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GivenN identical copies of the state of a quantum two-level system, we analyze its optimal estimation. We
consider two situations: general pure states andspured states restricted to lie on the equator of the Bloch sphere.
We perform a complete and comprehensive analysis of the optimal schemes based on local measurements, and
give resultssoptimal measurements, maximum fidelity, etc.d for arbitraryN, not necessarily large, within the
Bayesian framework. We also make a comparative analysis of the asymptotic limit of these results with those
derived from aspointwised Cramér-Rao type of approach. We give explicit schemes based on local measure-
ments and no classical communication that saturate the fidelity bounds of the most general collective schemes.
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I. INTRODUCTION

In quantum information, state characterization and mea-
surements are not justsomeimportant topics. They are at the
very core of the theory. Any unknown quantum state can
only be unveiled by means of measurements, which provide
the information that, in turn, is used to obtain an approxima-
tion of the state. This process is known as state estimation.
Since this information is always gained at the expense of
destroying the state, the estimation procedure requires a
sample ofN identical copies of it. Usually, we have a limited
number of such copies and, therefore, it is very important to
devise strategies with optimal performance in a variety of
practical situations.

Here we address the issue of estimating the most elemen-
tary quantum state, that of a two-level systemsthroughout
this paper we will refer to such systems as qubits for shortd.
We consider two relevant cases: estimation of a completely
unknown state, i.e., one given by an arbitrary point on the
Bloch sphere; and estimation of restricted states that are
known to lie on the equator of the Bloch sphere. The latter is
also interesting because it is formally equivalent to phase
estimationsthese states are also equivalent to the so-called
rebitsf1gd. We refer to these two situations as three-s3Dd and
two-dimensionals2Dd cases, respectively.

Over the last few years, it has been recognized that a joint
measurement onN copies salso known as collective mea-
surementd is more efficient thanN individual sor locald mea-
surements on each copy separatelyf2,3g. This and other is-
sues have been studied in various contextsf4–17g, but for
individual measurements not many analytical results have
been obtainedf18–24g. The most powerful involve sophisti-
cated estimation theory technology that is not so widely
known among physicists. Moreover, they mainly apply in the
asymptotic limit swhen N is larged, and in a “pointwise”
fashion, in the sense that no average over the prior probabil-
ity distribution of unknown states is consideredf25,26g. In
contrast, we follow a “global” Bayesian approach that en-
ables us to find constructively the optimal measurements,
and the corresponding explicit expressions of the fidelity for
finite N snot necessarily larged. In particular, we present op-
timal schemes based on fixedstomographicd and adaptive

individual measurements in both 2D and 3D. This completes
the results summarized inf22g by some of the authors, and
provides further technical details that were skipped there. We
also show that for largeN these results are in agreement with
those obtained using a Cramér-Rao type of approach. We
show that there are nonadaptive schemes based on individual
measurements that saturate the optimal collective bound. We
consider also adaptive local schemes, usually called local
operations and classical communicationsLOCCd schemes.
Within our framework, we give a proof that the simplest
version of these LOCC schemes—the Gill-Massar scheme
f19g—indeed saturates the collective bound. For more so-
phisticated LOCC schemes we prove that two-outcome mea-
surementssvon Neumann’sd perform better than generalized
measurements with a larger number of outcomes. In addition
to these results, we include in Appendix A a comprehensive
and unified rederivation of the optimal collective-
measurement scheme in 2D and 3D. In summary, this paper
is a complete and self-contained review on estimation of qu-
bit pure states.

The paper is organized as follows. The basic concepts and
notation are introduced in the next section. In Sec. III we
recall the bounds on the fidelity of the optimal collective
measurements. In Sec. IV we discuss several local measure-
ment schemes, with and without classical communication.
Asymptotic values of the fidelity are computed in Sec. V. A
summary of results and our main conclusions are presented
in Sec. VI, and four technical appendixes end the paper.

II. CONCEPTS AND NOTATION

Assume that we are given an ensemble ofN identical
copies of an unknown qubit state, which we denote byunWl,
wherenW is the unit vector on the Bloch sphere that satisfies

unWlknW u =
1 + nW · sW

2
, s2.1d

and sW =ssx,sy,szd are the usual Pauli matrices. After per-
forming a measurementscollective or locald on theN copies
of unWl, one obtains an outcomex. Based onx, an estimate
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uMW sxdl for the unknown state is guessed. To quantify how

well uMW sxdl approximates the unknown stateunWl we use the
fidelity, defined as the overlap

fnsxd ; zknW uMW sxdlz2 =
1 + nW · MW sxd

2
. s2.2d

Notice that,xsnWd;1− fnsxd can be regarded as a loss func-
tion. The quality of an estimation scheme is usually quanti-
fied by means of the averaged fidelity, hereafter fidelity in
short, over the initial probability and all possible outcomes,

F ; kfl = o
x
E dn fnsxdpnsxd, s2.3d

wheredn is the prior probability distribution, andpnsxd is the
probability of getting outcomex given that the unknown
state isunWl. Our aim is to maximizeF.

Any measurementscollective or locald is described by a
positive-operator-valued measuresPOVMd on theN copies.
Mathematically, a POVM is a set of positive operators
hOsxdj seach one of them associated to an outcomed that
satisfy the condition

o
x

Osxd = 1. s2.4d

The probabilitypnsxd is given in terms of these operators by

pnsxd = trfrnOsxdg, s2.5d

wherern is the quantum state of theN identical copies, i.e.,
rn=sunWlknW ud^N.

In Eq. s2.3d there are only two elements that require op-
timization: the guess and the POVM, which enter this equa-
tion through Eqs.s2.2d and s2.5d, respectively. The optimal
guesssOGd can be obtained rather trivially. The Schwarz
inequality shows that the choice

MW sxd =
VW sxd

uVW sxdu
, s2.6d

where

VW sxd =E dn nW pnsxd, s2.7d

maximizes the value of the fidelity. If we defineD through
the relation

F ;
1

2
s1 + Dd, s2.8d

we have for the OGf22g

D = o
x

uVW sxdu s2.9d

sin the strict sense we should writeFOG and DOG, but to
simplify the notation, we drop the superscript when no con-
fusion arisesd. Equations2.6d gives the best state that can be
inferred, and Eqs.s2.8d ands2.9d give the maximum fidelity
that can be achieved forany prior probability andany mea-

surement scheme specified by the conditional probabilities
pnsxd. The goal of this paper is to compute the maximum
value of Eq.s2.8d and to obtain the optimal measurements,
especially the local ones, in various interesting situations.

Before concluding this section, let us substantiate the as-
sertion that our approach is Bayesian. For a given measure-
ment, we view each outcomex as an evidence. In Bayesian
estimationf27g, one computes the posterior probability dis-
tribution pxsnWd that the state on which we have performed a
measurement isunWl given the evidencex, and minimizes the
averaged loss function

Lx ;E dn ,xsnWdpxsnWd. s2.10d

Using Bayes’ law one can straightforwardly check that the

solution is the OG,MW sxd, in Eq. s2.6d. In other words, the
OG is the Bayesian estimator for the problem we are consid-
ering in this paper.

III. COLLECTIVE MEASUREMENTS

In this section we recall some known results concerning
estimation based on collective measurementsscollective
schemesd. Their fidelities provide absolute upper bounds for
any estimation scheme. In the next sections we will view
them as points of reference to which we will compare differ-
ent local schemes in order to assess their performance.

As mentioned in the Introduction, a 2D state corresponds
to a point that is known to lie on the equator of the Bloch
sphere. If we take it to be on thexy plane, such a stateunWl has
nW =scosu ,sinu ,0d. If no other information is available, the
prior probability distribution has to be isotropic, that is,dn
=du / s2pd. Notice that we can write

rn ; rsud = Usudr0U
†sud, s3.1d

where r0 is a fiducial state of angular momentumJ;N/2
and maximal magnetic quantum numberm=J along any
fixed direction on the equator of the Bloch sphere. In particu-
lar, r0 can be chosen to point along thex axis,

r0 = uJJlx xkJJu. s3.2d

In Eq. s3.1d, Usud is the unitary representation of a rotation
around thez axis. The group of such unitary matrices is
isomorphic to Us1d: the group of phases. One can showsSee
Appendix Ad that

D ø
1

2N o
m=−J

J S N

J + m
DÎ J − m

J + m+ 1
; DCOL, s3.3d

whereD is defined in Eq.s2.8d. This bound is tight, since
there is a POVM for which it is attained. The simplest choice
is given by the following set of rank-1 operators:

Osfd = UsfduBlkBuU†sfd, s3.4d

where

uBl = o
m=−J

J

uJ,ml. s3.5d
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In the asymptotic limit we have

DCOL = 1 −
1

2N
+ ¯ , s3.6d

and the maximum fidelity is

FCOL = 1 −
1

4N
+ ¯ . s3.7d

Likewise, a 3D stateunWl corresponds to a general point on
the Bloch sphere. We can write

rn ; rsnWd = UsnWdr0U
†snWd, s3.8d

where for conveniencer0 is now chosen to point along thez
axis, i.e.,

r0 = uJJlkJJu, s3.9d

and UsnWd is the unitary representationfi.e., the element of
SUs2dg of the rotation that bringszW into nW sa rotation around
the vectorzW3nWd. In this case,dn is the invariant measure on
the two-sphere, e.g.,

dn=
dscosuddf

4p
, s3.10d

whereu andf are the standard azimuthal and polar angles.
We have the upper boundssee Appendix Ad

D ø
J

J + 1
. s3.11d

Recalling thatJ;N/2 we finally getf3g

FCOL =
N + 1

N + 2
. s3.12d

As for the 2D case, there is a POVM that saturates all the
inequalities. It can be chosen to be

OsmW d = dJUsmW duJJlkJJuU†smW d, s3.13d

where dj =2j +1 is the dimension of the invariant Hilbert
space corresponding to the representationj of SUs2d. One
can easily check that the POVM conditionedn OsnWd=1 is
satisfied.

For largeN, the fidelity behaves as

FCOL = 1 −
1

N
+ ¯ . s3.14d

IV. LOCAL MEASUREMENTS

Collective measurements, although very interesting from
the theoretical point of view, are difficult to implement in
practice. Far more interesting for experimentalists are indi-
vidual von Neumann measurementsf21,28g. This paper is
mainly concerned with them, to which we will loosely refer
as “local measurements,” for short.

Local measurements on qubits all consist in measuring the
observablemW ·sW , wheremW is a unit Bloch vector characteriz-

ing the measurementsin a spin system, e.g.,mW is the orien-
tation of a Stern-Gerlach apparatusd, and are represented by
the two projectors

Os±mW d =
1 ± mW · sW

2
. s4.1d

In a general frame we must also allow for classical commu-
nication, i.e., the possibility of adapting the orientation of the
measuring devices depending on previous outcomesf20–22g.

In the next sections we study quantitatively several
schemes in ascending order of optimality: from the most
basic tomography inspired schemesf29,30g to the most gen-
eral individual measurement procedure with classical com-
municationf22g. Our aim is to investigate how good these
local measurements are as compared to the collective ones
for any value ofN. We would like to stress that in this con-
text few analytical results are knownf19,23,26g. Our results
here complement and extend the analysis carried out by
some of the authors inf22g.

A. Fixed measurements

Let us start with the most basic scheme for reconstructing
a qubit: local measurements along two fixed orthogonal di-
rectionsssay,x andyd in the equator of the Bloch sphere for
2D states, or along three fixed orthogonal directionsssay,x,
y, andzd for 3D states. This kind of scheme is often called
tomographyf28,29,31g.

Before presenting the OG analysis for this specific
scheme, we will briefly consider a much simpler estimator,
inspired by the law of large numbers, that we will call the
“frequentist” guesssFGd. It is interesting for two reasons.
First, its fidelity provides a lower bound for what one would
call “acceptable” schemes. Second, it has the nice property
of being directly sand easilyd obtained from the observed
frequencies without further processing.

ConsiderN=2Ns3Nd copies of the stateunWl. After N
measurements of the projection ofsW along each one of the
directionseW i si.e., of eW i ·sW d, i =x, y, szd, we obtain a set of
outcomes +1 and −1 with frequenciesNai and Ns1−aid,
respectively. This occurs with probability

pnsad = p
i=x,y,szd

S N
Nai

DS1 + ni

2
DNaiS1 − ni

2
DNs1−aid

,

s4.2d

whereni are the projections of the vectornW along each direc-
tion, ni ;nW ·eW i, and we have used the shorthand notationa
=haij. The combinatorial factor takes into account all the
possible orderings of the outcomes and the remaining factors
are the quantum probabilities, i.e., the appropriate powers of
trfunWlknW uOs±eW idg.

Quantum mechanics tells us thatnW is the expectation
value of sW , i.e., knW usW unWl=nW. ProvidedN is large, the law of
large numbers enables us to approximate this mean by the
sample mean, obtained from the relative frequencies of the
outcomes of theN measurements. This yields the estimator
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Mi
FGsad =

2ai − 1

Îo
j

s2a j − 1d2
. s4.3d

Notice the normalization factor which ensures thatuMW FGu
=1; henceMW FG always corresponds to a physical pure state
f30g. In this case

DFG = o
a
E dn nW · MW FGsadpnsad, s4.4d

where pnsad is defined in Eq.s4.2d. The behavior of the
corresponding fidelityFFG for 2D andN up to 60 is repre-
sented by a dashed line in Fig. 1ssimilar plots can be ob-
tained for 3Dd. The fidelity of any acceptable estimation
scheme is expected to lie between this line and the solid one,
corresponding to the collective bound discussed in the pre-
vious section.

Next, we turn to the Bayesian approach. The OG for this

measurement scheme isMW OGsad=VW sad / uVW sadu, where

VW sad =E dn nW pnsad. s4.5d

From Eqs.s2.8d and s2.9d, the optimal fidelity readsF=f1
+oaVsadg /2. Closed expressions of the OG fidelity for the
lowest values ofN can be derived from Eq.s4.5d using

E dn ni1
ni2

¯ niq
=

1

Kq
dhi1i2j

di3i4
¯ dhiq−1iqj, s4.6d

where the normalization factor isKq=q! ! in 2D and Kq
=sq+1d ! ! in 3D, the indexes in curly brackets are fully sym-
metrized, e.g., dhi1i2di3i4

j=di1i2
di3i4

+di1i3
di2i4

+di1i4
di2i3

, and,

obviously, the integrals4.6d vanishes forq odd. These results
follow from very general symmetry arguments. For larger
values ofN the expressions become rather involved and we
have resorted to a numerical calculation.

The 2D case is included in Fig. 1, where the average
fidelity for the OG guess and forN in the range 10–60 is
shown. The fidelity approaches unity asN increases, and the
OG sdot-dashed lined always s better than the FG, as it
should. Notice that to make the graphs more easily readable
we have interpolated between integer points.

At this point, it is convenient to define the scaled error
function

eN = Ns1 − Fd s4.7d

and the limit

e = lim
N→`

eN, s4.8d

which gives the first-order coefficient of the fidelity in the
large-N expansion,F=1−e /N+¯ sthe asymptotic behavior
will be properly discussed in Sec. Vd. Figure 2 showseN as a
function of N for 2D states. One readily sees that the FG
giveseFG<3/8 f22g, while for collective measurements one
haseCOL<1/4, in agreement with Eq.s3.7d. The stability of
the curveseN

COL and eN
FG shows that the fidelity is well ap-

proximated byF=1−e /N for such small values ofN as those
in the figure. This asymptotic regime is not yet achieved by
the OG; however, we will show in Sec. V that the OG gives
eOG=1/4, thus matching the collective bounds3.7d for large
N.

Figure 3 shows the scaled error in the 3D case. Again, one
readily sees that the OG performs better than the FG, but it
does not appear to be as good as in the 2D case.

In previous paragraphs we have presented the most basic
scheme, i.e., that with a minimal number of orientations of
the measuring devices and without exploiting classical com-
munication. A next step in complexity is to consider a more
general set of fixed directionshmkj. It is intuitively clear that,
assuming some sort of approximate isotropy, the more direc-
tions are taken into account, the better the estimation proce-
dure will be. For instance, in 2D we may consider a set of
directions given by the anglesuk=kp /N, wherek=1,… ,N.
The set of outcomesx can be expressed as anN-digit binary
numberx= iNiN−1¯ i2i1, whereiks=0,1d and

FIG. 1. Average fidelities in terms of the number of copies in the
2D case for the optimal collective measurementssolid lined, tomog-
raphic OGsdot-dashed lined, tomographic FGsdashed lined, and a
simulation of the greedy schemesdotsd.

FIG. 2. Scaled erroreN=Ns1−Fd in the 2D case for collective
ssolid lined, OG sdot-dashed lined, FG sdashed lined, and greedy
sdiamondsd schemes.
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DISO = o
x=00̄ 0

2N−1 UE dn nWp
k=1

N
1 + s− 1diknW ·mW k

2
U . s4.9d

Analytical results for lowN can be obtained using Eq.s4.6d.
For largeN, numerical computations show that this “isotro-
pic strategy” is indeed better than tomographysseef32g for
explicit resultsd, but the improvement is not very significant.

For 3D, however, one expects a completely different sce-
nario. One can readily see from Fig. 3 that the tomographic
OG line sdot-dashedd doesnot approach the collective one
ssolidd. Indeed, it will be proved analytically in Sec. V and in
Appendix B 2 that eOG=13/12.eCOL=1. Intuitively, more
general fixed measurement schemes—such as a 3D version
of the isotropic one we have just discussed—should perform
significantly better.

There is a difficulty in implementing the isotropic scheme
for 3D states since the notion of isotropic distribution of
directions is not uniquely defined, which contrasts with the
2D case. A particularly interesting scheme that encapsulates
this notion sat least for large enoughNd and enables us to
perform analytical computations consists of measurements
along a set of random directionssRDsd. With the same nota-
tion as in Eq.s4.9d, we have

DRD = o
x=0¯0

2N−1 E p
k=1

N

dmkUE dn nW
1 + s− 1diknW ·mW k

2
U .

s4.10d

In Fig. 4 we show the scaled erroreN obtained from nu-
merical simulations for rather largeN. One readily sees the
improvement of the RD scheme over the tomographic OG.
We will show in Sec. V that the former indeed attains the
collective bound asymptotically. The RD scheme thus exem-
plifies that classical communication is not required for
asymptotic optimality. A fit gives a value eRD

=1.002±0.008, which provides a numerical check of the
analytical results of Sec. V below.

B. Adaptive measurements

In this subsection we discuss schemes that make use of
classical communication. By that we mean schemes for

which we choose the local measurements according to the
information gathered from previous outcomes. In principle,
these schemes should be more efficient than those considered
so far since a new resource is available. They can be under-
stood from the Bayesian inference paradigmssee for instance
f27g for a comprehensive treatise on Bayesian inferenced,
where the probability distribution of the unknown parameters
sin our casenWd is updated using the “evidence” collected
after each measurement. Starting with a uniform distribution,
the posterior probability distributions become more and more
peaked around the true value. The convergence can be
speeded up by choosing the measurement that best performs
for the updated probability distributionat each step. This is
essentially the point of view inf20,21g. Though in line with
this spirit, the schemes considered in this section do not ex-
plicitly update their priors. Our approach aims to achieving
optimality by directly solving the conditions of maximum
averaged fidelity under some simplifying assumptions.

1. One-step adaptive

We first review a method put forward by Gill and Massar
f19g, which we call “one-step adaptive.” It uses classical
communication only once, which makes it very simple from
both theoretical and practical perspectives.

The basic idea of the method is to split the measurements
in two stages. In the first one, a small number of copies is

used to obtain a rough estimateMW 0 of the state. In the second
stage the remaining copies are used to refine the estimate by

measuring on a plane orthogonal toMW 0. This strategy has a
clear motivation from the information theory point of view.
A measurement can be regarded as a query that one makes to
a system. The most informative queries are those for which
the prior probabilities of each outcome are the same. Mea-

surements on the orthogonal plane toMW 0 have this feature.
To be more concrete, suppose we are givenN copies of an

unknown qubit state. LetN0 stand for the number of copies

used in the first stage and letN̄=N−N0 stand for the rest. In
the 2D s3Dd case, one measuresN0/2sN0/3d copies along
two sthreed fixed orthogonal directions and infers the guess

MW 0. In the second stage, one measuresN̄sN̄/2d alonguWsuW ,vWd,

FIG. 3. Scaled erroreN=Ns1−Fd in the 3D case for collective
ssolid lined, tomographic OGsdot-dashed lined, tomographic FG
sdashed lined, and greedysdiamondsd schemes.

FIG. 4. Scaled erroreN of the RD schemestrianglesd as com-
pared to the OGsdot-dashed lined and the optimal collective scheme
ssolid lined.
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which are chosen so thathuW ,vW ,MW 0j is an orthonormal basis,

and infers the final guessMW . The method turns out to be
efficient if the number of copies used in each of the two
stages is carefully chosen. Our numerical analysis reveals
that the optimal choice, i.e., the one that yields the largest
fidelity, corresponds toN0,ÎN. For other choices the
scheme can even be less efficient than some fixed measure-
ment schemes. For the benefit of the reader, we present a
detailed discussion of the method and a derivation of the
asymptotic limit in Appendix C. This method has also the
interesting property that in spite of its simplicity, it suffices
to show in a very straightforward way that local measure-
ments attain the collective bounds in 2D and 3D.

2. Greedy scheme

We now move forward to more sophisticated schemes and
discuss one that exploits classical communication much
more efficiently. The idea behind it is to maximize the aver-
age fidelity at each single measurement step. It is called
“greedy” because it does not take into account the total num-
ber of available copies; instead, it treats each copy as if it
were the last one.

We first need to introduce some notation. Recall that the
set of outcomesx can be expressed as anN-digit binary
numberx= iNiN−1¯ i2i1 sik=0, 1d. Since we allow thekth
measurement to depend on the list of previous outcomes
ik−1ik−2¯ i2i1;xk snote thatx=xNd, we havemW sxkd instead
of mW k. This is a compact notation where the lengthk of the
string xk denotes the number of copies upon with we have
already measured. The orthogonality of the von Neumann
measurements is imposed by the constraint

mW s1xk−1d = − mW s0xk−1d, s4.11d

where 1xk−1 is the list of lengthk obtained by prepending 1
to the listxk−1, and similarly for 0xk−1. In general, the num-
ber of independent vectors for a givenN is sok=1

N 2kd /2=2N

−1. For example, ifN=2 there are three independent direc-
tions, which can be chosen asmW s0d, mW s00d, mW s01d, and the
other three are obtained using Eq.s4.11d. Since the first mea-
surement can be chosen at will, this number is reduced to
2N−2.

The general expression of the conditional probability thus
reads

pnsxd = p
k=1

N
1 + nW ·mW sxkd

2
, s4.12d

and, as discussed in Sec. II, the OG gives

D = o
x=00̄ 0

2N−1 UE dn nW pnsxdU . s4.13d

We could in principle attempt to maximize this expression
with respect toall the independent variables, i.e., all inde-
pendenthmW sxkdj. However, the maximization process very
quickly becomes extremely difficult. In the greedy scheme
one takes a more modest approach: one maximizes at each
stepk. This enables us to find a compact algorithm for com-

puting the fidelity, as we discuss below. Furthermore, we
show in Appendix B that in this situation the optimal local
measurement at each step is indeed of von Neumann type,
i.e., any other POVM will perform worse.

Let us concentrate on the last stepN of the greedy
scheme. Suppose we have optimized the previousN−1 mea-
surements and have obtained a string of outcomesxN−1. To
ease the notation, let us denote the direction of the last mea-
surement bymW N, namely, mW N;mW s0xN−1d=−mW s1xN−1d. We
then need to maximize

dsxNd = uVW s0xN−1du + uVW s1xN−1du. s4.14d

Here

VW siNxN−1d =E dn nW pnsxN−1d
1 + s− 1diNnW ·mW N

2
,

s4.15d

or, equivalently,

VW siNxN−1d =
VW sxN−1d + s− 1diNAsxN−1dmW N

2
, s4.16d

whereA is the real positive symmetric matrix with elements

AklsxN−1d =E dn nknl pnsxN−1d. s4.17d

Therefore

dsxNd = o
iN=0

1 uVW sxN−1d + s− 1diNAsxN−1dmW Nu
2

. s4.18d

Notice that for 2D states and fixeddsxNd the points mW

=AmW N lie on an ellipse with focus at ±VW san ellipsoid for 3D
statesd. In addition they satisfy the normalization constraint

mW · sA−2mW d = 1, s4.19d

which also defines an ellipsesellipsoid in 3Dd centered at the
origin. As usual, optimality tells us that the maximum of
dsxNd occurs at the points of tangency of the ellipsessellip-
soidsd. This provides a geometrical procedure for finding the
optimal direction mW N and an algorithm for computing

uVW sxNdu.
We now proceed to obtain some explicit expressions for

low N. We discuss only the 3D case, as the 2D case is com-
pletely analogoussnumerical results for 2D states are shown
in Figs. 1 and 2d.

When we only have one copy of the state,N=1, the Bloch
vector of the measurement can be chosen in any direction,
sayeWx, i.e.,mW s0d=−mW s1d=eWx. The explicit computation of the

vectorVW in Eq. s2.7d gives

VW sx1d =
1

6
mW sx1d, s4.20d

andF=2/3, asexpected from Eq.s3.12d for Eq. s3.3dg.
The first nontrivial case isN=2. The matrixAsx1d reads
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Aklsx1d =
1

6
dkl, x1 = 0,1, s4.21d

i.e., Asx1d is independent ofx1 and proportional to the iden-
tity. The maximum of s4.18d occurs for mW 2'eWx, so we
choosemW 2=eWy, which meansmW s00d=mW s01d=eWy fnotice that
in general these two vectors do not need to be equal, they are
only required to be orthogonal tomW s0dg. Because of Eq.
s4.11d, we also havemW s10d=mW s11d=−eWy. The OG reads

MW s2dsxd =
mW sx2d + mW sx1d

Î2
, s4.22d

e.g., MW s2ds01d=fmW s01d+mW s1dg /Î2=fmW s01d−mW s0dg /Î2=feWy

−eWxg /Î2. We also obtain

uVW sx2du =
Î2

12
s4.23d

for all x2, which implies

Fs2d =
3 +Î2

6
. s4.24d

The caseN=3 can be computed along the same lines. One
can easily see thatmW sx3d has to be perpendicular tomW sx2d
andmW sx1d. This shows that, up toN=3, the greedy approach
does not use classical communication, i.e., the directions of
the measuring devices are only required to be mutually or-
thogonal, independently of the outcomes. The optimal guess
is straightforward generalization ofs4.22d:

MW s3dsxd =
mW sx3d + mW sx2d + mW sx1d

Î3
, s4.25d

and the fidelity reads

Fs3d =
3 +Î3

6
. s4.26d

The above results could have been anticipated. As already
mentioned, the outcomes of a measurement on the plane or-
thogonal to the guess have roughly the same probability and
are, hence, most informative. One can regard these measure-
ments as corresponding to mutually unbiased observables,
i.e., those for which the overlap between states of different
basis srelated to each observabled is constantf33g. Hence,
there is no redundancy in the information about the state
acquired from the different observables. This point of view
also allows to extend the notion ofsBloch vectord orthogo-
nality to states in spaces of arbitrary dimension.

The caseN=4 is even more interesting, since four mutu-
ally orthogonal vectors cannot fit onto the Bloch sphere. We
expect classical communication to start playing a role here.
Indeed, the Bloch vectorsmW sx4d do depend on the outcomes
of previous measurements. They can be compactly written as

mW sx4d =
s− 1di4

Î2
o
k=1

2

mW sxkd 3 mW sx3d. s4.27d

Again, one can see that the vectorsmW sx4d are orthogonal to
the guess one would have made with the first three measure-
ments. The fidelity in this case is

Fs4d =
15 +Î91

30
. s4.28d

For largerN, we have computed the fidelity of the greedy
scheme by numerical simulations. In Fig. 3sFigs. 1 and 2 for
2D statesd we show the results for 10øNø60 sdiamondsd.
Notice that the greedy scheme is indeed better than fixed
measurement schemes and approaches the collective bound
ssolid lined very fast.

Actually, the greedy scheme is the best we can use if the
number of copies that will be available is not knowna priori;
obviously, the best one can do in these circumstances is to
optimize at each step. However, ifN is known, we have extra
information that some efficient schemes could exploit to in-
crease the fidelity. We next show that this is indeed the case.

3. General LOCC scheme

In the most general LOCC scheme one is allowed to op-
timize over all the Bloch vectorshmsxkdj, thus taking into
account the whole history of outcomes. Up toN=3 the re-
sults are the same as for the greedy scheme: orthogonal
Bloch vectors for the measurements and no classical commu-
nication required. The resultss4.24d ands4.26d are, therefore,
the largest fidelity that can be attained by any LOCC scheme.

The most interesting features appear atN=4. Here there
are 14 independent vectors, which can be grouped into two
independent families of seven vectors. With such a large
number of vectors an analytical calculation is too involved
and we have resorted partially to a numerical optimization.
The solution exhibits some interesting properties. First, one
obtains thatmW sx1d'mW sx2d, for all x1 and x2, as in theN
=2 and 3 cases. Therefore one can choosemW sx1d=s−1di1eWx

andmW sx2d=s−1di2eWy. Only for the third and fourth measure-
ments has one really to take different choices in accordance
to the sequence of the preceding outcomes. The Bloch vec-
tors of the third measurement can be parametrized by a
single anglea as

s− 1di3mW sx3d = cosa uW1sx2d + sina vW1sx2d, s4.29d

where

uW1sx2d = mW sx1d 3 mW sx2d,

vW1sx2d = uW1sx2d 3 sWsx2d,

sWsx2d =
mW sx2d + mW sx1d

Î2
. s4.30d

Notice that, rather unexpectedly,mW sx1d, mW sx2d, andmW sx3d are
not mutually orthogonal. The optimal value of this angle is
a=0.502. Although we cannot give any insight as to why
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this value is optimal, in agreement with our intuition one

sees thatmW sx3d'MW sx2d, i.e., the third measurement probes
the plane orthogonal to the Bloch vector one would guess
from the first two outcomesfsee Eq.s4.22dg. The vectors of
the fourth measurement can be parametrized by two anglesb
andg as

s− 1di4mW sx4d = cosg uW2sx3d + sing vW2sx3d, s4.31d

where

uW2sx3d = sWsx2d 3 mW sx3d,

vW2sx3d = cosb mW sx3d − sinb sWsx2d. s4.32d

The optimal values of these angles areb=0.584,g=0.538,
and the corresponding fidelity isFgeneral

s4d =0.8206. This is just
1.5% lower than the absolute bound5/6=0.8333 attained
with collective measurement, Eq.s3.12d. Note that this value
is slightly larger than the fidelity obtained with the greedy
scheme,Fgeneral

s4d .Fgreedy
s4d =s15+Î91d /30<0.8180. The extra

information consisting of the number of available copies has
indeed been used to attain a larger fidelity. We conclude that
for N.3, it pays to relax optimality at each step, and greedy
schemesf20,21g are thus not optimal. We would like to re-
mark that if, for some reason, some copies are lost or cannot
be measured, the most general scheme will not be optimal,
since it has been designed for a specific number of copies.
We have also computed the values of the maximal LOCC
fidelities for N=5,6: Fgeneral

s5d =0.8450 andFgeneral
s6d =0.8637.

Beyond N=6 the small differences between this and the
greedy scheme become negligible.

V. LOCAL SCHEMES IN THE ASYMPTOTIC LIMIT

Any acceptable scheme, such as those considered in this
paper, achieves a unit fidelity in the limitN→`. The sub-
leading term of the asymptotic expansion of the fidelity
stypically of orderN−1d carries nontrivial information, as an-
ticipated in the discussion after Eq.s4.8d. It enables us, e.g.,
to compare different schemes independently of the number
of copies. If two schemes have the same asymptotic fidelity
sthe same subleading termd, it is justified to say that they
have the same efficiency, and conversely. In addition, this
term is important in statistics since it is related to the vari-
ance of certain type of estimators to which many powerful
techniques apply. In this section we will compute such
asymptotic fidelities. We will show that, asymptotically, clas-
sical communication is not needed to attain the absolute up-
per bound given by the maximum fidelity of the most general
collective measurements. Some of the results that we present
below were obtained by two of the authors by explicit com-
putation inf22g. Here we will use a statistical approach that
relates the Fisher informationI f34g with the average fidelity
F and uses the Cramér-Rao bound. This approach will
greatly simplify our earlier derivations. A brief introduction
for nonpractitioners is in Appendix B, where some technical
details are also included.

The main theorem that we need in this section is in Eq.
sB7d, whose no-frill version reads

Fshd = 1 +
1

2N
tr

Hshd
Ishd

+ …, s5.1d

whereH is the Hessian matrix offnsxd as a function of the
state parameters, which we refer generically ash, andI is the
Fisher information matrix, defined in Eq.sB5d. The theorem
applies to the “pointwise” fidelityFshd, which is the average
of fnsxd over all possible outcomes, Eq.sB3d. It provides an
upper bound that is attained by the maximum likelihood es-
timator sMLEd, defined after Eq.sB5d, and by the OG.

Let us start with 2D states. This case is rather simple
because such states have just one parameter and the Fisher
information is a single number. Moreover,anyvon Neumann
measurement whose vector lies on the equator of the Bloch
sphere performed on a 2D system hasI =1, as can be
checked by plugging the corresponding probability

pus±1d =
1 ± cossu − umd

2
s5.2d

into Eq.sB5d. In this equationum is the polar angle ofmW , the
direction along which the von Neumann measurement is per-
formed, andu is the polar angle ofnW. Therefore, in 2D the
Fisher information for a set ofN measurementssidentical or
notd is I sNd=N.

Since the Hessian isH=−1/2, any sensible local mea-
surement scheme on 2D states will yield

Fsud = 1 −
1

4N
+ ¯ . s5.3d

Note that this fidelity is independent ofu, so it coincides
with the average fidelityF=edu Fsud / s2pd=1−1/s4Nd. We
further note that it coincides with the collective bound Eq.
s3.7d, as anticipated in Sec. IV A.

We next turn to the 3D case, which is more involved. The
results shown in Fig. 3 hint that the tomographic scheme
with the OGsdot-dashed lined does not attain the collective
bound. Indeed, a straightforward calculationsdetails are
given in Appendix B 2d gives

F = 1 −
13

12N
+ ¯ , s5.4d

which is less thanF=1−1/N, Eq. s3.14d.
At this point, the question arises whether classical com-

munication is necessary to attain the collective bound. We
next show that this is not the case by considering the so-
called RD scheme. Recall that in this scheme measurements
are performed along RDs chosen from an isotropic distribu-
tion. This is equivalent to performing a covariantscontinu-
ousd POVM on each one of the copies separately. Here, we
stick to the RD picture and regard each individual measure-
ment as von Neumann’sand a classical ancilla, e.g., a “rou-
lette,” that gives us the direction of the measurement. From
this point of view, the outcome parameters are given byx
=(j ,su;cosqd ,w), whereq and w are the azimuthal and
polar angles of the directionmW su,wd of the measurement, and
j= ±1 is the corresponding outcome. Using Eq.s5.1d for Eq.
sB7dg we obtainssee Appendix B 3 for detailsd
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FRD = 1 −
1

N
+ ¯ . s5.5d

We conclude that asymptotically classical communication
is not required to saturate the collective bound: a measure-
ment scheme based on a set of RDs does the job.

VI. SUMMARY AND CONCLUSIONS

We have presented a self-contained and detailed study of
several estimation schemes when a numberN of identical
copies of a qubit state is available. We have used the fidelity
as a figure of merit and presented a general Bayesian frame-
work which has enabled us to find the optimal schemes not
only in the asymptotic limit but forany number of copies.
We have considered two interesting situations: that of a com-
pletely unknown qubit states3D cased, and that of a qubit
lying on the equator of the Bloch spheres2D cased. For com-
pleteness, we have reviewed the optimal measurements and
maximum fidelities for the most general collective strategies.
However, this paper focused on measurements that can be
implemented in a laboratory with technology available
nowadays: local von Neumann measurements. Special em-
phasis has been put on situations where a finite number of
copies are available, an aspect of state estimation that has not
been extensively covered in the literature.

In the 2D case we have shown that, quite surprisingly, the
most basic tomographic scheme, i.e., measurements along
two fixed orthogonal directions with adequate data process-
ing sthe OGd, gives already a fidelity that is asymptotically
equal to the collective bound.

For the 3D states, tomography, i.e., measurements along
three fixed orthogonal directions, fails to give the asymptotic
collective bound, even with the best data processing. The
main reason of this failure is that the Bloch sphere is not
explored thoroughly. We have considered an extension that is
asymptotically isotropic: a series of von Neumann measure-
ments along random directions. We have proved that this
scheme, which does not make use of classical communica-
tion, does saturate the collective bound. This illustrates that
in the large-N limit an estimation procedure based on local
measurements without classical communication does per-
form as well as the most efficient and sophisticated collective
schemes.

We have also discussed local schemes with classical com-
munication, i.e., schemes in which the measurements are de-
vised in such a way that they take into account previous
outcomes. We have studied in detail the one-step adaptive
scheme of Gill and Massarf19g. The economy of resources
in this scheme may raise doubts about its efficiency. In Ap-
pendix C we give a simple proof that for largeN it indeed
attains the collective bounds for both 2D and 3D.

We have also studied strategies that make a more inten-
sive use of classical communication. In the greedy scheme,
optimization is performed at each measurement stepf20,21g.
This scheme is the best approach one can take if the actual
number of available copies is not known. We have given a
geometrical condition for sequentially finding the optimal
measurements and have proved that they have to be of von

Neumann typessee Appendix Dd, i.e., no general local
POVM will perform better in this context. We have illus-
trated the performance of the method with numerical simu-
lations and have shown that the behavior of the optimal col-
lective scheme is reached for very low values ofN. This
occurs forN as low as 20 in 2D and slightly above, 45, in
3D.

In the most general scheme we see that up toN=3 s2 in
2Dd there is no need for classical communication: the opti-
mal measurements correspond to a set of mutually unbiased
observables. For largerN, the knowledge of the actual value
of N provides an extra information that translates into an
increase of the fidelity. From the practical point of view,
however, this difference is negligible already at the level of a
few copiessN*6d.

Our approach may be extended to other situations. For
instance, the problem of estimatingsqubitd mixed states,
which is much more involved, can be tackled along the lines
described heref23g. It would also be interesting to consider
qudits and check whether a set of mutually unbiased observ-
ables provides the optimal local estimation scheme when the
number of copies coincides with the number of independent
variables that parametrize the qudit state.
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APPENDIX A

Here we give a derivation of the results collected in Sec.
III. The 2D and 3D cases are treated on the same footing,
which gives a homogeneous picture of the problem under
consideration.

1. 2D states

For 2D states Eq.s2.9d reads

D = o
x

UE du

2p
nW trfrnOsxdgU , sA1d

where we can writern as in Eq.s3.1d. In the standard basis
u jml;uml ,Usud is diagonal and we have

rsud = o
m n

eism−ndusr0dmnumlknu, sA2d

wherer0 is defined in Eq.s3.2d. We can now readily com-
pute Eq.sA1d to obtain
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D = o
x
Uo

mn
E du

2p
eiueism−ndusr0dmnfOsxdgnmU

= o
x
U o

m=−J

J−1

sr0dmm+1fOsxdgm+1mU , sA3d

where fOsxdgmn;kmuOsxdunl. The following inequalities
give an upper bound forD:

D ø o
x

o
m=−J

J−1

usr0dmm+1fOsxdgm+1mu

ø o
m=−J

J−1

usr0dmm+1uo
x

ufOsxdgm+1mu ø o
m=−J

J−1

usr0dmm+1u,

sA4d

where in the last step we have used that

o
x

ufOsxdgm+1 mu ø 1, sA5d

as follows from positivity and Eq.s2.4d. More precisely,
positivity implies

fOsxdgmmfOsxdgm+1 m+1 ù ufOsxdgm m+1u2, sA6d

and the Schwarz inequality yields

o
x

ufOsxdgm m+1u ø Îo
x

uOsxdgmmÎo
x

fOsxdgm+1 m+1 = 1.

sA7d

Recalling Eqs.s3.2d and sA4d one hasf8g

D ø
1

2N o
m=−J

J−1 ÎS N

J + m
DS N

J + m+ 1
D , sA8d

where we have used that

uJJlx = uxWl^N =
1

2J o
m=−J

J S N

J + m
DuJml sA9d

srecall thatJ;N/2d. The inequalitysA8d can also be written
as in s3.3d.

We next show that there are POVMs that attain this
bound. To saturate the first inequality insA4d the phase of
fOsxdgm m+1 must be independent ofm. This is ensured if this
phase is a function ofm−n. Similarly, a set of positive op-
erators for whichuOsxdmnu=const for all x, m, and n will
certainly saturate the remaining inequalities insA4d. In par-
ticular, the covariantscontinuousd POVM, whose elements
are given by

fOsfdgmn= eism−ndf, sA10d

satisfies all the requirements. Note that we have labeled the
outcomes by a rotation anglef, which plays the role ofx.
Hence, conditions2.4d becomeseOsfddf / s2pd=1, which
certainly holds for Eq.sA10d. These are rank-1 operators,
and can also be written as ins3.4d.

In the asymptotic limit the fidelity can be obtained in
terms of the moments of a binomial distribution Binsn,pd

with parametersn=N andp=1/2. Wesimply need to expand
s3.3d in powers ofm, i.e., aroundkml=0, to obtain

DCOL =
1

2No
m
S N

J + m
D 3 F1 −

2m

N
+ S2m2

N2 −
1

N
D

+ Os1/N3/2dG sA11d

snotice that the sum overm is shifted byJ with respect to the
usual binomial distributiond. The moments are well known to
be k1l=1, kml=0, andkm2l=N/4. The latter shows thatm
has “dimensions” ofÎN, which helps to organize the expan-
sion in powers of 1/N. We finally obtain Eq.s3.6d.

2. 3D states

It is convenient to define an operatorVsxd in such a way
that

Osxd = UfMW sxdgVsxdU†fMW sxdg, sA12d

whereMW sxd is given by Eq.s2.6d. Taking into account thatD
is rotationally invariant one obtains

D = o
x

UE dn nztrfrnVsxdgU . sA13d

We readily see thatnz=cosu=D00
s1dsnWd, where the rotation

matricesD
mm8
s jd are defined in the standard way,D

mm8
s jd snWd

=k jmuUsnWdu jm8l. We then have

D = o
x
Uo

mm8
E dnD00

s1dsnWdsrndmm8Vm8msxdU
= o

m
Fo

x

VmmsxdG E dnD00
s1dsnWdsrndmm, sA14d

where in the second equality we have used that

E dnD00
s1dsnWdsrndmm8 = dmm8E dnD00

s1dsnWdsrndmm,

sA15d

as follows from Schur’s lemma after realizing that the left-
hand side of Eq.sA15d commutes withUsud, the unitary
transformations defined right after Eq.s3.2d. Recall that these
transformations, which are a Us1d subgroup of SUs2d, have
only one-dimensional irreducible representations, labeled by
the magnetic quantum numberm, thus yielding relation
sA15d. In Eq. sA14d we have removed the absolute value as
all terms are positivessee belowd. TracingsA12d one obtains
oxtr Vsxd=oxtr Osxd=dJ. Therefore

D ø dJmax
m
E dnD00

s1dsnWdsrndmm= max
m

k10;JmuJml2 =
J

J + 1
,

sA16d

where in the second equality we have used that
rmm=DmJ

sJdsnWdDmJ
sJd*snWd and the well-known orthogonality rela-
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tions of the SUs2d irreducible representationsf35g. This is
the inequalitys3.11d in the main text.

Let us finally give a POVM that saturates all the inequali-
ties. The maximum of the Clebsch-Gordank10;JmuJml in
Eq. sA16d occurs atm=J. Hence, to attain the bound we
need to choose

Vmmsxd = cxdJm, o
x

cx = dJ, sA17d

where the coefficientscx are positive. This leads straightfor-
wardly to the optimal continuous POVM in Eq.s3.13d.

APPENDIX B

1. The Cramér-Rao bound: A glossary

We label the independent state parameters by the symbol
h. This symbol will refer to the two anglesu, f for 3D
states:h;su ,fd; and the polar angleu for 2D states:h
;u.

Assume that under a sensible measurement and estimation
schemeswe mean by that a scheme that leads to a perfect
determination of the state whenN goes to infinity, i.e.,
limN→`F=1d the estimated state is close to the signal state,
that is, their respective parametersĥsxd and h differ by a
small amount. In this section, a caret will always refer to
estimated parameters, the fidelityfnsxd, Eq. s2.2d, will be
denoted byfhsĥd, and similarly, the probabilitypnsxd will be
written asphsxd. Note that the guessed parametersĥsxd are
based on a particular outcomex. This dependence will be
implicitly understood when no confusion arises.

The fidelity can be approximated by the first terms of its
series expansion

fhsĥd < 1 +
1

2
U ]2f

]ĥi ] ĥ j
U

ĥ=h

sĥi − hidsĥ j − h jd, sB1d

where we have used thatfhshd=1 and]fh /]ĥuĥ=h=0. Aver-
aging over all possible outcomes, we have

Fshd < 1 +
1

2
trfHshdVshdg, sB2d

where

Fshd ; o
x

phsxdfhfĥsxdg, sB3d

is the “pointwise” fidelity, Hshd is the Hessian matrix of
fhsĥd at ĥ=h, and Vshd is the variance matrix, with ele-
mentsVi jshd=oxphsxdsĥi −hidsĥ j −h jd.

It is well known that the variance of an unbiased estimator
is bounded by

Vshd ù
1

Ishd
, sB4d

the so called Cramér-Rao boundf19,25,36g, where the Fisher
information matrixIshd is defined as

I ijshd = o
x

phsxd
] ln phsxd

]hi

] ln phsxd
]h j

. sB5d

The conditional probabilityphsxd regarded as a function ofh
is called the likelihood functionLshd=phsxd. It is also well
known that the boundsB4d is attained by the MLEf37g,
defined asĥMLE =argmaxLshd. Hence this bound is tight.

A link between the Fisher information and the fidelity is
obtained by combining Eqs.sB2d andsB4d, and noticing that
Hshd is negative definite. We thus have

Fshd ø 1 +
1

2
tr

Hshd
Ishd

sB6d

to leading order and for any unbiased estimation scheme.
The Fisher information is additive. This means that if

ph
s2dsx ,x8d=phsxdph8sx8d, which happens when we perform

two measurementsfsay,hOsxdj andhO8sx8djg on two identi-
cal states, the Fisher information of the combined measure-
ment is simplyI s2dshd= Ishd+ I8shd. In particular, forN iden-
tical measurements, we haveI sNdshd=NIshd.

Finally, since the OG is a better estimator, and it is as-
ymptotically unbiased, we must have

FOGshd = FMLEshd = 1 +
1

2N
tr

Hshd
Ishd

sB7d

to leading order, where the fidelities refer to an estimation
scheme consisting ofN identical measurements. We use Eq.
sB7d to compute the asymptotic limits of the fixed measure-
ment schemes discussed in Sec. IV Asdetails are given be-
lowd.

2. Tomography of 3D states

Consider a scheme that consists in repeatingN times the
following: take three copies of the state and perform a mea-
surement alongeWx on the first copy, alongeWy on the second
copy, and alongeWz on the third copysrecall thatN=3Nd.
These three von Neumann measurements can be regarded as
a single measurement with 23 possible outcomes labeled by
x=sx1,x2,x3d, wherex j = ±1. The probability of obtaining
an outcomex is

phsxd = p
j=x,y,z

1

2
s1 + x jnW ·eW jd. sB8d

The Fisher information matrixIsu ,fd of this elementary
measurement is obtained by substituting Eq.sB8d in Eq.
sB5d. Note that the Fisher information of this scheme as a
whole is I sNdsu ,fd=NIsu ,fd.

With this, we obtain

tr
Hsu,fd
Isu,fd

=
3

4

1 + 6 cos2u + cos4u − sin4u cos 4f

1 + 7 cos2u − sin2u cos 4f
. sB9d

Integrating over the isotropic prior probabilitydn, Eq.s3.10d,
we obtain Eq.s5.4d.
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3. Random direction scheme

We parametrize the state byh=(sv;cosud ,f). Since this
strategy is isotropic, the pointwise fidelityFshd is indepen-
dent ofh, and we conveniently chooseh=(sv=0d ,0)=0. By
the same argument, no average overh will be needed:F
=Fshd. The probability is given by

phsxd =
1 + j nW ·mW su,wd

2
, sB10d

and the Fisher information reads

I ijshd = o
j=±1

E du dw

4p
phsxd

] ln phsxd
]hi

] ln phsxd
]h j

.

sB11d

The diagonal elements read

Ivvs0d =
1

8p
o

j=±1
E u2du dw

1 + jÎ1 − u2cosw
=

1

2
, sB12d

Iffs0d =
1

8p
o

j=±1
E s1 − u2dsin2w du dw

1 + jÎ1 − u2cosw
=

1

2
. sB13d

As for the off-diagonal elements, a straightforward calcula-
tion givesIvfs0d= Ifvs0d=0, as one could expect, since gain-
ing information onv does not provide information onf, and
vice versa. Plugging these results and the Hessian of the
fidelity, which isHi js0d=−di j /2, in Eq.sB7d we finally obtain
Eq. s5.5d.

APPENDIX C

In this appendix we review the “one-step adaptive”sor
Gill-Massard scheme and give a straightforward and compre-
hensive proof that it saturates the collective bound for large
N. We consider only the 3D case, as the simpler 2D case can
be worked out along the same lines.

First stage. One performsN0=Nas0,a,1d measure-
ments with a sensible estimator, in the sense of Sec. V, and

obtains an estimationMW 0 with a fidelity F0:

F0 = o
x0

E dn
1 + nW · MW 0sx0d

2
pnsx0d, sC1d

wherex0 stands for the list of outcomes obtained in this first
stage.

Second stage. At this point we use the FG on the remain-

ing N̄;2N;N−N0 copies by measuring alongtwo perpen-

diculars directionsuW andvW on the plane orthogonal toMW 0. In
this basis the final guess can be written as

MW = MW 0sx0dcosv + suWcost + vWsintdsinv. sC2d

This parametrization ensures thatMW is unitary. The anglesv
and t depend on the outcomes of this second stage, which
are the frequenciesaiN ,s1−aidN sfor i =u,vd. The prob-
abilities are given bypnsad in Eq. s4.2d, with nu=nW ·uW and

nv=nW ·vW. Since we measure on the plane orthogonal toMW 0,
the two outcomes of each measurement have roughly the
same probability,ai <1/2, and they are most informative. It
is convenient to define the two-dimensional vectorrW, with
components

r i ; 2ai − 1, i = u,v, sC3d

which, on average, is close to 0W. This vector gives an esti-
mation of the projection of the signal Bloch vectornW on the
measurement planesuv planed. Hence,v is expected to be

small sMW 0<MW d and we make the ansatz

v = lÎru
2 + rv

2, tant =
rv

ru
, sC4d

where the positive parameterl will be determined later.
The final fidelity for a signal statenW and outcomessx0,rWd

is

fnsx0,rWd =
1 + nW · MW sx0,rWd

2
, sC5d

and the average fidelityF reads

F = o
x0,rW

E dn
1 + nW · MW sx0,rWd

2
pnsx0dpnsrWux0d. sC6d

Notice that the probability of obtaining the outcomerW,
namely,pnsrW ux0df;pnsad in Eq. s4.2d with i =u, vg, is condi-
tioned on x0 through the dependence of the second-stage

measurements onMW 0sx0d.
Since we will compute different averages overx0, rW

=sru,rvd, andnW, it is convenient to introduce the following
notation:

kfl0 = o
x0

fnsx0,rWdpnsx0d, sC7d

kflr = o
rW

fnsx0,rWdpnsrWux0d, sC8d

kfln =E dn fnsx0,rWd, sC9d

and similarly for averages of other functions ofx0, rW, andnW.
We will denote composite averaging by simply combining
subscriptssi.e., ŠkFlr‹0;kFlr,0d. Therefore, we write

F ; kflr,0,n ; kfl. sC10d

SinceF=s1+Dd /2, we have

D = knW · MW l. sC11d

In the expansions that we perform below, we keep only
the terms that contribute to the fidelity up to order 1/N.
Recalling thatv is expected to be small, it follows that

cosv = 1 −
l2

2
fru

2 + rv
2g, sC12d
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sinv cost = lru, sC13d

sinv sint = lrv, sC14d

to leading order. Therefore, the expectation value in Eq.
sC11d can be written as

D =KS1 −
l2

2
kru

2 + rv
2lrDnW · MW 0L

0,n
+ lkkrulrnu + krvlrnvl0,n.

sC15d

Since ru, rv sor equivalentlyau, avd are binomially distrib-
uted, one readily sees that

kr ilr = ni , sC16d

kr i
2lr = ni

2 +
1 − ni

2

N . sC17d

We further recall thatnW is unitary and thathMW 0,uW ,vWj is an

orthonormal basis, hencenu
2+nv

2=1−snW ·MW 0d2, and Eq.sC15d
can be cast as

D = l + F1 −
l2

2
S1 +

1

NDGknW · MW 0l0,n − lksnW · MW 0d2l0,n

+
l2

2
S1 −

1

NDksnW · MW 0d3l0,n. sC18d

To compute the momentsksnW ·MW 0dql0,n, we consider the angle

d betweennW andMW 0, which is also expected to be small. We
have

2F0 − 1 = knW · MW 0l0,n = kcosdl0,n . 1 −
kd2l0,n

2
, sC19d

where we have used Eq.sC1d. Therefore

ksnW · MW 0dql0,n = kcosqdl0,n . 1 −
q

2
kd2l0,n = 1 − 2qs1 − F0d.

sC20d

Now we plug this result back into Eq.sC18d to obtain

F = kfl = 1 − s1 − ld2s1 − F0d −
1 − 4s1 − F0d

2N l2.

sC21d

Since the terms1−ld2s1−F0d is always positive, the maxi-
mum fidelity is obtained with the choicel=1, and we are
left with

F = 1 −
1 − 4s1 − F0d

2N . sC22d

Since the first estimation is asymptotically unbiased, 1−F0
vanishes for largeN0 si.e., for largeNd and

F . 1 −
1

2N . sC23d

Recalling thatN=sN−Nad /2, we finally have

F = 1 −
1

N
+ ¯ . sC24d

This concludes the proof.

APPENDIX D

In this appendix we prove that in the greedy scheme the
optimal individual measurements on each copy are of von
Neumann type. We sketch the proof for 2D states. The 3D
case can be worked out along the same lines.

The history of outcomes will be denoted, as usual, byx.
Notice that here we consider general local measurementsslo-
cal POVMsd with R outcomes, whereR is possibly larger
than 2. Thereforex is anN-digit integer number in baseR:
x= iNiN−1¯ i1sik=0,1,… ,R−1d. As in Sec. IV B we use the
notation xk= ikik−1¯ i1. A measurement on thekth copy is
defined by a set of non-negative rank-1 operators
hOsxkdjik=0

R−1=hOsikxk−1d u ik=0,1,… ,R−1j, where

Osxkd = csxkdf1 + mW sxkd · sW g. sD1d

The non-negative constantscsxkd and the vectorsmW sxkd are
subject to the constraints

o
ik=0

R−1

csxkd = 1, sD2d

o
ik=0

R−1

csxkdmW sxkd = 0, sD3d

umW sxkdu = 1, sD4d

which ensure thatOsxkdù0 andoik
Osxkd=1. Note that we

allow csxkd to be zero, thus taking into account the possibil-
ity that each local POVM may have a different number of
outcomes without lettingR depend onk.

Assume we have measured all but the last copy and we
wish to optimize the last measurement. To simplify the no-
tation, let us definer ; iN, mW r =mW srxN−1d, and cr =csrxN−1d.
Then,

pnsxd = pnsxN−1dfcrs1 + nW ·mW rdg sD5d

and

D = o
xN−1

o
r

uVW srxN−1du = o
xN−1

dsxN−1d, sD6d

where we have defineddsxN−1d as

dsxN−1d ; o
r

crUE dn nWpnsxN−1ds1 + nW ·mW rdU . sD7d

We further writeVW ;VW sxN−1d and define the symmetric posi-
tive matrix

Ai j ; Ai jsxN−1d ; E dn ninjpnsxN−1d. sD8d

EquationsD7d becomes
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d = o
r

cruVW + AmW ru. sD9d

sHereafter the dependency onxN−1 will be implicitly under-
stood to simplify the notation.d

Our task is to maximize Eq.sD9d. Introducing the
Lagrange multipliersl, gW , andvr, the function we need to
maximize is actually

L = d − l L − gW · GW − o
r

vrVr , sD10d

where the constraints

L = o
r

cr − 1, sD11d

GW = o
r

crmW r , sD12d

Vr =
mW r

2 − 1

2
sD13d

can be read off from Eqs.sD2d–sD4d. The factor 2 in the last
expression is introduced for later convenience. Variations
with respect tocr yield

dL

dcr
= uVW + AmW ru − gW ·mW r − l = 0. sD14d

Notice that the pointsmW r that satisfy this equation define an

ellipseE with focus at −A−1VW . Notice also that the parameter
l at the maximum is the value ofd in Eq. sD9d fjust multiply

Eq. sD14d by cr and sum overr taking into account the

constraintsL=0 andGW =0Wg.
Finally, consider the variations ofmW r in Eq. sD10d. We

obtain

crSA
VW + AmW r

uVW + AmW ru
− gWD = vrmW r , sD15d

which means that the vector inside the parentheses is propor-
tional to mW r. Note that the conditionVr =0 defines a unit
circle, and the orthogonal vector to this curve ismW r. So we
only need to prove that the orthogonal vector at pointmW r of
the ellipseE defined in Eq.sD14d has precisely this direction.
This follows straightforwardly by taking variations with re-
spect tomW r in Eq. sD14d. Therefore, the solution is given by
the tangency points of the ellipseE and the circleVr =0.
There are only two such points; they are in opposite direc-
tions, and all constraints and maximization equations are sat-
isfied with c1,2=1/2. This proves that the optimal measure-
ments in the greedy scheme are indeed von Neumann’s.1

Notice that this is a stronger statement than it looks: local
measurements with a larger number of outcomes will per-
form worse.

f1g C. M. Caves, C. A. Fuchs and P. Rungta, Found. Phys. Lett.
14, 199s2001d; J. Batleet al., Opt. Spectrosc.94, 700s2003d.

f2g A. Peres and W. K. Wootters, Phys. Rev. Lett.66, 1119
s1991d.

f3g S. Massar and S. Popescu, Phys. Rev. Lett.74, 1259s1995d.
f4g A. S. Holevo,Probabilistic and Statistical Aspects of Quantum

TheorysNorth-Holland, Amsterdam, 1982d.
f5g C. W. Helstrom,Quantum Detection and Estimation Theory

sAcademic Press, New York, 1976d.
f6g Quantum State Estimation, edited by M. Paris and J. Rehácek,

Lecture Notes in Physics Vol. 649sSpringer, Berlin, 2004d.
f7g S. L. Braunstein and H. J. Kimble, Phys. Rev. A61, 042302

s2000d.
f8g R. Derka, V. Buzek, and A. K. Ekert, Phys. Rev. Lett.80, 1571

s1998d.
f9g J. I. Latorre, P. Pascual, and R. Tarrach, Phys. Rev. Lett.81,

1351 s1998d; S. Iblisdir and J. Roland, e-print quant-ph/
0410237.

f10g N. Gisin and S. Popescu, Phys. Rev. Lett.83, 432 s1999d; S.
Massar, Phys. Rev. A62, 040101s2000d.

f11g E. Baganet al., Phys. Rev. Lett.85, 5230s2000d; Phys. Rev. A
63, 052309s2001d; E. Bagan, M. Baig, and R. Munoz-Tapia,
ibid. 64, 022305s2001d.

f12g A. Peres and P. F. Scudo, Phys. Rev. Lett.86, 4160s2001d.
f13g A. Acin, E. Jane, and G. Vidal, Phys. Rev. A64, 050302sRd

s2001d; E. Jane, Ph.D. thesis, University of Barcelona, Barce-
lon, 2002sunpublishedd.

f14g E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. Lett.87,
257903s2001d; Phys. Rev. A69, 050303s2004d.

f15g E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. A70,
030301s2004d.

f16g A. Peres and P. F. Scudo, Phys. Rev. Lett.87, 167901s2001d;
J. Mod. Opt.49, 1235s2002d; N. H. Lindner, A. Peres, and D.
R. Terno, Phys. Rev. A68, 042308s2003d.

f17g S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev.
Lett. 91, 027901s2003d.

f18g K. R. Jones, Phys. Rev. A50, 3682s1994d.
f19g R. D. Gill and S. Massar, Phys. Rev. A61, 042312s2000d.
f20g D. G. Fischer, S. H. Kienle, and M. Freyberger, Phys. Rev. A

61, 032306s2000d.
f21g Th. Hannemannet al., Phys. Rev. A65, 050303s2002d.
f22g E. Bagan, M. Baig, and R. Munoz-Tapia, Phys. Rev. Lett.89,

277904s2002d.
f23g E. Bagan, M. Baig, R. Munoz-Tapia, and A. Rodriguez, Phys.

Rev. A 69, 010304s2004d.
f24g F. Embacher and H. Narnhofer, Ann. Phys.sN.Y.d 311, 220

1For the 3D case we just have to replace ellipses by ellipsoids and
circles by spheres.

BAGAN, MONRAS, AND MUNOZ-TAPIA PHYSICAL REVIEW A 71, 062318s2005d

062318-14



s2004d.
f25g M. Hayashi, in Quantum Communication, Computing and

Measurement, edited by O. Hirota, A. S. Holevo, and C. M.
Caves,sPlenum Publishing, New York, 1997d; M. Hotta and
M. Ozawa, Phys. Rev. A70, 022327s2004d.

f26g K. Matsumoto, J. Phys. A35, 3111 s2002d; K. Usami et al.,
Phys. Rev. A68, 022314s2003d; M. Hayashi and K. Matsu-
moto, e-print quant-ph/0308150.

f27g J. M. Bernardo and A. F. M. Smith,Bayesian TheorysWiley,
Chichester, 2000d.

f28g A. G. White et al., Phys. Rev. Lett.83, 3103s1999d; D. F. V.
Jameset al., Phys. Rev. A64, 052313s2001d; R. T. Thewet
al., ibid. 66, 012303s2002d; J. B. Altepeteret al., Phys. Rev.
Lett. 90, 193601s2003d; E. Skovsen, H. Stapelfeldt, S. Juhl,
and K. Molmer,ibid. 91, 090406s2003d.

f29g U. Leonhardt,Measuring the Quantum State of LightsCam-
bridge University Press, Cambridge, England, 1997d.

f30g Z. Hradil, Phys. Rev. A55, R1561s1997d; K. Banaszek,ibid.
59, 4797 s1999d; Z. Hradil, J. Summhammer, and H. Rauch,

Phys. Lett. A261, 20 s1999d; K. Banaszeket al., Phys. Rev. A
61, 010304s2000d; Z. Hradil et al., ibid. 62, 014101s2000d;
J. Fiurásek and Z. Hradil,ibid. 63, 020101s2001d.

f31g Y. I. Bogdanovet al., Phys. Rev. A70, 042303s2004d; H. F.
Hofmann and S. Takeuchi,ibid. 69, 042108s2004d.

f32g A. Monras, Ms thesis, Universitat Autònoma de Barcelona,
Barcelona, 2004.sunpublishedd.

f33g D. Ivanovic, J. Phys. A14, 3241s1981d; W. K. Wootters and
B. D. Fields, Ann. Phys.sN.Y.d 191, 363 s1989d.

f34g T. Cover and J. Thomas,Elements of Information Theory
sWiley, New York, 1991d.

f35g A. R. Edmonds,Angular Momentum in Quantum Mechanics
sPrinceton University Press, Princeton, NJ, 1960d.

f36g S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.72, 3439
s1994d.

f37g H. Cramer, Mathematical Methods of StatisticssPrinceton
University Press, Princeton, NJ, 1946d.

COMPREHENSIVE ANALYSIS OF QUANTUM PURE… PHYSICAL REVIEW A 71, 062318s2005d

062318-15


