RDM, *Eimn= (l&/a/aalanal), (9)
E=T{H"D]=T{""D], (1) *Finn = (vl aa&1a1A )., (10

wherePK is the p-particle reduced Hamiltonian matrix and WK _ s o0a A~ atata

the p-RDM is defined as *Qin= (aaaaialal ), (11

where®D and®Q are the 3-particle and 3-hole reduced den-
sity matrices, respectively, aret and °F are 3-particle gen-

. o — _eralizations of théG matrix.
in second quantization. For each type of Hamiltonian there is

a minimum value ofp. In particular, for electronic systenms ) -
must be at least 2. Direct minimization of the energy in Eq. B. The lifted conditions

(1) with respect to thep-RDM requiresN-representability ~ The lifted 3-RDMs[12] are defined by taking the expec-
conditions on the-RDM to ensure that it derives from an tation values of particlgor holé projection operatorsi,
N-particle density matrix. For atoms and molecules, becausealak (or ]__ﬁk:ékél) over the space spanned by the basis

electrons interact pairwise, we are interested in thqunctions in Eqs(5)—7). An example of this type of expec-
N-representability conditions for the 2-RDM. tation value is

"D = (VIAAL - aE A A W) (2

i1iedp

Di(1 _a @D\ — mplatats ata 2
A. Positivity conditions via metric matrices (@5 (1 =P = (V[ 3 & V), 12

Different representations of the-RDMs are easily de- Which is the’E matrix in Eq.(9) with k=n. Summing over
fined within second quantization. Consider the metde the particle projection opgrators for all orbital basis functions
overlap matricesM, gives the number operatdl=2,M,. Hence because E(L2)

contracts to theG-condition, it includes theN-repre-
M} = <q>i|q>j> = <qf|éiéjT|xp>, (3) sentability restrictions from th&-condition as well as addi-
tional constraint§12]. The lifted conditions are part of the
from the set of basis functions 3-positivity conditions since every principle submatrix of a
R positive semidefinite matrix must also be positive semidefi-
(D] =(T|C;, (4) nite [22]. By inserting either the particle or hole projection
R (or liting) operator between the basis functiods®), we
where eactC; is a product ofp creation and/or annihilation generate two lifted metric matrice®® and 3E. Similarly,

operators. When th€, are products of creation operators, from the basis functions fofQ and °G we generate four
the metric matrix in Eq(4) becomes the definition for the more conditions for a total o$ix partial 3-positive condi-
p-RDM in Eq. (2). However, there ar@ additional metric ~ tions:

matrices where the€; are products ofp second-quantized (@F|afaon) = (v[afalalaa.alv) =Dk,  (13)
operators with different numbers of creation and annihilation

operators. Thesp+1 metric matrices may be interconverted Dia At 4D\ — sarrlatata ata a _ 3iik
by rearranging the creation and annihilation operators, and (D] a8y iy = (V]88 8Bty | V) = "By, (14)
each of the metric matrices must be positive semidefinite. We .

refer to restricting allp+1 metric matrices to be positive (DFlajaldr) = (V[afaalaalalw) =Bk, (15
semidefinite as thp-positivity conditiong 8]. The three met-

ric matrices of 2-positivity can be generated from the opera-

tors C; that are products of two creation operators, two anni-
hilation operators, and one creation and one annihilation
operator. Explicitly, the three metric matrices of 2-positivity,
known as theD-, Q-, andG-matrices, are given by

(@laallos) = (v/afaaaalalv) =Fk, (16
(DYIafadR) = (VIaaaaalalv) = Fk, (17

(PR3]l 0R) = (V|aaaaalav) = Q. (19

2Dl = (P[P = (ylaTata 3

Dig = (@i = (Y1& &), ®) Three distinct sets of linear mappings for the partial
B 3-positivity matrices in Eqs(13)—(18) are important{i) the

Q= (@ DY) = (a3 a8l y), (6)  contraction mappings which relate the lifted metric matrices
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to the 2-positive matrices in Eq&)—(7), (ii) the linear in-  duced density matrices is constrained ta(ipédermitian, (ii)
terconversion mappings from rearranging creation and anninormalized,(iii) positive semidefinite, an@lv) antisymmet-
hilation operators to interrelate the lifted metric matrices, andic (fermiong or symmetric(boson$ in particle exchange.
(iii) antisymmetry(or symmetry conditions which enforce For example, with 2-positivity there are three metric-matrix
the permutation of the creation operators for fermi¢éos  representations of the 2-RDMD, 2Q, and?G, that are con-
boson$. Note that the correct permutation of the annihilationstrained to satisfy these four conditions. Furthermore, each
operators is automatically enforced from the permutation ofepresentation must be consistent with the other matrix rep-
the creation operators iiii) by the Hermiticity of the ma- resentations according to the linear mappings generated from
trices. either contracting or rearranging the creation and annihila-
tion operators.

C. Comparison with T, and T,

-, .. e . B. Description of the model
Addition of any two positive semidefinite matrices pro-

duces a positive semidefinite matrix. Hence the four The Lipkin model[31] is a soluble, two-level quasispin
3-positivity conditiong 8] imply the following two less strin- ~ System with two-body interactions, which has proven useful

gent conditions: for evaluating computational method8,9,23,32—3% The
model demonstrates the breakdown of perturbative methods
T,=°D+%°Q=0, (19)  at large correlation as well as the size-consistency errors of

truncated Cl methodi8]. The Lipkin model forN spin-1/2
T,=%E+%F =0, (20) particles consists of two distinct levels denoted by the quan-

) o tum numberm=+1 where each level contains states de-
yvh|ch were originally proposed by Erdaf] and recently  nieq by the quantum numbgr Only one of theN spin
implemented for small atoms and molecules by Zk&@l.  fermions can occupy each of thélZtates. When interpreted
[18]. For fermions thel; and T, matrices have the interest- according to the states, the Lipkin model describes a quan-

ing property that they may be exactly evaluated from ay,m system ofN spin-1/2 fermions. In second quantization
knowledge of the 2-RDM. To see this fdk, we recall the e Hamiltonian for the Lipkin model is given by

cumulant expansiof9,23-29 for the 3-particle and 3-hole

RDMs ~ € o
H= 2 mahgamp
/6 ='D 0D 0D +3(?°D/2 - D 0'D) 0D +°A m=+1p
(21) VS s A oa s
Amp,Qemp,&mp,dmp,  (24)
and N(N-1) P m,py~+m.py 2 1
/6 =1Q0%Q 0'Q +3(3Q/2 -0 0'Q) 0'Q- %A where the parametercontrols the weight of the one-particle

number operator and the parametecontrols the weight of

(22) the interaction which is minimized when the spins are
where the wedgél denotes the antisymmetric tensor prod-€qually distributed between the two energy levels. However,
uct, known as the Grassmann wedge prod@ei, and the PecauseN particles can occupy each level, the Lipkin model
symbolA represents theonnectedor cumulani portion of ~ May @lso be interpreted as a two-level bosonic system. The
the 3-RDM which cannot be expressed as wedge products familtonian for the boson formulation of the Lipkin model
the lower RDMs. Upon addition of the 3-particle and the My be written as
3-hole RDMs to formT;, the connected 3-RDM¥ exactly

R ayn \Y; ay e A A

cancel[9], and hence th&; matrix depends only upon the H= < > mbfnbm+ m > bImbImb_mb_m,

2-particle RDM. Similarly, because the elements of e m=+1 m=£1

matrix can be expressed as (25)
(TZ)HL(n: (ZDHn+ ZQ:Jm)5kn‘ (3DHﬂk+ 3Qiiﬂk ) (23 where BiT and E)j are the bosonic creation and annihilation

it follows that the connected parts of the 3-RDM again can-OPerators which obey the commutation relatiohs bf1=4,
cel in the addition ofD and Q. For bosons restricting the and[b;,bi]=0. Because the Hamiltonians in Eq24) and
T, and theT, matrices to be positive semidefinite also en- (25 represent the same physical system, they have the same
forces a subset of 3-positivity, but because bosons exchanggound-state energies and wave functions where the boson

symmetrically, these matrices still depend upon the 3-RDMWave functions are more compact since they directly include
the indistinguishability of the states. Within the fermionic

interpretation the 2-RDM scales all2 To avoid this scaling
IIl. APPLICATIONS by incorporating symmetry of the-states within the RDMs,
A. Summary of N-representability conditions we represent the RDMs with the boson creation and annhi-

o ) ) ] . lation operators. For example, with the boson operators the
In variational density matrix theory the energy is mini- p Q, andG matrices are

mized with respect to a 2-RDM restricted by necessary B
N-representability conditions. Each representation of the re- DL’j :(¢|b;rblfb|bk| by, (26)
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TABLE |. Comparison of RDM methods to wave-function methods as a means for calculating correlation energy in the Lipkin model
[31]. Configuration interaction, many-body perturbation theory, and coupled-cluster singles-doubles are compared to 2-positivity, 3-positivity
and two variants of partial 3-positivity discussed in the text. The correlation param&te0i®9. Numbers in square brackets denote powers
of ten.

Percentage of correlation energy

FCI Wave-function methods RDM methods
correlation
N energy CISD CISDTQ MP2 CCsD 2-Pos T/ T, Lifting 3-Pos
10 -6.1214-2] 79.32 97.46 88.95 103.03 108.47 108.47 107.56 100.15
25 -2.6397-2] 69.41 91.02 77.35 105.39 107.36 107.36 106.77 100.13
50 -1.4019-2] 64.16 86.04 71.37 106.17 106.33 106.33 105.93 100.10
75 -9.6456-3] 61.76 83.43 68.66 106.23 105.69 105.69 105.38 100.15
100 —-7.3874-3] 60.29 81.76 67.01 106.12 105.24 105.23 104.98 100.07
Qi = (Ylbibyb bl ), (27) D. Results

The ground-state energies and 2-RDMs of the Lipkin spin
model are determined by variational 2-RDM methods using
G =<¢|binjb|Tbk| ). (28)  different N-representability ~conditions including the
’ 2-positivity conditions, two types of partial 3-positivity con-
Similar expressions are readily constructed for the metrigiitions, the lifting[Eqgs.(13)—(18)] and theT,/ T, constraints,
matrices of partial and full 3-positivity. A more detailed de- as well as the complete 3-positivity conditions. In EB4)
scription of the Lipkin model is available in the literature we sete=1 andV=0.99 to make the interaction strength
[8,9,23,32-3% slightly less than the absolute value of the one-particle en-
ergy e. These results are compared to the energies and
C. Computational details 2-RDMs from full configuration interactiofFCIl) [9] and
o . approximate wave-function methods including configuration
. Minimizing th?‘ energy asgfunct|or!al of the Z'RPM sub- interaction with single and double excitatiof&ISD) [8],
ject to the 2-positivity conditions requires the solution of anconfiguration interaction with single, double, triple, and qua-
optimization problem known as a semidefinite program. Wedruple excitations CISDTQ) [8], second-order ma'ny-body
solve the program using thimal-dual interior-point algo- e rhation theoryMP2), and coupled cluster with single-
rithm implemented in the program SeDull0]. The primal double excitation¢CCSD) [8,39].
form of the algorithm is stated as In Table | the percentages of the recovered correlation
energy(CE) are presented for the numhgrof spins ranging
from 10 to 100. Because thd-representability conditions
are necessary but not sufficient, the correlation energies from

and

minimize (c|x)

such thatA|x) = |b), the variational 2-RDM methods atewer boundso the FCI
results. The 2-RDM method with 2-positivity conditions
M(x) =0, (29) yields between 108.47% and 105.24% of the CEMobe-

o ) ) tween 10 and 100. The lifting conditions improve the results
where(c| contains information about the unconstrained syst1q 107.56% and 104.98% ot equal to 10 and 100, respec-
tem, which for this specific application includes the matrixjyely, while the T; and T, conditions do not exhibit any
elements of the reduced Hamiltoni&K. The vectorx) con-  improvement. Full 3-positivity provides a dramatic increase
tains the elements of the matricé, ?Q, and®G, as well as  jn accuracy with recovery of 100.15% and 100.07% of the
the lifted matrices or the 3-positive matrices, such tleéx) CE at N=10 and 100. AtN=50 the approximate wave-
corresponds to TFK?D] and themx n constraint matrixA  function methods, CISD, CISDTQ, MP2, and CCSD, capture
in Alx)—|b)=0, wherem andn are the number of constraints 64.16%, 86.04%, 71.37%, and 106.17% of the CE, respec-
and number of elements i[x), respectively, enforces the tively. The CCSD method, yielding the most accurate ener-
trace, antisymmetryor symmetry in the boson formulatiopn  gies of the approximate wave-function techniques, gives
and contraction conditions, as well as the linear mappingslightly better correlation energies at lolWw and slightly
which relate different representations of the 2-RDM and thevorse energies at higil than the 2-RDM method with
lifted matrix. M(x) is a block-diagonal matrix containing in 2-positivity or lifting conditions. In contrast to the 2-RDM
each block one representation of the 2-RDM that is beingnethods which improve as increases, each of the approxi-
constrained to be positive semidefinite. Holding the matrixmate wave-function methods becomes less accurate with in-
M positive semidefinite constrains all the necessary matricesreasingN. The 2-RDM method with 3-positivity produces
to be positive semidefinite. energies that are better by one-and-a-half to three orders-of-
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TABLE II. Comparison of natural orbital and natural geminal occupation numiagenssity matrix eigenvaluggor different levels of
theory, including configuration interaction and the positivity methods discussed in the text. The parameterdGré=0.99.

Occupation numbers

Matrix Orbital/geminal FClI CISD 2-Pos T/ To Lifting 3-Pos
p bo 0.9625 0.9023 0.9520 0.9520 0.9535 0.9622
b1 0.03750 0.09768 0.04802 0.04804 0.04653 0.03784
D 01 0.9364 1.0000 0.9187 0.9187 0.9211 0.9358
[P 0.06235 0.00000 0.08127 0.08130 0.07887 0.06304
O3 0.001235 0.000000 0.000000 0.000000 0.000048 0.001172

magnitude than those from either 2-positivity or CCSD.  within molecular calculations is computationally expensive.
The eigenfunctions of the 1- and 2-RDMs are known asTwo differentpartial 3-positivity conditions, therefore, have
the natural orbitalsp,(1) and natural geminalg;(1,2), re-  been proposedi) the lifting conditions of Mazziotti andii)
spectively. In Table Il for the Lipkin model witthN=10 we  the T,/T, conditions of Erdah[6] implemented by Zhaet
present for the ground state the occupation numbers of thal. [18]. In Mazziotti[12] the lifting conditions were applied
natural orbitals and geminals from variational 2-RDM meth-to boron hydride(BH), but their formulation required ma-
ods with different levels oN-representability as well as from nipulation and storage of the 3-RDM. The present paper de-
the wave-function methods CISD and FCI. The sums of thevelops a variational RDM method with lifting conditions that
occupation numbers for the 1-RDM and the 2-RDM are nor4ncorporates these conditions without the complete 3-RDM.
malized to one. Note that as many Msspin fermions can The lifting conditions are compared theoretically with the
occupy a given natural orbital such s because there are T;/T, conditions of Erdahl, and both of these partial
actually N orbitals ¢, that are distinguished by the quantum 3-positivity conditions are implemented for a Lipkin spin
numberp in the Lipkin Hamiltonian in Eq(24). The lifting  model where they are compared with 2- and 3-positivity as
conditions provide consistent improvement of the occupationwvell as with approximate wave-function methods.
numbers from the 2-positivity values towards the FCl values. The six lifting conditions for partial 3-positivity arise
The occupation numbers from each of the 2-RDM methodd$rom inserting one-particle and one-hole projection operators
are significantly more realistic than the occupation number#nto theD-, Q-, andG-matrices within 2-positivity. Because
from CISD. The 2-RDM method with 3-positivity repro- many-electron Hamiltonians contain only pairwise interac-
duces the occupation numbers of the natural orbitals antions, an important subset of 3-positivity conditions should

geminals to an accuracy on the order of 410 be the constraints that map or “lift” the metric matrices of
2-positivity to the three-particle space specifically to target
IV. DISCUSSION AND CONCLUSIONS quantum systems with pairwise interactions. In contrast to

the lifting conditions each of th&é; and T, conditions arises

The variational calculation of the 2-RDM without the from constraining a sum of two 3-positive metric matrices to
many-electron wave function has been performed for a varibe positive semidefinite as shown in Ed49) and (20).
ety of atoms and molecules in minimal basis setsThese sums of the 3-positive metric matrices causeTthe
[5,10-14,18,19 and recently, the variational 2-RDM and T, conditions to depend only upon the 2-RDM. Using
method has been applied to larger molecules and basis sdt®e cumulant expansions of the 3-particle and 3-hole RDMs
through the development of a first-order algorithm for[9,23-29, we show that their addition to form thg condi-
semidefinite programminid9—21. There exists a systematic tion causes theumulantor connectedparts of the 3-particle
hierarchy of N-representability conditions, known as and 3-hole RDMs to cancel. Within cumulant theory the con-
p-positivity conditions, which enforce the generalized uncer-nected part of an RDM is the portion that cannot be written
tainty relations for all pairs op/2-body operator§8]. Each  as wedge products of lower RDMs. In the literature on the
of the recent variational 2-RDM calculations has employedcontracted Schrédinger equatidf,13,41,42 it has been
the 2-positivity conditions, but only two previous calcula- shown that the connected part of the 3-hole RDM equals the
tions on atoms and molecules have explored higher positivitpegative of the connected part of the 3-particle RDM
conditions [12,1§. The variational -calculations with [9,23—-29, and hence upon addition in tig condition they
2-positivity have been shown to treat single- and multirefercancel, and we obtain a formula that depends only upon the
ence correlation effects with similar accuracy which permitslower 1- and 2-RDMs. A similar analysis holds for tfig
the generation of realistic potential energy surfacesondition. The recent introduction of a first-order semidefi-
[12-14,16,19-2]L While calculations of potential energy nite programming algorithm for the 2-RDM variational
curves and organic molecules with different functionalmethod with 2-positivity conditions reduced the scaling of
groups also reveal some correlation effects within moleculethe method by orders of magnitude frai? [43] to r® where
that are not captured with sufficient chemical accuracy by is the number of spatial orbitals in the basis[€62,20. In
2-positivity, the addition of complete 3-positivity conditions the context of a similar first-order algorithm for atoms and
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molecules the lifting conditions would scale computationallytional results indicate that thB, condition restricts a class of
asr’ while the T, and T, conditions would scale as. The  Hamiltonians that is more appropriate for treating the two-
scaling of theT; and T, conditions within the 2-RDM electron Coulomb interactions in atoms and molecules than
method is presently similar to 3-positivity, but further reduc-the spin-spin interactions of the Lipkin model. The partial
tion in the scaling may be possible. 3-positivity conditions known as the lifting conditions, how-
In an application to the Lipkin spin model the variational ever, reduce the overestimation of the correlation energy by
2-RDM method with partial 3-positivity conditions is com- a5 mych as 1%. These results show that the lifting conditions
pared to the 2-RDM me_thods with 2- and_ 3-p05|t|V|_ty condi- without storing the 3-RDM contain  nontrivial
tions as well as approximate wave-function techniques. Fcc’gl—representability conditions that are not contained in the
the number of particles ranghmg from 1?1t0 100 ferm|orr11$ anG_positivity constraints. The calculations with the Lipkin
iifﬁrozn_%ég}ﬁ\rﬁ;“?)r\]/es’rgggr%tatg:?Hggctoﬁeiﬁg]'werggg;dbymodel demonstrate that the lifting conditions can be more
5-9% while with 3-positivity the method overestimates thestrmgent than thef; and TZ conditions. Although 'L is not
possible to draw conclusions from these calculations about

I i 0,
E?rlr((ierlla;oon d§n§1§¥ bgnng?:)c()lr:Zlijt:gan (;)onlxo?.ilrr? /:(')V':eoihg]etheir performance for atoms and molecules, the dramatic im-
P 1 2 P [provement of molecular correlation energies from the

(r:r:)i:iiz?atllobnaseigesrg%ls. LE§COQ(§La;i’iOfr?rC$?$fS6;22 ::nocilreeclzzl;tlii ?] "Londition suggests that a similar or better improvement may
2 be observed from the lifting conditions.

energy of 2-positivity by one or two orders of magnitude
to produce energy errors largely between 0.1 and
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