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A scheme is presented for realizing two-atom quantum logic gates with a single resonant interaction. The
scheme does not use the cavity mode as the data bus and only requires a single resonant interaction of the
atoms with a cavity mode. Thus the scheme is very simple and the interaction time is very short, which is
important in view of decoherence. Quantum information can be directly transferred from one atom to another
atom using this idea. The scheme can also be generalized to the ion trap system.
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I. INTRODUCTION

Recently, much attention has been paid to the quantum
computers, which are based on the fundamental quantum-
mechanical principle. The new type of machines can solve
some problems exponentially faster than the classical com-
puters �1�. Shor has shown that the problem of factorizing a
large integer, the basis of the security of many cryptographic
systems, can be solved in polynomial time using a quantum
computer, while it takes exponentially increasing time to
solve on a classical computer �2�. Grover has shown that a
search with a quantum computer for an item from a disor-
dered system needs much shorter time than that with a clas-
sical computer, and the advantage becomes more and more
obvious with the increase of the number of the items in the
system �3�. It has been shown that the building blocks of
quantum computers are two-quantum-bit �qubit� logic gates
�4�.

The two-qubit quantum gates have been demonstrated in
the cavity QED system �5�. In this experiment, the cavity
acts as memories, which stores the information of an elec-
tronic system and then transfer back to this electronic system
after the conditional dynamics. Thus three resonant atom-
cavity interactions are required in order to achieve a quantum
phase gate between two atoms. The main obstacle for the
implementation of quantum information is the decoherence.
We have proposed a scheme for the realizing two-qubit
phase gates within a nonresonant cavity �6�. The advantage
of the scheme is that the cavity decay is suppressed since the
cavity field is only virtually excited during the procedure. It
has been shown that the decoherence effect can also be ef-
fectively suppressed by employing adiabatic passages and
decoherence-free subspace �7–10�.

In this paper we present an alternative scheme for the
realization of quantum phase gates between two atoms in
cavity QED. The scheme does not use the cavity mode as the
data bus and only requires a single resonant interaction of the
atoms with a cavity mode. Thus the scheme is much simpler
than the scheme of Ref. �5� and the required interaction time
is shortened. The simplification of the procedure and de-
crease of operation time are important for suppressing deco-

herence. The idea can also be used to directly transfer quan-
tum information from one atom to another atom without
using the cavity mode as the memory, which is required in
the previous experiment �11�. The scheme is applicable to
the ion trap system.

The paper is organized as follows. In Sec. II, we propose
a method for implementing quantum phase gates between
two atoms with a single resonant atom-cavity interaction. In
Sec. III, we discuss the phase gate with the decay being
considered. In Sec. IV, we show how we can directly transfer
quantum information between two atoms. In Sec. V, we gen-
eralize the idea to the ion trap system. A summary appears in
Sec. VI.

II. TWO-ATOM PHASE GATE

We first consider the interaction of two two-level atoms
resonantly interacting with a single-mode cavity. We here
assume that the coupling strength of the first atom with the
cavity is g1 and that of the other atom with the cavity is g2.
The Hamiltonian is �assuming �=1�

Hi = g1�a†S1
− + aS1

+� + g2�a†S2
− + aS2

+� , �1�

where Sj
+= �ej��gj� and Sj

−= �gj��ej� are the flipping operators,
with �ej� and �gj� being the excited and ground states of the
jth atom, a† and a are the creation and annihilation operators
for the cavity mode.

In order to realize the two-qubit quantum gate we use a
third atomic state �i�, which is not affected during the atom-
cavity interaction. The level configuration of the atoms is
shown in Fig. 1. The quantum information of the control
qubit is encoded on the states �e1� and �g1�, while the quan-
tum information of the controlled qubit is encoded on the
states �g2� and �i2�. Assume that the cavity mode is initially in
the vacuum state �0�. If the two atoms are initially in the state
�e1��g2�, the evolution of the system is

���t�� = N� 1

E2
	g1 cos�E2t� +

g2
2

g1

�e1��g2��0�

+
1

E2
g2�cos�E2t� − 1��g1��e2��0�

− i sin E2t�g1��g2��1�� , �2�
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E2 = �g1
2 + g2

2, �3�

and

N =
g1

�g1
2 + g2

2
. �4�

With the choice

E2t = 2� , �5�

we obtain

���t�� = �e1��g2��0� . �6�

In this case the system returns to the initial state.
If the two atoms are initially in the state �e1��i2�, the sec-

ond atom does not couple with the cavity mode. In this case
the evolution of the system is

����t�� = �cos�g1t��e1��0� − i sin�g1t��g1��1���i2� . �7�

Choosing

g1t = � , �8�

we have

����t�� = − �e1��i2��0� . �9�

Thus the system returns to the initial state with an additional
phase shift �. We can satisfy Eqs. �5� and �8� by choosing
the ratio between the two coupling strengths and interaction
time appropriately so that g2=�3g1 and t=� /g1.

On the other hand, the states �g1��g2��0� and �g1��i2��0� do
not undergo any transition since Hi�g1��g2��0�=Hi�g1��i2��0�
=0. Therefore we have

�g1��g2��0� → �g1��g2��0� ,

�g1��i2��0� → �g1��i2��0� ,

�e1��g2��0� → �e1��g2��0� ,

�e1��i2��0� → − �e1��i2��0� . �10�

In this way we obtain a quantum phase gate for the two
atoms with the cavity mode left in the vacuum state.

III. PHASE GATE INCLUDING DECAY

We now consider the atomic spontaneous emission and
cavity decay. Under the condition that no photon is detected
either by the spontaneous emission or by the leakage of a
photon by the cavity mirrors, the evolution of the system is
governed by the conditional Hamiltonian

Hcon = g1�a†S1
− + aS1

+� + g2�a†S2
− + aS2

+� − i
�

2
a†a − i

�

2 
j=1

2

�ej�

��ej� , �11�

where � is the cavity decay rate and � is the atomic sponta-
neous emission rate. If the two atoms are initially in the state
�e1��g2�, the evolution of the system is

��con�t�� =
1

g1
2 + g2

2�g1
2e−��+��t/4	cos��t� +

�� − ��
4�

sin��t�

+ g2

2e−�t/2��e1��g2��0� +
g1g2

g1
2 + g2

2�e−��+��t/4	cos��t�

+
�� − ��

4�
sin��t�
 − e−�t/2��g1��e2��0�

− i
g1

�
e−��+��t/4 sin��t��g1��g2��1� , �12�

where

� = �g1
2 + g2

2 − �� − ��2/16. �13�

On the other hand, if the two atoms are initially in the state
�e1��i2� the evolution of the system is

��con� �t�� = e−��+��t/4�	cos��t� +
�� − ��

4�
sin��t�
�e1��g2��0�

− i
g1

�
sin��t��g1��g2��1�� , �14�

where

� = �g1
2 − �� − ��2/16. �15�

Set �=�=0.1g1, g2=�3g1, and t=� /g1. Then we have

�g1��g2��0� → �g1��g2��0� ,

�g1��i2��0� → �g1��i2��0� ,

�e1��g2��0� → e−�/20�e1��g2��0� ,

�e1��i2��0� → − e−�/20�e1��i2��0� . �16�

Suppose that the two atoms are initially in the state

FIG. 1. The level configuration of the atoms. The cavity mode
resonantly couples the state �g� to �e�. The state �i� is not affected by
the cavity mode.

SHI-BIAO ZHENG PHYSICAL REVIEW A 71, 062335 �2005�

062335-2



�	a� =
1

2
��g1� + �e1����g2� + �i2�� . �17�

The ideal phase gate produces the maximally entangled state

�	i� =
1

2
��g1���g2� + �i2�� + �e1���g2� − �i2��� , �18�

while the conditional Hamiltonian results in

�	con� =� 1

2�1 + e−�/10�
��g1���g2� + �i2�� + e−�/20�e1���g2�

− �i2��� . �19�

The fidelity is given by

F = ��	con�	i��2 = 0.994. �20�

The probability of success is

P =
1

2
�1 + e−�/10� = 0.865. �21�

The fidelity and success probability are almost the same as
those of the scheme of Ref. �9�. However, the scheme of Ref.
�9� requires four laser fields, which are unnecessary in our
scheme. Thus our scheme is much simpler. Furthermore,
with the fluctuations of the phases and amplitudes of the
laser fields being considered, the fidelity of the scheme of
Ref. �9� might be lower than that of our scheme.

We briefly address the experimental feasibility of the pro-
posed scheme. The scheme requires that the two atoms have
different coupling strengths with the cavity mode. The cou-
pling between the atoms and the cavity depends upon the
atomic positions: g=
e−r2/w2

, where 
 is the coupling
strength at the cavity center, w is the waist of the cavity
mode, and r is the distance between the atom and the cavity
center �12�. We can satisfy the condition g2=�3g1 if we lo-
cate the second atom at the center of the cavity and locate the
other atom at the position r=w ln1/2�3. In recent experiments
�13,14�, a single and more Cs atoms were trapped in an op-
tical cavity, and the 6S1/2, F=4→6P3/2, F=4 transition was
coupled to the cavity mode. In this case the level 6S1/2, F
=3 can be used for �i�. The corresponding coupling strength
is g2=g=2��34 MHz. The decay rate for the atomic ex-
cited state and the cavity mode are 2��2.6 MHz and 2�
�4.1 MHz, respectively. Therefore the condition g2 / ����
�100 can be satisfied.

It should be noted that one needs to reach the Lamb-Dicke
regime in order to perform the gate successfully. For the
initial state of Eq. �17�, in the Lamb-Dicke regime the infi-
delity caused by the spatial extension of the atomic wave
function is about ���ka�2�, where k is the wave vector of
the cavity mode and a is the spread of the atomic wave
function. Setting �=0.01 then we have a�0.01�, where � is
the wavelength of the cavity mode. In the experiment of Ref.
�14�, the wave length of the cavity field is 852.4 nm. This
requires the spatial extension not to be larger than 8.5 nm.
However, according to the results of Ref. �14�, the spatial
extension in the axial direction is 33 nm and that in the
direction tranverse to the cavity axis is 3.9 m. Therefore

the atomic location, especially in the tranverse direction, is
far from the required Lamb-Dicke regime. One solution for
this problem is the combination of ion trapping and cavity
QED. In a recent experiment �15�, the quadrupole transition
S1/2→D5/2 of a single trapped Ca+ ion is coupled to a mode
of an optical cavity. The spatial precision is about 0.01�,
within the required Lamb-Dicke regime.

IV. QUANTUM INFORMATION TRANSFER

We note the idea can also be used to transfer quantum
information between two atoms. Assume that the first atom is
initially in the state ��g1�+��e1�, while the second atom ini-
tially in the state �g2�. The cavity mode is initially in the
vacuum state. The evolution of the state �e1��g2��0� is given
by Eq. �2�. Choosing E2t=� and g1=g2 we obtain

�e1��g2��0� → − �g1��e2��0� . �22�

Performing the trivial single-qubit rotation �e2�→−�e2� we
have

�e1��g2��0� → �g1��e2��0� . �23�

Thus we have ��g1�+��e1��g2�→ �g1����g2�+��e2��. By this
way the quantum information of the first atom is transferred
to the second atom. In order to transfer quantum information
between two atoms, the experiment reported in Ref. �11�
used the cavity mode as the memory. In the experiment, the
quantum information of an atom is first transferred to the
cavity mode, and then to another atom. Our scheme does not
use the cavity as the memory and the quantum information is
directly transferred from one atom to another atom.

V. PHASE GATE WITH TRAPPED IONS

We note that the idea can also be used to trapped ion
system. Assume that two ions are confined in a linear trap.
We assume that the first ion is excited a laser and the other
ion is excited by another laser. Both lasers are tuned to the
first lower vibrational sideband. In the Lamb-Dicke limit the
Hamiltonian is

Hi = i�
1�ei	1a+S1
− − e−i	1aS1

+� + i�
2�ei	2a+S2
− − e−i	2aS2

+� ,

�24�

where a+ and a are the creation and annihilation operators of
the collective motion of the trapped ions, and 
 j and 	 j �j
=1,2� are the Rabi frequencies and phases of the laser fields.
In the case that 	=−� /2 the Hamiltonian has the same form
of Eq. �1� with gj =�
 j. We again assume that the quantum
information of the control qubit is encoded on the states �e1�
and �g1�, while the quantum information of the controlled
qubit is encoded on the states �g2� and �i2�. The vibrational
mode is initially cooled to the ground state �0�. Under the
condition g2=�3g1 and g1t=�, the evolution of the trapped
ions is has the form of Eq. �10�. The Cirac-Zoller scheme
�16�, also based on the resonant sideband excitation, uses the
vibrational mode as the data bus and requires three interac-
tions. In comparison, the present scheme does not use the
vibrational mode as the data bus and only requires one reso-
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nant interaction. According to the recent experiment of
trapped 40Ca+ ions �17�, it is possible to reach the Lamb-
Dicke regime and obtain precise different couplings for the
two ions. In the experiment of Ref. �17�, S1/2�mj =−1/2� and
D5/2�mj =−1/2� of 40Ca+ ions are used for the states �g� and
�e�, respectively. In this case S1/2�mj =1/2� can be used for
the state �i�.

A variety of fast ion trap quantum computation schemes
have also been proposed �18–20�. The schemes of Refs.
�18,19� require a number of laser-ion interactions, while the
present scheme only requires a single interaction. The
scheme of Ref. �20� requires two distinct harmonic wells and
uses internal-state-selective and time-dependent pushing
force, which has not yet been experimentally achieved. The
techniques required by the present scheme are within the
scope of what can be obtained in the ion trap setup �17�.

VI. SUMMARY

In conclusion, we have proposed a simple scheme for
implementation of two-qubit quantum phase gates for two

atoms. The scheme does not use the cavity mode as the quan-
tum memory and only requires a single resonant interaction
of the atoms with a cavity mode. Therefore the scheme is
very simple and required interaction time is very short. With
the atomic spontaneous emission and cavity decay being in-
cluded, the gate fidelity and success rate are approximately
equal to those of the scheme of Ref. �9�. However, our
scheme does not include the laser fields, which are required
by Ref. �9�. With the fluctuations of the phases and ampli-
tudes of the laser fields being considered, our scheme might
work better than the scheme of Ref. �9�. The scheme can be
used to directly transfer quantum information between two
atoms. The idea can also be applied to the ion trap system.
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