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We present an experimental method to engineer arbitrary pure states of qudits with d=3,4 using linear optics
and a single nonlinear crystal.
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Many issues in quantum-information theory and process-
ing deal with qudits, namely, d-level quantum systems, in-
stead of qubits. The interest in such more complex systems is
both theoretical—the general structure of quantum protocols
can be simplified for arbitrary dimension—and practical—
some relevant applications perform better using qudits. For
example, new quantum cryptographic protocols were re-
cently proposed that deal specifically with qutrits �1–3� and
the eavesdropping analysis showed that these systems are
more robust against specific classes of eavesdropping attacks
�3–6�. A further advantage of using multilevel systems deals
with novel fundamental tests of quantum mechanics �7,8�.

Recent experimental realizations of qutrits rely on differ-
ent physical implementations. In interferometric schemes,
qutrits are generated by sending an entangled photon pair
through a multiarmed interferometer �9�, and the number of
arms defines the dimensionality of the system. Other tech-
niques exploit the properties of orbital angular momentum of
single photons �3,10,11�, or perform postselection from four-
photon states �12�. All the above techniques, however, pro-
vide only partial control over the qutrit state. In the method
of Refs. �3,10,11� one needs a specific hologram for a given
qutrit state. Also the interferometric scheme �9� is not very
flexible in switching between different states. More recently,
an experimental realization of arbitrary qutrit states has been
reported �13�, where the polarization state of a two-photon
field has been exploited. Such a realization requires the use
of three nonlinear crystals pumped by a common coherent
source.

In this paper we show an experimental method to engi-
neer arbitrary pure states of qutrits and ququads, using a
single nonlinear crystal and linear optical devices as phase
wave plates. The qudit is encoded on the polarization of a
two-photon state, and is obtained from local �e.g., single-
photon� unitary transformations on a pure nonmaximally en-
tangled state which plays the role of a seed state. It can be
generated from a parametric source of entangled photon
states �14,15�. In the present paper we refer to a high-
brilliance source �15�, with high flexibility in terms of state
generation. It has been recently demonstrated that by this it is
possible to produce two-photon hyperentangled states, en-
tangled in polarization and momentum �16�. Indeed, the
adoption of hyperentangled states can be crucial whenever
one is interested in quantum-information applications of qu-
dits, since hyperentanglement in polarization and momentum
allows one to perform nontrivial measurements—such as

Bell measurements �17�—which are needed for quantum key
distribution. In fact, as we will show, it is possible to imple-
ment a quantum cryptographic scheme with ququads that
exploits two mutually unbiased bases made by two-photon
Bell states, and here hyperentanglement allows one to per-
form Bell measurements.

In the following we first show how to obtain an arbitrary
qudit with d=3,4, from local unitary transformations on a
bipartite pure state of two qubits. Hence, we want to show
how to generate a state of the form

��� = ��00� + ��11� + ��01� + ��10�

from the seed state

��� = x�00� + �1 − x2�11�

by means of two local unitary transformations. In the state
��� we can fix � positive, and take �, �, and � complex
without loss of generality. The state ��� is chosen with x
positive. Hence, given �, �, �, and � we want to find x and
two unitaries U and W such that

��� = U � W��� . �1�

Of course, x, U, and W will depend on the desired param-
eters �, �, �, and �.

We can solve this problem by means of singular value
decomposition �SVD�, which states that for any matrix A one
can find two unitaries U and W such that �18�

A = UDW�, �2�

where � denotes transposition on the fixed basis, and D is
diagonal and positive.

Consider now the matrix � corresponding to the state ���,

� = ��0��0� + ��1��1� + ��0��1� + ��1��0� , �3�

through the identity �19�

��� = �� � I���00� + �11�� . �4�

From the SVD �=UDW� it follows that

��� = �UDW�
� I���00� + �11��

= �UD � W���00� + �11��

= �U � W��D � I���00� + �11��

= �U � W��d1�00� + d2�11�� , �5�
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which is equivalent to Eq. �1�. The values d1 and d2 are the
elements of the diagonal matrix D �“the singular values of
�”�. Notice that

1 = ����� = Tr��†�� = Tr�D2� = d1
2 + d2

2, �6�

namely, one obtains the correct normalization for the state
���. Our result generally holds in arbitrary Hilbert spaces,
and hence provides a way to encode a qudit on a bipartite
quantum system of H � H, by means of local unitary trans-
formations, where d= �dim�H��2. Notice also that the decom-
position in Eq. �2� is not unique, and hence the unitaries U
and W in Eq. �1� are not unique either. For example, one has
the invariance property U�=UZ and W�=WZ†, where Z is an
arbitrary diagonal unitary matrix.

Let us apply the above derivation to the case where the
qubits are represented by the polarization state of two pho-
tons. The seed state is written

��� = x�HH� + �1 − x2�VV� . �7�

The state in Eq. �7� represents a nonmaximally entangled
polarization state. It is easily obtained from the source
sketched in Fig. 1. It is based on a high-stability single-arm
interferometer which accomplishes the generation of the po-
larization entangled state �	�= �1/�2���H��H�+ei
�V��V�� by
the superposition of degenerate parametric emission cones at
wavelength � �see Fig. 1� of a type-I �-BaB2O4 �BBO� crys-
tal, excited in two opposite directions, by a V-polarized laser
beam at wavelength �p=� /2. Other basic elements of the
source are the following:

�i� a spherical mirror M, reflecting both the parametric
radiation and the pump beam, whose micrometric displace-
ment allows one to control the state phase 
 �0�
�
�;

�ii� a zero-order � /4 wave plate �WP�, placed within the
M-BBO path, which performs the �HH�→ �VV� transforma-
tion on the two-photon state belonging to the left cone;

�iii� a positive lens which transforms the conical paramet-
ric emission of the crystal into a cylindrical one, whose
transverse circular section identifies the so-called entangle-
ment ring.

A zero-order �p /4 WP inserted between M and the BBO
crystal, intercepting only the laser beam, allows the engineer-
ing of tunable nonmaximally entangled states in the follow-
ing way. The polarization of the back-reflected pump beam is
rotated by an angle 2
p with respect to the optical axis of the
crystal when the pump WP is rotated by an angle 
p. As a
consequence the emission efficiency of the �HH� contribution
is lowered by a coefficient proportional to cos2 2
p, with 
p
adjusted in the range 0–
 /4. Alternatively, we can obtain a
lower value of the �VV� contribution with respect to �HH� by
inserting a �p /2 WP in the laser beam path before the crystal.
By simultaneous rotation of the two WP’s, the complete tun-
ability of the entanglement degree can be achieved �20�.

The local unitary transformations that are needed to gen-
erate the desired state of the qudit can be easily realized by
linear optics. In fact, a unitary 2�2 matrix can generally be
written as

U = 	 ei� cos 
 ei� sin 


− ei� sin 
 ei��+�−�� cos 


 . �8�

Such a unitary can be factorized as follows:

U = 	ei� 0

0 ei��+�−�� 
	 cos 
 sin 


− sin 
 cos 


	ei��−�� 0

0 1

 . �9�

Hence, any unitary transformation on the polarization state
of a photon can be obtained as a sequence of a phase shift, a
rotation of the polarization, and a final phase shift.

The general scheme can be used to engineer mutually
unbiased bases �21� of qutrits for cryptographic purposes.
For example, the basis

�uI� = �HH� ,

�uII� = �VV� ,

�uIII� =
1
�2

��HV� + �VH�� � ��+� �10�

is mutually unbiased with the basis

�vI� =
1
�3

��HH� + �VV� + ��+�� ,

�vII� =
1
�3

��HH� + e2
i/3�VV� + e−2
i/3��+�� ,

�vIII� =
1
�3

��HH� + e−2
i/3�VV� + e2
i/3��+�� . �11�

It is quite easy to generate the states of the first basis. On the
other hand, the states of the second basis can be generated
according to the above derivation.

Explicitly one has

�vi� = �Ui � Wi���� , �12�

where the seed state ���—the same for all i=I , II , III—is
written

FIG. 1. Layout of the universal source of nonmaximally polar-
ization entangled and polarization-momentum hyperentangled two-
photon states. In the left part, nonmaximally entangled states in
polarization are generated. In the central part, after division of the
entanglement ring �e-r� along a vertical axis by a prismlike two-
mirror system, momentum entanglement is realized by a four-hole
screen which selects the correlated pairs of modes a1 ,b2 and a2 ,b1.
In the right part, qudits are encoded by means of the local unitary
transformations U and W on modes a1 ,b1 and a2 ,b2, respectively.
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��� =
�2 + 1

�6
�HH� +

�2 − 1
�6

�VV� � 0.986�HH� + 0.169�VV� ,

�13�

and the set of unitaries is given by

UI = WI =
1
�2

	1 1

1 − 1

 ,

UII = WII =
1
�2

	 1 1

e−2i
/3 ei
/3 
 ,

UIII = WIII =
1
�2

	 1 1

e2i
/3 e−i
/3 
 . �14�

Notice that for the particular chosen basis, the unitaries Ui
and Wi are identical. Moreover, using the factorization for-
mula �9�, the phase shift on the right reduces to the identity
matrix, and hence the Ui’s can be implemented by a � /2 WP
rotated by 
=
 /8, followed by a further phase delay be-
tween H and V, corresponding to �I=0, �II=

2
3
, and �III

=− 2
3
, respectively.
Other qutrits of the form

��� =
1
�3

��HH� + ei��VV� + ei���+�� �15�

can be generated by using the general formula UDW�=�,
where

U =
1
�2
	ei arg��2+ei��−�/2�� ei arg��2−ei��−�/2��

ei arg�ei�+�2ei�/2� ei arg�ei�−�2ei�/2� 
 ,

W =
1
�2

	 1 1

ei�/2 − ei�/2 
 ,

D = 
�1

2
+

�2

3
cos	�

2
− �
 0

0 �1

2
−

�2

3
cos	�

2
− �
 � ,

� =
1
�3
 1

ei�

�2

ei�

�2
ei� � . �16�

Hence, one can write a relation as in Eq. �12� for two
other bases which are mutually unbiased with each other and
with those of Eqs. �10� and �11�, with the seed state

��� =�3 + �2

6
�HH� +�3 − �2

6
�VV�

� 0.858�HH� + 0.514�VV� , �17�

and with unitaries that can be evaluated by Eq. �16�.
The above described procedure could produce highly pure

qudits. In fact, both the technique used to generate nonmaxi-
mally entangled states and the wave plates and phase shifters
to realize the unitary operations can be very accurate, and in
principle do not introduce any amount of mixedness in the
state. Indeed, nonmaximally entangled states generated by
this source were recently used to prove the Hardy’s ladder
theorem on nonlocality up to the 20th step of the ladder �20�.

Once qudits are available, one can characterize these
states by quantum tomography, or use them for more ad-
vanced tests of nonlocality �7,8�. As far as more specific
quantum-information applications are concerned, e.g., quan-
tum key distribution, a major difficulty is the need to perform
quantum measurements on mutually unbiased bases. The use
of qutrits requires highly nontrivial setups at the measure-
ment stage. However, the use of ququads is easier. In this
case one should use five mutually unbiased bases, hence gen-
erating 20 different states. For a system of two qubits
�22,23�, one can consider three product bases and two Bell
bases. We write explicitly the bases from Ref. �23� �in our
scheme, we have �0���H� and �1���V��, namely,

�0��0�, �0��1�, �1��0�, �1��1�, I

��0� + �1����0� ± �1�� ,

��0� − �1����0� ± �1��, II

��0� + i�1����0� ± i�1�� ,

��0� − i�1����0� ± i�1��, III

��0� + i�1���0� ± ��0� − i�1���1� ,

��0� − i�1���0� ± ��0� + i�1���1�, IV

�0���0� + i�1�� ± �1���0� − i�1�� ,

�0���0� − i�1�� ± �1���0� + i�1�� . V �18�

Clearly, the bases I, II, and III correspond to the measure-
ment of �z � �z, �x � �x, and �y � �y, respectively. The bases
IV and V are made of Bell projectors. The generation of the
12 product states is trivial. On the other hand, the above
source of entangled photon states very efficiently generates
the other eight maximally entangled states.

The problem of realizing Bell measurements can be
solved by hyperentangled states �17�, which have been real-
ized in the two degrees of polarization and momentum by the
same source �16�. Besides polarization entanglement, mo-
mentum entanglement is realized by a four-hole screen
which allows one to select the correlated pairs of modes
a1 ,b2 and a2 ,b1 �Fig. 1� occurring with relative phase �=0.
In this way, in either one of the cones the momentum en-
tangled Bell state ��+�= �1/�2���a1 ,b2�+ �b1 ,a2�� can be gen-
erated. Note that the four modes a1, b2, a2, and b1 can be
easily separated by mirrors and coupled to single-mode op-
tical fibers, allowing in this way fiber-based cryptographic
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schemes. In a complete Bell state analysis the polarization
state acts as the control qubit and the momentum state ��+� as
the target qubit �17�.

We notice also that a cryptographic protocol with ququads
that uses just two instead of all five mutually unbiased bases
is characterized by a maximum acceptable error rate that is
only slightly lower, while the corresponding key rate is much
larger �5�. The nontrivial encoding here is represented by the
Bell states of the bases IV and V, and a cryptographic
scheme based just on such two bases can be implemented by
our source.

In conclusion, we have shown how to obtain an arbitrary
qudit up to d=4, from local unitary transformations on a
bipartite pure state of two qubits by SVD encoding. The
theoretical scheme generally holds in arbitrary Hilbert space,
encoding the qudit on a bipartite quantum system of H � H

by means of local unitaries, with d= �dim�H��2. Upon repre-
senting qubits by the polarization state of photons, the
method allows one to generate experimentally qudits with a
single nonlinear crystal and linear optics, using the source of
Ref. �15�. This allows one to create tunable nonmaximally
entangled states that play the role of seed states, from which
arbitrary qudit states are generated via SVD using simple
linear optics. The hyperentanglement of the generated pho-
tons allows one to perform nontrivial measurements—such
as Bell measurements—that are crucial for quantum-
cryptographic applications.
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