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The structure of the state spaces of bipartite N � N quantum systems which are invariant under product
representations of the group SO�3� of three-dimensional proper rotations is analyzed. The subsystems represent
particles of arbitrary spin j which transform according to an irreducible representation of the rotation group. A
positive map � is introduced which describes the time reversal symmetry of the local states and which is
unitarily equivalent to the transposition of matrices. It is shown that the partial time reversal transformation
�2= I � � acting on the composite system can be expressed in terms of the invariant 6-j symbols introduced by
Wigner into the quantum theory of angular momentum. This fact enables a complete geometrical construction
of the manifold of states with positive partial transposition and of the sets of separable and entangled states of
4 � 4 systems. The separable states are shown to form a three-dimensional prism and a three-dimensional
manifold of bound entangled states is identified. A positive map is obtained which yields, together with the
time reversal, a necessary and sufficient condition for the separability of states of 4 � 4 systems. The relations
to the reduction criterion and to the recently proposed cross norm criterion for separability are discussed.
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I. INTRODUCTION

It is one of the basic postulates of quantum mechanics that
the Hilbert space of states of a composite system is given by
the tensor product of the Hilbert spaces pertaining to its sub-
systems. If a system is composed of two N-state systems
with Hilbert space H=CN, the mixed states of the total sys-
tem are represented by density matrices which act on the
tensor product CN � CN. A state of such an N � N system is
said to be separable or classically correlated if it can be
generated by mixing with certain probabilities an ensemble
of states which describe statistically independent subsystems
�1�. States which cannot be represented in this way are called
inseparable or entangled. The characterization, classifica-
tion, and quantification of mixed-state entanglement and the
development of explicit necessary and sufficient separability
criteria turn out to be an extremely hard problem �2�. The
solution of this problem could have far-reaching conse-
quences for fundamental questions of quantum mechanics
and computational complexity theory �3� and for applications
in the theory of quantum information �4,5�.

A great simplification of the entanglement problem is ob-
tained though the introduction of symmetries �1,6,7�. By the
requirement of invariance under certain groups of symmetry
transformations one restricts the set of all states to a low-
dimensional manifold of invariant states and one may hope
to get a tractable problem which is solvable with the help of
group theoretical and algebraic methods. A prominent ex-
ample is given by the one-parameter family of the Werner
states �1� which results from the requirement of invariance
under all product transformations of the form U � U, where
U varies over the full group of unitary N�N matrices. A
further related example is the one-parameter family of iso-
tropic states �8,9� which are invariant under all product uni-

taries U � U*, where U* denotes the complex conjugation of
U. Imposing the invariance under all transformations of the
form O � O, where O belongs to the group of orthogonal N
�N matrices, one obtains the two-dimensional manifold of
orthogonally invariant states �6�. It is clear that the larger the
symmetry group the smaller is the remaining space of invari-
ant states and the easier should be the analysis of its struc-
ture. In fact, the problem of the explicit determination of the
separable states under symmetry requirements can be solved
completely for the examples given above.

A physically natural symmetry group is the group SO�3�
of proper rotations in three dimensions. The underlying as-
sumption is that the states of the subsystems transform ac-
cording to an N= �2j+1�-dimensional irreducible representa-
tion of the rotation group which corresponds to a fixed
angular momentum j. The subsystems thus behave under ro-
tations as particles with a certain spin j. The rotation group
then operates through a reducible product representation on
the states of the composite system. Any SO�3�-invariant state
can be decomposed into a sum of projections onto the irre-
ducible subspaces belonging to the various eigenvalues J
=0,1 , . . . ,2j of the total angular momentum operator. This
shows that the rotationally invariant states form an
�N−1�-dimensional manifold. The requirement of SO�3� in-
variance reduces the full �N4−1�-dimensional space of all
mixed states of an N � N system to an �N−1�-dimensional
space of invariant states.

The invariance under SO�3� transformations represents in
general a much smaller symmetry than those of the examples
given above. For example, the manifolds of the Werner states
and of the isotropic states can be embedded into the set of
rotationally invariant states. These examples are thus special
cases of the SO�3� symmetry.

The problem of mixed-state entanglement in SO�3�-
invariant bipartite systems will be analyzed in this paper. We
find that the state spaces exhibit an interesting convex struc-
ture and several important phenomena as the emergence of*Electronic address: breuer@physik.uni-freiburg.de
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nondecomposable positive maps �10� and bound entangle-
ment �11�. The physical significance of the SO�3� symmetry
derives from the fact that any rotationally invariant state can
be produced from the maximally entangled angular momen-
tum singlet state J=0 through the application of an isotropic
dynamical map which operates locally on the subsystems.
The set of SO�3�-invariant states is thus identical to the set of
states which results from interactions of the singlet state with
noisy isotropic environments.

A powerful tool in studies of entanglement is the opera-
tion of taking the partial transposition of states. The require-
ment of positive partial transposition �PPT� represents a
strong necessary condition for the separability of states,
known as the Peres criterion �12�. A conceptually simple but
crucial point of the present investigation consists in the re-
placement of the transposition by another unitarily equiva-
lent operation which is identical to the time reversal trans-
formation of particles with spin j. It is known that the
antiunitary operation of the time reversal commutes with the
representations of the rotation group. This fact allows one to
characterize the partial transposition by means of invariant
quantities which are directly related to Wigner’s 6-j symbols
�13�.

The 6-j symbols arise in the transformation between dif-
ferent coupling schemes for the addition of angular momenta
�14�. They can be expressed as invariant sums over products
of vector-coupling �Clebsch-Gordan� coefficients. Thus we
find a close connection between the partial transposition, the
time reversal symmetry, and certain group-theoretical invari-
ants built out of the vector-coupling coefficients. It will be
demonstrated here that this connection to group-theoretical
concepts leads to important implications on the entanglement
structure of the state space.

The content of the paper can be summarized as follows.
In Sec. II we briefly recall some facts from the representation
theory of the rotation group and introduce an appropriate
parametrization of the set of rotationally invariant states. The
partial transposition and the corresponding transformation of
the partial time reversal are discussed in Sec. III. It is shown
that this transformation preserves the rotational invariance of
states and its relation to the Wigner 6-j symbols is derived.

These results are used in Secs. IV and V to develop a
geometric representation of the sets of the PPT states and of
the separable states in the cases N=2, 3, and 4. Most impor-
tantly, in the case N=4 we find that the set of separable states
is isomorphic to a three-dimensional prism, i.e., to a polyhe-
dron which is bounded by three squares and two triangles.
We further identify a three-dimensional manifold of bound
entangled states with positive partial transposition.

Finally, Sec. VI contains a discussion of the results and a
number of conclusions which can be drawn from the present
investigation. In particular, we construct a positive map
which yields, together with the time reversal, a necessary and
sufficient condition for separability in the case of 4 � 4 sys-
tems. Moreover, we discuss the relations to two further cri-
teria of separability, namely the reduction criterion and the
cross norm criterion.

II. THE SET OF SO(3)-INVARIANT STATES

A. Representations of the rotation group

We consider a bipartite quantum system whose local parts
are N-state systems with corresponding state space H=CN.
The Hilbert space of the composite system is given by the
tensor product space H � H. The local state spaces are re-
garded as angular momentum manifolds corresponding to a
certain eigenvalue of the square of the angular momentum
operator ĵ. Thus the state space H is spanned by a fixed
orthonormal basis of N= �2j+1� angular momentum eigen-
vectors �jm�, where m=−j ,−j+1, . . . , + j. As usual we have
the eigenvector relations ĵ2�jm�= j�j+1��jm� and ĵ3�jm�
=m�jm�. Note that j can take on integer or half-integer val-
ues, j= 1

2 ,1 , 3
2 , . . ., such that N=2,3 ,4 , . . . .

The group of proper rotations in three dimension is de-
noted by SO�3�. This is the group of orthogonal 3�3 matri-
ces with determinant 1. An irreducible representation of this
group on the state space H is obtained in the standard way:
Given a rotation R�SO�3� the corresponding transformation
of state vectors is provided by the unitary matrix

D�R� = D�n1,n2,n3� = exp�− in · ĵ� . �2.1�

The rotation R is characterized here by the vector n
= �n1 ,n2 ,n3�, i.e., R is the rotation about the axis given by n
by the angle �n� �in a right-handed sense�. It should be men-
tioned that Eq. �2.1� generally yields a two-valued represen-
tation of the rotation group: For half-integer j one obtains
two unitary matrices which represent a given rotation R and
which differ in sign.

B. Rotational invariance of bipartite systems

The representation �2.1� leads to a representation of the
rotation group on the tensor product space H � H of the
bipartite system. If � is an operator acting on the tensor prod-
uct space, a rotation R carried out on both parts of the com-
posite system leads to the transformed operator ��= �D�R�
� D�R����D�R� � D�R��†. An operator � is said to be rota-
tionally invariant or SO�3�-invariant if it is invariant under
all such transformations, that is, if the relation

�D�R� � D�R����D�R� � D�R��† = � �2.2�

holds for all R�SO�3�.
A state of the bipartite system is given by a density matrix

� satisfying ��0 and tr �=1. The set of all states � which
fulfill the invariance requirement �2.2� will be denoted by S.
It is clear that S is a convex subset of the set of all states of
the bipartite system.

The angular momentum operator of the composite system

is given by Ĵ= ĵ � I+ I � ĵ, where I denotes the unit matrix.

The components of Ĵ are the generators of the product rep-
resentation and the requirement of rotational invariance is
equivalent to the statement that � commutes with all compo-

nents of Ĵ.
The product representation D�R� � D�R� is obviously re-

ducible. Its decomposition into a sum of irreducible repre-
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sentations is a standard subject of quantum mechanics. One
introduces an orthonormal basis in H � H which consists of

the common eigenvectors �JM� of Ĵ2 and Ĵ3 corresponding to
the eigenvalues J�J+1� and M, respectively, where J
=0,1 , . . . ,2j and M =−J ,−J+1, . . . , +J. The
�2J+1�-dimensional space which is spanned by the basis
vectors �JM� with a fixed J is an invariant and irreducible
subspace of the tensor product representation.

The set S of rotationally invariant operators can now eas-
ily be characterized. To this end, we introduce projection
operators

PJ = �
M=−J

+J

�JM��JM� �2.3�

which project onto the subspaces belonging to a fixed J.
From the irreducibility of the representation within these
subspaces one concludes with the help of Schur’s lemma that
any rotationally invariant operator � can be written as a lin-
ear combination of the projections:

� =
1

N
�
J=0

2j
�J

	2J + 1
PJ. �2.4�

Here, the �J are c-numbers and we have introduced normal-
ization factors �N	2J+1�−1. It will be seen in Sec. III D that
this choice of normalization factors leads to highly symmet-
ric transformation properties of the parameter space. For � to
be Hermitian the �J must of course be real. Equation �2.4�
then corresponds to the spectral decomposition of �. If � is a
density matrix the �J are real and positive, �J�0. On using
tr PJ=2J+1, the normalization condition takes the form

tr � = �
J=0

2j 	2J + 1

N
�J = 1. �2.5�

For example, setting �0=N and �J=0 for J=1,2 , . . . ,2j
we get �= P0= �00��00�, i.e., the projection onto the angular
momentum singlet state

�00� =
1

	N
�

m=−j

+j

�− 1� j−m�j,m� � �j,− m� . �2.6�

This state is the only pure state in S and it is maximally
entangled �the quantity �0 /N is the singlet fraction�. Using
the completeness of the projections PJ one concludes that the
state corresponding to �J=	2J+1/N, J=0,1 , . . . ,2j, is the
separable state �=1/N2I � I of maximal entropy.

It follows from the irreducibility of the representation
D�R� that for any SO�3�-invariant state � the reduced density
matrices ��1�=tr2� and ��2�=tr1� of the subsystems, given by
the partial traces tr2 and tr1, are proportional to the identity I.
The reduced density matrices obtained from a rotationally
invariant state thus describe states of maximal disorder.

Summarizing, by means of Eq. �2.4� any rotationally in-
variant Hermitian operator is uniquely characterized by N
real parameters �J. We can therefore identify the set of all
such operators with the set of points

� =

�0

�1

.

.

�2j

� � RN �2.7�

in an N-dimensional parameter space RN. The set of points �
in this space satisfying �J�0 and the normalization condi-
tion �2.5� then describes the set S of rotationally invariant
density matrices. In geometrical terms S represents an �N
−1�-dimensional simplex. For instance, S is a line for N=2,
a triangle for N=3, and a tetrahedron for N=4. These ex-
amples will be discussed in Secs. IV B and V C.

III. POSITIVE MAPS AND ROTATIONAL INVARIANCE

A. Partial transposition

Given an operator B on H the transposed operator TB
=BT is defined in terms of the local basis states �jm� by
means of �jm�BT�jm����jm��B�jm�. Correspondingly, the
partial transposition T2= I � T on the tensor product space is
defined through

T2�A � B� = A � TB = A � BT. �3.1�

The operation of taking the partial transpose plays an impor-
tant role in entanglement and quantum information theory.
One reason for this fact is that T is a distinguished example
of a map which is positive but not completely positive
�10,15–19�. This means that T takes positive operators on H
to positive operators on H, while T2� need not be positive
for a positive operator � on the tensor product space H
� H.

Important information on the entanglement structure of
states is obtained by considering the action of positive but
not completely positive maps. An example is given by the
Peres PPT criterion according to which positivity under the
partial transposition T2 is a necessary condition for separa-
bility �12�. An important general characterization has been
developed by the Horodecki’s �20�: A necessary and suffi-
cient condition for a state � to be separable is that the opera-
tor �I � ��� is positive for any positive map �. This condi-
tion however, does not lead to a simple operational criterion
for separability since we have no general structural charac-
terization of positive maps, as it exists for completely posi-
tive maps in the form of the Kraus-Stinespring representation
�15,18,19�.

B. �2 transformation

If � is a rotationally invariant operator the partially trans-
posed operator T2� is generally not invariant under rotations.
It can be shown that, instead, T2� is invariant under transfor-
mations of the form D�R� � D�R�*, where D�R�* is the matrix
obtained from D�R� by complex conjugation of its elements,
that is D�R�*=D�R�†T. Throughout this paper T denotes the
transposition, † the adjoint, and � the elementwise complex
conjugation of a matrix.
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In the present investigation we shall utilize a map which
is unitarily equivalent to the partial transposition, but which
does map rotationally invariant operators to rotationally in-
variant operators. This map will be denoted by �2. By anal-
ogy to Eq. �3.1�, �2 is taken to be of the form

�2�A � B� = A � �B = A � VBTV† �3.2�

with some fixed unitary matrix V. Hence �2= I � � is the
partial transposition T2 followed by a local unitary transfor-
mation acting on the second part of the bipartite system, that
is, we have �2�= �I � V�T2��I � V�†. Since the maps �2 and
T2 are unitarily equivalent a state � is obviously positive
under �2 if and only if it is positive under T2.

The unitary matrix V will be determined from the condi-
tion that �2 preserves the rotational invariance of operators,
i.e., if � is any invariant operator satisfying Eq. �2.2� we
demand that the transformed operator �2� is again invariant:

�D�R� � D�R���2��D�R� � D�R��† = �2� . �3.3�

This requirement is obviously satisfied if the map � com-
mutes with all rotations, that is, if the relation

��D�R�BD�R�†� = D�R���B�D�R�† �3.4�

holds true for all operators B on H and all R�SO�3�. By use
of the definition of � given by Eq. �3.2� one can write Eq.
�3.4� as

VD�R�*BT�VD�R�*�† = D�R�VBT�D�R�V�†. �3.5�

This equation is fulfilled if VD�R�*=D�R�V. Thus we see
that the rotational invariance of �2� follows from the rota-
tional invariance of � provided we can find a fixed unitary
matrix V such that

VD�R�*V† = D�R� �3.6�

for all R�SO�3�.
To obtain a unitary matrix V satisfying Eq. �3.6� we em-

ploy specific properties of the representations of the rotation
group. As in Eq. �2.1�, let D�R� be the representation of the
rotation R about an axis n= �n1 ,n2 ,n3� by an angle �n�. The
complex conjugation of the elements of D�R� then yields the
matrix

D�R�* = exp�+ in · ĵT�

= exp�− i�− n1 ĵ1 + n2 ĵ2 − n3 ĵ3�� = exp�− in� · ĵ� .

�3.7�

Here we use the fact that in the local basis �jm� the trans-
posed components of the angular momentum operator are
given by ĵ1

T= ĵ1, ĵ2
T=− ĵ2, and ĵ3

T= ĵ3. Thus D�R�* represents
the rotation about the axis n�= �−n1 ,n2 ,−n3� which is ob-
tained from n through a rotation by � about the x2 axis. To
transform from D�R�* to D�R� we therefore define V to be
the matrix representing a �-rotation about the x2 axis. Using
the notation introduced in Eq. �2.1� we write

V � D�0,�,0� . �3.8�

Explicitly the matrix elements of V are given by

�jm��V�jm� = �− 1� j−m�m�,−m. �3.9�

Hence V is real and we have VT=V†=V−1.
Equation �3.8� yields

V�n� · ĵ�V† = n · ĵ , �3.10�

which, by use of Eq. �3.7�, immediately leads to the desired
relation �3.6�. We conclude that the map �2 defined by Eqs.
�3.2� and �3.8� preserves the rotational invariance of opera-
tors. The advantage of this formulation is that �2, by contrast
to T2, maps the set of rotationally invariant Hermitian opera-
tors onto itself and can be expressed as a simple linear trans-
formation of the parameters �J. This transformation will be
determined in Sec. III E.

C. Time reversal symmetry

The transposition T is closely connected to the operation
of reversing the direction of motion, i.e., to the symmetry
transformation of time reversal �10,11,21�. We demonstrate
that, in fact, it is the map � introduced in Eq. �3.2� which
describes the time reversal of particles with spin j.

We have seen in the preceding section that T changes the
sign of ĵ2 and leaves ĵ1 and ĵ3 unchanged, while the unitary
operator V �representing a �-rotation about the x2 axis�
changes the signs of ĵ1 and ĵ3 and leaves ĵ2 unchanged.
Hence we have �ĵ=VĵTV†=−ĵ. This shows that the map �
describes the behavior of the angular momentum operator
under time reversal.

It is known from Wigner’s representation theorem �13�
that the time reversal symmetry must be represented in terms
of an antiunitary operator. Indeed, we can express the action
of � by means of an antiunitary operator 	 through

�B = 	B†	−1. �3.11�

The operator 	=V	0 is composed of the unitary transforma-
tion V introduced above and of the antiunitary transformation
	0 which is given by the complex conjugation of the ampli-
tudes in the basis �jm�:

�
� = �
m

cm�jm� � 	0�
� = �
m

cm
* �jm� . �3.12�

Thus by virtue of Eq. �3.9� we have

�
� = �
m

cm�jm� � 	�
� = �
m

cm
* �− 1� j−m�j,− m� .

�3.13�

This transformation expresses the well-known behavior of
spin-j particles under time reversal. For example, in the case
N=2 �j= 1

2 and m= ± 1
2 � Eq. �3.9� leads to V=−i�2, where �2

is a Pauli matrix. The transformation 	 thus consists of the
complex conjugation and of the unitary transformation given
by the matrix −i�2, which precisely corresponds to the time
reversal transformation of a spin-1

2 particle.
In view of these results the map �2= I � � may be inter-

preted as a partial time reversal of the composite system.
The fact that � is not completely positive means that the
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operation of time reversal, when carried out only on a sub-
system, does in general not lead to a physically legitimate
state �22�.

D. Properties of the map �2

The properties of the transformations � and �2 are of
course very similar to those of the transposition T and of the
partial transposition T2, respectively. In particular, � is a
positive �but not completely positive� map, i.e., B�0 implies
that �B�0. Moreover, � preserves the trace, tr�B�=tr B,
and the unit matrix, �I= I.

It follows from Eq. �3.9� that

V2 = �− 1�2jI . �3.14�

This equation illustrates the two-valuedness of the represen-
tation: V2=D�0,� ,0�2 represents a rotation by 2� �i.e., the
identity in SO�3�� and is equal to −I for half-integer j. Equa-
tion �3.14� leads to the conclusion that, like T2, the map �2 is
an involution which means that �2

2= I � �2 is equal to the
identity map. In fact, employing Eq. �3.14� we obtain for any
operator B on H:

���B� = V�VBTV†�TV† = VVBV†V† = B . �3.15�

Another property which will be important below is that �2 is
self-adjoint with respect to the Hilbert-Schmidt inner prod-
uct, i.e., we have

trX†��2Y�� = tr��2X�†Y� �3.16�

for all operators X and Y on the tensor product space. This
property derives from the corresponding property of the map
�. Namely, for any two operators A and B on H we have
according to Eq. �3.2�:

trA†��B�� = trA†VBTV†�

= tr�VTATV†T�†B� = �− 1�4jtr�VATV†�†B�

= tr��A�†B� . �3.17�

Note that we have used here that �−1�4j =1 for integer and
half-integer j, and that VT=V−1= �−1�2jV, which follows
from Eq. �3.14�.

Since � is not completely positive the operator ��=�2�
need not be positive for a positive �. It is, however, invariant
under rotations and can be represented in the form �2.4�. To
determine the action of �2 on the �J parameters we therefore
write

�� =
1

N
�
K=0

2j
�K�

	2K + 1
PK = �2� =

1

N
�
K=0

2j
�K

	2K + 1
�2PK,

�3.18�

where the parameters �K correspond to � and �K� correspond
to ��. We multiply this equation by PJ and take the trace
using PJPK=�JKPK. This yields a linear transformation from
the parameters �K to the parameters �K� . Using matrix nota-
tion we find

�� = �� , �3.19�

where we have introduced a matrix � with elements

�JK =
1

	�2J + 1��2K + 1�
trPJ�2PK� . �3.20�

The map �2 thus induces a linear transformation of the pa-
rameter space which is given by the N�N matrix �.

The matrix � is real symmetric, �T=�, and orthogonal,
�T�= I. The symmetry follows immediately from definition
�3.20� and the property �3.16�. Since �2 is an involution the
matrix � must also be an involution, that is �2= I. Together
with the symmetry of � we therefore have �T�=�2= I,
which proves that � is orthogonal.

E. Relation to Wigner’s 6-j symbols

We derive a general expression for the elements of the
matrix �. It will be shown that these elements are closely
linked to Wigner’s 6-j symbols. To this end, we use Eq.
�3.20� as well as the definition �2.3� of the projections PJ in
terms of the eigenbasis �JM�, which gives

�JK =
1

	�2J + 1��2K + 1�
�

M=−J

+J

�
Q=−K

+K

�JM��2��KQ��KQ���JM� .

�3.21�

To evaluate the �2 transformation in this expression we in-
sert complete sets of product basis states �jmjm�� to get

�JK =
1

	�2J + 1��2K + 1�
� �

M,Q
�

m1,m2

�
m4,m5

�JM��2��m1m2�

��m1m2�KQ��KQ�m4m5��m4m5���JM� .

Here and in the following we shall frequently abbreviate
�jm1jm2� by �m1m2�, etc. According to the definition of �2
�Eqs. �3.2� and �3.8� and to Eq. �3.9� we have

�2��m1m2��m4m5�� = �m1��m4� � V��m2��m5��TV†

= �m1��m4� � V�m5��m2�V† = �m1��m4�

� �− 1�2j−m2−m5�− m5��− m2�

= �− 1�2j−m2−m5�m1,− m5��m4,− m2� ,
�3.22�

which leads to

�JK =
1

	�2J + 1��2K + 1�
�
M,Q

�
m1,m2

�
m4,m5

�− 1�2j−m2−m5

� �JM�m1,− m5��m1m2�KQ��KQ�m4m5��m4,− m2�JM� .

�3.23�

The matrix elements in Eq. �3.23� are vector-coupling
�Clebsch-Gordan� coefficients. Throughout the paper we
adopt the usual phase conventions for these quantities, as
they are given, e.g., in Ref. �14�.

To evaluate further Eq. �3.23� it is convenient to employ
the 3-j symbols
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� j1 j2 j3

m1 m2 m3
� �3.24�

introduced by Wigner. These quantities are known from the
theory of angular momentum coupling and are closely re-
lated to the vector-coupling coefficients. Here, we have

�m1m2�JM� = �− 1�M	2J + 1� j j J

m1 m2 − M
� . �3.25�

The 3-j symbols have many symmetry properties. The sym-
metry to be used here is given by

� j j J

m1 m2 m3
� = �− 1�2j+J� j j J

− m1 − m2 − m3
� .

�3.26�

We further need the selection rules for the 3-j symbols,
namely that Eq. �3.24� is equal to zero for m1+m2+m3�0.

We introduce the relations �3.25� into Eq. �3.23� which
yields a sum over products of four 3-j symbols. In the result-
ing expression we carry out the following manipulations: �i�
we interchange the summation indices m2 and m5, �ii� we
replace the summation index m1 by −m1, �iii� we introduce
the new notation M �m3, Q�m6, and �iv� we employ the
symmetry relation �3.26� in the first and the third 3-j symbol.
These manipulations lead to

�JK = 	�2J + 1��2K + 1� �
m1,. . .,m6

�mi�� j j J

m1 m2 m3
�

�� j j K

− m1 m5 − m6
�� j j K

− m4 − m2 m6
�

�� j j J

m4 − m5 − m3
� , �3.27�

where all sign factors have been collected in the quantity

�mi� = �− 1�2j−m2−m5+J+K. �3.28�

Finally, we use the selection rules for the first and the third
3-j symbol in Eq. �3.27� which leads to m1+m2+m3=0 and
−m4−m2+m6=0. With the help of these relations it is easy to
show that the phase factor �mi� may be written as

�mi� = �− 1� j+m1�− 1� j+m2�− 1�J+m3�− 1� j+m4�− 1� j+m5

��− 1�K+m6. �3.29�

On using Eq. �3.29� we see that the sum of the right-hand
side of Eq. �3.27� is exactly equal to a certain 6-j symbol of
Wigner. The 6-j symbols are scalar quantities which arise in
the construction of invariants from the vector-coupling coef-
ficients involving six angular momenta �14�. A general 6-j
symbols is written as

� j1 j2 j3

j4 j5 j6
� . �3.30�

For the sum of Eq. �3.27� we have j1= j2= j4= j5= j, j3=J,
and j6=K. Hence we finally obtain

�JK = 	�2J + 1��2K + 1�� j j J

j j K
� . �3.31�

This equation represents a central result of this paper. It
yields a general expression for the �2 transformation in
terms of Wigner’s 6-j symbols on which our investigation of
the structure of rotationally invariant states is based.

The 6-j symbols �3.30� are known to be invariant under
any permutation of their columns and under the interchange
of the upper and lower entries in any two columns. It follows
that the expression on the right-hand side of Eq. �3.31� is
symmetric with respect to the interchange of J and K. It is
also known from the theory of angular momentum that the
expression on the right-hand side of Eq. �3.31� represents an
orthogonal matrix, in accordance with our previous consid-
erations.

The properties of the 6-j symbols have been studied in
great detail and many explicit expressions and closed formu-
las are known. Computational methods and recursion rela-
tions for the 6-j symbols may be found in �14�. Equation
�3.31� enables one to employ these results in the determina-
tion of the matrix �. For example, the first two rows and
columns of � are given by

�J0 = �0J =
	2J + 1

N
�− 1�2j+J, �3.32�

�J1 = �1J = 	3�2J + 1�
�N − 1��N + 1� − 2J�J + 1�

N�N − 1��N + 1�

��− 1�2j+1+J. �3.33�

Being real symmetric and orthogonal, the matrix � can of
course be diagonalized and has eigenvalues ±1. The eigen-
vectors of � may be found from the sum rules for the 6-j
symbols given in �14�. If we write the sum rule involving
products of two 6-j symbols in terms of the matrix elements
�JK we get

�
K

�JK�− 1�K�KL = �− 1�L�− 1�J�JL. �3.34�

We infer from this equation that the vector ��L� with compo-
nents �J

�L�= �−1�J�JL is an eigenvector of � with eigenvalue
�−1�L. Once we have determined the matrix � we can there-
fore immediately write its eigenvectors: One multiplies for
all J the Jth row of � by �−1�J; the columns of the resulting
matrix then represent the eigenvectors of �.

It follows from the orthogonality of the matrix � that the
vectors ��L�, L=0,1 , . . . ,2j, form an orthonormal basis of
the parameter space. After a transformation to principal axes
� therefore takes the form diag�+1,−1, +1, . . . , �−1�2j�,
which describes a reflection of the principal axes belonging
to the eigenvalue −1. The trace of � is obviously equal to
zero for N even �half-integer j�, and equal to 1 for N odd
�integer j�.

According to Eq. �3.32� the components of the first eigen-
vector ��0� are given by �J

�0�= �−1�J�J0= �−1�2j	2J+1/N.
This vector is proportional to the vector which represents the
state of maximal entropy. The first eigenvector equation
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���0�=��0� thus expresses the invariance of the state of
maximal entropy under �2. It may be written as

�
K=0

2j

�JK

	2K + 1

N
=

	2J + 1

N
. �3.35�

This equation can also be used to check that � preserves the
normalization �2.5�.

IV. SO(3)-INVARIANT PPT STATES

A. Geometric representation

We define Sp to be the set of SO�3�-invariant PPT states,
i.e., the set of rotationally invariant states which are positive
under �2 �or, equivalently, under T2�. The properties of �2
imply that Sp is the set of density matrices � for which ��
=�2� is again a density matrix and that Sp is the intersection
of S with its image under �2

Sp = S � �2S . �4.1�

Since S is an �N−1�-simplex and �2 is a nonsingular trans-
formation the set �2S is again an �N−1�-simplex. Being the
intersection of two convex sets, Sp is also a convex set.

With the help of the properties of the matrix � derived in
Sec. III D it is easy to give the geometric construction of Sp
employing the space of the �J parameters: One takes the
�N−1�-simplex describing S and determines the intersection
with its image under the linear map given by the matrix �.
Since S is convex it suffices to determine the images of the
extreme points of S in order to construct �2S.

To facilitate the geometric visualization we shall use in
the following an �N−1�-dimensional parameter space: A Her-
mitian and rotationally invariant operator of trace 1 is char-
acterized uniquely by �N−1� real parameters
��0 ,�2 , . . . ,�2j−1�. This means that we eliminate the param-
eter �2j by means of Eq. �2.5� which expresses the condition
of unit trace. The state space S can then be identified with an
�N−1�-simplex in RN−1 which is given by the conditions:

�
J=0

2j−1 	2J + 1

N
�J � 1, �0, . . . ,�2j−1 � 0. �4.2�

B. Examples

We illustrate the geometric construction of the set Sp of
PPT states for N=2, 3, and 4. It will be seen that Sp is
isomorphic to an �N−1�-dimensional cube. The matrix ele-
ments �JK can by determined with the help of Eqs. �3.32�
and �3.33� and by use of the general properties of � de-
scribed in Sec. III D.

1. 2‹2 systems

In the simplest case N=2 the total system consists of two
particles with spin j= 1

2 �two qubits�. The total angular mo-
mentum thus takes the values J=0,1 such that we can use a
single parameter �0 to describe a rotationally invariant Her-
mitian operator of unit trace. The inequalities �4.2� yield 0

��0�2. The space of rotationally invariant density matrices
is therefore given by the interval �1-simplex� S= �0,2�. The
matrix � is found to be

� =
1

2
�− 1 	3

	3 1
� , �4.3�

which is obviously symmetric, orthogonal, and of trace zero.
The condition �2.5� gives �1=1/	3�2−�0� which is used to
eliminate �1 from the transformation ��=��. One finds that
�2 maps the point �0=0 to �0�=1 and the point �0=2 to
�0�=−1. This yields �2S= �−1, +1�, and, hence, we get the
set of PPT states:

Sp = S � �2S = �0,1� . �4.4�

We note that for the present case of two dimensions the
rotational invariance is equivalent to the invariance under all
product unitaries U � U. The states constructed above are
therefore identical to the Werner states of 2 � 2 systems.

2. 3‹3 systems

For N=3 �two qutrits� we have j=1 and J=0,1 ,2. We can
therefore use two parameters ��0 ,�1� to characterize a Her-
mitian and rotationally invariant operator with trace 1. Equa-
tion �4.2� now yields that the set S of invariant states is given
by the inequalities:

1

3
�0 +

1
	3

�1 � 1, �0,�1 � 0. �4.5�

Hence S is a triangle �2-simplex� with vertices A= �0,0�, B
= �3,0�, and C= �0,	3�.

The matrix � now becomes

� =
1

3

1 − 	3 	5

− 	3
3

2

	15

2

	5
	15

2

1

2
� . �4.6�

One easily verifies that this is a symmetric and orthogonal
matrix of trace 1. On eliminating the parameter �2 we find
that �2 acts as follows on the vertices of S:

A = �0,0� � A� = �1,
	3

2
� , �4.7�

B = �3,0� � B� = �1,− 	3� , �4.8�

C = �0,	3� � C� = �− 1,
	3

2
� . �4.9�

Thus �2S is the triangle with vertices A�, B�, and C�.
The sets S and �2S are depicted in Fig. 1. The figure also

shows the line of the fixed points of �2 with end points D
= �1,0� and E= �0,	3/2�. This line is easily determined from
the matrix � and its eigenvectors. Being invariant under �2,
the point F, which describes the state of maximal entropy,
lies of course on this line.
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The rectangle with vertices A, D, A�, and E represents the
intersection Sp=S��2S of the PPT states. It should be noted
that the rotational invariance in the present example is
equivalent to the invariance under the product transforma-
tions O � O, where O varies over the group of orthogonal
3�3 matrices �6�.

3. 4‹4 systems

The case N=4 corresponds to a system composed of two
particles with spin j= 3

2 . The total angular momentum as-
sumes the values J=0,1 ,2 ,3. Thus we get a three-
dimensional parameter space with parameters ��0 ,�1 ,�2�.
By virtue of Eq. �4.2� the set of rotationally invariant states is
determined by the inequalities

1

4
�0 +

	3

4
�1 +

	5

4
�2 � 1, �0,�1,�2 � 0. �4.10�

This shows that S is a tetrahedron �3-simplex� with vertices
A= �0,0 ,0�, B= �4,0 ,0�, C= �0,4 /	3,0�, and D
= �0,0 ,4 /	5�.

The matrix � is given by

� =
1

4

− 1 	3 − 	5 	7

	3 −
11

5
	3

5

3	21

5

− 	5 	3

5
3 	7

5

	7
3	21

5
	7

5

1

5

� . �4.11�

One checks that this matrix is symmetric, orthogonal, and of
trace zero. It leads to the following mapping of the vertices
of the tetrahedron S under �2:

A = �0,0,0� � A� = �1,
3	3

5
,

1
	5
� , �4.12�

B = �4,0,0� � B� = �− 1,	3,− 	5� , �4.13�

C = �0,
4
	3

,0� � C� = �1,−
11

5	3
,

1
	5

� , �4.14�

D = �0,0,
4
	5

� � D� = �− 1,
	3

5
,

3
	5
� . �4.15�

The points A�, B�, C�, and D� are the vertices of the trans-
formed tetrahedron �2S, as shown in Fig. 2.

We see from Fig. 2 that the intersection Sp=S��2S is
isomorphic to a three-dimensional cube. An enlarged picture
of this cube is shown in Fig. 3. The vertices of Sp are given
by the points A, A� and

E = �2

3
,0,0�, E� = �2

3
,
2	3

3
,0� , �4.16�

F = �0,
3	3

5
,0�, F� = �1,0,

1
	5

� , �4.17�

G = �0,0,
2
	5

�, G� = �0,
2	3

5
,

2
	5
� . �4.18�

These points may be obtained as follows �see Fig. 3�. One
takes the three edges emerging from the vertex A� of the
tetrahedron �2S and determines their intersection with the
faces of the tetrahedron S. This yields the points E�, F�, and
G�. The points E, F, and G are then given by the images of
E�, F�, and G� under �2.

FIG. 1. SO�3�-invariant Hermitian operators of trace 1 for 3
� 3 systems. Triangle ABC: The set S of rotationally invariant den-
sity matrices. Triangle A�B�C�: The transform �2S. Rectangle
ADA�E: The set Sp of PPT states, which is equal to the set Ss of
separable states �see Sec. V C 2�. The line DE represents the fixed
points of �2, the point F the state of maximal entropy, and B the
singlet state �00�.

FIG. 2. SO�3�-invariant Hermitian operators of trace 1 for 4
� 4 systems. The tetrahedron ABCD �continuous lines� represents
the set S of invariant states, and the tetrahedron A�B�C�D� �broken
lines� its transform �2S. The intersection �bold lines� is the set Sp of
the PPT states.
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V. SEPARABLE STATES

A. Construction of SO(3)-invariant separable states

The set of separable states is defined to be the set of states
� which can be written as a convex sum of product states:

� = �
i

�i�i
�1�

� �i
�2�, �i � 0, �

i

�i = 1, �5.1�

where the �i
�1� and �i

�2� are normalized local states �1�. It
follows from this definition and from the positivity of � that
the map �2 is positive on separable states. Thus �2 maps
rotationally invariant and separable states to rotationally in-
variant and separable states.

We denote the set of SO�3�-invariant separable states by
Ss. This set is contained in the set of states which are positive
under �2:

Ss � Sp = S � �2S . �5.2�

This equation expresses the Peres PPT criterion. It can easily
be applied in the present formulation once the matrix � has
been determined: Given a rotationally invariant state � in
terms of its parameter vector � according to Eq. �2.4�, a
necessary condition for this state to be separable is that all
components of the transformed parameter vector ��=�� are
positive.

To fully characterize the set of separable states one intro-
duces a projection superoperator �, also known as twirl op-
erator. Given any state � of the bipartite system the operator

�� = �
J=0

2j
1

2J + 1
PJ trPJ�� �5.3�

is positive, of trace 1, and rotationally invariant. The map
���� defines a projection �i.e., �2=�� from the total state
space onto the space S of rotationally invariant states. More-
over, if � is separable then �� is again separable.

We see from Eq. �5.3� that the �J parameters correspond-
ing to the projection �� are given by �J=N /	2J+1trPJ��.
If we take a pure product state

� = �
�1�
�2���
�1�
�2�� �5.4�

involving normalized local states �
�1�� and �
�2��, the �J pa-
rameters of its projection are found to be

�J = �̃J�
�1�,
�2�� =
N

	2J + 1
�
�1�
�2��PJ�
�1�
�2�� .

�5.5�

It is known that any separable state can be written as a
convex sum of pure product states. We define W to be the
range of the parameter vector � whose components �J are
given by the above functionals �̃J�
�1� ,
�2��, where �
�1�� and
�
�2�� run independently over all normalized states in H.
With this definition one has the following result �6�: The set
Ss of rotationally invariant and separable states is equal to the
convex hull of the range W, i.e., to the smallest convex set
containing W. Thus we have

Ss = hull�W� � Sp. �5.6�

The determination of Ss therefore amounts to the determina-
tion of the convex hull of the range of the functionals
�̃J�
�1� ,
�2�� given by Eq. �5.5�. This task can be simplified
by the following observations.

First, since Ss is the convex hull of W which, in turn, is
contained in Sp, a good starting point is to consider the ex-
treme points �vertices� of Sp. If one finds, for example, that
all extreme points of Sp belong to W one concludes immedi-
ately that Ss must be identical to Sp.

Second, it is clear by construction that the functionals �̃J
are invariant under simultaneous rotations
�
�1,2���D�R��
�1,2�� of the input arguments. Pairs of state
vectors differing by such a transformation are thus projected
to one and the same point of the parameter space and need
not be considered separately.

Third, the range W is invariant under the map �2. This
means that if the point � belongs to W, then also the trans-
formed point �� belongs to W. This statement can easily be
proven by use of the results of Sec. III C. In fact, we have

�̃J�
�1�,	
�2�� =
N

	2J + 1
�
�1�
�2���2PJ�
�1�
�2��

= �
K=0

2j

�JK�̃K�
�1�,
�2�� . �5.7�

We see that the transformation ���� corresponds to the
time reversal transformation 	 carried out on the second in-
put argument of the functionals. Equation �5.7� also demon-
strates that if �
�2�� is invariant under 	 the corresponding
parameter vector represents, for any choice of �
�1��, a fixed
point of �.

B. Representation in terms of spherical tensors

In addition to the projections PJ there exist further rota-
tionally invariant operators which span the set S and which

FIG. 3. Enlarged picture of the cube Sp of PPT states �see Fig.
2�. The plane AA�FF� subdivides Sp into two prisms. The prism
AA�FF�GG� represents the set Ss of separable states �see Sec.
V C 3�.
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lead to a particularly useful representation of the set of sepa-
rable states. To construct these operators we introduce the
irreducible spherical tensor operators TJM acting on H,
where, as before, J=0,1 , . . . ,2j and M =−J ,−J+1, . . . , +J.
The matrix elements of these operators are defined by the
3-j symbols:

�jm�TJM�jm�� = �− 1� j−m	2J + 1� j j J

m − m� − M
� .

�5.8�

According to the selection rules of the 3-j symbols the ma-
trix element �5.8� is zero for �m�m−m��M. The tensor
operators TJM represent a complete system of operators on H
which are orthonormal with respect to the Hilbert-Schmidt
inner product, i.e., one has trTJM

† TJ�M��=�JJ��MM�.
For a fixed J the �2J+1� operators TJM transform accord-

ing to an irreducible representation of the rotation group cor-
responding to the angular momentum J. For example, the
T1M transform as the spherical components of a vector, while
the T2M behave as the components of a second-rank tensor
under rotations. For N=2 the tensor components T1M may be
expressed in terms of the Pauli matrices as T10=1/	2�3 and
T1,±1= �

1
2 ��1± i�2�. The definition �5.8� leads to the relation

TJM
† =TJM

T = �−1�MTJ,−M. One concludes that the tensor opera-
tors are eigenoperators of the time reversal transformation:
�TJM = �−1�JTJM.

It follows from the transformation behavior of the TJM
that the operators on the product space defined by

QJ = �
M=−J

+J

TJM � TJM
† �5.9�

are invariant under rotations. The connection between the
projections PJ and the operators QJ is provided by the rela-
tion

�2PJ = QJF , �5.10�

where we have introduced the flip operator F which is de-
fined by

F�jm1jm2� = �jm2jm1� . �5.11�

The proof of Eq. �5.10� is given in Appendix A.
Equation �5.10� leads to an alternative characterization of

the set of separable states. Since �
�1�� and �
�2�� vary inde-
pendently over all normalized states we may use the right-
hand side of Eq. �5.7� instead of the original expression �5.5�
for the functionals �̃J�
�1� ,
�2��. If we introduce Eq. �5.10�
into Eq. �5.7� we find that we can employ the functionals

�̃J�
�1�,
�2�� =
N

	2J + 1
�

M=−J

+J

��
�1��TJM�
�2���2 �5.12�

in order to construct the range W and the set Ss of separable
states. An advantage of this formulation is that it leads to a
very simple expression for J=0. Namely, since T00=1/	NI
we have

�̃0�
�1�,
�2�� = ��
�1��
�2���2. �5.13�

It might be interesting to note that Eq. �5.10� can be used
to identify the one-parameter family of the Werner states
given by

�W =
1

N3 − N
��N − ��I � I + �N� − 1�F� , �5.14�

where −1��� +1. These states are invariant under all prod-
uct unitaries U � U. Therefore all states of the family are, in
particular, invariant under rotations and belong to S. The
parameters �J

W corresponding to �W are found to be

�J
W =

N
	2J + 1

trPJ�W� =
	2J + 1

N2 − 1
�N − � + �− 1�2j+J�N� − 1�� .

�5.15�

To obtain this result one has to determine the expression
trPJF�. This may be done by noting that for J=0, Eq. �5.10�
yields F=N�2P0. The expression trPJF� can therefore be
written in terms of the matrix elements �J0 which are given
by Eq. �3.32�. The family of the isotropic states can be em-
bedded in a similar way into S if one first performs the local
unitary transformation I � V.

C. Examples

We construct the set Ss of separable states for the ex-
amples considered in Sec. IV B. To this end, we make use of
the functionals �5.12� which characterize Ss and of the gen-
eral properties of the range W described in Sec. V A.

1. 2‹2 systems

In the case of our first example discussed in Sec. IV B 1
we found that the parameter �0 describes a PPT state if and
only if �0�Sp= �0,1�. We immediately see from Eq. �5.13�
that the set of separable states and the set of PPT states are
identical, that is Ss=Sp. In fact, according to Eq. �5.13� the
functional �̃0�
�1� ,
�2�� can take any value in the interval �0,
1� because �
�1,2�� are arbitrary normalized states. This shows
that in the present case positivity under �2 is a necessary and
sufficient condition for separability, which is a well-known
fact �23�.

2. 3‹3 systems

Using the results of Sec. IV B 2 we show that also for 3
� 3 systems the set of PPT states and the set of separable
states coincide, i.e., Ss=Sp. Thus positivity under �2 is again
a necessary and sufficient condition for separability in this
case, as has been demonstrated by Vollbrecht and Werner �6�.
To prove this we verify that the extreme points of Sp, that is,
the points A, A�, D, and E belong to the range W �see Fig. 1�.

First, we choose �
�1��= �j=1,m= +1� and �
�2��= �j
=1,m=−1�. These states are orthogonal and, hence, �̃0=0
according to Eq. �5.13�. Using the selection rules for the
matrix elements �5.8� of the tensor operators T1M one sees
that also �̃1=0 �the operators T1M cannot connect states
whose magnetic quantum numbers differ by 2�. This shows
that A= �0,0� belongs to the range W. It also follows that A�
belongs to W because A� is the image of A under �2.
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Next, we consider the state

�
�2�� =
1
	2

��1, + 1� + �1,− 1�� . �5.16�

This state is invariant under the time reversal transformation
�3.13�. Thus for any choice of �
�1��, the point ��̃0 , �̃1� is a
fixed point of �2 and, hence, belongs to the line DE �see Fig.
1�. If �
�1�� is any state orthogonal to �
�2�� we have that,
additionally, �̃0=0 and, hence, ��̃0 , �̃1�= �0,	3/2��E�W.
One the other hand, if we take �
�1��= �
�2��, then �̃0=1 and,
therefore, ��̃0 , �̃1�= �1,0��D�W. This concludes the proof.

3. 4‹4 systems

For 4 � 4 systems it is again possible to give a complete
geometric construction of the set of separable states by use of
the results of Sec. IV B 3. In the case N=4 we have to con-
sider the following functionals:

�̃0�
�1�,
�2�� = ��
�1��
�2���2, �5.17�

�̃1�
�1�,
�2�� =
4
	3

�
M=−1

+1

��
�1��T1M�
�2���2, �5.18�

�̃2�
�1�,
�2�� =
4
	5

�
M=−2

+2

��
�1��T2M�
�2���2. �5.19�

To construct Ss we proceed in four steps, investigating the
extreme points of Sp given by Eqs. �4.12� and �4.16�–�4.18�
�see Fig. 3�.

�1� We show that A ,A��W. To prove this we take �
�1��
= � 3

2 , + 3
2 � and �
�2��= � 3

2 ,− 3
2 �. These states are orthogonal and,

therefore, �̃0=0 according to Eq. �5.17�. Since the magnetic
quantum numbers of the states differ by three the selection
rules for the matrix elements �5.8� yield that �
�1��TJM�
�2��
=0 for J=1,2. Thus Eqs. �5.18� and �5.19� yield �̃1= �̃2=0.
Hence A= �0,0 ,0� and A�=�2A belong to W.

�2� We demonstrate that also G ,G��W. To this end, we
take �
�1��= � 3

2 , + 3
2 � and �
�2��= � 3

2 ,− 1
2 �. These states are again

orthogonal and we get �̃0=0. Since �m=2 the matrix ele-
ments �
�1��T1M�
�2�� vanish and, therefore, �̃1=0. The only
matrix element of the T2M which is not equal to zero on
account of the selection rules is given by

�
�1��T22�
�2�� =
1
	2

. �5.20�

Thus with the help of Eq. �5.19� we obtain �̃2=2/	5. One
concludes that G= �0,0 ,2 /	5� and, hence, also G�=�2G be-
long to W.

�3� We claim that F ,F��W. To prove this we choose the
states

�
�1�� =
1
	2

��3

2
, +

3

2
� + �3

2
,−

3

2
�� , �5.21�

�
�2�� =
1
	2

��3

2
, +

3

2
� − �3

2
,−

3

2
�� . �5.22�

These states are obviously orthogonal and we get again �̃0
=0. The selection rules now yield �
�1��TJM�
�2��=0 for J
=1,2 and M �0, while

�
�1��TJ0�
�2�� =
1

2
� 3

2
, +

3

2
�TJ0�3

2
, +

3

2
�

−
1

2
� 3

2
,−

3

2
�TJ0�3

2
,−

3

2
� . �5.23�

We have the following general relation between the matrix
elements of the tensor operators:

�j,− m�TJ0�j,− m� = �− 1�J�j, + m�TJ0�j, + m� . �5.24�

On using this we see that the expression �5.23� vanishes for
J=2. It follows that �̃2=0. On the other hand, for J=1 we
obtain

�
�1��T10�
�2�� = � 3

2
, +

3

2
�T10�3

2
, +

3

2
� =

3

2	5
.

�5.25�

With the help of Eq. �5.18� this leads to �̃1=3	3/5. In sum-
mary, we see that F= �0,3	3/5 ,0� and F�=�2F belong to
the range W.

�4� It is shown in Appendix B that the functionals �5.17�
and �5.19� fulfill the inequality:

�̃2�
�1�,
�2�� �
1
	5

�̃0�
�1�,
�2�� . �5.26�

It follows that E and E� do not belong to the range W.
Namely, for these points we must have �̃2=0 and �̃0= 2

3 �see
Eq. �4.16�� which contradicts the inequality �5.26�. This
shows that in the present case Ss is a true subset of Sp, i.e.,
positivity under �2 is a necessary but not sufficient condition
for separability.

According to Sec. IV B 3 the set Ss of separable states is
contained in the cube Sp of the PPT states �see Fig. 3�. By the
above results the points A, A�, F, F�, G, and G� are contained
in the range W. Since Ss is the convex hull of W we conclude
that Ss contains at least the polyhedron AA�FF�GG�. We
observe that this polyhedron is isomorphic to a prism.

The inequality �5.26� yields an additional condition for
the separable states. It implies that all points of the range W
must lie on or above the plane which is defined by �2
=1/	5�0 and which is indicated as gray surface in Fig. 3.
We note that according to Eqs. �4.12� and �4.17� the points A,
A�, F, and F� belong to this plane. It follows that the set Ss of
separable states is in fact identical to the prism AA�FF�GG�.

In summary, the convex structure of the set of SO�3�-
invariant states of 4 � 4 systems may be described by the
following inclusions:

�prism Ss� � �cube Sp� � �tetrahedron S� . �5.27�

The tetrahedron S, representing the set of all invariant states,
decomposes into the cube Sp of PPT states and the set S \Sp
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of entangled states whose partial transposition has negative
eigenvalues. The cube Sp of PPT states, in turn, consists of
the prism Ss of separable states and of the set Sp \Ss of en-
tangled PPT states. The plane �2=1/	5�0 thus separates the
entangled PPT states from the separable states.

As can be seen from Fig. 3 the set Sp \Ss is isomorphic to
a prism from which one face has been removed. All states
belonging to this set are inseparable and have positive partial
transposition. This leads to the important conclusion that
Sp \Ss represents a three-dimensional manifold of bound en-
tangled states, i.e., states which cannot be distilled by local
quantum operations and classical communication �11,24,25�.

VI. DISCUSSION AND CONCLUSIONS

We have analyzed the structure of the state spaces of bi-
partite N � N systems which are invariant under product rep-
resentations of the rotation group. The main tool of the
analysis is the positive map � which is unitarily equivalent
to the transposition T and describes the behavior of local
states under time reversal. Employing the properties of � one
relates the partial time reversal �2= I � � to a linear transfor-
mation of the parameter space RN= �� and expresses the
corresponding matrix � in terms of Wigner’s 6-j symbols.
This matrix has been used to obtain geometrical representa-
tions for the sets of the separable and of the PPT states in the
cases N=2, 3, and 4.

In Sec. V C 3 the inequality �5.26� enabled the construc-
tion of the set of separable states. Taken together with the
Peres PPT criterion this inequality yields a necessary and
sufficient condition for the separability of rotationally invari-
ant states of 4 � 4 systems. It is of great interest to examine
the possibility of an extension of this picture to higher di-
mensions. In this context it is important to observe that the
inequality �5.26� expresses the positivity of a certain map �
which is given by

�B = �
M=−2

+2

T2MBT2M
† − T00BT00

† . �6.1�

This map is nondecomposable and detects all entangled PPT
states. Hence we need exactly two maps, namely � and �, in
order to identify uniquely all separable states. These maps
yield complementary conditions for separability in the sense
that the two inequalities

�I � ��� � 0 and �I � ��� � 0 �6.2�

constitute a necessary and sufficient separability criterion. It
should also be noted that the proof of Appendix B does not
rely on any invariance requirement. We conclude that posi-
tivity under the map �2= I � � is a necessary condition of
separability for all �not necessarily rotationally invariant�
states of 4 � 4 systems.

The positive map introduced in Eq. �6.1� corresponds to
an entanglement witness �20,26,27� which is given by the
operator W= P2− P0. The plane �2=1/	5�0 in parameter
space may be viewed as an optimal hyperplane defined by
this witness W. This fact leads to the following interpretation
of the inequality �5.26�: If a measurement of the total angular

momentum is carried out on a separable state, the probability
of finding the value J=2 must be larger or equal to the prob-
ability of finding the value J=0.

The method developed here suggests many generaliza-
tions and applications. An obvious extension is to consider
bipartite systems whose local state spaces are not isomor-
phic, involving two different angular momenta j�1�� j�2�.
Further important topics are an extension of the analysis
given in Sec. V C to higher-dimensional systems, the treat-
ment of other symmetry groups, and entanglement in multi-
partite systems.

The matrix � contains the complete information on the
behavior of the spectrum of the invariant states under partial
transposition. It can also be used to express various separa-
bility criteria and entanglement measures and to design posi-
tive maps and entanglement witnesses. Examples of applica-
tions are the determination of the relative entropy of
entanglement with respect to the set of PPT states �28�, and
the entanglement measure given by the negativity �29,30�.
The negativity, for instance, is determined by the trace norm
of the partially time-reversed state which can be written as

��2��1 = �
J

	2J + 1

N ��
K

�JK�K� , �6.3�

where �A�1=tr�A� denotes the trace norm of A.
In Refs. �8,31� a necessary separability criterion, the re-

duction criterion, has been introduced which is based on the
positive map defined by �B= I tr B−B. This criterion is not
stronger than the Peres criterion, but has the important ben-
efit that any state violating it can be distilled. For SO�3�-
invariant states the reduction criterion is equivalent to the
inequality based on the quantum Rényi entropy S� �8,23� and
to the disorder criterion �32�, and takes the form 1/NI � I
−��0. In terms of the parameters �J this can be expressed
through �J�	2J+1. We see explicitly from our examples
that for rotationally invariant states the reduction criterion is
in fact much weaker than the Peres criterion. For instance, in
the case N=4 we get from it the conditions �0�1 and �1
�	3. The region defined by these inequalities is much larger
than Sp and than the true set Ss of separable states �see Fig.
3�.

Recently, a necessary criterion for separability has been
developed by Rudolph �33,34�, which is known as cross
norm or realignment criterion �35�. This criterion is based on
the cross norm of the states of the tensor product space �36�
and provides strong conditions for separability. It is generally
neither weaker nor stronger than the PPT criterion. It can
detect, however, bound entanglement. To formulate the cross
norm criterion we associate with any density matrix �
=�iCi � Di a map �� by means of the formula

��B = �
i

Ci tr��Di�B� . �6.4�

For a separable state � the corresponding map �� is a con-
traction with respect to the trace norm, i.e., we have ����1
�1, which immediately yields a necessary condition for
separability.
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The application of the cross norm criterion to rotationally
invariant states leads to an inequality which can again be
expressed entirely in terms of the elements of the matrix �.
If the state � is given by its parameters �J the trace norm of
�� can be written in a form analogous to Eq. �6.3�:

����1 = �
J

	2J + 1

N ��
K

�JK�− 1�K�K� � 1. �6.5�

This is a general expression for the cross norm criterion of
SO�3�-invariant states in any dimension N. It allows an ex-
plicit determination of the regions in parameter space satis-
fying or violating the criterion. In particular, with the help of
the above formula one immediately evaluates the trace norm
����1 for the families of the Werner states and of the isotro-
pic states.

We finally mention that the present results could also find
a number of important applications in the theory of open
systems �37�. The close connection to an open system is
based on an isomorphism �38� between states � on the tensor
product space H � H and completely positive maps � of
operators on H. We define this isomorphism by the relation
�= �I � ��P0. Apart from a normalization factor this relation
is equivalent to Eq. �6.4�. It yields a one-to-one correspon-
dence between the rotationally invariant density matrices �
and the completely positive maps � which are trace-
preserving and rotationally invariant. Such maps arise
through the interaction of open systems with isotropic envi-
ronments. The isomorphism thus allows one to use the struc-
ture of S in the construction of appropriate representations of
one-parameter families of quantum dynamical maps and to
derive the general form of isotropic non-Markovian quantum
processes.

APPENDIX A: PROOF OF RELATION (5.10)

In the basis of the product states �m1m2���jm1jm2� the
matrix elements of the operator �2PJ are found to be

�m1m2��2PJ�m1�m2�� = �− 1�2j−m2−m2��m1,− m2��PJ�m1�,− m2� ,

�A1�

where we have used the definition �3.2� of the �2 transfor-
mation as well as the matrix elements �3.9� of the unitary
matrix V introduced in Eq. �3.8�. On the other hand, the
definition �5.8� of the tensor operators and Eq. �3.25� lead to

�m�TJM�m�� = �− 1� j−m��m,− m��JM� , �A2�

�m�TJM
† �m�� = �− 1� j−m�m�,− m�JM� . �A3�

We recall that the matrix elements on the right-hand sides are
vector-coupling coefficients which are taken to be real fol-
lowing the usual phase conventions. The definitions �5.9� and
�5.11� for the operators QJ and for the flip operator F yield:

�m1m2�QJF�m1�m2�� = �
M=−J

+J

�− 1�2j−m2−m2��m1,− m2��JM�

��JM�m1�,− m2�

= �− 1�2j−m2−m2��m1,− m2��PJ�m1�,− m2� .

�A4�

Comparing this with Eq. �A1� we see that QJF=�2PJ, as
claimed.

APPENDIX B: PROOF OF INEQUALITY (5.26)

We take any fixed normalized state �
�2�� and decompose
it with respect to the basis states �m���jm�:

�
�2�� = c1� +
3

2
� + c2� +

1

2
� + c3�−

1

2
� + c4�−

3

2
� .

�B1�

The normalization condition for the amplitudes ci reads

�
i=1

4

�ci�2 = 1. �B2�

Consider then the operator:

A =
4
	5

�
M=−2

+2

T2M�
�2���
�2��T2M
† . �B3�

This operator is obviously Hermitian and positive and we
have �̃2�
�1� ,
�2��= �
�1��A�
�1��. It will be demonstrated be-
low that �
�2�� is an eigenvector of A corresponding to the
eigenvalue 1/	5:

A�
�2�� =
1
	5

�
�2�� . �B4�

This equation implies that A can be written as

A = Ã +
1
	5

�
�2���
�2�� , �B5�

where Ã is again a positive operator. This leads to

�̃2�
�1�,
�2�� = �
�1��Ã�
�1�� +
1
	5

��
�1��
�2���2

�
1
	5

�̃0�
�1�,
�2�� , �B6�

which proves the inequality �5.26�.
It remains to demonstrate the eigenvector relation �B4�.

To this end, we determine the matrix representation of the
operator A in the basis �m�. With the help of the matrix ele-
ments �5.8� of the tensor operators TJM one finds that A is
represented by the matrix
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A =
1
	5�

�c1�2 + 2�c2�2 + 2�c3�2 − c1c2
* + 2c3c4

* − c1c3
* − 2c2c4

* c1c4
*

− c1
*c2 + 2c3

*c4 �c2�2 + 2�c1�2 + 2�c4�2 c2c3
* − c2c4

* − 2c1c3
*

− c1
*c3 − 2c2

*c4 c2
*c3 �c3�2 + 2�c4�2 + 2�c1�2 − c3c4

* + 2c1c2
*

c1
*c4 − c2

*c4 − 2c1
*c3 − c3

*c4 + 2c1
*c2 �c4�2 + 2�c3�2 + 2�c2�2

� . �B7�

It is now easy to verify by an explicit calculation that the vector c= �c1 ,c2 ,c3 ,c4�T, which represents the state �
�2�� according
to Eq. �B1�, is an eigenvector of this matrix corresponding to the eigenvalue 1/	5. This concludes the proof.
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