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We study the relation between entanglement and quantum chaos in one- and two-dimensional spin-1/2
lattice models, which exhibit mixing of the noninteracting eigenfunctions and transition from integrability to
quantum chaos. Contrary to what occurs in a quantum phase transition, the onset of quantum chaos is not a
property of the ground state but takes place for any typical many-spin quantum state. We study bipartite and
pairwise entanglement measures—namely, the reduced von Neumann entropy and the concurrence—and dis-
cuss quantum entanglement sharing. Our results suggest that the behavior of the entanglement is related to the
mixing of the eigenfunctions rather than to the transition to chaos.
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I. INTRODUCTION

Quantum entanglement has been identified as a key ingre-
dient in quantum communication and information process-
ing. The content of entanglement in a particular system is
considered as a resource to perform several tasks in a more
efficient and more secure way than any other classical
methodf1,2g. For instance, quantum teleportation protocols
require one to share a maximally entangled state between the
sender and receiver. In the field of quantum computation, it
has been found that for the case of quantum algorithms op-
erating on pure states, the presence of multipartite entangle-
ment between the components constituting a quantum pro-
cessor is a necessary condition to achieve an exponential
speed-up over classical computationf3g.

On the other hand, for the operability and stability of any
quantum computer, entanglement can also play the role of
the property to be minimized. The unavoidable entanglement
between the quantum processor and the environment is one
of the most important sources of noise and, therefore, of
computational errors. The understanding and control of noise
in quantum protocols are clearly needed to implement any
reliable quantum computationf4–9g. Even when a quantum
processor is ideally isolated from the environment—i.e., in
situations where the decoherence time of the processor is
very large as compared to the computational time scales—
the operability of the quantum computer is not yet guaran-
teedf10g. Indeed, also the presence of device imperfections
hinders the implementation of any quantum computation. A
quantum computer is a quantum many-body system. The in-
teraction between the qubits composing the quantum regis-
ters of the computer is needed to produce the necessary
amount of entanglement. Moreover, device imperfections

like small inaccuracies in the coupling constants induce er-
rors. Above a certain imperfection strength thresholdschaos
borderd, quantum chaos sets inf10–13g. In such a regime,
exponentially many states of the computational basis are
mixed after a chaotic time scale. This sets an upper time limit
to the stability of a generic superposition of states coded in
the quantum computer wave function. A necessary require-
ment for quantum computer operability and fault tolerant
computation schemes is the possibility to operate many
quantum gates inside the chaotic time scale.

For the case of many-body systems, the transition to
chaos has been studied for fermions and bosonsssee, e.g.,
f14g and references thereind and particularly for lattice spin
systemsf15g. In fermionic systems with two-body interac-
tions it has been found that, if the interaction strength ex-
ceeds some critical value, a fast transition to chaos occurs in
the Hilbert space of many-particle statesf16g. This is com-
monly studied in terms of the transition between the different
spectral statistics of integrable and chaotic systems. For sys-
tems with a finite size, this transition is smooth and only a
crossover border where the transition occurs can be identi-
fied. The question whether this smooth transition becomes
sharp in the thermodynamic limit is still under debate. How-
ever, in some cases a sharp transition to chaos is found, e.g.,
in the three-dimensional Anderson modelf17g.

In a different context, the behavior of quantum entangle-
ment across a quantum phase transition has recently attracted
much attention. Quantum phase transitionssQPT’sd consist
in a qualitative change of the ground state of the system as
some control parameter is variedf18g. Unlike classical phase
transitions, QPT’s occur at zero temperature and the fluctua-
tions developed at the critical point are fully quantum. These
fluctuations dominate the behavior of the system near the
critical point, where correlations are long range in character.
It has been recently pointed out that the genuine quantum
character of quantum phase transitions is due to entangle-
mentf19g. It has also been argued that the ground state of the
system is strongly entangled at the critical pointf19,20g.
Therefore, the behavior of entanglement across QPT’s is par-
ticularly interesting for quantum computation and communi-
cation, where a maximization of the content of entanglement
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is desirable. The study of the relation between QPT’s and
entanglement has been focused on the possible universal be-
havior of the entanglement content at the transitionf21–29g.
In this context, it has been shown that in different model
systems quantities like the derivative of the concurrence
f21,22g and von Neumann entropyf24,30g present critical
behavior at the transition. The dependence of entanglement
on disorder and its interplay with chaos has also been studied
f31–33g. Moreover, the evolution of entanglement in quan-
tum algorithms simulating quantum chaos has been recently
investigatedf34–37g.

The aim of this paper is to characterize the behavior of
quantum entanglement innonintegrable systems when a
transition to quantum chaos occurs. We are interested in un-
derstanding how the entanglement content behaves in transi-
tions from integrability to chaos. We would like to stress
that, differently from the previous studies of QPT’sf21–29g,
the transition to chaos is not only a property of the ground
state but takes place for any typical many-body state. We
numerically study two lattice models of interacting many
spins that show a transition to chaos. They have previously
been studied as models of quantum computer hardware
f10–13g. In both models, the transition to chaos is driven by
the strength of the interaction between the spins. We consider
bipartite and pairwise entanglement measures and focus on
the relation between the entanglement and the onset of
chaos. We focus our study on the eigenstates corresponding
to the center of the spectrum, where the many-body density
of states is larger and therefore quantum chaos sets in at
small interaction strengths. Nevertheless, also the behavior
of the other parts of the spectrum is discussed. We use exact-
diagonalization techniques to obtain all the eigenstates of the
considered spin models. Therefore, we are limited to con-
sider relatively small system sizes, from which the study of
any possible finite-size scaling for the behavior of the en-
tanglement at the chaos border is out of reach. Nevertheless,
we discuss, at a qualitative level, the similarities and differ-
ences between the behavior of entanglement across a QPT
and at the onset of quantum chaos. We show that the depen-
dence of pairwise entanglement on the size, distance, and
range of the interactions can be understood in terms of the
sharing of entanglement among the different parties of the
system. Furthermore, we demonstrate that the behavior of
entanglement is related to the mixing of noninteracting
eigenfunctions rather than to the transition to chaos.

This paper is organized as follows. In Sec. II we review
the measures of entanglement that we will use. The measures
that signal the onset of quantum chaos are reviewed in Sec.
III. In Sec. IV we define the spin lattice models investigated
in this paper and discuss numerical results on their entangle-
ment content and their transition to chaos. In Sec. V we
present our final remarks.

II. MEASURES OF ENTANGLEMENT

A pure stateucl is said to be separable if for a given
partition of its Hilbert spaceH=HA ^ HB it can be written as
ucl= ual ^ ubl. Here ual and ubl are vectors residing in the
Hilbert subspacesHA and HB, respectively. The pure state
ucl is entangled if it is not separable.

A. von Neumann entropy

Pure bipartite entanglement is measured in terms of the
reduced von Neumann entropyS. For a pure state the reduc-
tion of its density matrixr= uclkcu is obtained through partial
trace of one the two partitions asrA=trBr or, equivalently,
rB=trAr. Then,S is defined as

S= SA = SB = − trBsrB log rBd. s1d

The von Neumann entropy provides an unambiguous mea-
sure of entanglement for a bipartite system in an overall pure
state. For a separable stateS=0 while for a maximally en-
tangled stateS=logN, where N=minsNA,NBd, with NA

=dimsHAd andNB=dimsHBd. In what follows we will take
the logarithm in Eq.s1d base 2. Thus, for a many-qubit sys-
tem, the maximum value that the von Neumann entropy can
take is equal to the number of qubits that have not been
traced out to obtain the reduced density matrix.

B. Concurrence and entanglement of formation

For the case of mixed states, the von Neumann entropy is
no longer a good measure of entanglement. If we consider a
bipartite system on an overall mixed state, then each sub-
system can have nonzero entropy even if there is not any
entanglementf38g. In order to measure the bipartite en-
tanglement of a mixed state we shall consider the so-called
entanglement of formation,EF f39g. Starting from a mixed
state with density matrixr=oipiucilkciu, EFsrd is defined as
the average entanglement of the pure states of a given de-
composition of the mixed stater, minimized over all its pos-
sible decompositions:

EFsrd = min
hpi,cij

o
i

piEsucild. s2d

HereEsucild is the amount of entanglement of the pure state
ucil, measured, as discussed in the previous subsection, by
the reduced von Neumann entropy.

Equations2d is operationally difficult to handle, since it
involves an extremal condition. However, for the case of
two-qubit systems,EF can be expressed in terms of a much
more amenable quantity, the so-called concurrenceC f40g.
We have

EFsrd = hS1

2
f1 +Î1 − Csrd2gD , s3d

wherehsxd is the so-called binary entropy function defined
by

hsxd = − x log2 x − s1 − xdlog2s1 − xd. s4d

The concurrenceCsrd of the two-qubit stater is defined as

Csrd = maxh0,clj, s5d

wherecl=l1−l2−l3−l4, the hlij being the square roots of
the eigenvalues of the matrixrssy ^ sydr*ssy ^ syd, in de-
creasing order, andsy a Pauli matrix. Note that in this defi-
nition the complex conjugation is taken in the computational
basishu00l, u01l, u10l, u11lj, whereu0l and u1l are the eigen-
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states ofsz. From Eq.s3d we see thatEF depends monoto-
nously on the concurrence, which takes values between 0 for
separable states and 1 for maximally entangled states. More-
over, it is easy to see thatcl take values inf−1/2,1g. Thus,
it is clear from Eq.s5d that a state is separable ifclø0 and
entangled otherwise.

Other measures for pairwise entanglement exist. Among
them we mention the entanglement of distillationf41g, the
negativityf42g, and the relative entropyf43g. All these quan-
tities are related in one way or another to the concurrence.
Therefore, we have chosen to present our results in terms of
the concurrence. Nevertheless, we mention that we have also
measured the negativity and found that it essentially gives
the same results as the concurrence.

Finally, for the case of multipartite entanglement the prob-
lem is much more subtle. Different measures of multipartite
entanglement have been proposed, giving different results,
even qualitativelyf44g. Given the state of affairs, we will
limit ourselves to discuss the existence of multipartite en-
tanglement in terms of the qualitative information that can be
extracted by comparing the averaged von Neumann entropy
for subsystems of different sizes.

III. TRANSITION TO QUANTUM CHAOS

Random matrix theorysRMTd was introduced to describe
the spectral properties of complex heavy nuclei. The key idea
behind RMT is to replace the full physical description of the
Hamiltonian by a suitable statistical representative of its
symmetry groupf45g. The statistical spectral fluctuations of
almost any complex Hamiltonian were found to be described
by a few classes of random matrix ensembles. This approach
turned out to be very successful. The RMT analysis has been
applied to many fields of physics such as nuclei, atoms, mol-
ecules, quantum dots, quantum billiards, and many-body sys-
tems among othersf14,15,46–49g. In the early 1980s it was
conjectured that the quantum versions of integrable and cha-
otic classical systems were described by different classes of
random ensemblesf50,51g. Since then, RMT has been suc-
cessfully applied to describe the emergence of quantum sig-
natures of chaos.

The global manifestation of the onset of chaos in quantum
systems consists of a very complex structure of the quantum
states as well as in spectral fluctuations that are statistically
described by RMTf45g. Let us focus on many-particle sys-
tems with two-body interaction as this is the nature of the
model systems that we study in this paper. For this kind of
systems it has been found that, under very general condi-
tions, if the interaction strength exceeds some critical value,
a fast transition to chaos occurs in the Hilbert space of many-
particle states.

To be more precise let us consider a generic perturbed
quantum many-body system. The Hamiltonian can be split
into two parts:

H = H0 + V, s6d

where H0 corresponds to the unperturbed original Hamil-
tonian and the perturbationV to an interacting term. The
unperturbed HamiltonianH0 is assumed integrable. In other

words, whenV=0 the existence of as many integrals of mo-
tion as degrees of freedom is assumed. We will take the
unperturbed eigenstates of the noninteracting Hamiltonian
H0 to span the many-particle Hilbert space. In this basis,
when the interaction is turned on, the eigenstates start to mix.
The mixing can be described, for small interaction strengths,
by perturbation theory. However, perturbation theory breaks
down and quantum chaos sets in when the typical interaction
matrix element between directly coupled states becomes of
the order of their energy separationf16g swe say that two
many-body statesuc1l and uc2l are directly connected if
kc1uVuc2lÞ0d. The transition to chaos reflects in the statisti-
cal properties of the spectrum.

A. Nearest-neighbor level spacing distribution

The nearest-neighbor level spacing distributionPssd is the
probability density to find two adjacent levels at a distances.

For an integrable system the distributionPssd has typi-
cally a Poisson distribution

PPssd = exps− sd. s7d

In contrast, in the quantum chaos regime, for Hamilto-
nians obeying time-reversal invariance, the nearest-neighbor
spacing distribution corresponds to the Gaussian orthogonal
ensemblesGOEd of random matrices. This distribution is
well approximated by the Wigner surmise, which reads

PWDssd =
ps

2
expS−

ps2

4
D . s8d

Note that the GOE distribution exhibits the so-called “level
repulsion”; i.e., the probability to find close energy levels is
very small. This is in contrast to what is observed for inte-
grable systems which exhibit level clustering. An example of
Poisson and Wigner distributions is provided in Fig. 5, be-
low.

In Eqs.s7d ands8d the level spacings is given in units of
the mean level spacingD that we have set to 1.

The transition to quantum chaos may be detected by the
change of the nearest-neighbor spacing distributionPssd
from Poisson to GOE. In order to obtain a more quantitative
indication of this transition, it is useful to compute the pa-
rameter

g =

E
0

s0

fPssd − PWDssdgds

E
0

s0

fPPssd − PWDssdgds

, s9d

wheres0<0.4729 corresponds to the lowests value at which
the PoissonfEq. s7dg and WignerfEq. s8dg curves cross. This
parameter takes values 1 and 0 for the Poisson and Wigner
distributions, respectively.

The distributionPssd describes the behavior of the fluc-
tuations at energy scales of the order ofD. Therefore,Pssd is
a short-range correlation. The effects of the onset of quantum
chaos are also seen in higher moments of the distribution of
energy levels. However, we will limit ourselves to the analy-
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sis ofPssd as a spectral signature of the transition to quantum
chaos.

B. Participation number

The effects of the onset of chaos can also be observed in
the eigenfunctions. The transition reflects in the degree of
mixing of the eigenfunctions of the system. However, the
eigenfunction-based measures are more subtle. This is be-
cause the mixing of eigenfunctions is a basis-dependent
quantity. Clearly, if the eigenfunctions are expanded in their
own basis, they are not mixed at all, independently of the
fact that the distributionPssd is Poisson or GOE. Neverthe-
less, for Hamiltonians of the types6d the increase of typical
eigenfunctions’ mixing with perturbation is naturally ob-
tained in the basishuilj of the unperturbed HamiltonianH0

f52g.
In the basishuilj the mixingsor, equivalently, thedelocal-

izationd of a given eigenstateucl is customarily measured in
terms of the number of componentski ucl which are signifi-
cantly different from zero: A useful quantity to measure the
degree of delocalization of a given eigenstate is the so-called
participation numbersPNd, defined as

j =
1

o
i

uki uclu4
. s10d

If the stateucl is maximally localized, all its components are
zero but one, with valueuki uclu2=1 due to normalization.
Therefore, in the localized regimej<1, while j increases
with increasing mixing. In the thermodynamic limit,j is un-
bounded. However, in the case of finite size systemsjøN,
whereN is the dimension of the Hilbert space. For the GOE
statistics, the PN is upper bounded by the valuej=N/3, due
to the statistical properties of the chaotic states.

Even though, in general, the transition from localized to
delocalized eigenfunctions occurs in parallel with the transi-
tion from Poissonian to Wigner spectra, this is not always the
case. As we will study in the following sections, for particu-
lar model systems the spectra can be uncorrelated even in
situations in which the eigenfunctions are delocalized. It is
common to term this situation asweak chaos.

C. Chaos and entanglement

It is worthwhile to discuss what are the expectations for
the entanglement content in the nearly integrable and fully
chaotic situations. Let us consider a many-particle system
with a Hamiltonian as in Eq.s6d and letN denote the dimen-
sion of its Hilbert space. In a given basishunlj the density
matrix for an eigenstate of the system,ucl=oncnunl, is writ-
ten as follows:

rnm= knuclkcuml = cncm
* , s11d

wherecn=knucl are the components of the eigenstate in the
hunlj basis. As discussed in the previous subsection, the
nearly integrable case corresponds to the situation of a weak
interaction. This implies that in the basis of the unperturbed

Hamiltonian H0 the eigenfunctions are localized—i.e.,cn
<dn,n! for somen!P f1,Ng. Therefore, the density matrix
will have all entries nearly equal to zero, except for the di-
agonal matrix elementrn!n!= ucn!u2<1. At the other extreme
of strong interaction, in which quantum chaos has set in, the
eigenfunctions are fully extended. In this situation the eigen-
states can be considered as random states with uniformly
distributed components with amplitudescn<1/ÎN and ran-
dom phases. In this case, the density matrix can be written as

r < diags1/N,1/N, . . . ,1/Nd + V, s12d

whereV is aN3N zero diagonal matrix with random com-
plex matrix elements of amplitude<1/N.

Suppose now that we partition the Hilbert space of the
system into two parts with dimensionsNA and NB, where
NANB=N. The reduced density matrixrA is defined as fol-
lows:

rA = TrBr = o
nB

cnAnB
cnA8nB

! unAlknA8 u, s13d

where unl= unAnBl. Therefore, in the integrable case the re-
duced density matrixrA is a NA3NA matrix given by

rA < diags0,0, . . . ,0,1,0, . . . ,0d. s14d

In contrast, in the chaotic case

rA < diags1/NA,1/NA, . . . ,1/NAd + VA, s15d

whereVA is a zero diagonal matrix with matrix elements of
OsÎNB/Nd ssum of NB terms of order 1/N with random
phasesd.

With Eqs.s14d ands15d in hand, it is easy to calculate the
values for the reduced von Neumann entropy and the con-
currence. We have

SA <H0 for integrable regime,

logsNAd for chaotic regime.
J s16d

A better estimate ofSA is obtained by considering the en-
semble of random states according to the Haar measure:SA
< logsNAd−NA/ s2NB loge 2d f53g.

For the case of concurrence the dimensionNA=4. If in
Eqs.s14d and s15d we neglect the matrixVA, we obtain

cl < H0 for integrable regime,

− 1/2 for chaotic regime.
J s17d

Thus, in both integrable and chaotic extremes, we obtain
from Eq. s5d that the concurrence is zero.

IV. CHAOS AND ENTANGLEMENT IN SPIN CHAINS

In this section, we discuss bipartite and pairwise entangle-
ment measures in two quantum lattice spin models in which
a transition to chaos has been previously found and charac-
terized. Both models have been proposed as a suitable model
for quantum computers. For the sake of completeness in this
section we review the known properties of these models, in
particular the onset of quantum chaos. In parallel, we present
new results concerning the behavior of quantum entangle-
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ment. In Sec. IV A we focus, for a two-dimensional spin
lattice, on the behavior of the concurrence as quantum chaos
sets in. These results qualitatively agree with those presented
in Sec. IV B for a family of one-dimensional spin models,
for which we present a much deeper analysis of the behavior
of the concurrence and of the von Neumann entropy across
the transition to quantum chaos.

A. Two-dimensional spin lattice

The system consists ofL spin-1/2 particlessqubitsd
placed on a two-dimensional square lattice in the presence of
an external static magnetic field directed alongz. Nearest-
neighbor spins interact via Ising coupling with random
strength. The Hamiltonian of the system is

H = o
i

Gisi
z + o

i, j

Ji,jsi
xs j

x. s18d

The operatorssi are the standard Pauli matrices acting on the
i - th qubit. The second sum in the Hamiltonian runs over
nearest-neighborspins and periodic boundary conditions are
considered.Gi corresponds to the energy separation between
the states of the qubiti. Ji,j is the interaction strength be-
tween the qubitsi and j . The parametersGi andJi,j are ran-
domly and uniformly distributed in the intervalsfD0

−d /2 ,D0+d /2g and f−J,Jg, respectively. This Hamiltonian
was proposed as a model of isolated quantum computer with
hardware imperfectionsf10g.

Here we focus on the cased ,J!D0, which corresponds to
the situation where fluctuations induced by lattice imperfec-
tions are relatively weak. In this case, the unperturbed energy
spectrumsJi,j =0d of Hamiltonians18d is composed ofL+1
well-separated bands, with interband spacing 2D0. Each band
corresponds to states with a given number of spins “up” and
spins “down.” The highest density of states is obtained for
the central energy band and therefore we expect that quan-
tum chaos shows up first there. When the interaction is
turned on, a transition to chaos takes place. A value for the
chaos borderJc for this transition was given inf10g: Jc
~d /L. This border was corroborated inf12g, where the emer-
gence of Fermi-Dirac thermalization in the chaotic regime
was studied. A careful and detailed analysis of the transition
to chaos for this model and its dependence on the size of the
lattice has been taken also inf10,12g. For the sake of com-
parison with the behavior of the entanglement measures we
repeat some of these previous results. We consider a square
333 lattice. We note that for lattices composed of an odd
number of qubits there is not a central energy band but,
instead, two central bands centered at ±D0. In what follows,
we will consider the states from the central band centered at
−D0.

We have numerically diagonalized Hamiltonians18d for
different values of the interaction strength. To study the tran-
sition to chaos we have obtained the spectral statistics in
terms of the nearest-neighbor spacing distributionPssd as
well as the structure of the eigenfunctions in terms of the
participation numberj. We have restricted our calculations
to the energies and eigenstates encountered in the central
negative band. For weak interactions the energy domain of

this band is clearly visible and we keep the same domain
even for stronger interaction where the band structure disap-
pears.

In Fig. 1 the parameterg as a function of the interaction
strength is shown forD0=1 andd=0.09. When the strength
of the interactionJ increases thePssd distribution smoothly
changes from Poissonsg=1d towards GOEsg=0d. Thus,
increasing the interaction between the qubits a transition to
quantum chaos occurs. In Fig. 1 we observe that the cross-
over from integrability to chaos takes place in the interval
betweenJL/d<1 andJL/d<5.

At the same time, the eigenfunctions start to mix. For
weak interactions the eigenfunctions are strongly localized:
The number of components in the basis of the unperturbed
Hamiltonian is of the order of 1. At strong interactions
sJL/d@1d the eigenfunctions are extended, having a large
number of non-negligible components. This mixing of the
eigenfunctions is shown in Fig. 2 in terms of the PN for the
same parameter values as in Fig. 1. In Fig. 2 we see that the
PN smoothly changes from 1slocalized regimed to its upper
bound value ofNb/3 schaotic regimed, whereNb corresponds
to the number of eigenfunctions with energies in the central
negative band. As we have discussed, the factor of 1/3 arises
due to the symmetries of the chaotic Hamiltonian that are
described by the GOE.

We now turn our attention to the entanglement measures.
We have calculated the concurrence between nearest-sC1d
and next-nearest-sC2d neighbor qubits. For this purpose we
have drawn 2000 random realizations ofdi and Ji,j and di-
agonalized Hamiltonians18d. Using for each realization only
the central eigenfunction of the central negative band we
have calculated the mean concurrence averaged over all pos-
sible nearest-neighbor pairs of qubits. In Fig. 3 we showC1
ssquaresd andC2 scirclesd, averaged over all the random re-
alizations as a function of the strength of the interaction. On
the basis of the unperturbed Hamiltonian withJi,j=0 the con-
currence is strictly zero.sJL/d!1d, the concurrence remains

FIG. 1. Level statistics parameterg as a function of the coupling
parameterJ sin units of d /Ld, for the model of Eq.s18d for a 3
33 lattice, calculated from the energy levels in the spectral band
centered at −D0 averaged over 2000 random realizations ofdi and
Ji,j. The other parameters areD0=1 andd=0.09.
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small. At the other extreme, when the interaction is very
strongsJL/d@1d and quantum chaos has set in, the concur-
rence is also small, as expected. Quite interestingly, the
maximum of theC1 concurrence is forJL/d<1—that is, in
the region in which the crossover from integrability to quan-
tum chaos takes place. In Fig. 3 we can also compare the
behavior ofC1 with that of C2. The concurrence of next-
nearest-neighbor qubits is noticeable smaller than that of
nearest-neighbor qubits. This is not surprising as the Ising
interaction in Eq.s18d couples only nearest-neighbor qubits.
Therefore, one should expect that quantum correlations be-
tween qubits are stronger for qubits that are close than for
those farther away. However, we find thatC2 is not negli-
gible everywhere over the domain ofJ investigated, except

for the integrable and chaotic extremes, where alsoC1 goes
to zero. Similarly toC1, the concurrenceC2 has its maximum
value forJL/d<1. It is interesting to point out that, similarly
to what happens in the QPT in the Ising modelf21,22g, the
concurrencesC1 andC2 exhibit their maximum values close
to the value at which quantum chaos sets in. However, be-
sides this similarity, there are other aspects in which the en-
tanglement at the onset of chaos behaves in a different man-
ner than for the case of a QPT. In Sec. IV B, the qualitative
differences of the behavior of entanglement in a QPT and for
the onset of quantum chaos that we observe will be dis-
cussed.

As we have discussed in Sec. III, the onset of quantum
chaos occurs when the typical interaction matrix elements
between directly coupled states becomes of the order of their
mean level spacing. Thus, the onset of quantum chaos is
expected to be observed first at the spectral energies at which
the density of directly coupled states is larger. For the models
discussed in this and next sections this happens at the center
of the spectrum—i.e., in the central bands. Consequently, we
focus our discussion on the eigenstates corresponding to the
central energy bands. It is worthwhile mentioning that our
choice is different from the studies of QPT for which the
transition is a property of the ground state. For the case of a
transition to quantum chaos we show in Fig. 4 the value of
C1 as a function of the coupling parameterJ, calculated for
each eigenstates of a 333 lattice. The band structure can be
clearly seen in the behavior of the concurrence. Inside each
band, the concurrence grows from zero atJ,0 to a maxi-
mum close toJL/d=1, after which it decays again to zero as
J is further increased. On the other hand, for the states at the

FIG. 2. Participation numberj as a function ofJL/d for the
model of Eq.s18d for a 333 lattice, with parameter values as in
Fig. 1. The PN was obtained from the central eigenfunction of the
band centered at −D0 averaged over 2000 random realizations. The
dashed line corresponds toNb/3.

FIG. 3. ConcurrenceCn as a function of the coupling parameter
JL/d for the model of Eq.s18d for a 333 lattice, with parameter
values as in Fig. 1.Cn was obtained from the central eigenfunction
of the central negative band of the spectrum and averaged over all
possible pairs ofsad nearest-neighbor qubitssn=1, squaresd andsbd
next-nearest-neighbors qubitssn=2, circlesd.

FIG. 4. sColor onlined Density map for the concurrenceC1 cal-
culated for each individual eigenfunctionsindex in the vertical
axisd, averaged over 200 random realizations.C1 is plotted as a
function of the coupling parameterJL/d for the model of Eq.s18d
for a 333 lattice, with parameter values as in Fig. 1. In the inset,
we showC1 averaged over the central 1 /3 of the eigenstates of each
individual band. The different curves correspond to the bands for
states with 4ssolid lined, 3 sdotted lined, 2 sdashed lined, 1 slong-
dashed lined, and 0sdot-dashed lined spins “up.”
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border of the bands, including the ground and most energetic
states,C1 behaves quite differently. This is due to the fact
that these states do not mix significantly with the other states,
as confirmed by our numerical data computing the participa-
tion numbersdata not shownd. In the inset of Fig. 4, we show
C1, averaged over the central eigenstates of each band. We
observe that, for all bands,C1 reaches its maximum value for
J close tod /L. The fact that for the bands farther away from
the center of the spectrumC1 decays slower to zero asJ is
increased is a finite size effect that should disappear at the
thermodynamic limit. However, for the ground statesdot-
dashed lined C1 grows linearly. While we do not discard that
at the thermodynamic limit even the concurrence calculated
from the ground state will behave in a similar fashion as for
any other typical state, Fig. 4 clearly indicates that for a finite
system this is not the case.

B. One-dimensional spin chain

In this section we discuss the behavior of bipartite and
pairwise entanglement in a family of one-dimensional spin-
1/2 chains. Due to its lower dimensionality, these models
will allow us to characterize the behavior of the entangle-
ment across the transition to chaos in a deeper fashion than
for the previous model. We shall find the same behavior for
the concurrence than before. Nevertheless, with these models
we are able to analyze its dependence on the distance in the
lattice between the partners, the range of the interaction, and
the size of the chain. Moreover, for one member of this fam-
ily of models the chaos border does not coincide with the
delocalization border. This will give us the possibility to
compare the behavior of the concurrence in a regime of weak
and hard chaos.

1. Definition of the model

We consider a system consisting on a linear chain ofL
1/2 interacting spins, subjected to a static transverse mag-
netic field salong zd and to a circularly polarized magnetic

field rotating in the sx,yd plane with frequencyn, BW std
=(B' cossnt+wd ,−B' sinsnt+wd ,Bz) f13g. In the coordinate
system, which rotates around thez axis with frequencyn, the
Hamiltonian of this system can be written as

H = −
1

2o
k=1

L

hdksk
z + Vscosw sk

x − sinw sk
ydj

+
1

2o
k=1

L−1

Jk,k+1sk
zsk+1

z , s19d

dk=vk−n, wherevk is the frequency of the precession of the
k- th spin in theBz field. V stands for the Rabi frequency
corresponding to the rotating field andJk,k+1 denotes the
strength of the Ising interaction between the spinsk and k
+1. The operatorssk are the standard Pauli operators acting
on thek- th spin. In the following, we will take for simplicity
w=p /2 and consider that the static fieldBz has a constant
gradienta along the chain such thatdk=ak. Thus, the Hamil-
tonian takes the form

H =
1

2o
k=1

L

s− dksk
z + Vsk

yd −
1

2o
k=1

L−1

Jk,k+1sk
zsk+1

z . s20d

We assume that for allk the inequalityV@dk holds. Open
boundary conditions are taken. Inf13g, this model was pro-
posed as a possible candidate for experimental realization of
quantum computation. The gradient of magnetic field pro-
vides a labeling of qubits in terms of their Larmor frequen-
cies. Thus, it allows for a way to address each qubit sepa-
rately.

It is worthwhile mentioning that, besides the different di-
mensionality, there is a more striking difference between this
and the previous model: The existence of a constant gradient
in the magnetic field gives rise to anL-independent threshold
for the onset ofsweakd chaos. Inf13g the transition to quan-
tum chaos and its implications to quantum computation were
explored. Here we want to discuss the behavior of entangle-
ment in this model.

In order to apply the approach discussed in Sec. III it is
convenient to represent Hamiltonians20d in the basis in
which it is diagonal for noninteracting spins. In this so-called
effective field representation, the one-body unperturbed
HamiltonianH0 takes the form

H0 =
1

2o
k=1

L

Îdk
2 + V2sk

z s21d

and the interaction HamiltonianV can be written asV
=Vdiag+Vband+Voff, where

Vdiag= −
1

2o
k=1

L−1

Jk,k+1bkbk+1sk
zsk+1

z ,

Vband= −
1

2o
k=1

L−1

Jk,k+1akak+1sk
ysk+1

y ,

Voff =
1

2o
k=1

L−1

Jk,k+1sakbk+1sk
ysk+1

z + ak+1bksk
zsk+1

y d, s22d

with

ak =
V

Îdk
2 + V2

, bk =
− dk

Îdk
2 + V2

. s23d

As before, the quantitiesJk,k+1 stand for the Ising interactions
between nearest-neighbor spins. In what follows, we will
consider the interactions to be completely random—i.e.,
Jk,k+1=Jj, wherej is a random number uniformly distributed
in the intervalf−1,1g. This model is known as the NN model
from its nearest-neighbor character.

As in the two-dimensional models18d, for the unper-
turbedsJ=0d case the spectrum possesses a band structure.
Each band is characterized by a constant numbern of qubits
in the stateu0l and L−n qubits in the stateu1l. When L is
even, a central bandsaround zerod exists. It consists of the
many-qubit states withL /2 spins “up” and L /2 spins
“down.” The number of these states is given by
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Nb =
L!

sL/2d!sL/2d!
. s24d

As discussed at the end of previous section, we will only
consider the energy levels and energy eigenstates corre-
sponding to the central band of the spectrum.

When J.0 the potential termV mixes the states inside
each band and among different bands: In the basis ofH0,
Vdiag is diagonal. Instead,Vband couples states which are ei-
ther in the same band or in next-nearest bands.Voff couples
states which are in nearest-neighbor bands. The mixing of
energy bands triggers the transition to chaos. For a relatively
weak interaction the eigenstatessin the basis ofH0d are lo-
calized, while for stronger interaction the number of compo-
nents significantly different from zero increases. The transi-
tion from strongly localized to extended states occurs very
fast with the increase of the interaction and sets in when the
strength of the typical interaction is of the order of the mean
level spacing between directly coupled many-body states
f14g. In f13g the value for the delocalization border was
found to beJc<4a2/V.

However, as it was shown inf13g, the NN model is pecu-
liar in the following sense: The delocalization border does
not coincide with the chaos border. Increasing the strength of
the interactionJ, the system goes from a regular regime to a
weak chaosregime where the eigenfunctions are delocalized
but the level statistics is not yet described by random matrix
theory. If the interaction is further increased, the bands over-
lap and the system enters a regime ofstrong chaos. This
peculiarity is removed if the range of the interaction is larger
than nearest neighbor.

Here we will consider a range of the interactionlc from 1
sfor the NN modeld up toL−1. The interaction termV keeps
the same structure as in Eq.s22d but the different terms are
now

Vdiag= −
1

2o
j=1

L−1

o
k=j+1

j+lcøL

Jjkbjbks j
zsk

z,

Vband= −
1

2o
j=1

L−1

o
k=j+1

j+lcøL

Jjkajaks j
ysk

y,

Voff =
1

2o
j=1

L−1

o
k=j+1

j+lcøL

Jjksajbks j
ysk

z + akbjs j
zsk

yd. s25d

For lc=L−1 this model is known as the AAsall to alld model
as in this case all qubits are allowed to interact with each
others. In contrast with the NN modelslc=1d, if lc.1, the
chaos border occurs at the same valueJcr<4a2/V as the
delocalization borderf13g.

2. Onset of quantum chaos

In Fig. 5 the nearest level spacing distribution is shown
for the AA model for a chain of 12 qubits. ThePssd distri-
bution was obtained from the energy levels contained in the
central band and averaged over ten different random realiza-
tions. In panelsad, the case of a weak interactionsJ/Jc

=0.35d is shown. It is in good agreement with the Poisson
distributionssolid lined, as expected in the integrable regime.
In contrast, panelsbd shows the situation corresponding to
strong couplingsJ/Jc=15d in which thePssd distribution fol-
lows the Wigner surmise expected for a chaotic system with
GOE statistics. In panelsbd, the level repulsion effect is evi-
dent. Thus, when the interaction strengthJ.Jc, the spectral
level statistics changes from Poisson to GOE, showing that a
transition to quantum chaos is happening.

Simultaneously, a localization-delocalization transition
occurs for the eigenstates in the central band. This transition
takes place for any value oflc. However, for the NN model,
the PN does saturate at a value which is lower thanNb/3
corresponding to the case of Gaussian fluctuations. In Fig. 6,
the PN is shown for the AA model for a chain composed of
12 qubits. The PNssquaresd is averaged over all the eigen-
states in the central band and over 30 different random real-
izations. For weak interactions, the eigenstates are effec-
tively localizedsj<1d. The PN increases monotonously with
the interaction until it reaches the valueNb/3=308 slower
dashed lined. A complete mixing of different bands occurs for
much stronger interactionssJ/Jc<1000d. This is seen in Fig.
6, wherej increases again and reaches its upper bound value
correspondingN/3—namely, to one-third of the dimension
of the whole Hilbert space, as expected from RMT.

The model of Eq.s25d shows a clear transition to quantum
chaos in which both energy levels and eigenstates change
their character. Now we turn our attention to the behavior of
quantum entanglement.

3. The concurrence: Sharing of entanglement

We have calculated the mean concurrence averaged over
all the eigenstates in the central band as a function of the
strengthJ of the interaction. In Fig. 7 the mean concurrence
is shown for the model of Eq.s25d for a chain of L

FIG. 5. Nearest-neighbor level spacing distributionPssd for the
AA model slc=L−1d of Eq. s25d for a chain of 12 qubits andsad
J/Jc=0.35 andsbd J/Jc=15, calculated from the energy levels in
the central band of the spectrum and averaged over ten random
realizations. The solid lines correspond to the Poissonsad and
Wigner surmisesbd theoretical distributions.
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=10 qubits, with an interaction that couplesL /2 neighbor
qubits—i.e.,lc=5. The diamond symbols correspond to the
mean concurrenceC1 between nearest-neighbor qubits. As it
was discussed in Sec. III C, we observe thatC1 is close to
zero in both extremes of chaos and integrability. Moreover,
similarly to what we have observed for the two-dimensional
model s18d, in between the integrable and chaotic extremes
the concurrence increases and its maximum value is close to
the value for the chaos border. Despite the fact that we have
observed this behavior of concurrence for just two different

models we conjecture that it is generic for transitions to
chaos. In Fig. 7 the mean concurrence averaged over all qu-
bits at further distances,C2 sright-trianglesd, C3 scirclesd, C4
ssquaresd, andC5 sup-trianglesd, is also shown. The behavior
of C1 and C2 is similar to that observed for the two-
dimensional model. We see that the concurrenceCn de-
creases with distancen, except for weak interactions for
which C2.C1. This latter is a peculiarity of this model. It is
interesting to notice that the coupling strengthJmaxsnd at
which the concurrenceCn takes its maximum value does not
change significantly withn.

Let us now consider the following question: for a given
distancen, how doesCn varies if the range of the interaction
increases? In Fig. 8 the mean concurrenceC3 is plotted for
different rangeslc of the interaction:lc=1 sdiamondsd, lc=2
strianglesd, andlc=3 scirclesd. To this purpose, we computed
C3 for all the eigenfunctions in the central band of the spec-
trum of a chain of sizeL=10 and averaged over 30 different
random realizations. From Fig. 8 we observe that as the
range of the interaction increases the mean concurrenceC3
decreases. The same conclusions were also obtained for the
behaviorCn with nÞ3 sdata not shownd. This fact can be
understood from the pairwise character of the concurrence.
Since the amount of entanglement between one definite qubit
and the rest of the system is bounded, this finite amount of
entanglement has to be shared between all possible partners.
When the range of the interaction is enlarged, it becomes
easier for each qubit to become entangled with more qubits
in the chain. As a result the pairwise entanglement between
one single qubit and the rest of the chain is shared among
more partners. Therefore, the average entanglement shared
between two qubits decreases. This argument is valid if a
change in the range of the interaction does not significantly
change the total amount of bipartite entanglement that is
shared between a single qubit and the rest of the chain.

Finally, we have studied the behavior of the concurrence
as a function of the size of the system. In Fig. 9 the mean

FIG. 6. Participation numberj as a function of the coupling
parameterJ for the AA model of Eq.s25d, for a chain of sizeL
=12. The PN is averaged over all eigenfunctions in the central band
of the spectrum and over ten random realizations. The dashed hori-
zontal lines correspond toNb/3 andN/3 whereN=2L is the dimen-
sion of the Hilbert space.

FIG. 7. Concurrence as a function of the coupling parameterJ
for the model of Eq.s25d with interaction rangelc=5 for a chain of
ten qubits. For each eigenfunctionCn was obtained as the average
concurrence between all possible pairs of qubits separated by a
distancen: n=1 for nearest-neighbors pairssdiamondsd, n=2 for
next-nearest-neighbors pairssright trianglesd, n=3 scirclesd, n=4
ssquaresd, andn=5 sup trianglesd. The plotted values correspond to
Cn averaged over all the eigenstates of the central band and over 30
random realizations.

FIG. 8. Mean concurrenceC3 between qubits at a distancen
=3, averaged over all the eigenfunctions in the central band of the
spectrum and over 30 random realizations. The mean concurrence is
plotted as a function of the coupling parameterJ for the model of
Eq. s25d in a chain of ten qubits. We compareC3 for different range
of the interaction: The NN model corresponding tolc=1 sdia-
mondsd, lc=2 strianglesd, and lc=3 scirclesd.
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concurrenceCa obtained from all possible pairs of qubits is
shown for the AA model for different sizes of the chain:L
=6 sdiamondsd, L=8 strianglesd, L=10 scirclesd, andL=12
ssquaresd. In this case, instead of measuring the concurrence
Cn for some value ofn, we have measured the concurrence
Ca as the mean concurrence between all possible pairs of
qubits in the chain. This is because, for the AA model, the
concept of distance turns out to be meaningless, since the
strength of the interaction between two qubits does not de-
pend on their distance. The behavior ofCa as a function of
the size of the system can be well understood in terms of the
same argument used to explain Fig. 8. When the system size
is increased, the number of possible partners with which a
given qubit can be entangled also increases. Therefore, the
pairwise entanglement decreases, in agreement with the data
of Fig. 9. We note that, for small system sizessL=6,8d, the
concurrenceCa does not go to zero at the chaotic side of the
transition. This finite-size effect disappears already forL
=10,12. Similar results were obtained for the other models
with different ranges of the interaction.

The results presented in this section show that the concur-
rence maximizes for values ofJ which are close to those at
which the transition to chaos occurs. As discussed in the
previous section, the same behavior for the maximum of
concurrence has also been observed for quantum phase tran-
sitions occurring in integrable modelsssee, e.g.,f21,22g for a
study on the Ising chaind. However, as can be seen in Fig. 8
for the transition to chaos, the concurrence approaches zero
when the size of the system increases, in contrast to what is
observed in QPT’sf21g, whereCn→0 for all n.1 but re-
mains finite forn=1. In these studies a critical scaling for the
derivative of the concurrence was obtained. On the one hand,
the fact that for the onset of quantum chaos the concurrence
diminishes when the system approaches the thermodynamic
limit makes a finite-size scaling analysis rather difficult, as
numerical errors become soon of the same order of the mea-

sure itself. On the other hand, it is not clear whether the
transition to chaos in the models we have considered be-
comes sharp at the thermodynamic limit. This means that to
prove the existence of a critical point for the transition re-
mains an open problem. In order words, we lack a critical
point at which to perform a scaling analysis. We have nev-
ertheless analyzed the dependence of dC/dJ on the system
size without having found any clear indication of a scaling
behaviorsdata not shownd.

It is interesting to study the different character of mixed
pairwise entanglement in the integrable and chaotic sides of
the transition. In Sec. III C, we gave simple arguments that
explain the different structure of the reduced density matrixr̃
for a mixed bipartite state in the regimes of integrability and
chaos. In the integrable region, due to the localized nature of
the eigenstates,r̃ is essentially diagonal with only one matrix
element significantly different from zero. On the other hand,
in the chaotic region,r̃ is almost diagonal with matrix ele-
ments of comparable magnitude along the diagonal. Both
cases give a very smallsor zerod concurrence. However,
while in the integrable case this is due to the fact that the
two-qubit subsystem under investigation is essentially in a
separable pure state, in the chaotic case the pairwise en-
tanglement is zero due to the random structure of the eigen-
functions of the wholeL-spin system. As a consequence, the
two-qubit reduced density matrix is essentially diagonal.
Therefore, in the chaotic regime, the interaction with the rest
of the system mimics a decoherence process for the two-
qubit subsystem.

The different origin of the very small value of concur-
rence is illustrated by the distribution of thecl’s fwe remind
the reader that the concurrence is defined as the maximum
betweencl and 0; see Eq.s5dg. In Fig. 10, the probability
distribution Pscld is shown insad the integrable regime and
sbd the chaotic regime, for the AA model and a chain of size
L=12. Clearly, in both cases the probability to findcl.0 is
very small. Therefore, the concurrence is very small in both

FIG. 9. Mean concurrence averaged over all possible pairs of
qubits for all the eigenstates in the central band of the spectrum and
over 30 random realizations for the AA model of Eq.s25d slc=L
−1d as a function of the coupling parameterJ and for different sizes
of the chain of qubits:L=6 sdiamondsd, L=8 strianglesd, L=10
scirclesd, andL=12 ssquaresd.

FIG. 10. Normalized distributionPscld of the quantitycl=l1

−l2−l3−l4 of Eq. s5d for the AA model, Eq.s25d, with L=12 and
coupling:sad J/Jc=0.01 andsbd J/Jc=100.0. In the inset the behav-
ior of the first moment of the distributionkcll is shown as a func-
tion of the coupling parameterJ.
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cases. However, the distributionsPscld are quite different.
We note that numerical results about the distributionPscld in
a different model of quantum chaos where presented inf35g.
In the Inset of Fig. 10, one can see that the first moment of
Pscld changes across the chaos border. It is an interesting
open problem to obtain an analytical form ofPscld for inte-
grable and chaotic situations. The possibility to use this dis-
tribution to mark the transition to chaos also deserves more
investigation.

4. von Neumann entropy

We now turn our attention to the behavior of bipartite
entanglement measured in terms of the von Neumann en-
tropy. First we consider the mean von Neumann entropyS1
of each qubit with the rest of the qubits in the chain. For this
purpose, we divide the system in two parties: one consists of
just one qubit and the other contains the remainingL−1
qubits. Then, following Eq.s1d, we computeS1 from the 2
32 reduced density matrix of the one qubit subsystem. In
Fig. 11 the behavior ofS1 across the transition to chaos is
shown for the AA model and for different sizes of the sys-
tem, fromL=6 to L=12. We find that the bipartite entangle-
mentS1 shows the same behavior independently of the size
of the system. The state of the system changes from sepa-
rable to maximally entangled as the transition to chaos oc-
curs. In all cases, the entropy saturates to its maximum value
S1=1, up to corrections of order 1/2L f53g. As discussed in
Sec. II, these results show that there exists a global entangle-
ment of each single qubit with the rest of the system and that
this entanglement increases with the interaction. The maxi-
mum value of bipartite entanglement is obtained when quan-
tum chaos has set in.

We have obtained similar results for the bipartite en-
tanglement when the two blocks in which the system is par-

titioned have different lengths. As an example we show in
Fig. 12 the von Neumann entropySn between a block of size
n and the rest of the systemsof size L−nd from n=1 sbot-
tomd to n=5 stopd for the AA model and a chain of sizeL
=12. Similarly to theS1 case,Sn increases when the transi-
tion to chaos occurs and saturates toSn<n for large interac-
tion strength. Hence, the state of the system becomes maxi-
mally entangled when chaos sets in. This is a direct
consequence of the existence of multipartite entanglement.
Moreover, in the inset of Fig. 12, we have plotted the satu-
ration value ofSn for J/Jc=15 as a function of the size of
subsystemsn. This shows that in the chaotic regime the bi-
partite entanglement scales linearly with the size of the
smallest of the two blocks in which the global system has
been partitioned:Sn~n.

It is interesting to study the von Neumann entropy as a
function of the system sizeL, when the two blocks in which
the system is partitioned have a size~L. We have computed
the bipartite entanglementSL/2 corresponding to the case in
which the system is partitioned in two halves. A value of
SL/2.0 for anyL is indicative of the existence of multipar-
tite entanglement. The obtained behavior ofSL/2 as a function
of the strength of the interaction is shown in Fig. 13, for
different system sizes. The behavior ofSL/2 is similar to that
shown byS1. It takes very small values in the integrable
regime and then increases with the interaction up to a value
for which it saturates. The saturation value is<L /2 fup to
corrections ofOs1d f53gg. In the inset of Fig. 13, we plot the
value ofSL/2 for J/Jc=15 si.e., in the chaotic regime in which
the eigenstates in the central band are effectively mixedd as a
function of the sizeL of the system. It is interesting to note
that the von Neumann entropy does feel the mixing of dif-
ferent spectral bands occurring for a very strong interaction
sJ/Jc,1000d. The interband mixingscompare with Fig. 6

FIG. 11. von Neumann entropyS1 between one qubit and the
rest of the system;S1 is averaged over all qubits and over all eigen-
states in the central band of the spectrum and over 30 random
realizations for the AA model of Eq.s25d as a function of the
coupling parameterJ and for different sizes of the chain of qubits:
L=6 sdiamondsd, L=8 strianglesd, L=10 scirclesd, and L=12
ssquaresd.

FIG. 12. von Neumann entropySn between left and right blocks
of sizesn and L−n qubits, respectively, averaged over all eigen-
functions in the central band of the spectrum and over ten random
realizations. The data correspond to the AA model of Eq.s25d for a
chain of sizeL=12. From bottom to top, the different curves are
from n=1 to n=5. In the insetSnsJ/Jc=15d is plotted as a function
of n. The dashed line corresponds to a linear fit with a slope of
0.93±0.02.
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for L=10d produces a increase in the von Neumann entropy
which nevertheless is small compared to that observed for
the onset of chaos. This is in contrast with the pairwise mea-
sures such as the concurrence, for which we did not observed
any change.

In addition, for any given value ofJ when chaos has set
in, the bipartite entanglement scales linearly with the size of
the system. It is interesting to comment this result from the
viewpoint of computational complexity. It was shown inf55g
that large entanglement of the quantum computer hardware is
a necessary condition for exponential speedupswith respect
to classical computationd in quantum computation operating
on pure states. To be more precise, a necessary condition for
an exponential speed-up is that the amount of entanglement
increases greater than logarithmically with the sizeL of the
computation. This condition is fulfilled in the chaotic regime
where SL/2~ sL /2d. We remark that, differently from prob-
lems like exact coverf56g, this is not limited to the transition
region but extends to the whole chaotic regime. We also note
that the relation between entanglement and computational
complexity in quantum algorithms simulating quantum chaos
has been investigated in Ref.f57g.

C. Weak and hard chaos

In this section, we discuss the behavior of quantum en-
tanglement in situations of weak and hard chaos. As it was
discussed, the NN model of Eq.s22d, while similar in char-
acter to the model of Eq.s25d with lc.1, shows a quite
unexpected peculiarity: The chaos border does not coincide
with the delocalization border. Thus, when the strength of the
interaction is increased, the NN model experiences a transi-
tion from integrability to a situation of weak chaos in which
the eigenfunctions are delocalized while the level statistics is
yet of Poissonian nature. This results from the fact that the

NN Hamiltonian can be approximately mapped into a model
of L free fermions as discussed inf54g. However, this non-
generic situation is removed if longer ranges of the interac-
tion are considered. This gives us the possibility to compare
the behavior of entanglement in situations of weak and hard
chaos.

We have calculated the nearest-neighbor concurrenceC1
for the NN model and for a long-range interaction model
with lc=L /2. In Fig. 14 we present our results. In panelssad
and scd the g parameter and the PNj are shown, respec-
tively. We can clearly see the peculiar behavior of the NN
model. For both NN sopen circlesd and lc=L /2 ssolid
squaresd models the PN behaves in a similar way. For the NN
model the PN signals a clear transition from localized to
delocalized eigenstates, even thought it does not saturates at
the value corresponding to Gaussian fluctuations. In particu-
lar, the delocalization borders of both models coincide. Nev-
ertheless, theg parameter shows a very different behavior.
For interaction strengths 0.2øJ/Jcø1 the level statistics pa-
rameterg for both models takes the valueg<1. This corre-
sponds to the integrable case in which the nearest-neighbor
spacing distribution is Poissonian. However, for the NN
model,g remains Poissonian for larger values of the interac-
tion up to J/Jc<100. This is the situation that has been
termed as weak chaos. In contrast, for thelc=L /2 model the
level statistics changes from Poissoniansg=1d, to GOE sg
=0d, aroundJ/Jc=1. Thus, for thelc=L /2 model the chaos
border coincides with the delocalization border as it is com-
monly found in many-particle systems with two-body inter-
action.

In panelsbd the corresponding results for the concurrence
C1 are shown. We observe again the difference inC1 due to
the range of the interaction, as discussed in the previous
subsection. Despite this difference,C1 shows a similar be-

FIG. 13. von Neumann entropySL/2 as a function of the strength
of the interactionJ, averaged over all eigenfunctions in the central
band of the spectrum and over ten random realizations. The data
correspond to the AA model of Eq.s25d for a chain of sizesL=6
sdiamondsd, L=8 strianglesd, L=10 scirclesd, and L=12 ssquaresd.
In the insetSL/2sJ/Jc=15d is plotted as a function ofL. The dashed
line corresponds to a linear fit with a slope of 0.52±0.02.

FIG. 14. Comparison between the NN model Eq.s22d sopen
circlesd and the model of Eq.s25d with lc=L /2 ssolid squaresd, for
a chain of qubits of lengthL=10. From top to bottom, the three
panels show, as a function of the coupling parameterJ; the behavior
of the spectral statistics parameterg stop paneld, the mean concur-
renceC1 between nearest-neighbor pairs of qubitssmiddle paneld,
and the participation numberj sbottom paneld. All quantities were
calculated in the central band of the spectrum and averaged over 30
random realizations.
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havior for both models: It is small at both sides of the tran-
sition and increases in between, having its maximum value
close toJ/Jc=1. This numerical results suggest that the be-
havior of the pairwise entanglement is more sensitive to the
mixing of the eigenstates than to the onset of quantum chaos.

V. FINAL REMARKS

We have studied the bipartite and pairwise entanglement
in one- and two-dimensional spin lattice models that experi-
ence a transition to quantum chaos.

To study the presence of multipartite entanglement, we
have analyzed the behavior of the averaged von Neumann
entropy for subsystems of different sizes. In particular, we
have shown that, for a partition of the system into two equal-
size subsystems, this quantity grows linearly with the system
size in the chaotic regime. This shows that the classical
simulation method discussed inf55g cannot be used to effi-
ciently simulate the quantum chaos regime on a classical
computer.

For the case of pairwise entanglement, we have studied
the dependence of the concurrence on the distance between
the partners, the range of the interaction, and the size of the
system. Our results suggest that for a typical many-qubit

state, the entanglement is mainly multipartite rather than
pairwise.

We have also discussed the different character that the
pairwise entanglement has at the integrable and the chaotic
side of the transition in terms of a suitable distribution of the
eigenvalues of the two-spin reduced density matrix. The use
of the moments of this distribution to mark the transition to
quantum chaos remains and interesting open question.

Finally, we have discussed the similarities and differences
between the behavior of the concurrence at a quantum phase
transition and at the onset of quantum chaos. Our results
show that the maximal concurrence is obtained close to the
delocalization border for which mixing of the noninteracting
eigenfunctions takes place and not necessarily related to the
onset of quantum chaos.
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