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We study the relation between entanglement and quantum chaos in one- and two-dimensional spin-1/2
lattice models, which exhibit mixing of the noninteracting eigenfunctions and transition from integrability to
guantum chaos. Contrary to what occurs in a quantum phase transition, the onset of quantum chaos is not a
property of the ground state but takes place for any typical many-spin quantum state. We study bipartite and
pairwise entanglement measures—namely, the reduced von Neumann entropy and the concurrence—and dis-
cuss quantum entanglement sharing. Our results suggest that the behavior of the entanglement is related to the
mixing of the eigenfunctions rather than to the transition to chaos.
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[. INTRODUCTION like small inaccuracies in the coupling constants induce er-

) . _rors. Above a certain imperfection strength threshaluaos

~ Quantum entanglement has been identified as a key ingr¢prden, quantum chaos sets [10-13. In such a regime,
dient in quantum communication and information processexponentially many states of the computational basis are
ing. The content of entanglement in a particular system isnixed after a chaotic time scale. This sets an upper time limit
considered as a resource to perform several tasks in a mote the stability of a generic superposition of states coded in
efficient and more secure way than any other classicathe quantum computer wave function. A necessary require-
method[1,2]. For instance, quantum teleportation protocolsment for quantum computer operability and fault tolerant
require one to share a maximally entangled state between tle@mputation schemes is the possibility to operate many

sender and receiver. In the field of quantum computation, iffluantum gates inside the chaotic time scale.

has been found that for the case of quantum algorithms op- For the case of many-body systems, the transition to

erating on pure states, the presence of multipartite entangl€haos has been studied for fermions and bogses, e.g.,

ment between the components constituting a quantum prd14] and references thergiand particularly for lattice spin

cessor is a necessary condition to achieve an exponenti@yStems[15]. In fermionic systems with two-body interac-
speed-up over classical computatia. tions it has been found that, if the interaction strength ex-

On the other hand, for the operability and stability of anyceeds some critical value, a fast transition to chaos occurs in

quantum computer, entanglement can also play the role J‘Pe Hilbert Space of many-partlcle_ _sta1[a§]. This is com-
the property to be minimized. The unavoidable entanglemer{ponly studied in terms of the transition between the different

between the quantum processor and the environment is Oigectral statistics of integrable and chaotic systems. For sys-

of the most important sources of noise and. therefore. ofeMS with a finite size, this transition is smooth and only a
P ' ' _“crossover border where the transition occurs can be identi-

computational errors. The understanding and control of noisg. The question whether this smooth transition becomes

|n|th|)?ntum protocols are (_:Iifrg nEeeded rt]o implement anyp a1 'in the thermodynamic limit is still under debate. How-
reliable quantum computatid@—9]. Even when a quantum o6\ "in some cases a sharp transition to chaos is found, e.g.,

processor is ideally isolated from the environment—i.e., N the three-dimensional Anderson modiT].

situations where the decoherence time of the processor IS | 4 gifferent context, the behavior of quantum entangle-

very large as compared to the computatlpnal time SCales_ment across a quantum phase transition has recently attracted
the operability of the quantum computer is not yet guarany, ,op aitention. Quantum phase transitié@PT's consist

hind he imol . ‘ : n a gualitative change of the ground state of the system as
Inders the implementation of any quantum computation. .'A§ome control parameter is varigt8]. Unlike classical phase

quantgm computer is a q“?‘”t“m man_y—body system. The 'ﬂ'ransitions, QPT's occur at zero temperature and the fluctua-
teraction between the .qu'tS composing the quantum regig;, g developed at the critical point are fully quantum. These
ters of the computer is needed to produce the necessagy, . ations dominate the behavior of the system near the
amount of entanglement. Moreover, device imperfectiong,jsica| point, where correlations are long range in character.

It has been recently pointed out that the genuine quantum
character of quantum phase transitions is due to entangle-
*Electronic address: carlos.mejia@uninsubria.it; URL http://ment[19]. It has also been argued that the ground state of the

scienze-como.uninsubria.it‘complexcomo system is strongly entangled at the critical poja®,2Q.
"Electronic address: giuliano.benenti@uninsubria.it Therefore, the behavior of entanglement across QPT'’s is par-
*Electronic address: gabriel.carlo@uninsubria.it ticularly interesting for quantum computation and communi-
SElectronic address: giulio.casati@uninsubria.it cation, where a maximization of the content of entanglement
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is desirable. The study of the relation between QPT’s and A. von Neumann entropy
entanglement has been focused on the possible universal be-p .o bipartite entanglement is measured in terms of the

havior of the entanglement content at the transif@h-29. reduced von Neumann entrofy For a pure state the reduc-

In this context, ?t ha_s been sho_vvn 'that in different modeliion of its density matrixp=|y)(y] is obtained through partial
systems quantities like the derivative of the CONCUITeNCE 4o of one the two partitions as =trgp or, equivalently.
[21,22 and von Neumann entropy24,30 present critical =trap. Then,Sis defined as B ’

behavior at the transition. The dependence of entanglemeﬁ{3
on disorder and its interplay with chaos has also been studied S=S =S =-trg(pglog pp). (1)

[31-33. Moreover, the evolution of entanglement in quan—_l_h N ; i bi
tum algorithms simulating quantum chaos has been recentlg/ € von Neumann entropy provides an unambiguous mea-

investigated 34-37. ure of entanglement for a bipartit(_a system in an overall pure
The aim of this paper is to characterize the behavior oftate. For a separable st&e0 Wh”e? for a maX|m.aIIy en-
quantum entanglement inonintegrable systems when a tan-gled stateS:IogM where N'=min(N, Ne), W't_h Na
transition to quantum chaos occurs. We are interested in urz iM(Fa) and Ng=dim(Hg). In what follows we will take
derstanding how the entanglement content behaves in trandl€ logarithm in Eq(1) base 2. Thus, for a many-qubit sys-
tions from integrability to chaos. We would like to stress €M, the maximum value that the von Neumann entropy can
that, differently from the previous studies of QPTZL—29, take is equal to t.he number of qublt.s that have not been
the transition to chaos is not only a property of the groundraced out to obtain the reduced density matrix.
state but takes place for any typical many-body state. We
numerically study two lattice models of interacting many
spins that show a transition to chaos. They have previously
been studied as models of quantum computer hardware For the case of mixed states, the von Neumann entropy is
[10-13. In both models, the transition to chaos is driven byno longer a good measure of entanglement. If we consider a
the strength of the interaction between the spins. We considdipartite system on an overall mixed state, then each sub-
bipartite and pairwise entanglement measures and focus d¢iystem can have nonzero entropy even if there is not any
the relation between the entanglement and the onset éntanglemen{38]. In order to measure the bipartite en-
chaos. We focus our study on the eigenstates correspondifignglement of a mixed state we shall consider the so-called
to the center of the spectrum, where the many-body densitgntanglement of formatiorkr [39]. Starting from a mixed
of states is larger and therefore quantum chaos sets in &fate with density matriy=Xp;|¢ )¢, Ex(p) is defined as
small interaction strengths. Nevertheless, also the behavidhe average entanglement of the pure states of a given de-
of the other parts of the spectrum is discussed. We use exadgtomposition of the mixed stajg minimized over all its pos-
diagonalization techniques to obtain all the eigenstates of theible decompositions:
considered spin models. Therefore, we are limited to con- )
sider relatively small system sizes, from which the study of Er(p) = min E PiE( ). (2)
any possible finite-size scaling for the behavior of the en- Pt
tanglement at the chaos border is out of reach. Neverthelessiere E(|)) is the amount of entanglement of the pure state

we discuss, at a qualitative level, the similarities and differ- ¢i>, measured’ as discussed in the previous SubsectiorL by
ences between the behavior of entanglement across a QRHe reduced von Neumann entropy.

and at the onset of quantum chaos. We show that the depen- Equation(2) is operationally difficult to handle, since it

dence of pairwise entanglement on the size, distance, angyolves an extremal condition. However, for the case of
range of the interactions can be understood in terms of thgyo-qubit systemsEg can be expressed in terms of a much

sharing of entanglement among the different parties of thenore amenable quantity, the so-called concurre@dg0].
system. Furthermore, we demonstrate that the behavior qfe have

entanglement is related to the mixing of noninteracting 1
eigenfunctions rather than to the transition to chaos. _ T~

gThis paper is organized as follows. In Sec. Il we review Brlp) = h(§[1 *V1-Clp) ]>’ 3
the measures of entanglement that we will use. The measures i i i ,
that signal the onset of quantum chaos are reviewed in Sef¥nereh(x) is the so-called binary entropy function defined
[ll. In Sec. IV we define the spin lattice models investigatedby
in this paper and discuss numerical results on their entangle-

B. Concurrence and entanglement of formation

h(x) = =xlog, x— (1 —=x)log,(1 = Xx). 4

ment content and their transition to chaos. In Sec. V we t 9o X~ ( Jlogy( ) @)

present our final remarks. The concurrenc€(p) of the two-qubit state is defined as
Il. MEASURES OF ENTANGLEMENT C(p) = max{O,cx}, (5)

A pure state|y) is said to be separable if for a given Wherec,=\;—\,—\3—\y4, the{\;} being the square roots of
partition of its Hilbert spacé{="H,® Hg it can be written as  the eigenvalues of the matrix(o, ® Uy)p*(oy® ay), in de-
|yy=|ay® |b). Here|a) and |b) are vectors residing in the creasing order, and, a Pauli matrix. Note that in this defi-
Hilbert subspace${, and Hg, respectively. The pure state nition the complex conjugation is taken in the computational
|y is entangled if it is not separable. basis{|00), |01), |10), |11)}, where|0) and|1) are the eigen-
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states ofo,. From Eq.(3) we see thaEg depends monoto- words, whenvV=0 the existence of as many integrals of mo-

nously on the concurrence, which takes values between 0 fdion as degrees of freedom is assumed. We will take the
separable states and 1 for maximally entangled states. Moremperturbed eigenstates of the noninteracting Hamiltonian
over, it is easy to see thaj take values if—-1/2,1]. Thus, H, to span the many-particle Hilbert space. In this basis,
it is clear from Eq.(5) that a state is separabledf<0 and  when the interaction is turned on, the eigenstates start to mix.
entangled otherwise. The mixing can be described, for small interaction strengths,

Other measures for pairwise entanglement exist. Amondpy perturbation theory. However, perturbation theory breaks
them we mention the entanglement of distillatiptl], the  down and quantum chaos sets in when the typical interaction
negativity[42], and the relative entrogy3]. All these quan- matrix element between directly coupled states becomes of
tities are related in one way or another to the concurrencghe order of their energy separatiph6] (we say that two
Therefore, we have chosen to present our results in terms ofiany-body statesy;) and |¢,) are directly connected if
the concurrence. Nevertheless, we mention that we have al€g:|V|#») # 0). The transition to chaos reflects in the statisti-
measured the negativity and found that it essentially givegal properties of the spectrum.
the same results as the concurrence.

Finally, for the case of multipartite entanglement the prob-
lem is much more subtle. Different measures of multipartite
entanglement have been proposed, giving different results, The nearest-neighbor level spacing distributiis) is the
even qualitatively[44]. Given the state of affairs, we will Pprobability density to find two adjacent levels at a distasice
limit ourselves to discuss the existence of multipartite en- For an integrable system the distributiés) has typi-
tanglement in terms of the qualitative information that can becally a Poisson distribution
extracted by comparing the averaged von Neumann entropy

A. Nearest-neighbor level spacing distribution

for subsystems of different sizes. Pp(s) = exp(-s). (@)
In contrast, in the quantum chaos regime, for Hamilto-
IIl. TRANSITION TO QUANTUM CHAOS nians obeying time-reversal invariance, the nearest-neighbor

spacing distribution corresponds to the Gaussian orthogonal
Random matrix theoryRMT) was introduced to describe ensemble(GOE) of random matrices. This distribution is
the spectral properties of complex heavy nuclei. The key ideaell approximated by the Wigner surmise, which reads
behind RMT is to replace the full physical description of the

Hamiltonian by a suitable statistical representative of its Pup(S) = lsex % 7732) ®)
1)

symmetry groud45]. The statistical spectral fluctuations of 2
almost any complex Hamiltonian were found to be descrlbegﬁote that the GOE distribution exhibits the so-called “level
rr?pulsion"; i.e., the probability to find close energy levels is

by a few classes of random matrix ensembles. This approa

n ver ful. The RMT analysis h . .
turned out to be very successfu e analysis has beevery small. This is in contrast to what is observed for inte-

applied to many fields of physics such as nuclei, atoms, mol rable systems which exhibit level clustering. An example of

ecules, quantum dots, quantum billiards, and many-body sys . . A . . L
tems among otherd4.15,46—48 In the early 1980s it was oisson and Wigner distributions is provided in Fig. 5, be-

conjectured that the quantum versions of integrable and chéc—)"\ll'n Eqgs.(7) and (8) the level spacing is given in units of
otic classical systems were described by different classes %f]e me?;m. level spacing that Wé’ havgsetgto 1
random ensembld$0,51]. Since then, RMT has been suc- P :

: : . The transition to quantum chaos may be detected by the
cessfully applied to describe the emergence of quantum sig- . : -
natures of chaos. S%:hange of the nearest-neighbor spacing distributiR{s)

The global manifestation of the onset of chaos in quantunﬁror_n P_O'SSOH to GOE. .".1 ord_er_ to obtain a more quantitative
systems consists of a very complex structure of the quantuﬁ'i‘d'cat'on of this transition, it is useful to compute the pa-
states as well as in spectral fluctuations that are statis;ticallgfa‘meter
described by RMT45]. Let us focus on many-particle sys- So
tems with two-body interaction as this is the nature of the f [P(s) — Pyp(s)]ds
model systems that we study in this paper. For this kind of y= 0

9)

systems it has been found that, under very general condi- Y '

tions, if the interaction strength exceeds some critical value, f [Pr(s) = Pwp(s)]ds

a fast transition to chaos occurs in the Hilbert space of many- 0

particle states. wheres,=~0.4729 corresponds to the lowestalue at which

To be more precise let us consider a generic perturbethe PoissofiEq. (7)] and Wignel{Eq. (8)] curves cross. This
quantum many-body system. The Hamiltonian can be spliparameter takes values 1 and 0 for the Poisson and Wigner
into two parts: distributions, respectively.

_ The distributionP(s) describes the behavior of the fluc-
H=Ho+V, (6) tuations at energy scales of the ordedofTherefore P(s) is
where H, corresponds to the unperturbed original Hamil- a short-range correlation. The effects of the onset of quantum
tonian and the perturbatioW to an interacting term. The chaos are also seen in higher moments of the distribution of
unperturbed Hamiltoniahl, is assumed integrable. In other energy levels. However, we will limit ourselves to the analy-
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sis of P(s) as a spectral signature of the transition to quantuniHamiltonian H, the eigenfunctions are localized—i.e,
chaos. ~ &, for somen* e[1,N]. Therefore, the density matrix
will have all entries nearly equal to zero, except for the di-
agonal matrix elemeni,«=|c+«[>~ 1. At the other extreme
of strong interaction, in which quantum chaos has set in, the
The effects of the onset of chaos can also be observed igigenfunctions are fully extended. In this situation the eigen-
the eigenfunctions. The transition reflects in the degree oftates can be considered as random states with uniformly
mixing of the eigenfunctions of the system. However, thedistributed components with amplitudes~ 1/\“W and ran-
eigenfunction-based measures are more subtle. This is bgom phases. In this case, the density matrix can be written as
cause the mixing of eigenfunctions is a basis-dependent
quantity. Clearly, if the eigenfunctions are expanded in their p~diad N, 1IN, ..., 1IN) +Q, (12
own basis, they are not mixed at all, independently of th
fact that the distributiorP(s) is Poisson or GOE. Neverthe-
less, for Hamiltonians of the typ) the increase of typical
eigenfunctions’ mixing with perturbation is naturally ob-
tained in the basig|i)} of the unperturbed HamiltoniaH,

B. Participation number

SvhereQ is aN X A zero diagonal matrix with random com-
plex matrix elements of amplitude1/\.

Suppose now that we partition the Hilbert space of the
system into two parts with dimensiong, and N, where
NyNg=N. The reduced density matrjx, is defined as fol-

[52]. lows:

In the basigi)} the mixing(or, equivalently, thelelocal-
ization) of a given eigenstatgy) is customarily measured in pa=Trgp=>, annBc:,n Ina)(nyl, (13
terms of the number of componerii$y) which are signifi- ng A'B

cantly different from zero: A useful quantity to measure thewhere|n>:|nAnB>. Therefore, in the integrable case the re-

degree of delocalization of a given eigenstate is the so-calleg,,ceq density matriy, is .\, X Ay matrix given by
participation numbe(PN), defined as
) pa =~ diag0,0, ...,0,1,0, ...,0 (14)

b= ——. (100 |n contrast, in the chaotic case
> Kilwl*
i Pp = dlagl/NA, 1/NA, ,1WA) +QA! (15)

If the state]y)) is maximally_locazlized, all its components are \yhere(),, is a zero diagonal matrix with matrix elements of
zero but one, with valué(i|¢)|°=1 due to normalization. O(Na/N) (sum of Ny terms of order LA with random
Therefore, in the localized regim&=1, while ¢ increases phases

with increasing mixing. In the thermodynamic limé,s un- With Egs.(14) and(15) in hand, it is easy to calculate the

bounded. However, in the case of finite size syst&msN,  yajyes for the reduced von Neumann entropy and the con-
whereN is the dimension of the Hilbert space. For the GOE;rence. We have

statistics, the PN is upper bounded by the vajaé®/3, due
s {0 for integrable regime,
A =3

log(N,) for chaotic regime.

to the statistical properties of the chaotic states.

Even though, in general, the transition from localized to
delocalized eigenfunctions occurs in parallel with the transi-
tion from Poissonian to Wigner spectra, this is not always thé? better estimate of5, is obtained by considering the en-
case. As we will study in the following sections, for particu- Semble of random states according to the Haar meaSyre:
lar model systems the spectra can be uncorrelated even ifl0g(Na) —Na/ (2N loge 2) [53].
situations in which the eigenfunctions are delocalized. It is For the case of concurrence the dimensigg=4. If in
common to term this situation ageak chaos Egs.(14) and(15) we neglect the matri),, we obtain

(16)

0 for integrable regime,

C. Chaos and entanglement ~1/2 for chaotic regime.

It is worthwhile to discuss what are the expectations for. hus. in both intearable and chaotic extremes. we obtain
the entanglement content in the nearly integrable and full’% ' 9 . '
chaotic situations. Let us consider a many-particle syste om Eq.(5) that the concurrence is zero.
with a Hamiltonian as in E¢6) and let\ denote the dimen-
sion of its Hilbert space. In a given badis)} the density IV. CHAOS AND ENTANGLEMENT IN SPIN CHAINS
matrix for an eigenstate of the systej)==,c,|n), is writ-

i In this section, we discuss bipartite and pairwise entangle-
ten as follows:

ment measures in two quantum lattice spin models in which
Pam= {NlW{(HIM) = cC,, (1) a t_ransition to chaos has been previously found z_and charac-

terized. Both models have been proposed as a suitable model
wherec,=(n|y) are the components of the eigenstate in thefor quantum computers. For the sake of completeness in this
{In)} basis. As discussed in the previous subsection, theection we review the known properties of these models, in
nearly integrable case corresponds to the situation of a wegharticular the onset of quantum chaos. In parallel, we present
interaction. This implies that in the basis of the unperturbechew results concerning the behavior of quantum entangle-
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ment. In Sec. IV A we focus, for a two-dimensional spin 1.0 e e T
lattice, on the behavior of the concurrence as quantum chaos *
sets in. These results qualitatively agree with those presented "-...
in Sec. IV B for a family of one-dimensional spin models, “ 3
for which we present a much deeper analysis of the behavior
of the concurrence and of the von Neumann entropy across 44 £ “ ]
the transition to quantum chaos. %
> .
A. Two-dimensional spin lattice 04 ‘°.. ]
The system consists of spin-1/2 particles(qubit9 '\.
placed on a two-dimensional square lattice in the presence of 02 "o ]
an external static magnetic field directed alang\Nearest- ""'w-....,,,,
neighbor spins interact via Ising coupling with random S
strength. The Hamiltonian of the system is S U S SR S a—Ty
JL/8
H=2Fi0'iz+2~]i,j0)i(0)j(- (18)
i i<j FIG. 1. Level statistics parametgras a function of the coupling

. . . arameter] (in units of /L), for the model of Eq.(18) for a 3
The oper_atorﬁ-i are the Standal_’d Pauli mat_rlces_ acting on theF>)<3 lattice, calculated from the energy levels in the spectral band
i-th qubit. The second sum in the Hamiltonian runs over

. . - " centered at Ay averaged over 2000 random realizationsspéind
nearest-neighbospins and periodic boundary conditions are 3 tna other parameters atg=1 and5=0.09
i ale .09.

consideredI’; corresponds to the energy separation between

the states of the qubit J;; is the interaction strength be- this band is clearly visible and we keep the same domain
tween the qubits andj. The parameterk; andJ;; are ran-  even for stronger interaction where the band structure disap-
domly and uniformly distributed in the intervalfA, pears.

-612,Aq+6/2] and[-J,J], respectively. This Hamiltonian In Fig. 1 the parametey as a function of the interaction
was proposed as a model of isolated quantum computer witbtrength is shown foA,=1 and5=0.09. When the strength
hardware imperfectiongl0]. of the interaction) increases th&(s) distribution smoothly

Here we focus on the caggJ< A, which correspondsto changes from Poissofyy=1) towards GOE(y=0). Thus,
the situation where fluctuations induced by lattice imperfecdincreasing the interaction between the qubits a transition to
tions are relatively weak. In this case, the unperturbed energguantum chaos occurs. In Fig. 1 we observe that the cross-
spectrum(J; ;=0) of Hamiltonian(18) is composed of. +1  over from integrability to chaos takes place in the interval
well-separated bands, with interband spacidg.Zach band betweenJL/6=~1 andJL/6=5.
corresponds to states with a given number of spins “up” and At the same time, the eigenfunctions start to mix. For
spins “down.” The highest density of states is obtained fomweak interactions the eigenfunctions are strongly localized:
the central energy band and therefore we expect that quaidhe number of components in the basis of the unperturbed
tum chaos shows up first there. When the interaction igdamiltonian is of the order of 1. At strong interactions
turned on, a transition to chaos takes place. A value for théJL/ 6> 1) the eigenfunctions are extended, having a large
chaos border], for this transition was given if10]: J.  number of non-negligible components. This mixing of the
o« §/L. This border was corroborated[ih2], where the emer-  eigenfunctions is shown in Fig. 2 in terms of the PN for the
gence of Fermi-Dirac thermalization in the chaotic regimesame parameter values as in Fig. 1. In Fig. 2 we see that the
was studied. A careful and detailed analysis of the transitiolPN smoothly changes from (localized regimgto its upper
to chaos for this model and its dependence on the size of thHeound value ofN,/3 (chaotic regimg whereN,, corresponds
lattice has been taken also [ih0,12. For the sake of com- to the number of eigenfunctions with energies in the central
parison with the behavior of the entanglement measures weegative band. As we have discussed, the factor of 1/3 arises
repeat some of these previous results. We consider a squadlee to the symmetries of the chaotic Hamiltonian that are
3% 3 lattice. We note that for lattices composed of an odddescribed by the GOE.
number of qubits there is not a central energy band but, We now turn our attention to the entanglement measures.
instead, two central bands centered An what follows, = We have calculated the concurrence between neai€st-
we will consider the states from the central band centered aind next-nearestC,) neighbor qubits. For this purpose we
—Ao. have drawn 2000 random realizations &fand J; ; and di-

We have numerically diagonalized Hamiltonigh8) for  agonalized Hamiltoniafi8). Using for each realization only
different values of the interaction strength. To study the tranthe central eigenfunction of the central negative band we
sition to chaos we have obtained the spectral statistics ihave calculated the mean concurrence averaged over all pos-
terms of the nearest-neighbor spacing distributiis) as  sible nearest-neighbor pairs of qubits. In Fig. 3 we st@w
well as the structure of the eigenfunctions in terms of the(squaresandC, (circles, averaged over all the random re-
participation numbeg. We have restricted our calculations alizations as a function of the strength of the interaction. On
to the energies and eigenstates encountered in the centtak basis of the unperturbed Hamiltonian with=0 the con-
negative band. For weak interactions the energy domain afurrence is strictly zerdJL/ §< 1), the concurrence remains
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FIG. 2. Participation numbeg as a function ofJL/é for the JL/8

model of Eq.(18) for a 3X 3 lattice, with parameter values as in

Fig. 1. The PN was obtained from the central eigenfunction of the FIG. 4. (Color onling Density map for the concurren cal-

band centered atA;, averaged over 2000 random realizations. Theculated for each individual eigenfunctiofindex in the vertical

dashed line corresponds g,/ 3. axis), averaged over 200 random realizatioqs. is plotted as a
function of the coupling parametdt./ § for the model of Eq(18)

small. At the other extreme, when the interaction is veryfor a 3X 3 lattice, with parameter values as in Fig. 1. In the inset,

strong(JL/ 5> 1) and quantum chaos has set in, the concurllNe.S.hOV"Cl averaged over the central 1/3 of the eigenstates of each

rence is also small, as expected. Quite interestingly, th@dlwdugl band._Th_e different curves correspond Fo the bands for

maximum of theC, concurrence is fodL/ 6~ 1—that is, in states with 4(solid line), 3 (dotted line, 25das”hed ling 1 (long-

the region in which the crossover from integrability to quan-92shed lin& and 0(dot-dashed linespins “up.

tum chaos takes place. In Fig. 3 we can also compare the ) )

behavior ofC; with that of C,. The concurrence of next- fOr the integrable and chaotic extremes, where @sgoes

nearest-neighbor qubits is noticeable smaller than that di® Zero. Similarly toC,, the concurrenc€; has its maximum

nearest-neighbor qubits. This is not surprising as the Isingalue forJL/6=1. Itis interesting to point out that, similarly

interaction in Eq(18) couples only nearest-neighbor qubits. ©© What happens in the QPT in the Ising mofi1,22, the

Therefore, one should expect that quantum correlations bé&oncurrence€; andC, exhibit their maximum values close

tween qubits are stronger for qubits that are close than fof0 the value at which quantum chaos sets in. However, be-

those farther away. However, we find th@j is not negli- sides this similarity, there are other aspects in which the en-

gible everywhere over the domain dfinvestigated, except tanglement at the onset of chaos behaves in a different man-
ner than for the case of a QPT. In Sec. IV B, the qualitative

differences of the behavior of entanglement in a QPT and for
the onset of quantum chaos that we observe will be dis-
. cussed.
0.08 T . 1 As we have discussed in Sec. IlI, the onset of quantum
= chaos occurs when the typical interaction matrix elements
0.06 | . ] between directly coupled states becomes of the order of their
= . mean level spacing. Thus, the onset of quantum chaos is
expected to be observed first at the spectral energies at which

0.10

0.04

0.02

..7""-::::====m1lllllmuu

0.00 :
0 2 4

6
JL/B

8

10

the density of directly coupled states is larger. For the models
discussed in this and next sections this happens at the center
of the spectrum—i.e., in the central bands. Consequently, we
focus our discussion on the eigenstates corresponding to the
central energy bands. It is worthwhile mentioning that our
choice is different from the studies of QPT for which the
transition is a property of the ground state. For the case of a

transition to quantum chaos we show in Fig. 4 the value of
FIG. 3. Concurrenc€, as a function of the coupling parameter C1 @s a function of the coupling parametgrcalculated for
JL/ 8 for the model of Eq(18) for a 3x 3 lattice, with parameter €ach eigenstates of a33 lattice. The band structure can be
values as in Fig. 1C, was obtained from the central eigenfunction clearly seen in the behavior of the concurrence. Inside each
of the central negative band of the spectrum and averaged over ddiand, the concurrence grows from zeroJatO to a maxi-
possible pairs ofa) nearest-neighbor qubitea=1, squaresand (b) mum close talL/ §=1, after which it decays again to zero as
next-nearest-neighbors qubiis=2, circles. Jis further increased. On the other hand, for the states at the
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border of the bands, including the ground and most energetic 1t 15t
states,C, behaves quite differently. This is due to the fact H= EE (- &or+ Qo) - 52 k10401 (20)
k=1 k=1

that these states do not mix significantly with the other states,

as confirmed by our numerical data comput_ing the participa- \ye assume that for alithe inequality2> &, holds. Open
tion number(data not shown In the inset of Fig. 4, we show boundary conditions are taken. [[43], this model was pro-

C,, averaged over the central eigen_states .Of each band. VYﬁ)sed as a possible candidate for experimental realization of
observe that, for all band€§,; reaches its maximum value for quantum computation. The gradient of magnetic field pro-

J close tod/L. The fact that for the bands farther away.from vides a labeling of qubits in terms of their Larmor frequen-
the center of the spectru@, decays slower to zero &is  jes Thys, it allows for a way to address each qubit sepa-
increased is a finite size effect that should disappear at thl%tely.

thermodynamic limit. However, for the ground staiot-
dashed ling C; grows linearly. While we do not discard that

at the thermodynamic limit even the concurrence calculated .\ the previous model: The existence of a constant gradient
from the ground state will behave in a similar fashion as for, 4 magnetic field gives rise to arindependent threshold
any other _typical state, Fig. 4 clearly indicates that for a finitefy the onset ofweak chaos. I 13] the transition to quan-
system this is not the case. tum chaos and its implications to quantum computation were
explored. Here we want to discuss the behavior of entangle-
ment in this model.

In order to apply the approach discussed in Sec. Il it is

In this section we discuss the behavior of bipartite andzgnvenient to represent Hamiltonig@0) in the basis in
pairwise entanglement in a family of one-dimensional spinhich it is diagonal for noninteracting spins. In this so-called

1/2 chains. Due to its lower dimensionality, these modelsffective field representation, the one-body unperturbed
will allow us to characterize the behavior of the entangle-HamiltonianH, takes the form

ment across the transition to chaos in a deeper fashion than
for the previous model. We shall find the same behavior for =
the concurrence than before. Nevertheless, with these models Ho= 52 \55 + Q% (21)
we are able to analyze its dependence on the distance in the k=1

lattice between the partners, the range of the interaction, arghd the interaction Hamiltonia®v can be written asV
the size of the chain. Moreover, for one member of this fam-:\/diag+\/band+voﬁ, where

ily of models the chaos border does not coincide with the
delocalization border. This will give us the possibility to 1
compare the behavior of the concurrence in a regime of weak Vdiag= ~ 52 Jicker 1DKPI+ 10Kk 1
and hard chaos. k=1

It is worthwhile mentioning that, besides the different di-
ensionality, there is a more striking difference between this

B. One-dimensional spin chain
L

L-1

L-1

1. Definition of the model 1
Voand= ~ EE I ks 18@K+ 10K OV 1
k=1

We consider a system consisting on a linear chairt of
1/2 interacting spins, subjected to a static transverse mag-

netic field (along z) and to a circularly polarized magnetic L-1
field rotating in the(x,y) plane with frequencyr, B(t) Voﬁzéz Ik 1(@D 10801 + bl aler),  (22)
k=1

=(B* cog1t+¢),—B* sin(vt+¢),B? [13]. In the coordinate
system, which rotates around thexis with frequency, the  with
Hamiltonian of this system can be written as
1L S L . 1 (23
H==23 {50} + Q(cose of = sing o) Vo + 02 o+ 0?2

= As before, the quantitie ., stand for the Ising interactions

1 between nearest-neighbor spins. In what follows, we will
+ 52 Ikt 10Kk 1, (19 consider the interactions to be completely random—i.e.,
k=1 Jkkr1=J&, whereé is a random number uniformly distributed
5= w— v, Wherew, is the frequency of the precession of the in the interval -1, 1]. This model is known as the NN model
k-th spin in theB? field. () stands for the Rabi frequency from its nearest-neighbor character.
corresponding to the rotating field anij,,; denotes the As in the two-dimensional modg]18), for the unper-
strength of the Ising interaction between the sginandk  turbed(J=0) case the spectrum possesses a band structure.
+1. The operators, are the standard Pauli operators actingEach band is characterized by a constant numbgrqubits
on thek-th spin. In the following, we will take for simplicity in the state|0) and L—n qubits in the statél). WhenL is
¢=m/2 and consider that the static fieRBf has a constant even, a central banthround zerp exists. It consists of the
gradienta along the chain such tha@f=ak. Thus, the Hamil- many-qubit states withL/2 spins “up” andL/2 spins
tonian takes the form “down.” The number of these states is given by

L-1
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L! 1.0
No = (L/2)1(L/2) (24 08 a

. . . . — 0.6 i
As discussed at the end of previous section, we will only =

consider the energy levels and energy eigenstates corre- 04
sponding to the central band of the spectrum. 0.2 ”HWWWWWWW
When J>0 the potential ternV mixes the states inside 0.0 .

each band and among different bands: In the basislpf 1.0
Viiag IS diagonal. Insteadvp,,q couples states which are ei- o | _

ther in the same band or in next-nearest baiMjg.couples ’ AT G
states which are in nearest-neighbor bands. The mixing of + 98 [ i

P(

energy bands triggers the transition to chaos. For a relatively % 0.4 |

weak interaction the eigenstatéa the basis o) are lo- 02 | [WWM

calized, while for stronger interaction the number of compo-

nents significantly different from zero increases. The transi- 0.0 0 1 2 3 4 5
tion from strongly localized to extended states occurs very s

fast with the increase of the interaction and sets in when the . S
strength of the typical interaction is of the order of the mean FIG. 5. Nearest-neighbor level spacing distributis) for the
level spacing between directly coupled many-body state§” model (Ic=L—1) of Eq. (25) for a chain of 12 qubits antd)

[14]. In [13] the value for the delocalization border was J/J3.=0.35 and(b) J/J.=15, calculated from the energy levels in
found to bel.~ 4a2/Q, the central band of the spectrum and averaged over ten random
. .

. . realizations. The solid lines correspond to the Poisg@nand
However, as it was shown [L3], the NN model is pecu Wigner surmisgb) theoretical distributions.

liar in the following sense: The delocalization border does
not coincide with the chaos border. Increasing the strength of ) o ) ]
the interactionJ, the system goes from a regular regime to a=0-39 is shown. It is in good agreement with the Poisson
weak chaosegime where the eigenfunctions are delocalizeddistribution(solid ling), as expected in the integrable regime.
but the level statistics is not yet described by random matridn contrast, pane(b) shows the situation corresponding to
theory. If the interaction is further increased, the bands overstrong couplingJ/J.=15) in which theP(s) distribution fol-
lap and the system enters a regimestiong chaos This  lows the Wigner surmise expected for a chaotic system with
peculiarity is removed if the range of the interaction is largerGOE statistics. In panéb), the level repulsion effect is evi-
than nearest neighbor. dent. Thus, when the interaction strendth J., the spectral
Here we will consider a range of the interactigrirom 1 level statistics changes from Poisson to GOE, showing that a
(for the NN model up toL-1. The interaction ternv keeps  transition to quantum chaos is happening.
the same structure as in E@2) but the different terms are Simultaneously, a localization-delocalization transition
now occurs for the eigenstates in the central band. This transition
takes place for any value ¢f. However, for the NN model,
1 the PN does saturate at a value which is lower thigh3
Viiag= ~ 52 _E Jikbibk"jzal’ corresponding to the case of Gaussian fluctuations. In Fig. 6,
=1Lk the PN is shown for the AA model for a chain composed of
12 qubits. The PNsquarepis averaged over all the eigen-

L-1j+ =L

L-1j+l <L
Vo= =23 J+i 3 Yol states in the central band and over 30 different random real-
e 2531 e WA T izations. For weak interactions, the eigenstates are effec-
tively localized(é=1). The PN increases monotonously with
1L_1j+|ch the interaction until it reaches the valig/3=308 (lower
V== Ju(@abuolo? + ab o). 25 dashed ling Acpmpletg mixing of dlfferen@ bgnds occurs for
off Zgl k%l (@bl abjoion) @9 uch stronger interactiod/J,~ 1000. This is seen in Fig.

i i 6, where¢ increases again and reaches its upper bound value
Forlc=L-1 this model is known as the Al to all) model ¢4 rrespondingN/3—namely, to one-third of the dimension
as in this case all qubits are allowed to interact with eachys the whole Hilbert space, as expected from RMT.
others. In contrast with the NN modé=1), if I.>1, the The model of Eq(25) shows a clear transition to quantum
chaos border occurs at the same valye=4a*/Q as the  chaos in which both energy levels and eigenstates change
delocalization bordef13]. their character. Now we turn our attention to the behavior of

quantum entanglement.
2. Onset of quantum chaos

In Fig. 5 the nearest level spacing distribution is shown 3. The concurrence: Sharing of entanglement

for the AA model for a chain of 12 qubits. THe(s) distri- We have calculated the mean concurrence averaged over
bution was obtained from the energy levels contained in thall the eigenstates in the central band as a function of the
central band and averaged over ten different random realizatrengthd of the interaction. In Fig. 7 the mean concurrence
tions. In panel(a), the case of a weak interactio@d/J; is shown for the model of Eq(25) for a chain of L
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FIG. 8. Mean concurrenc€; between qubits at a distance
FIG. 6. Participation numbe¢ as a function of the coupling =3, averaged over all the eigenfunctions in the central band of the
parameterd for the AA model of Eq.(25), for a chain of sizeL spectrum and over 30 random realizations. The mean concurrence is
=12. The PN is averaged over all eigenfunctions in the central banglotted as a function of the coupling paramelefior the model of
of the spectrum and over ten random realizations. The dashed hortq. (25) in a chain of ten qubits. We compa@s for different range
zontal lines correspond 1d,/3 andN/3 whereN=2" is the dimen-  of the interaction: The NN model corresponding li=1 (dia-
sion of the Hilbert space. monds, |.=2 (triangles, andl.=3 (circles.

=10 qubits, with an interaction that couple$2 neighbor ~Models we conjecture that it is generic for transitions to
qubits—i.e.,|.=5. The diamond symbols correspond to thechaos. In Fig. 7 the mean concurrence averaged over all qu-

mean concurrencé, between nearest-neighbor qubits. As it Pits at further distance<, (right-triangles, Cs (circles, C,
was discussed in Sec. Il C, we observe tBatis close to (Sduares andCs (up-triangles, is also shown. The behavior

zero in both extremes of chaos and integrability. Moreoverg:cmgﬁs?g:alcin gs desllm\;:/aer stgetr;ﬁ;toﬁseergsgcj?:e (t;; th\E/\_/o—
similarly to what we have observed for the two-dimensional :

del(18), in bet the int bl d chaoti ¢ creases with distanca, except for weak interactions for
mode » In between the Integrable and chaolic extremes, ;. C,>C,. This latter is a peculiarity of this model. It is
the concurrence increases and its maximum value is close mteresting to notice that the coupling strength.(n) at

a.

the value for the chaos border. Despite the fact that we haV\‘/?/hich the concurrenc€, takes its maximum value does not

observed this behavior of concurrence for just two differentchange significantly with.
Let us now consider the following question: for a given

fa ' %# ' distancen, how doesC,, varies if the range of the interaction
$ increases? In Fig. 8 the mean concurre@igas plotted for
‘% different ranged, of the interactioni.=1 (diamond$, 1.=2
$ ﬁ (triangles, andl =3 (circles. To this purpose, we computed
0.4 % C; for all the eigenfunctions in the central band of the spec-
= ¢ ¢ trum of a chain of sizé&. =10 and averaged over 30 different
S %,}EH’ ig» $ random realizations. From Fig. 8 we observe that as the
O # %%% range of the interaction increases the mean concurr€gce
- o5 | § Jf 3 decrea}ses. The same conclusions were aljso obtained for the
. ¢ 2 B behaviorC,, with n# 3 (data not shown This fact can be
g ° oo‘?@% .; understood from the pairwise character of the concurrence.
B, B - %ﬁ%%‘% * Since the amount of entanglement between one definite qubit
I o i %% © and the rest of the system is bounded, this finite amount of
o.(1)0_2 - 2102_1 aab AM“":AS%EH B2e SRR, entanglement has to be shared between all possible partners.

When the range of the interaction is enlarged, it becomes
easier for each qubit to become entangled with more qubits
FIG. 7. Concurrence as a function of the coupling paraméter In the_cham. AS, a result the pairwise em?‘”g'eme”t between
for the model of Eq(25) with interaction rangé,=5 for a chain of ~ON€ Single qubit and the rest of the chain is shared among
ten qubits. For each eigenfuncti@, was obtained as the average More partners. Therefore, the average entanglement shared
concurrence between all possible pairs of qubits separated by Retween two qubits decreases. This argument is valid if a
distancen: n=1 for nearest-neighbors paifdiamonds, n=2 for ~ change in the range of the interaction does not significantly
next-nearest-neighbors paitsght triangle, n=3 (circles, n=4  change the total amount of bipartite entanglement that is
(squarey andn=5 (up triangle$. The plotted values correspond to shared between a single qubit and the rest of the chain.
C, averaged over all the eigenstates of the central band and over 30 Finally, we have studied the behavior of the concurrence
random realizations. as a function of the size of the system. In Fig. 9 the mean
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FIG. 9. Mean concurrence averaged over all possible pairs of FIG. 10. Normalized distributiorP(c,) of the quantityc,=X\;
qubits for all the eigenstates in the central band of the spectrum andAz—A3—\4 of Eq. (5) for the AA model, Eq(25), with L=12 and
over 30 random realizations for the AA model of H85) (I.=L coupling:(a) J/J.=0.01 andb) J/J.=100.0. In the inset the behav-
-1) as a function of the coupling paramefeand for different sizes  ior of the first moment of the distributiofc,) is shown as a func-
of the chain of qubitsL=6 (diamond$, L=8 (triangleg, L=10 tion of the coupling parametek
(circles, andL=12 (squarep

sure itself. On the other hand, it is not clear whether the

concurrenceC, obtained from all possible pairs of qubits is transition to chaos in the models we have considered be-
shown for the AA model for different sizes of the chaln: comes sharp at the thermodynamic limit. This means that to
=6 (diamonds$, L=8 (triangles, L=10 (circles, andL=12  prove the existence of a critical point for the transition re-
(squares In this case, instead of measuring the concurrencenains an open problem. In order words, we lack a critical
C, for some value oh, we have measured the concurrencepoint at which to perform a scaling analysis. We have nev-
C, as the mean concurrence between all possible pairs @&frtheless analyzed the dependence ©fdl on the system
gubits in the chain. This is because, for the AA model, thesize without having found any clear indication of a scaling
concept of distance turns out to be meaningless, since tHeehavior(data not shown
strength of the interaction between two qubits does not de- It is interesting to study the different character of mixed
pend on their distance. The behavior®@f as a function of pairwise entanglement in the integrable and chaotic sides of
the size of the system can be well understood in terms of ththe transition. In Sec. Il C, we gave simple arguments that
same argument used to explain Fig. 8. When the system sizxplain the different structure of the reduced density maitrix
is increased, the number of possible partners with which dor a mixed bipartite state in the regimes of integrability and
given qubit can be entangled also increases. Therefore, thEhaos. In the integrable region, due to the localized nature of
pairwise entanglement decreases, in agreement with the datze eigenstate$,is essentially diagonal with only one matrix
of Fig. 9. We note that, for small system sizés=6,8), the  element significantly different from zero. On the other hand,
concurrenceC, does not go to zero at the chaotic side of thein the chaotic regionp is almost diagonal with matrix ele-
transition. This finite-size effect disappears already lfor ments of comparable magnitude along the diagonal. Both
=10,12. Similar results were obtained for the other modelsases give a very smalbr zerg concurrence. However,
with different ranges of the interaction. while in the integrable case this is due to the fact that the

The results presented in this section show that the concutwo-qubit subsystem under investigation is essentially in a
rence maximizes for values dfwhich are close to those at separable pure state, in the chaotic case the pairwise en-
which the transition to chaos occurs. As discussed in théanglement is zero due to the random structure of the eigen-
previous section, the same behavior for the maximum ofunctions of the wholé.-spin system. As a consequence, the
concurrence has also been observed for quantum phase trdwo-qubit reduced density matrix is essentially diagonal.
sitions occurring in integrable modeisee, e.g.21,22 fora  Therefore, in the chaotic regime, the interaction with the rest
study on the Ising chajnHowever, as can be seen in Fig. 8 of the system mimics a decoherence process for the two-
for the transition to chaos, the concurrence approaches zefubit subsystem.
when the size of the system increases, in contrast to what is The different origin of the very small value of concur-
observed in QPT’$21], whereC,—0 for all n>1 but re- rence is illustrated by the distribution of tleg's [we remind
mains finite fom=1. In these studies a critical scaling for the the reader that the concurrence is defined as the maximum
derivative of the concurrence was obtained. On the one hanttetweenc, and 0; see Eq(5)]. In Fig. 10, the probability
the fact that for the onset of quantum chaos the concurrenadistribution P(c,) is shown in(a) the integrable regime and
diminishes when the system approaches the thermodynamib) the chaotic regime, for the AA model and a chain of size
limit makes a finite-size scaling analysis rather difficult, asL=12. Clearly, in both cases the probability to fiog> 0 is
numerical errors become soon of the same order of the me&ery small. Therefore, the concurrence is very small in both
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FIG. 11. von Neumann entrop$; between one qubit and the FIG. 12. von Neumann entrof, between left and right blocks
rest of the systents, is averaged over all qubits and over all eigen- of sizesn and L-n qubits, respectively, averaged over all eigen-
states in the central band of the spectrum and over 30 randorunctions in the central band of the spectrum and over ten random
realizations for the AA model of Eq(25) as a function of the realizations. The data correspond to the AA model of 2§) for a
coupling parameted and for different sizes of the chain of qubits: chain of sizeL=12. From bottom to top, the different curves are
L=6 (diamond$, L=8 (triangles, L=10 (circles, and L=12 from n=1 ton=5. In the inse§,(J/J.=15) is plotted as a function
(squares of n. The dashed line corresponds to a linear fit with a slope of

0.93+0.02.

cases. However, the distributiof®c,) are quite different.

We note that numerical results about the distribuftén,) in  titioned have different lengths. As an example we show in
a different model of quantum chaos where presentd@sh  Fig. 12 the von Neumann entroj$; between a block of size
In the Inset of Fig. 10, one can see that the first moment oft @nd the rest of the systetof size L—-n) from n=1 (bot-
P(c,) changes across the chaos border. It is an interestin@®m to n=>5 (top) for the AA model and a chain of size
open problem to obtain an analytical form Bfc,) for inte- ;12. Similarly to theS,; case,S, increases when the transi-
grable and chaotic situations. The possibility to use this distion t0 chaos occurs and saturatesSte=n for large interac-

tribution to mark the transition to chaos also deserves mordon strength. Hence, the state of the system becomes maxi-
investigation. mally entangled when chaos sets in. This is a direct

consequence of the existence of multipartite entanglement.
Moreover, in the inset of Fig. 12, we have plotted the satu-
ration value ofS, for J/J,=15 as a function of the size of
We now turn our attention to the behavior of bipartite subsystem#. This shows that in the chaotic regime the bi-
entanglement measured in terms of the von Neumann erpartite entanglement scales linearly with the size of the
tropy. First we consider the mean von Neumann entr8py smallest of the two blocks in which the global system has
of each qubit with the rest of the qubits in the chain. For thisbeen partitionedS, = n.
purpose, we divide the system in two parties: one consists of It is interesting to study the von Neumann entropy as a
just one qubit and the other contains the remainingl  function of the system sizk, when the two blocks in which
qubits. Then, following Eq(1), we computeS; from the 2  the system is partitioned have a size. We have computed
X 2 reduced density matrix of the one qubit subsystem. Irthe bipartite entanglemei§ , corresponding to the case in
Fig. 11 the behavior 05, across the transition to chaos is which the system is partitioned in two halves. A value of
shown for the AA model and for different sizes of the sys-S ,,>0 for anyL is indicative of the existence of multipar-
tem, fromL=6 to L=12. We find that the bipartite entangle- tite entanglement. The obtained behavioBg$ as a function
mentS; shows the same behavior independently of the sizef the strength of the interaction is shown in Fig. 13, for
of the system. The state of the system changes from sepdifferent system sizes. The behavior®j, is similar to that
rable to maximally entangled as the transition to chaos ocshown byS;. It takes very small values in the integrable
curs. In all cases, the entropy saturates to its maximum valueegime and then increases with the interaction up to a value
S,=1, up to corrections of order 1¥253]. As discussed in for which it saturates. The saturation value~i4./2 [up to
Sec. I, these results show that there exists a global entangleerrections ofO(1) [53]]. In the inset of Fig. 13, we plot the
ment of each single qubit with the rest of the system and thagalue ofS ,, for J/J,=15(i.e., in the chaotic regime in which
this entanglement increases with the interaction. The maxithe eigenstates in the central band are effectively miged
mum value of bipartite entanglement is obtained when quanfunction of the sizeL of the system. It is interesting to note
tum chaos has set in. that the von Neumann entropy does feel the mixing of dif-
We have obtained similar results for the bipartite en-ferent spectral bands occurring for a very strong interaction
tanglement when the two blocks in which the system is par{J/J.~ 1000. The interband mixingcompare with Fig. 6

4. von Neumann entropy
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FIG. 13. von Neumann entroff, as a function of the strength FIG. 14. Comparison between the NN model EZ2) (open
of the interactionJ, averaged over all eigenfunctions in the central Circles and the model of E¢(25) with 1.=L/2 (solid squares for
band of the spectrum and over ten random realizations. The dafa chain of qubits of lengtth =10. From top to bottom, the three
correspond to the AA model of Eq25) for a chain of sized =6  panels show, as a function of the coupling paramétére behavior
(diamonds, L=8 (triangles, L=10 (circles, andL=12 (squares of the spectral statistics parametgftop panel, the mean concur-
In the insetS, ,(J/J.=15) is plotted as a function df. The dashed renceC, between nearest-neighbor pairs of quifitiddle panel,

line corresponds to a linear fit with a slope of 0.52+0.02. and the participation number (bottom panel All quantities were
calculated in the central band of the spectrum and averaged over 30

. . random realizations.
for L=10) produces a increase in the von Neumann entropy

which nevertheless is small compared to that observed foxN Hamiltonian can be approximately mapped into a model
the onset of chaos. This is in contrast with the pairwise meaof L free fermions as discussed [i64]. However, this non-
sures such as the concurrence, for which we did not observegkneric situation is removed if longer ranges of the interac-
any change. tion are considered. This gives us the possibility to compare
In addition, for any given value of when chaos has set the behavior of entanglement in situations of weak and hard
in, the bipartite entanglement scales linearly with the size othaos.
the system. It is interesting to comment this result from the We have calculated the nearest-neighbor concurr€hce
viewpoint of computational complexity. It was shown[B5]  for the NN model and for a long-range interaction model
that large entanglement of the quantum computer hardware With |c=L/2. In Fig. 14 we present our results. In pangls
a necessary condition for exponential speetwiph respect and (c) the y parameter and the Pl are shown, respec-
to classical computatiorin quantum computation operating tively. We can clearly see the peculiar behavior of the NN
on pure states. To be more precise, a necessary condition fgtodel. For both NN (open circles and I.=L/2 (solid
an exponential speed-up is that the amount of entanglemefgluaresmodels the PN behaves in a similar way. For the NN
increases greater than logarithmically with the dizef the =~ model the PN signals a clear transition from localized to
computation. This condition is fulfilled in the chaotic regime delocalized eigenstates, even thought it does not saturates at
where S, (L/2). We remark that, differently from prob- the value corresponding to Gaussian fluctuations. In particu-
lems like exact covel56], this is not limited to the transition lar, the delocalization borders of both models coincide. Nev-
region but extends to the whole chaotic regime. We also notértheless, they parameter shows a very different behavior.
that the relation between entanglement and computation&ior interaction strengths 0=2J/J.=< 1 the level statistics pa-

complexity in quantum algorithms simulating quantum chaodametery for both models takes the valye=1. This corre-
has been investigated in R¢&7]. sponds to the integrable case in which the nearest-neighbor

spacing distribution is Poissonian. However, for the NN
model,y remains Poissonian for larger values of the interac-
tion up to J/J.=~100. This is the situation that has been
In this section, we discuss the behavior of quantum entermed as weak chaos. In contrast, for lfreL/2 model the
tanglement in situations of weak and hard chaos. As it wasevel statistics changes from Poissonigr=1), to GOE (y
discussed, the NN model of ER2), while similar in char- =0), aroundJ/J.=1. Thus, for thd.=L/2 model the chaos
acter to the model of Eq25) with I;>1, shows a quite border coincides with the delocalization border as it is com-
unexpected peculiarity: The chaos border does not coincidmonly found in many-particle systems with two-body inter-
with the delocalization border. Thus, when the strength of theaction.
interaction is increased, the NN model experiences a transi- In panel(b) the corresponding results for the concurrence
tion from integrability to a situation of weak chaos in which C, are shown. We observe again the differenc€jndue to
the eigenfunctions are delocalized while the level statistics ishe range of the interaction, as discussed in the previous
yet of Poissonian nature. This results from the fact that thgubsection. Despite this differencg; shows a similar be-

C. Weak and hard chaos
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havior for both models: It is small at both sides of the tran-state, the entanglement is mainly multipartite rather than
sition and increases in between, having its maximum valug@airwise.
close t0J/J.=1. This numerical results suggest that the be- We have also discussed the different character that the
havior of the pairwise entanglement is more sensitive to thgairwise entanglement has at the integrable and the chaotic
mixing of the eigenstates than to the onset of quantum chaoside of the transition in terms of a suitable distribution of the
eigenvalues of the two-spin reduced density matrix. The use
of the moments of this distribution to mark the transition to
V. FINAL REMARKS quantum chaos remains and interesting open question.
Finally, we have discussed the similarities and differences
We have studied the bipartite and pairwise entanglemerfietween the behavior of the concurrence at a quantum phase
in one- and two-dimensional spin lattice models that experiiransition and at the onset of quantum chaos. Our results
ence a transition to quantum chaos. show that the maximal concurrence is obtained close to the
To study the presence of multipartite entanglement, welelocalization border for which mixing of the noninteracting
have analyzed the behavior of the averaged von Neumargigenfunctions takes place and not necessarily related to the
entropy for subsystems of different sizes. In particular, wednset of quantum chaos.
hgve shown that, for a partlt.lon of the ;ystem mto two equal- ACKNOWLEDGMENTS
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