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Energy levels of germanium, tin, and lead, together with their single, double, and triple ionized positive ions
have been calculated using theVN−M approximation suggested in previous workfDzuba, Phys. Rev. A71,
032512s2005dg fM is the number of valence electronssM =4dg. Initial Hartree-Fock calculations are done for
the quadruply ionized ions with all valence electrons removed. The core-valence correlations are included
beyond the second-order of the many-body perturbation theory. Interaction between valence electrons is treated
by means of the configuration interaction technique. It is demonstrated that accurate treatment of the core-
valence correlations leads to systematic improvement of the accuracy of calculations for all ions and neutral
atoms.
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I. INTRODUCTION

This work further develops theVN−M approximation sug-
gested in Ref.f1g. It also presents the details of the calcula-
tions of the energy levels of Ge II, Sn II, and Pb IIf2g which
were needed to study their dependence on the fine structure
constanta sa=e2/"cd. Some lines of Ge II, Sn II, and Pb II
have been observed in quasar absorption spectra and the in-
formation on the dependence of corresponding frequencies
on a is needed to study possible variation of the fine struc-
ture constant at early epoch.

In the vicinity of the physical value ofa the frequency of
an atomic transition can be presented in a form

v = v0 + qx, s1d

wherex=sa /a0d2−1 anda0 and v0 are the current labora-
tory values of the fine structure constant and transition fre-
quency.

The values of theq coefficients can only be found from
atomic calculations by, e.g., varying the value ofa in com-
puter codes based on relativistic equations. In many cases
calculated values of theq coefficients are more stable than
the energies. This is because they are not sensitive to incom-
pleteness of the basis set with respect to the principal quan-
tum numbern. Indeed, relativistic corrections are propor-
tional to 1/n3 f3g sn is the effective principal quantum
numberd while energies are proportional to 1/n2. If we in-
clude more states of highn this would have greater effect on
the energies than on relativistic corrections presented byq
coefficients.

However, in the case of strong configuration mixing and
level pseudocrossing calculation ofq coefficients may be-
come very unstablef4g. In the vicinity of level pseudocross-
ing the values ofq coefficients change very rapidly witha
and small error in determining the position of the level cross-
ing may lead to large error in the values ofq.

Level pseudocrossing always means strong configuration
mixing between the states. However, strong configuration

mixing may also take place without level pseudocrossing.
This can also cause instability in calculated values ofq co-
efficients. Indeed, relativistic correction to the energy of a
single electron stateunjlml strongly depends on the total mo-
mentum j of this statessee, e.g., formulas7d in Ref. f3gd.
Therefore configurations composed from states of differentj
may have very different values ofq and small error in the
configuration mixing coefficients would lead to large error in
the resultingq value for the mixed statef5g.

Strong configuration mixing and level pseudocrossing
take place for Ge II, Sn II, and Pb II ionsf2g as well as for
many other atoms and ionsf4g. This means that calculations
need to be done to very high accuracy to ensure stable values
of the q coefficients. The criterion is that deviation of the
calculated energies from the experimental values must be
much smaller than the experimental energy interval between
mixed states.

There are many other areas of research where accurate
atomic calculations are needed. These include parity and
time invariance violation in atomsssee, e.g.,f6gd, atomic
clocks f7g, interaction of positrons with atomsf8g, etc.

A way to do accurate calculations for atoms with severals
and/orp valence electrons has been suggested in Ref.f1g. It
is called “theVN−M approximation,” whereV is the Hartree-
Fock potential created byN−M electrons of the closed shell
ion, N is total number of electrons in neutral atom andM is
the number of valence electrons. Initial Hartree-Fock calcu-
lations are done for a closed-shell positive ion with all va-
lence electrons removed. It has been demonstrated in Ref.f1g
that the Hartree-Fock potential of the closed-shell positive
ion is often a good starting approximation for a neutral atom.
This is the case when valence electrons are localized on dis-
tances larger than the size of the core. Then they can affect
only energies of core states but not their wave functions.
Since the potential created by core electrons depends on the
electron charge density and does not depend on electron en-
ergies it does not matter which core states are used to calcu-
late the potential-states of the neutral atom or states of the
closed-shell positive ion.

The effective Hamiltonian for valence electrons is con-
structed using the configuration interactionsCId technique.
Core-valence correlations are included by adding the elec-*Electronic address: v.dzuba@unsw.edu.au
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tron correlation operatorŜ to the CI Hamiltonian. Many-

body perturbation theorysMBPTd is used to calculateŜ. The
main advantage of theVN−M approximation is that MBPT is

relatively simplesno subtraction diagramsd and theŜ opera-
tor can be calculated beyond the second-order of the MBPT.
It has been demonstrated in Ref.f1g that inclusion of the
higher-order core valence correlations lead to further signifi-
cant improvement of the accuracy of calculations.

In previous workf1g the VN−M approximation was used
for Kr and Ba while higher-order core-valence correlations
were included for Ba and Ba+ only. In the present work we
study 12 complicated many-electron systems including ger-
manium, tin, lead, and their positive ions. We demonstrate
that using theVN−4 approximationsM =4 for the case of Ge,
Sn, and Pbd and accurate treatment of the core-valence cor-
relations leads to high accuracy of calculations for all 12
systems. This indicates that theVN−M approximation is a
good approximation for a wide range of atoms and ions.

II. CALCULATIONS

The effective Hamiltonian for valence electrons in the
VN−M approximation has the form

Ĥeff = o
i=1

M

ĥ1i + o
iÞ j

M

ĥ2i j , s2d

ĥ1sr id is the one-electron part of the Hamiltonian

ĥ1 = ca ·p + sb − 1dmc2 −
Ze2

r
+ VN−4 + Ŝ1. s3d

Ŝ1 is the correlation potential operator which is exactly the
same in theVN−M approximation as for the single-valence
electron atomsssee, e.g.,f9gd. It can be calculated in the
second-order of the MBPT. Selected chains of the higher-

order diagrams can be included intoŜ1 in all orders using
technique developed for single-valence electron atomsssee,
e.g.,f10gd.

ĥ2 is the two-electron part of the Hamiltonian

ĥ2 =
e2

ur 1 − r 2u
+ Ŝ2sr1,r2d, s4d

Ŝ2 is the two-electron part of core-valence correlations. It
represents screening of Coulomb interaction between va-

lence electrons by core electrons. We calculateŜ2 in the
second order of MBPT. Inclusion of the higher-order corre-

lations intoŜ2 will be a subject of further study. However,
the calculations show that in most cases accurate treatment

of Ŝ1 is more important than forŜ2. The details of the cal-

culation of Ŝ1 and Ŝ2 can be found elsewheref9–12g. Note
however that in contrast to the previous worksf11,12g we
have no so-calledsubtraction diagrams.

Number of electronsM is the only parameter in the effec-
tive Hamiltonians2d which changes when we move between

different ions of the same atom. The termsVN−4, Ŝ1 and Ŝ2
remain exactly the same.

The form of the effective Hamiltonian is also the same for
all ions if some other potentialV is used to generate the core

states. However, theŜ operator would have terms propor-
tional to VN−4−V ssubtraction diagramsf11gd. In the VN−M

approximationV;Vn−4 and subtraction diagrams disappear.
The MBPT becomes relatively simple which makes it easier
to include higher-order core-valence correlations.

A. Electron shell structure of lead

To understand how theVN−M approximation works it is
very instructive to look at electron shells of a many-electron
atom. We chose lead because it is the heaviest of the consid-
ered atoms. It probably has the richest possible electron shell
structure. Neutral lead has 82 electrons occupying six shells.
Angular momentuml ranges from 0ss electronsd to 3 sf
electronsd. Figures 1 and 2 present electron densities of Pb I
ssolid lined and Pb Vsdotted lined separately fors, p, d, and
f electrons. The density is the sum over principal quantum
numbern, total momentumj and its projectionm while an-
gular momentuml is fixed:

rsrdl = o
njm

ucsrdnjlmu2r2.

The values ofrsrdl in the maximum are very different for
different l. Therefore, we present normalized functions
rsrdl /rmax to be able to fit all graphs into one diagram.

Electron shell structure can be clearly seen on Fig. 1.
Each density has a local peak atn− l =1,2,etc. The position
of the peak depends mostly onn and is about the same for all
l. This means that all electrons with the samen are localized
at about the same distances regardless of their angular mo-
mentuml, thus making a shell.

The difference between Pb I and Pb V cannot be seen in
Fig. 1. Figure 2 presents details of the right bottom corner of

FIG. 1. Electron density of thes, p, d, and f electrons of Pb I
and Pb V.
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Fig. 1. Dotted lines which correspond to electron densities of
the Pb V ion show no peak atn=6 because of absence of the
6s and 6p electrons. The removal of four valence electrons
has some effect on the density ofd electrons at about the
same distances where the 6s and 6p electrons are localized
and practically no effect on the densities of all electrons at
shorter distances. This is because valence electrons are local-
ized at large distances and they can only create constant po-
tential in the core which can change the energies of the core
states but cannot change their wave functions.

One can see from Fig. 2 that there is an overlap between
the wave functions of valence electrons of Pb Is6s and 6p
electronsd and the wave function of the core outermost state
5d. We have presented for comparison on Fig. 3 the electron
densities of Ba I and Ba III on large distances. It is easy to
see that the overlap between core and valence electrons in
barium is much smaller than the overlap between core and
valence electrons in lead. As a consequence, outermost core
state of bariums5pd is much less affected by removal of two
6s electrons than compared to the effect of removal of two 6s
and two 6p electrons on the 5d state of lead. This means that
theVN−2 approximation for Ba should work much better than
the VN−4 approximation for Pb. The situation is exactly the
same as for theVN−1 approximation for atoms with one ex-
ternal electron. It is very well known that theVN−1 approxi-
mation works extremely well for alkali atoms and not so well
for atoms like Ga, In, Tl, etc. The reason is the same in both
cases. Valence electrons must not overlap with the core for
the VN−M to be good starting approximation regardless of
whetherM =1 or M .1.

Similar to the fact that theVN−1 approximation is a good
approximation for thallium, although not as good as for al-
kali atoms, theVN−M approximation is a good approximation
for Pb, Sn, and Ge, although not as good as for Ba.

Below we present specifics of calculations for germa-
nium, tin, and lead.

B. Calculations for germanium

Germanium is the lightest of three atomssZ=32d and the
easiest from a computational point of view. Its ground state
configuration is 1s22s22p63s23p63d104s24p2. The core-
valence correlations are relatively small due to the small
number of electrons in the core.

We calculateŜ1 and Ŝ2 for the effective Hamiltonians2d
in the second order of the MBPT. Inclusion ofŜ1 brings
single-electron energies of Ge IV to agreement with the ex-
periment on the level of 0.1%. No higher-order core-valence
correlations need to be included.

In fact, inclusion of the higher-order correlations using
technique developed in Ref.f10g does not lead to better re-
sults for germanium. This is because the technique was de-
veloped for heavy atoms in which higher-order correlations
are dominated by screening of the Coulomb interaction be-
tween core and valence electrons by other core electrons. In
light atoms like germanium this effect does not dominate due
to small number of electrons in the core. Therefore, inclusion
of screening, while other higher-order effects are not in-
cluded, does not improve the accuracy.

The results of calculations are presented in Table I. The
ground-state energies are given as energies to remove all
valence electrons from an atom or ionsin atomic unitsd. Cor-
responding experimental energies are sums of the ionization
potentials of all relevant ions. For the convenience of com-
parison with Moore’s tablesf14g we present energies of ex-
cited states relative to the ground state in cm−1. Column
marked CI presents the results of the standard configuration

interaction method withoutŜ. Column Ŝs2d presents the re-
sults of calculations with the effective Hamiltonians2d in

which Ŝ is calculated in the second order of MBPT.
The results presented in Table I show that inclusion of the

core-valence correlations leads to systematic significant im-

FIG. 2. Details of electron densities of Pb I and Pb V at large
distances.

FIG. 3. Electron denisties of Ba I and Ba III at large
distances.
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provement of the accuracy of calculations for all states of all
ions and for neutral germanium.

C. Calculations for tin

Tin atom sZ=50d is very similar to the germanium atom.
Its ground state configuration is . . .5s25p2. However, correla-
tions and relativistic corrections are larger. It has some im-
plication on the calculation scheme. It turns out that inclu-
sion of the higher-order core-valence correlations does lead
to significant improvement of the results for all tin ions and
for the neutral atom. We include screening of Coulomb in-
teraction and hole–particle interaction in all orders of the

MBPT in the calculation ofŜ1. It is done exactly the same
way as in our calculations for single-valence-electron atoms

ssee, e.g.,f10gd. The Ŝ2 operator is still calculated in the
second order of the MBPT.

The results are presented in Table II. There is one more

column in the table compared to Table I. It is markedŜs`d

and presents the results of calculations with all-orderŜ1.
Again, it is easy to see that moving from less sophisticated to

more sophisticated approximationsswith no Ŝ; with Ŝs2d;

with Ŝs`dd leads to systematic significant improvement of the
accuracy of the results.

D. Calculations for lead

The case of leadsZ=82d is the most difficult of the cal-
culations. Correlations are strong and relativistic effects are
large too. StrongL-S interaction leads to intersection of the
fine-structure multiplets. Also, states of the same total mo-
mentumJ are strongly mixed regardless of the values ofL
andS assigned to them. The breaking of theL-S scheme can
be easily seen, e.g., by comparing experimental values of the
Landég factors with the nonrelativistic values.

We have done one more step for lead to further improve
the accuracy of calculations as compared to the scheme used

for tin. We have introduced the scaling factors beforeŜ1 to
fit the energies of Pb IV. These energies are found by solving
Hartree-Fock-like equations for the states of external elec-
tron of Pb IV in theVN−4 potential of the atomic core

sĤ0 + Ŝ1 − endcn = 0. s5d

Here Ĥ0 is the Hartree-Fock Hamiltonian.Ŝ1 is the all-
order correlation potential operator similar to what is used

for tin. Inclusion of Ŝ1 takes into account the effect of the
core-valence correlations on both the energiessend and the
wave functionsscnd of the valence states producing the so-
called Brueckner orbitals. The difference between Brueckner
and experimental energies of the 4s, 4p, and 4d states of
Pb IV are on the level of 0.2%–0.4%sfor removal energiesd.
To further improve the energies we replaceŜ1 by fŜ1 with
rescaling factorf chosen to fit the energies exactly. Then the

same rescaled operatorfŜ1 is used for the Pb III and Pb II
ions and for the Pb I. It turns out that only small rescaling is
needed. Maximum deviation of the rescaling factor from

TABLE I. Ground state removal energiessRE, a.u.d and excita-
tion energiesscm−1d of low states of Ge IV to Ge I.

State CI Ŝs2d Expt. f13g

Ge IV

4s1/2 RE −1.63631 −1.68047 −1.67993

4p1/2 78746 81623 81315

4p1/2 81372 84470 84103

4d1/2 183779 191142 190607

4d1/2 184049 191424 190861

Ge III

4s2 1S0 RE −2.85213 −2.93114 −2.93765

4s4p 3P0 57762 61812 61734

3P1 58490 62595 62500

3P2 60030 64273 64144

4s4p 1P1 90820 92238 91873

4s4d 1D2 137686 145305 144975

4p2 3P0 142850 148023 147685

3P1 143721 148997 148640

3P2 145276 150765 150372

4s5s 3S1 152184 158630 158565

Ge II

4s24p 2P1/2
o RE −3.42509 −3.51488 −3.52322

2P3/2
o 1623 1797 1767

4s4p2 4P1/2 47667 51512 51576
4P3/2 48326 52241 52291
4P5/2 49333 53342 53367

4s25s 2S1/2 61124 62870 62402

4s4p2 2D3/2 61750 65313 65015
2D5/2 61930 65494 65184

4s25p 2P1/2
o 77370 79386 79006

2P3/2
o 77710 79750 79366

4s24d 2D3/2 79270 81444 80836
2D5/2 79439 81625 81012

Ge I

4s24p2 3P0 RE −3.70376 −3.79871 −3.81352
3P1 493 556 557
3P2 1276 1423 1410

4s24p2 1D2 7320 7591 7125

4s24p2 1S0 17093 17541 16367

4s24p5s 3P0 38969 38665 37452
3P1 39272 38963 37702
3P2 39024 40385 39118

4s24p5s 1P1 42010 41648 40020

4s24p5p 1P1 45489 45503 45985

4s24p5p 3D1 46246 46199 46765
3D2 46332 46275 46834
3D3 47469 47620 48104
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unity is 10%: fs4sd=0.935, fs4p1/2d=1.084, fs4p3/2d=1.1,
fs4d3/2d=1.07, fs4d5/2d=1.07.

The results of the calculations are presented in Table III.
Again, inclusion of core-valence correlations lead to signifi-
cant improvement of the accuracy of the results in all cases.
However, comparison between different ways of treating
core-valence correlations reveal a more complicated situation
compared to what we have for tin. When we move from the

second-order correlation operatorŜs2d to the all-orderŜs`d

and then to the rescaledfŜs`d the improvement in accuracy is
apparent for the removal energies. It is again systematic and
significant, bringing results for all states of all ions and neu-
tral lead to better agreement with experiment. This is not
always the case for the energy intervals. When a more accu-
rate treatment of core-valence correlation is introduced two
energy levels may move towards experimental values at a
slightly different rate so that the interval between them does
not improve. In Table III we present removal energies only
for the ground states of Pb IV, Pb III, Pb II, and Pb I. Ener-
gies of excited states are given with respect to the ground
state. It is easy to see that energy intervals between ground

and excited states calculated with second-orderŜ are often in
better agreement with experiment than the results with the

all-orderŜ. In general, the results are not as good as for tin.
The reason for this is a larger overlap between valence and
core states. Relativistic effects cause stronger binding of the
6s and 6p electrons of Pb compared to binding of the 5s and
5p electrons of Sn. This means that overlap between valence
and core states is also larger for lead than for tin, leading to
larger effect of removal of valence electrons on atomic core.

It is instructive to compare our results with the results of
recent calculations by Safronovaet al. f15g ssee Table IIId.
Energy levels of Pb II were calculated by Safronovaet al.
with the use of the coupled-clustersCCd approach and the
third-order MBPT. The Pb II ion was treated as an ion with
one external electron above closed shells. Therefore only en-
ergies of states in which the 6s subshell remained closed
were calculated. The agreement with experiment for these

states is slightly better than for our results withŜs`d. The
reason for this is better treatment of the interaction between
core and valence electrons. The 6s electrons were included in
the initial Hartree-Fock procedure. Also, interaction between
the 6p electron and the core is included in the CC approach
in all-orders of the MBPT.

This does not mean that theVN−4 approximation is not
good for lead. First, as can be seen from Table III, inclusion

TABLE II. Ground state removal energiessRE, a.u.d and exci-
tation energiesscm−1d of low states of Sn IV to Sn I.

State CI Ŝs2d Ŝs`d Expt. f14g

Sn IV

4d105s 2S1/2 RE −1.43894 −1.51228 −1.49776 −1.49699

4d105p 2P1/2 66323 70709 69727 69564
2P3/2 72291 77409 76264 76072

4d105d 2D3/2 156481 168074 165406 165305
2D5/2 157180 168847 166183 165411

Sn III

5s2 1S0 RE −2.51142 −2.64097 −2.61447 −2.61794

5s5p 3P0
o 47961 54914 54001 53548

3P1
o 49548 56582 55631 55196

3P2
o 53207 60734 59670 59229

1P1
o 78801 80163 79019 79911

5p2 3P0 121290 128814 126873 127309
3P1 123690 131743 129709 130120
3P2 118412 136470 134275 134567
1D2 127379 130638 128478 128205

5s6s 3S1 130986 141420 139341 139638

5s5d 3D1 132760 142898 140463 141322
3D2 132946 143107 140671 141526
3D3 133222 143423 140987 141838

5s6s 1S0 135453 145105 143064 143591

5s5d 1D2 148378 155394 153063 154116

Sn II

5s25p 2P1/2
o RE −3.03218 −3.17791 −3.14624 −3.15567

2P3/2
o 3776 4352 4222 4251

5s5p2 4P1/2 40839 47579 46661 46464
4P3/2 42512 49537 48556 48368
4P5/2 44720 51958 50915 50730

5s26s 2S1/2 54896 57545 56707 56886

5s5p2 2D3/2 54142 59969 58806 58844
2D5/2 54731 60599 59419 59463

5s25d 2D3/2 69220 72247 71140 71406
2D5/2 69776 72929 71804 72048

5s26p 2P1/2
o 69006 72131 71182 71494

2P3/2
o 69825 73025 72061 72377

Sn I

5s25p2 3P0 RE −3.28899 −3.44213 −3.407850 −3.425548
3P1 1411 1681 1623 1692
3P2 3049 3539 3428 3428
1D2 8359 9079 8891 8613
1S0 17328 18217 17977 17163

5s25p6s 3P0 35381 35722 35251 34641
3P1 35764 36050 35577 34914
3P2 38988 39848 39252 38629
1P1 40080 40655 40063 39257

5s5p3 5S2 34720 40529 39725 39626

TABLE II. sContinued.d

State CI Ŝs2d Ŝs`d Expt. f14g

5s25p6p 3P0 42805 44164 43578 43430
3P1 41361 42785 42200 42342
3P2 45804 47712 47008 47235

5s25p6p 3D1 42356 43768 43178 43369
3D2 42447 43861 43267 43239
3D3 45543 47511 46796 47007
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of core-valence correlation does lead to systematic signifi-
cant improvement of the accuracy and final results are very
close to the experiment. Second, the fact that inclusion of the
higher order core-valence correlations does not always lead
to improvement of energy intervals does not mean that the

VN−4 approximation is not good. It rather means that not all

dominating higher-order diagrams are included intoŜs`d.
The situation is very similar to what takes place for single-
valence-electron atoms. The technique developed by us for

TABLE III. Ground state removal energiessRE, a.u.d and excitation energiesscm−1d of low states of
Pb IV to Pb I.

State CI Ŝs2d Ŝs`d fŜs`d Ref. f15g Exp. f14g

Pb IV

5d106s 2S1/2 RE −1.48374 −1.57689 −1.56035 −1.55529 −1.55531

5d106p 2P1/2 72857 78055 78239 76144 76158
2P3/2 92301 99817 99388 97276 97219

5d106d 2D3/2 173446 188501 185992 184570 184559
2D5/2 175485 190789 188254 186848 186817

Pb III

6s2 1S0 RE −2.58923 −2.76503 −2.73356 −2.72421 −2.72853

6s6p 3P0 52866 62881 62947 61045 60397
3P1 57184 66767 66751 64851 64391
3P2 70223 82032 81477 79577 78985
1P1 91945 96556 95876 94071 95340

6p2 3P0 135286 145385 145400 141555 142551

6s7s 3S1 137664 153445 150863 150038 150084

6s6d 1D2 138279 156137 154498 152079 151885

6s7s 1S0 142139 156815 154219 153407 153783

Pb II

6s26p 2P1/2
o RE −3.11363 −3.31759 −3.27430 −3.26897 −3.28141

2P3/2
o 12390 14447 13858 13896 14137 14081

6s6p2 4P1/2 50298 59934 59934 58052 57911
4P3/2 57209 68501 67633 66221 66124
4P5/2 61484 75957 74856 73749 73905

6s27s 2S1/2 55451 60525 58170 59203 58967 59448

6s26d 2D5/2 66823 71130 69314 69256 70229 68964
2D3/2 63732 70711 68916 69001 69686 69740

6s27p 2P1/2
o 69961 75342 73140 73878 74256 74459

2P3/2
o 72572 78180 75935 76666 77069 77272

6s6p2 2D3/2 77272 85538 84523 83196 83083
2D5/2 81630 91291 89614 88800 88972

Pb I

6s26p2 3P0 RE −3.36433 −3.58255 −3.53174 −3.52974 −3.55398
3P1 6388 7736 7305 7353 7819
3P2 9199 10795 10277 10423 10650
1D2 18578 21793 20780 20979 21458
1S0 26998 30355 29185 29412 29467

6s26p7p 3P0 33413 35239 33679 34517 34960
3P1 33871 35610 34056 34887 35287

6s26p7p 3P1 40029 42987 41405 42061 42919
3P0 41612 44441 42882 43525 44401

6s26p7p 3D1 41740 44714 43129 43773 44675
3D2 41886 44868 43281 43958 44809
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alkali atomsf10g does not work very well for atoms like
thallium where interaction between valence electron and the
core is important. Here the CC+MBPT approach gives better
resultsf15g which may mean that the combination of the CC
approach with the CI method is a better option for atoms like
lead. This approach was recently considered by Kozlovf16g
and Johnsonf17g. However, no calculations for real atoms
have been done.

III. CONCLUSION

It has been demonstrated that theVN−4 approximation
works very well for the four-valence-electron atoms, such as
germanium, tin, and lead as well as for their single, double,
and triple ionized ions. The use of theVN−4 approximation
makes it easy to include core-valence correlations beyond
the second order of the MBPT. Inclusion of the core-valence
correlations leads to significant improvement of the results in

all cases. In general, theVN−M approximationsM is the num-
ber of valence electronsd is a good approximation if the over-
lap between core and valence states is small. The best case is
the alkaline-earth atoms where theVN−2 approximation must
produce excellent results. In contrast, theVN−M approxima-
tion is not applicable at all to atoms with opend or/and f
shells unless uppermost cores andp states are also treated as
valence states. It should work more or less well for most of
the atoms and/or ions withs and/orp valence electrons. In
cases of relatively large overlap between core and valence
states good results can still be achieved if accurate treatment
of the interaction between core and valence electrons is in-
cluded perturbatively into the calculation of the core-valence
correlations.
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