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The strong subadditivity of entropy plays a key role in several areas of physics and mathematics. It states
that the entropy S���=−Tr�� ln �� of a density matrix �123 on the product of three Hilbert spaces satisfies
S��123�−S��12��S��23�−S��2�. We strengthen this to S��123�−S��12����n��S��23

� �−S��2
���, where the n�

are weights and the �23
� are partitions of �23. Correspondingly, there is a strengthening of the theorem that the

map A�Tr exp�L+ln A� is concave. As applications we prove some monotonicity and convexity properties of
the Wehrl coherent state entropy and entropy inequalities for quantum gases.
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I. INTRODUCTION

The strong subadditivity of entropy �SSA�, whose proof
in the noncommutative case was given by Lieb and Ruskai
�1,2�, is one of the main ingredients in various fields of math-
ematics and physics in which the von Neumann/Shannon
entropy plays a role. Over the years other proofs have ap-
peared �3–5�. SSA is an inequality among various entropies
that can be formed from one density matrix on the product of
three Hilbert spaces H123=H1 � H2 � H3 and states that

S��123� − S��12� � S��23� − S��2� . �1�

Here, �123 is a density matrix �i.e., a positive semidefinite
operator whose trace is 1� on the tensor product space H123,
and �12 is the reduced density matrix on H12=H1 � H2,
formed by taking the partial trace of �123 over H3 �i.e., �12
=TrH3

�123�, and so forth. The entropy S��� on a Hilbert
space H is given by the von Neumann/Shannon formula

S��� = − TrH�� ln �� . �2�

�Henceforth, the Hilbert space notation H on the trace, Tr,
will be omitted if it is not needed, or we may simply write
Tr1 to denote TrH1

, etc.; likewise, S123 will denote S��123�,
etc., when the meaning is clear. As a technical matter, all
Hilbert spaces in this paper are assumed to be separable in
order that a trace can be defined.�

Inequality �1� appears to be straightforward enough that it
seems unlikely that it can be improved, i.e., that one can
insert a quantity between the left and right sides that pre-
serves the inequality. That, however, is what we do in this
paper �cf. Eq. �9��. Admittedly, our theorems can be derived
from SSA �or, equivalently �6�, from the monotonicity of
relative entropy under completely positive trace preserving
�CPT� maps� and thus, when viewed from a sufficiently re-
mote perspective, there is little new here. From the point of
view of applications and of understanding the potential of
SSA, however, our results and proof techniques may merit
attention, especially our applications to the theory of quan-
tum gases in Corollary 4 of Sec. III C.

Inequality �1� is written in a slightly unusual way. Instead
of the usual S123+S2�S12+S23, �1� displays the inequality as
the decrease of the conditional entropy S23−S2 when 2 is
replaced by 12, i.e., information about the state on H1 is
added. Our focus will be on the conditional entropy.

In Sec. III we give some examples of the utility of the
improved version of inequality �1�, Eq. �8�. As one example,
we show that the “mutual information” S1+S2−S12 is de-
creased if the density matrix is replaced by Wehrl’s corre-
sponding classical phase-space function �whose definition
will be recalled later�. Wehrl had shown �7� that his entropy
is always greater than the true entropy, but the monotonicity
of the difference S12−S1−S2 is new. This is a special case of
Corollary 2 below. We also show that the difference between
the Wehrl and the true entropy is a convex function of the
density matrix.

Originally, we had proved the monotonicity of S12−S1,
and we are grateful to Ruskai for suggesting the stronger
version to us; her argument, which uses the theory of CPT
maps, is briefly sketched in Appendix C �8�. We also ac-
knowledge other helpful correspondence about this paper.

In another direction, it will be recalled that one of the
ways to prove SSA is by means of the theorem �9� �for one
Hilbert space� that the map

A � Tr exp�L + ln A� �3�

for positive definite operators A is concave for each fixed
self-adjoint L. This, too, will be improved, and its improve-
ment will lead to the improved version of SSA.

Our main result is the following.
Theorem 1 (Stronger subadditivity). Let Hi, i=1,2,3, be

Hilbert spaces, and let �123 be a density matrix on H123
=H1 � H2 � H3 with finite entropy. Let � be a measure
space, with elements labeled by �, and let d���� be a mea-
sure on �. Let K� be bounded operators on H12=H1 � H2
that are weakly measurable, and satisfy (with K�* the adjoint
of K�)

�
�

d����K�*K� = IH12
. �4�

With the usual notational abuse K�↔K� � IH3
, let
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n� = Tr123 K��123K
�* �5�

and, in case n��0, let

�23
� = Tr1 K��123K

�*/n�, �6�

�2
� = Tr3 �23

� = Tr13 K��123K
�*/n�. �7�

Then

S��123� − S��12� � �
�

d����n��S��23
� � − S��2

��� . �8�

Remarks.
�1� We recall that weakly measurable means that

���K���	 is measurable for any vectors ��	 and ��	 in the
Hilbert space. �This is implied, via polarization, by the seem-
ingly weaker condition of measurability for all ��	= ��	.� The
integrals then have to be interpreted in the weak sense, e.g.,
�4� means that 
�d�������K�*K���	= �� ��	 for all ��	 and
��	.

�2� Because of cyclicity of the trace, n�=Tr K�*K��123,
and hence �4� implies that 
�d����n�=Tr �123=1.

�3� Both sides of the inequality �8� are homogeneous of
order 1 in �123. Hence this inequality holds also without the
normalization condition Tr�123=1, i.e., it holds for all posi-
tive trace class operators.

�4� It is no restriction to assume the K� to be bounded.
Because of �4�, they must be bounded almost everywhere,
and hence one can absorb their norm into the measure
d����.

�5� In case all the K� act nontrivially only on H1 �i.e.,
K�=k� � I2 and 
�d����k�*k�= IH1

� we have that

�d����n��23

� =�23. Since the map �23�S��23�−S��2� is
concave, as shown in �1�, the right side of �8� is bounded
above by S��23�−S��2� in this special case. Theorem 1 is,
therefore, stronger than the usual strong subadditivity of en-
tropy because we have

S��123� − S��12� � �
�

d����n��S��23
� � − S��2

���

� S��23� − S��2� �9�

in this case.
�6� Everything remains true in the classical case as well.

That is, instead of Hilbert spaces Hi we have measure spaces
�Xi ,	i ,
i� �which are not necessarily related in any way with
the measure � on the space ��, the density matrix � is re-
placed by a non-negative measurable function on the product
of the three measure spaces, and the trace is replaced by an
integral. The K� are then functions on the product of the
measure spaces �X1 ,	1 ,
1� and �X2 ,	2 ,
2�. Note that in the
limit that K�*K� is just a � function supported at a point in
this product measure space, labeled by �, inequality �8� is
actually an equality in the classical case.

A. The special case of matrices and sums

To keep things simple we shall first deal with the finite
dimensional case, when Hi=Cni for finite ni, and with the

case where the integral in �4� is just a finite sum. In this
special case, Theorem 1 is then just Theorem 2 below. We
will first prove Theorem 2. The extension to the case of a
general measure space in �4� is given in Appendix A, and the
extension to the infinite dimensional case is given in Appen-
dix B.

Theorem 2 (Stronger subadditivity, matrix case). Let
�123 be a density matrix on a finite dimensional Hilbert
space H123=H1 � H2 � H3. Let K�, 1���M, be a finite set
of operators on H12=H1 � H2, that satisfy

�
�

K�*K� = IH12
. �10�

With the usual notational abuse K�↔K� � IH3
, let

n� = Tr123K
��123K

�* �11�

and, in case n��0, let

�23
� = Tr1K��123K

�*/n�, �12�

�2
� = Tr3�23

� = Tr13K
��123K

�*/n�. �13�

Then

S��123� − S��12� � �
�

n��S��23
� � − S��2

��� . �14�

We will give two independent proofs of Theorem 2 in the
next section. The first one uses Theorem 3 below, which
states the generalization of the concavity in �3� mentioned
above. The second proof uses the theory of completely posi-
tive maps.

Theorem 3 (A concave map). Let L be a self-adjoint
operator on a finite dimensional Hilbert space H. For
1���M, let A� be positive operators on H and let K� be
operators such that ��K�*K�� IH. Then the map

�A1,…,AM� � TrHexp�L + �
�=1

M

K�*�ln A��K�� �15�

is jointly concave.
Remarks.
�1� This theorem was proved in Theorem 6 of �9� for one

A and K�= I, and it was generalized there, in Corollary 6.1,
to A1 ,… ,AM, but only in the case that the K� are non-
negative numbers p� with ��p��1.

�2� Theorem 3 can be extended to the infinite dimen-
sional case as well, using the methods of Sec. 4 in �9�. It is
also possible to generalize to the case of continuous variables
� in some measure space �; in this case, A� is a measurable
function on � with values in the positive operators, and the
sum over � in �15� is replaced by the integral

�d����K�*�ln A��K�, with K� satisfying 
�d����K�*K�

� I. For simplicity we will not give this generalization
here since we will not need it for the proof of our main
Theorem 1.

�3� Note the switching of K� and K�* between �11�–�13�
and �15�. Note also that only the inequality ��K�*K�� I is
required for Theorem 3, whereas equality is necessary in
Theorem 2.
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II. PROOF OF THEOREMS 2 AND 3

Proof of Theorem 3. We start with two preliminary re-
marks. �a� It is clearly enough to assume that ��K�*K�= I,
for otherwise we can add one more KM+1= �I−��K�*K��1/2

and take AM+1= I. �b� We can also assume that all K� are
invertible; the general case follows by continuity.

Let K=H � CM. Every operator in B�K� can be thought of
as an M �M matrix �indexed by �, � with entries in B�H�.
Define L̂, Â, P̂�B�K� by

L̂� =
1

M
��

1

K�*L
1

K� , �16�

Â� = ��A�, �17�

and

P̂� = K�K*. �18�

Note that P̂= P̂* and �since ��K�*K�= I� P̂2= P̂, so P̂ is an
orthogonal projection. We know from Theorem 6 of �9� that
the map

�A1,…,AM� � TrK exp�− ��I − P̂� + L̂ + ln Â� �19�

is concave, for every ��R. The concavity property survives
in the limit �→�, in which limit the operator in the expo-

nent of �19� is −� on the orthogonal complement of P̂K.
Therefore, in the �→� limit the concavity in �19� becomes
the statement that

�A1,…,AM� � TrP̂K exp�P̂�L̂ + ln Â�P̂� �20�

is concave. We shall show that

TrP̂K exp�P̂�L̂ + ln Â�P̂� = TrH exp�L + �
�

K�*�ln A��K�� ,

�21�

which finishes the proof.
Equation �21� can be proved as follows. The trace on the

left side is over P̂K, which is isomorphic to H. In fact, the

map U :H→ P̂K, defined by

�U��� = K�� , �22�

is clearly onto since every vector in P̂K has the form K��.
Moreover, since ��K�*K�= I, U preserves norms and hence
U is a unitary. A simple calculation shows that

U*P̂�L̂ + ln Â�P̂U = L + �
�

K�*�ln A��K�. �23�

�
Proof of Theorem 2 using Theorem 3. We need to show

that

Tr123 �123�− ln �123 + ln �12 − �
�

K�*�ln�2
� − ln�23

� �K�� � 0.

�24�

Using the Peierls-Bogoliubov inequality �10�, we see that
�24� holds if we can show that

Tr123 exp�ln�12 − �
�

K�*�ln�2
� − ln�23

� �K�� � 1. �25�

We now use an idea of Uhlmann �11�. Let U3 be a unitary
operator on H3, and let dU3 denote the corresponding nor-
malized Haar measure. Since the trace is invariant under uni-
tary transformations, and since the K� commute with U3, we
see that the left side of �25� equals

� Tr123 U3
* exp�ln�12 − �

�

K�*�ln�2
� − ln�23

� �K��U3dU3

=� Tr123 exp�ln�12 − �
�

K�*�ln�2
��K�

+ �
�

K�*�ln U3
*�23

� U3�K��dU3. �26�

Now 
�U3
*�23

� U3�dU3=d−1Tr3 �23
� =d−1�2

�, where d denotes
the dimension of H3. Using the concavity result of Theorem
3, we see that

�26� � Tr123exp�ln�12 − �
�

K�*K��ln d�� = 1. �27�

The last equality follows from ��K�*K�= I and
Tr123 �12=d. �

Proof of Theorem 2 using CPT theory. Consider the map
� :H1 � H2 � H3�CM � H2 � H3, given for a general den-
sity matrix �123 by

���123� = �
�

n��23
� . �28�

This map is trace preserving and completely positive �CPT�
�12�. It is known that the relative entropy, H�� ,��
=Tr ��ln�−ln �� decreases under such maps �6,13,14�, and
hence

H��123,�12 � �3� � H„���123�,���12 � �3�… . �29�

The left side of this inequality equals S��12�+S��3�
−S��123�. To compute the right side, note that

���12 � �3� = �
�

n��2
�

� �3. �30�

It is then easy to see that the right side of �29� equals
��n��S��2

��−S��23
� �+S��3��. Thus �29� is the same state-

ment as �14�. �

III. COROLLARIES AND APPLICATIONS

Taking H2=C, we get as an immediate corollary of Theo-
rem 1 and the concavity of ��S���:

Corollary 1 (Improved subadditivity). Let �12 be a den-
sity matrix on a Hilbert space H1 � H2. Let P� be positive,
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bounded and measurable operators on H1, with

�d����P�= I1. Let n�=Tr12P��12 and, in case n��0, let
�2

�=Tr1P��12/n�. Then

S��12� � S��1� + �
�

d����n�S��2
�� � S��1� + S��2� .

�31�

Remarks.
�1� In the notation of Theorem 1, P�=K�*K�, but there is

no need for this splitting in this case.
�2� One may wonder whether �31� holds if �1 is also split

in a manner similar to �2. This is not true, in general. As a
simple example, consider the case when H1=H2, and �12
=d−1��=1

d �� � ��, with �� being mutually orthogonal one-
dimensional projections. With P�=�� we have S��12�=ln d,
whereas S��1

��=S��2
��=0 for all �.

A. Classical entropies

Now, suppose we are given a partition of unity of both H1
and H2, i.e., a finite set of positive operators P� and Q such
that

�
�

P� = I1, �


Q = I2. �32�

For simplicity, we restrict ourselves to the case of a finite
dimensional Hilbert space and discrete sums in this subsec-
tion, but, using the methods described in the Appendixes,
one can extend the results to the case of infinite dimensional
Hilbert spaces and integrals over general measure spaces.

For �12 a density matrix on H1 � H2, we can define a
“classical” entropy as

Scl��12� = �
�,

− �Tr12P�Q�12�ln�Tr12P�Q�12� . �33�

Analogously, we can define Scl��1� and Scl��2� for density
matrices on H1 or H2.

In the case where the P� and Q are one-dimensional
projections, this definition agrees with the one in �15�. Note,
however, that we define the classical entropy here for any
partition of unity. If this partition is trivial, i.e., P�= I for �
=1 and zero otherwise, then Scl��1��0 identically, and we
see from this example that it is not generally true that
S��1��Scl��1�. However, this inequality is true if the parti-
tion is such that Tr P��1 for all �. That this is the only
condition on P� needed for S��1��Scl��1� to hold follows
easily from the concavity of x�−x ln x:

S��1� = �
�

− Tr P��1ln�1

� �
�

− �Tr P��1�ln�Tr P��1/Tr P�� � Scl��1� .

�34�

Corollary 1 above can be used to prove the following
inequality for the mutual information S��1�+S��2�−S��12�.

Corollary 2 (Quantum mutual information bounds
classical mutual information). For any density matrix �12
on H1 � H2, and any partition of unity as in (32),

S��1� + S��2� − S��12� � Scl��1� + Scl��2� − Scl��12� .

�35�

Note that the right side of �35� is just the classical mutual
information, since Tr1P��1=�Tr12P�Q�12.

Proof. We learn from Corollary 1 that

S��12� − S��1� � �
�

n�S��2
�� , �36�

where n�=Tr12P��12 and �2
�=Tr1P��12/n�. On CM � H2,

define a density matrix �̃12 as

�̃12 = �
�

n��2
�. �37�

Then the right side of �36� can be written as

�
�

n�S��2
�� = S��̃12� − Scl��1� . �38�

Note that �̃2=Tr1�̃12=��n��2
�=�2.

We now apply inequality Corollary 1 again, this time to
the expression S��̃12�−S��̃2�. This yields

S��̃12� − S��2� = S��̃12� − S��̃2� � �


mS��̃1
� , �39�

with m=Tr12Q
�̃12 and �̃1

=Tr2Q�̃12/m. The right side of
this expression equals

�


mS��̃1
� = Scl��12� − Scl��2� . �40�

In combination �36�–�40� give the desired result. �
Another way to interpret the results above is the follow-

ing: define a partially classical and partially quantum entropy
by

Scl,Q��12� = − �
�

Tr2�Tr1P��12�ln�Tr1P��12� . �41�

Then Corollary 1 and the proof of Corollary 2 show that

S��12� − S��1� − S��2� � Scl,Q��12� − Scl��1� − S��2�

� Scl��12� − Scl��1� − Scl��2� .

�42�

In the same way, Theorem 2, in the special case where the K�

act nontrivially only on H1, can be interpreted as

S��123� − S��12� � Scl,Q,Q��123� − Scl,Q��12� �43�

for a partition of unity on H1, with the obvious definition of
Scl,Q,Q. We can use this inequality to prove the following.

Corollary 3 (Convexity of classical minus quantum en-
tropy). The map

�12 � Scl,Q��12� − S��12� �44�

is convex.
Proof. Let A12 and B12 be two density matrices on H1
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� H2. On H1 � H2 � C2, consider the density matrix �123

= 1
2 A12 � �+ 1

2 B12 � �I−��, where � is a one-dimensional
projection in C2. Inequality �43� implies that

1
2S�A12� + 1

2S�B12� − S��12� �
1
2Scl,Q�A12� + 1

2Scl,Q�B12�

− Scl,Q��12� . �45�

Since �12= 1
2 A12+ 1

2 B12, this proves the result. �
Remark. In particular, taking H2=C to be trivial, this

corollary shows that the map �for a single Hilbert space�

� � Scl��� − S��� �46�

is convex—which is remarkable, given that both entropies
are concave functions of �. The inequality implied by con-
vexity of �46� is known as the Holevo bound �16,17�.

B. Coherent states and Wehrl entropy

Now, suppose we are given a coherent state decomposi-
tion of both H1 and H2, i.e., normalized vectors ��	�H1,
��	�H2 and positive measures � and 
 on some measure
space �not necessarily the same spaces� such that

� d������	��� = I1, � d
�����	��� = I2. �47�

Here, ��	��� is the Dirac notation for the one-dimensional
projector onto � and the integrals are to be interpreted in the
weak sense, as explained before.

The classical �Wehrl� entropy �7� for a density matrix �12
on H1 � H2 is then defined as

SW��12� = −� d����d
�����,���12��,�	ln��,���12��,�	 ,

�48�

and similarly for density matrices on H1 or H2. As Wehrl
showed, it follows from concavity of x�−x ln x that

S��12� � SW��12� . �49�

Corollaries 2 and 3 now also hold for the Wehrl entropy.
In particular, it is true that

SW��1� + SW��2� − SW��12� � S��1� + S��2� − S��12� .

�50�

Moreover, Corollary 3 implies that the map

� � SW��� − S��� �51�

is convex. Note that the infimum of this function is zero. In
the finite dimensional case, this infimum is achieved for the
totally mixed state �=d−1I, where d=dim H.

It might be recalled that Wehrl raised the question �7� of
evaluating the minimum of his classical entropy and conjec-
tured, in the special case of the Glauber coherent states, that
it should be given by the one-dimensional projector onto a
coherent state �= ��	���. �The minimum of the quantum en-
tropy, −Tr � ln �, is always zero.� This particular conjecture
was proved in �18�, where the �still open� generalized con-
jecture was made to SU�2� �Bloch� coherent states. Oddly,

the minimum of the difference of the entropies is a much
easier question to answer.

Note that because of convexity the maximum of the func-
tion SW���−S��� is attained for a pure state, where S���
=0. Hence the question about the maximum of SW���
−S��� is equivalent to maximizing SW��� over pure states. In
the case of the Glauber coherent states, this maximum is
infinite �7�.

C. Quantum statistical mechanics of point particles

Consider a system of two types of particles, A and B. The
state space of the combined system is H=HA � HB, where
HA and HB are the spaces of square integrable functions of
the particle configurations of particles A and B, respectively.
We assume that the configuration space is RdA and RdB, re-
spectively, for some finite dA and dB. The usual subadditivity
of entropy implies that, for any state � on H,

S��B� � S��� − S��A� , �52�

where �A and �B denote the states of the subsystems. How-
ever, in applications it can be useful to get a lower bound not
only on the entropy of �B, which is the state averaged over
all configurations of the A particles, but rather on the average
entropy of the state for fixed A particles. Such a bound is one
of the key ingredients in a rigorous upper bound on the pres-
sure of a dilute Fermi gas at nonzero temperature �19�.

More precisely, if XA and XB denote particle configura-
tions of the A and B particles, any density matrix on H will
be given by an integral kernel ��XA ,XB ;XA� ,XB��. For every
fixed configuration of the A particles, XA, we can then define
a density matrix on HB by the kernel

�B
XA�XB,XB�� = n�XA�−1��XA,XB;XA,XB�� , �53�

where n�XA� is the normalization factor

n�XA� =� dXB��XA,XB;XA,XB� . �54�

Since � is a trace class operator, �B
XA is well defined by the

spectral decomposition of � for almost every XA, if n�XA�
�0. The definition �53� makes sense only if n�XA��0; only
in this case �B

XA will be needed below, however.
Note that n�XA� is the probability density of a configura-

tion of A particles XA. Moreover, 
dXAn�XA�=1, and

dXAn�XA��B

XA =�B. Therefore we have, by concavity of
S���,

S��B� �� dXAn�XA�S��B
XA� . �55�

Hence the following is a strengthening of �52�.
Corollary 4 (Subadditivity with average entropy in-

stead of entropy of average). Let � be a density matrix on
HA � HB with finite entropy. With the definitions given above,

� dXAn�XA�S��B
XA� � S��� − S��A� . �56�

We remark that it is not necessary to have a fixed particle
number for this bound; the integral 
dXA can as well include
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a discrete sum over different particle numbers. I.e., our
bound also applies to the grand-canonical ensemble, and this
is the form that Corollary 4 actually gets used in �19�. For
simplicity, we consider only the case of a fixed particle num-
ber in the proof below, but the extension is straightforward,
using an additional decomposition I=�n�0Pn, where Pn
projects onto the subspace of HA with fixed particle number
n.

Corollary 4 follows from Corollary 1 by the following
limiting argument.

Proof of Corollary 4. For d�dA, let j :Rd�R be a posi-
tive and integrable function on the configuration space of the
A particles, with 
dX j�X�=1. For some ��0 and Y �Rd, let
j�
Y�X�=�−dj(�X−Y� /�). Let

P� = I − �
Rd

dY�j�
Y	�j�

Y� . �57�

It is not difficult to see that P��0. Hence we can infer from
Corollary 1 that, for any density matrix �12 on H1 � H2
�where we use again the notation 1 and 2 instead of A and B�,

S��12� − S��1� � �
Rd

dY n��Y�S���
Y� + nP�S��2

P�
� , �58�

where we denoted n��Y�= �j�
Y��1�j�

Y	, ��
Y = �j�

Y��12�j�
Y	 /n��Y�,

nP� =Tr1P��1, and �2
P�

=Tr1P��12/nP�. We will show that
there exists a sequence � j with � j→0 as j→� such that the
right side of �58� converges to the left side of �56� in the
limit j→�.

We note that, for any square integrable function � on Rd,
�j�

Y ��	→��Y� strongly in L2�Rd� as �→0 ��21�, Theorem
2.16�. Passing to a subsequence, it is then true that �j�

Y ��	
→��Y� almost everywhere. Decomposing �1 into its eigen-
values and eigenfunctions, we see that there is a subsequence
such that lim�→0n��Y�=n�Y� for almost every Y. Also,
��

Y
⇀�B

Y weakly as �→0 for almost every Y. �Here we used
the separability of the Hilbert space to ensure the existence
of this subsequence.� Since also the traces converge, this
convergence is actually in trace class norm �20�.

We first assume that �12 has finite rank. Then also ��
Y and

�B
Y have finite rank, and hence bounded entropy. It follows

that lim�→0S���
Y�=S��B

Y�. Moreover, it is easy to see that
P�

⇀0 weakly as �→0. This implies that lim�→0nP� =0, and
hence lim�→0
dY n��Y�=1. It then follows from Fatou’s
lemma that

lim
�→0
�

Rd
dY n��Y�S���

Y� = �
Rd

dY n�Y�S��B
Y� . �59�

It remains to show that the last term in �58� goes to zero
as �→0. As already noted, lim�→0nP� =0. The entropy

S��2
P�

� need not be bounded as �→0, however. Since P�

� I, Tr1P��12��B. Note that �12 has finite entropy by as-
sumption and, without loss of generality, also �A has finite
entropy. This implies that �B has finite entropy by the tri-
angle inequality for entropies �22�. Hence it follows from
dominated convergence ��1�, Theorem A3� that S�Tr1P��12�
→0 as �→0, and hence nP�S��2

P�

�=S�Tr1P��12�+nP�ln nP�

→0 as �→0. This proves �56� in the case that �12 has finite
rank.

For a general �12 on H1 � H2, let �12
j = Pj�12, where Pj

denotes the projection onto the largest j eigenvalues of �12.
It is then easy to see that

S��12� = lim
j→�

S��12
j � �60�

and

S��A� = lim
j→�

S�Tr2�12
j � �61�

�cf. the Appendix in �1��. Moreover, with nj�Y� and �B,j
Y de-

fined as above, for the operator �12
j , we write

� dY nj�Y�S��B,j
Y � = e� dY n�Y�S��B,j

Y
„nj�Y�/e n�Y�…�

−� dY nj�Y�ln�e n�Y�/nj�Y�� . �62�

Note that nj�Y� is pointwise increasing in j, and also
nj�Y��B,j

Y is an increasing sequence of operators. Moreover,
�B,j

Y �nj�Y� /e n�Y���1/e. Since −x ln x is monotone increas-
ing for 0�x�1/e, this implies that the first term on the right
side of �62� is bounded from above by

e� dY n�Y�S��B
Y/e� =� dY n�Y�S��B

Y� +� dY n�Y� .

�63�

Moreover, since limj→�nj�Y�=n�Y� for almost every Y, this
implies, by monotone convergence,

lim
j→�

−� dY nj�Y�ln�e n�Y�/nj�Y�� = −� dY n�Y� . �64�

This shows that �56� also holds in the infinite rank case, and
finishes the proof of Corollary 4. �

ACKNOWLEDGMENTS

This work was partially supported by U.S. National Sci-
ence Foundation Grant Nos. PHY 01 39984 �E.H.L.� and
PHY 03 53181 �R.S.�, as well as by the A.P. Sloan Founda-
tion �R.S.�.

APPENDIX A: EXTENSION TO INTEGRALS

In this appendix we extend Theorem 2 in the following
way. Again, let Hi be finite dimensional Hilbert spaces,
1� i�3. Let � be a measure space, with elements labeled
by �, and let d���� be a measure on �. Let K� be matrices
on H1 � H2 that are weakly measurable �i.e., all the matrix
elements are measurable functions�, such that

�
�

d����K�*K� = I12. �A1�

The extension of Theorem 2 is the following. With the same
definitions as in �11�–�13�,
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S��123� − S��12� � �
�

d����n��S��23
� � − S��2

��� . �A2�

Note that this expression is well defined, since the integrand
is measurable and the entropy is bounded.

For the proof of �A2�, we may assume that, for each �,
�K�*K���1. This is no restriction, since we can always ab-
sorb the norm into the measure d����. Likewise, we may
assume that Tr K�*K��1/2. Taking the trace of �A1�, it is
then clear that � has finite measure.

Pick some ��0. By looking at the level sets of the matrix
elements of K�, we can divide � into finitely many disjoint
measurable subsets O j, 1� j�M�, with �K�−K��� if �
and  are in the same subset O j. For each ���, write K�

=U��K�*K��1/2, with U� unitary. For each j, pick some � j

�O j, and define

Lj = U�j��
Oj

d����K�*K��1/2

. �A3�

We then have � jL
j*Lj = I12, and hence we can apply Theorem

2. That is, we have, for any density matrix �123 on H1
� H2 � H3,

S��123� − S��12� � �
j

nj�S��23
j � − S��2

j �� , �A4�

with nj =Tr123 Lj*Lj�123 and �23
j =Tr1 Lj�123L

j* /nj. We will
now show that, as �→0, the right side of �A4� converges to
the right side of �A2�.

Using the fact that �A−B�� �A−B�1/2 for any two posi-
tive matrices A and B �Eq. �X.2� of �23��, we can estimate

�Lj − �O j�1/2K�j�2 � �
Oj

d�����K�*K� − K�j*K�j� � 2��O j� .

�A5�

Here, � · � denotes the measure of a subset of �, and we used
�K���1 and �K�−K�j��� in the last step. Using the triangle
inequality we thus see that �Lj − �O j�1/2K��� �O j�1/2��+2��
for any ��O j. This implies that

�Lj�123L
j* − �O j�K��123K

�*� � �O j�2�� + 2����123�

�A6�

for any ��O j, where we again used that �K���1. Note that
�A6� implies the same estimate for the partial trace of the
operator on the left side, with the right side multiplied by the
dimension of the space. Moreover, since in finite dimensions
the entropy is Lipschitz continuous, this also implies that, for
some constant C�0,

�
j

nj�S��23
j � − S��2

j �� = �
j

�S�Tr1 Lj�123L
j*�

− S�Tr12 Lj�123L
j*��

� �
j
�

Oj

d�����S�Tr1 K��123K
�*�

− S�Tr12 K��123K
�*� + C�� + 2���

= �
�

d����n��S��23
� � − S��2

���

+ C����� + 2�� . �A7�

Letting �→0 this proves the desired result.

APPENDIX B: EXTENSION TO INFINITE DIMENSIONAL
SPACES

We now show that �A2� holds in the case when the Hi are
infinite dimensional Hilbert spaces. This will prove Theorem
1. As stated there, we assume that the K� are bounded,
weakly measurable operators, i.e, ���K���	 is measurable for
all vectors ��	. �By polarization, this implies that the matrix
elements ���K���	 are measurable for any vectors ��	 and
��	.� We also assume �4� to hold. Again it is then no restric-
tion to assume that �K�*K���1 for each ���. Note that �
need not have finite measure in this case, however. We as-
sume that the density matrix �123 has finite entropy. We may
also assume that S��12� is finite, otherwise there is nothing to
prove. Note that in this case, the triangle inequality for en-
tropy �22� implies that also S��3� is finite.

For m�N, let Pi
�m� be rank m projections in Hi, such that

Pi
�m�→ IHi

strongly as m→�. Let P̂= P1
�m�

� P2
�m�

� P3
�m�. Then

also P̂→ I123 strongly as m→�. In the following, we find it
convenient to suppress the dependence on m in our notation,
but rather put a ˆ on all quantities that depend on m.

Given a density matrix �123, we define �̂123= P̂�123P̂.

Moreover, let K�̂= P1
�m�

� P2
�m�K�P1

�m�
� P2

�m� for ���. Let
also

L̂ = �P1
�m�

� P2
�m��1 − �

�

d����K�*P1
�m�

� P2
�m�K��

�P1
�m�

� P2
�m��1/2

. �B1�

If we set Ĥi= Pi
�m�Hi, we then have

�
�

d����K�*̂K�̂ + L̂2 = IĤ12
, �B2�

and hence we can apply the finite dimensional result �A2�.
I.e.,

S��̂123� − S��̂12� � �
�

d����n̂��S��̂23
� � − S��̂2

���

+ n̂L�S��̂23
L � − S��̂2

L�� . �B3�

Here, n̂� and the density matrices �̂23
� and �̂2

� are defined as

in �11�–�13�, with K� replaced by K�̂ and �123 replaced by
�̂123. Moreover, �̂23

L , �̂2
L and n̂L are defined in the same way,

with L̂ in place of K�̂. Our goal is to show that we can
remove the ˆ’s in �B3�.

Note that �̂123→�123 strongly as m→�. Since also the
trace of �̂123 converges to Tr �123=1, this implies that the
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convergence is actually in trace norm, as proved by Wehrl in
�20�. Hence also �̂12→�12 in trace norm. Since the eigen-
values of �̂123 are smaller than the corresponding eigenval-
ues of �123, i.e., �̂123��123 in Simon’s notation in the Ap-
pendix of �1�, Theorem A2 in �1� implies that

lim
m→�

S��̂123� = S��123� . �B4�

By the same reasoning, this also holds for �̂12. Taking the
limit m→� in �B3�, we thus have

S��123� − S��12� � lim inf
m→�

�
�

d�����Am��� + Bm����

+ lim inf
m→�

n̂L�S��̂23
L � − S��̂2

L�� . �B5�

Here we defined the functions Am��� and Bm��� by

Am��� = n̂��S��̂23
� � − S��̂2

�� − S��̂3
��� �B6�

and

Bm��� = n̂�S��̂3
�� , �B7�

with �̂3
�=Tr2 �̂23

� =Tr12 K�*̂K�̂�̂123/ n̂�. The reason for the
splitting into the two parts �B6� and �B7� is that Am��� is
negative, which allows for the use of Fatou’s lemma,

whereas Bm��� depends on K�̂ only through K�*̂K�̂.
We start by estimating the last term on the right side of

�B5�. By subadditivity of entropy, S��̂23
L �−S��̂2

L��S��̂3
L�,

with �̂3
L=Tr2 �̂23

L . We claim that limm→�n̂L=0. This is true if
we can show that

lim
m→�

�
�

d����Tr123 P̂K�*P̂K�P̂�123 = 1. �B8�

Since P̂K�*P̂K�P̂ converges strongly to K�*K� for each fixed
� �because products of strongly convergent sequences con-

verge strongly�, we see that Tr123 P̂K�*P̂K�P̂�123 converges
to Tr123 K�*K��123 for each fixed �. Hence, using Fatou’s
lemma, we see that the left side of �B8� is always �1. On the

other hand, estimating the middle P̂ in the integrand in �B8�
by P̂�1 and using �4�, we see that the left side of �B8� is
bounded above by

lim
m→�

Tr123P̂�123 = Tr123�123 = 1. �B9�

This proves the claim that limm→�n̂L=0.
Although S��̂3

L� need not be bounded, we claim that
n̂LS��̂3

L�→0 as m→�. To see this, write n̂LS��̂3
L�

=S�Tr12L̂
2�̂123�+ n̂L ln n̂L. Note that the second term goes to

zero as n̂L→0. Since L̂2� I12, Tr12L̂
2�̂123� P3

�m��3P3
�m���3.

Recall that S��3� is finite. Since Tr12L̂
2�̂123→0 in trace norm

as m→�, we can use dominated convergence Theorem A1
of �1� to conclude that S�Tr12L

2�̂123�→0 as m→�. Hence
we have shown that

lim sup
m→�

n̂L�S��̂23
L � − S��̂2

L�� � 0. �B10�

Next we treat the first term on the right side of �B5�, i.e.,
the integral of Am���. Since Am����0 �by subadditivity�, we
can use Fatou’s lemma to estimate

lim inf
m→�

�
�

d����Am��� � �
�

d����lim sup
m→�

Am��� .

�B11�

We now claim that �̂23
� →�23

� in trace norm. It is clear that

K�*̂�̂123K
�̂ converges strongly to K�*�123K

�. By the same
argument as that after �B8�, the trace also converges, and
hence the convergence is in trace norm. This implies that the
reduced density matrices also converge in trace norm, and
hence proves our claim. Moreover, we claim that, for each
fixed �,

lim sup
m→�

Am��� � n��S��23
� � − S��2

�� − S��3
��� . �B12�

This follows from upper semicontinuity of S��23�−S��2�
−S��3� in �23. This upper semicontinuity, in turn, follows
from lower semicontinuity of the relative entropy H�� ,��
=Tr ��ln �−ln �� ��10�, 2.2,22�ii��, since S��23�−S��2�
−S��3�=−H��23,�2 � �3�. By combining �B11� and �B12�
we have thus shown that

lim inf
m→�

�
�

d����Am��� � �
�

d����n��S��23
� � − S��2

��

− S��3
��� . �B13�

It remains to show that

lim inf
m→�

�
�

d����Bm��� � �
�

d����n�S��3
�� , �B14�

with

Bm��� = n̂�S��̂3
�� = S�Tr12K

�*̂K�̂�̂123� + n̂�ln n̂�.

�B15�

Note that Tr12K
�*̂K�̂�̂123� P3

�m��3P3
�m���3, since �K�*K��

�1 and hence �K�*̂K�̂��1. By the same argument as above,

Tr12K
�*̂K�̂�̂123 converges to Tr12K

�*K��123 in trace norm,
and hence, again by Theorem A1 in �1�,

lim
m→�

Bm��� = n�S��3
�� �B16�

for each fixed �. This gives pointwise convergence, but to
show convergence of the integral in �B14� we have to use the
dominated convergence theorem. We claim that Bm��� is uni-
formly bounded, independent of m and �. This is true since
−x ln x is monotone in x for 0�x�1/e. Since

Tr12K
�*̂K�̂�̂123��3, the contribution to the entropy from ei-

genvalues less then 1/e is bounded by the corresponding
value for �3. Moreover, since Tr �3=1, there are at most 2
eigenvalues bigger than 1/e. This gives the claimed uniform
bound.

By dominated convergence, we see that, for any subset
O�� with finite measure,
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lim
m→�

�
O

d����Bm��� = �
O

d����n�S��3
��

� �
�

d����n�S��3
�� . �B17�

Moreover, by concavity of S���,

�
Oc

d����Bm��� � ��
Oc

d����n̂��S��̂c� , �B18�

with

�̂c = ��
Oc

d����n̂��−1

Tr12�
Oc

d����K�*̂K�̂�̂123.

�B19�

Proceeding as in the proof of �B8�, we see that

lim
m→�

�
Oc

d����n̂� = �
Oc

d����n�. �B20�

Also Tr12
Ocd����K�*̂K�̂�̂123→Tr12
Ocd����K�*K��123

weakly, and thus in trace norm. Since again

Tr12
Ocd����K�*̂K�̂�̂123��3, the same argument as above
implies that the right side of �B18� converges, in the limit
m→�, to the corresponding expression without the ˆ’s. I.e.,

lim sup
m→�

�
Oc

d����Bm��� � ��
Oc

d����n��S��c� ,

�B21�

with �c given as in �B19�, but with all the ˆ’s removed.
Now as O→�, 
Ocd����n�→0. Using again the domi-

nance by �3, which follows from the fact that

Ocd����K�*K�� I, we see the right side of �B21� goes to
zero as O→�. Together with �B17�, this finishes the proof
of �B14�, and hence the proof of the theorem.

APPENDIX C: RUSKAI’S PROOF OF COROLLARY 2

In an early version of this paper we had a weaker version
of Corollary 2, which read S��12�−S��1��Scl��12�−Scl��1�.
In a private correspondence, Ruskai suggested the stronger
version for the case of �product� coherent states, and her
suggestion motivated us to prove the strengthened version of
Corollary 2 using our methods. The following is a sketch of
her proof.

�1� The map from a state to its coherent state representa-
tion is a completely positive, trace-preserving map �CPT�.

�2� The relative entropy of two density matrices,
H�� ,��=Tr��ln�−ln �� is known to decrease under CPT
maps.

�3� Apply �2� to H��12,�1 � �2� using the �product� co-
herent state map, to obtain �35�.
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