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Given N identical copies of the state of a quantum two-level system, we analyze its optimal estimation. We
consider two situations: general pure states @uode states restricted to lie on the equator of the Bloch sphere.
We perform a complete and comprehensive analysis of the optimal schemes based on local measurements, and
give results(optimal measurements, maximum fidelity, gtimr arbitrary N, not necessarily large, within the
Bayesian framework. We also make a comparative analysis of the asymptotic limit of these results with those
derived from a(pointwise Cramér-Rao type of approach. We give explicit schemes based on local measure-
ments and no classical communication that saturate the fidelity bounds of the most general collective schemes.
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I. INTRODUCTION individual measurements in both 2D and 3D. This completes

In quantum information, state characterization and meathe results summarized {i22] by some of the authors, and
surements are not jusbmeimportant topics. They are at the Provides further technical details that were skipped there. We
very core of the theory. Any unknown quantum state carflso show that for larghl these results are in agreement with
only be unveiled by means of measurements, which providéhose obtained using a Cramér-Rao type of approach. We
the information that, in turn, is used to obtain an approxima-show that there are nonadaptive schemes based on individual

tion of the state. This process is known as state estimationmeasurements that saturate the optimal collective bound. We
Since this information is always gained at the expense ofonsider also adaptive local schemes, usually called local
destroying the state, the estimation procedure requires @perations and classical communicatidrOCC) schemes.
sample ofN identical copies of it. Usually, we have a limited Within our framework, we give a proof that the simplest
number of such copies and, therefore, it is very important tosersion of these LOCC schemes—the Gill-Massar scheme
devise strategies with optimal performance in a variety of19}—indeed saturates the collective bound. For more so-
practical situations. phisticated LOCC schemes we prove that two-outcome mea-
Here we address the issue of estimating the most elemesurementgvon Neumann’s perform better than generalized
tary quantum state, that of a two-level systéiimroughout measurements with a larger number of outcomes. In addition
this paper we will refer to such systems as qubits for ghort to these results, we include in Apperd\ a comprehensive
We consider two relevant cases: estimation of a completelgnd unified rederivation of the optimal collective-
unknown state, i.e., one given by an arbitrary point on theneasurement scheme in 2D and 3D. In summary, this paper
Bloch sphere; and estimation of restricted states that ari a complete and self-contained review on estimation of qu-
known to lie on the equator of the Bloch sphere. The latter idit pure states.
also interesting because it is formally equivalent to phase The paper is organized as follows. The basic concepts and
estimation(these states are also equivalent to the so-calledotation are introduced in the next section. In Sec. Il we
rebits[1]). We refer to these two situations as thré&D) and  recall the bounds on the fidelity of the optimal collective
two-dimensional2D) cases, respectively. measurements. In Sec. IV we discuss several local measure-
Over the last few years, it has been recognized that a joinnent schemes, with and without classical communication.
measurement oM copies (also known as collective mea- Asymptotic values of the fidelity are computed in Sec. V. A
surementis more efficient tham individual (or loca) mea- summary of results and our main conclusions are presented
surements on each copy separaf@yg]. This and other is- in Sec. VI, and four technical appendixes end the paper.
sues have been studied in various contgAtsl7], but for
individual measurements not many analytical results have
been obtained18-24. The most powerful involve sophisti- Il. CONCEPTS AND NOTATION

cated estimation theory technology that is not so widely Acciume that we are given an ensembleNoidentical
known among physicists. Moreover, they mainly apply in theCopies of an unknown qubit state, which we denotely

asymptotic limit (when N is largg, and in a pointwise .Yvhereﬁ is the unit vector on the Bloch sphere that satisfies
fashion, in the sense that no average over the prior probabil-

ity distribution of unknown states is considerg2b,26. In o . 1+n-co

contrast, we follow a “global’ Bayesian approach that en- XAl = D (2.1
ables us to find constructively the optimal measurements,

and the corresponding explicit expressions of the fidelity forand o=(oy, 0y,0,) are the usual Pauli matrices. After per-
finite N (not necessarily largeln particular, we present op- forming a measuremeritollective or local on theN copies
timal schemes based on fixétbmographi¢ and adaptive of |A), one obtains an outcome Based ony, an estimate
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P.(x). The goal of this paper is to compute the maximum

value of Eq.(2.8) and to obtain the optimal measurements,
especially the local ones, in various interesting situations.
1+R-M(x) Before concluding this section, let us substantiate the as-
. (2.2 sertion that our approach is Bayesian. For a given measure-

2 ment, we view each outcomgas an evidence. In Bayesian
Notice that@X(ﬁ)El—fn(X) can be regarded as a loss func- e_stim_ation[27], one computes the _posterior probability dis-
tion. The quality of an estimation scheme is usually quantiribution p,(n) that the state on which we have performed a
fied by means of the averaged fidelity, hereafter fidelity inmeasurement igi) given the evidencg, and minimizes the
short, over the initial probability and all possible outcomes, averaged loss function

well |I\7I(X)> approximates the unknown stdt® we use the
fidelity, defined as the overlap

fo(0) = [(AIM OO =

F=(h=3 f dn £,00P(0). (2.3 L= f dn €,(Ap, (7). (2.10
X

wherednis the prior probability distribution, anp,(y) is the ~ USing Bayes’ law one can straightforwardly check that the

probability of getting outcomey given that the unknown solution is the OGM(y), in Eq. (2.6). In other words, the

state is|i). Our aim is to maximizé~. OG is the Bayesian estimator for the problem we are consid-
Any measurementcollective or local is described by a ering in this paper.

positive-operator-valued measuifetOVM) on theN copies.

Mathematically, a POVM is a set of positive operators IIl. COLLECTIVE MEASUREMENTS

{0(x)} (each one of them associated to an outcpithet In this section we recall some known results concerning
satisfy the condition estimation based on collective measuremefusllective
S 0(y =1 (2.4 scheme}s Th_eir fidelities provide absolute upper bour_1ds _for
" ’ ' any estimation scheme. In the next sections we will view

them as points of reference to which we will compare differ-
The probabilityp,(x) is given in terms of these operators by ent local schemes in order to assess their performance.
(x) =t p-O(x)] (2.5 As mentioneq in the Introduction, a 2D state corresponds
PnlX P X ' to a point that is known to lie on the equator of the Bloch

wherep, is the quantum state of tHe identical copies, i.e., sphere. If we take it to be on the plane, such a staté) has
pn= (XA EN. n=(cos#,sing,0). If no other information is available, the

In Eq. (2.3 there are only two elements that require op-prior probability distribution has to be isotropic, that @
timization: the guess and the POVM, which enter this equa=dé/(2m). Notice that we can write
tion through Eqgs(2.2) and (2.5, respectively. The optimal

guess(OG) can be obtained rather trivially. The Schwarz pn=p(60) = U(0)pU"(0), 3.9
inequality shows that the choice where p, is a fiducial state of angular momentuds= N/2
- and maximal magnetic quantum numbe=J along any
'\7|(X) - @ (2.6) fixed direction on the equatgr of the Bloch_sphere. In particu-
IV(y)| lar, py can be chosen to point along tReaxis,
where po =3y (I (3.2

- . In EqQ. (3.1, U(0) is the unitary representation of a rotation
V(X):f dn A pr(x), (2.7 around thez axis. The group of such unitary matrices is
isomorphic to U(1): the group of phases. One can sh(@ee
maximizes the value of the fidelity. If we definethrough  Appendix A that

the relation 3
1 N J-m
1 A< — \/ ——— = ACO-, 3.3
FEE(].'I‘A), (2.8 ZNEJ<J+m> J+m+1 3.3

where A is defined in Eq.2.8). This bound is tight, since
there is a POVM for which it is attained. The simplest choice
A= |\7(X)| (2.9 is given by the following set of rank-1 operators:

X

O(¢) = U(¢)[B)XBIU"(4), (3.4

we have for the 0G22]

(in the strict sense we should write®® and A°C, but to

simplify the notation, we drop the superscript when no conWhere
fusion arises Equation(2.6) gives the best state that can be J
inferred, and Eqs(2.8) and(2.9) give the maximum fidelity |B) = > [J,m). (3.5
that can be achieved fany prior probability andany mea- m=-J
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In the asymptotic limit we have ing the measuremeriin a spin system, e.gm is the orien-
tation of a Stern-Gerlach apparafuand are represented by

ACOL=1 — 1 o (3.6)  the two projectors
2N '
and the maximum fidelity is o(xm) = H%T. (4.1
1
COL—1q __— .
F=1 AN M 3.7 In a general frame we must also allow for classical commu-

. . . ) nication, i.e., the possibility of adapting the orientation of the
Likewise, a 3D statén) corr(_esponds to a general point on measuring devices depending on previous outcdi2@s22.
the Bloch sphere. We can write In the next sections we study quantitatively several
_ _ + schemes in ascending order of optimality: from the most
pn = p(1) = U(M)poU (), (3.8 basic tomography insp%red schen[éspa,3(] toythe most gen-
where for conveniencg, is how chosen to point along tlee  eral individual measurement procedure with classical com-
axis, i.e., munication[22]. Our aim is to investigate how good these
local measurements are as compared to the collective ones
po= 9T, (3.9 for any value ofN. We would like to stress that in this con-
and U(fi) is the unitary representatidie., the element of text few analytical results are knovm9,23,2§. Our _results
SU(2)] of the rotation that bringg into i (a rotation around Neré complement and extend the analysis carried out by
the vectorZ X fi). In this casedn is the invariant measure on Some of the authors if22].
the two-sphere, e.g.,

A. Fixed measurements
_ d(cosf)d¢

47

dn ) (3.10 Let us start with the most basic scheme for reconstructing

a qubit: local measurements along two fixed orthogonal di-
where 6 and ¢ are the standard azimuthal and polar anglesrections(say,x andy) in the equator of the Bloch sphere for
We have the upper bourndee Appendix A 2D states, or along three fixed orthogonal directitsay, x,

y, andz) for 3D states. This kind of scheme is often called
< (3.11)  tomography[28,29,31.

J+1 Before presenting the OG analysis for this specific
scheme, we will briefly consider a much simpler estimator,
inspired by the law of large numbers, that we will call the
N+1 “frequentist” guesgFG). It is interesting for two reasons.
N+2° (3.12 First, its fidelity provides a lower bound for what one would

call “acceptable” schemes. Second, it has the nice property
As for the 2D case, there is a POVM that saturates all thef being directly (and easily obtained from the observed
inequalities. It can be chosen to be frequencies without further processing.
o . e ConsiderN=2A\(3N) copies of the statén). After A/
O(m) = dyU(mM)JHIIJUT(r), (313 measurements of the projection @falong each one of the
where d;=2j+1 is the dimension of the invariant Hilbert directionsé (i.e., of €-a), i=X, y, (2), we obtain a set of
space corresponding to the representafiaf SU(2). One  outcomes +1 and -1 with frequencidéa; and M(1-¢«;),
can easily check that the POVM conditigiin O(A)=1 is  respectively. This occurs with probability
satisfied.
For largeN, the fidelity behaves as N \[1+n \Neif 1 —n \NV1-a)
pn(a): H 5 )

Nai 2 2

A

Recalling thatl=N/2 we finally get[3]

FCOL —

1 i=xy,(2)
FOOL=1-=+ ..., 3.1
N (3.14 (4.2

wheren; are the projections of the vectaralong each direc-
tion, nj=n-&, and we have used the shorthand notation
IV. LOCAL MEASUREMENTS ={a;}. The combinatorial factor takes into account all the

Collective measurements, although very interesting fronPossible orderings of the outcomes and the remaining factors
the theoretical point of view, are difficult to implement in are the quantum probabilities, i.e., the appropriate powers of
practice. Far more interesting for experimentalists are inditr[[i}A/O(x&)].

vidual von Neumann measuremenfl,28. This paper is Quantum mechanics tells us thatis the expectation
mainly concerned with them, to which we will loosely refer value of g, i.e., (i|a|n)=n. ProvidedN is large, the law of
as “local measurements,” for short. large numbers enables us to approximate this mean by the

Local measurements on qubits all consist in measuring theample mean, obtained from the relative frequencies of the
observablen- g, wherem is a unit Bloch vector characteriz- outcomes of théN\ measurements. This yields the estimator
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FIG. 2. Scaled erroey=N(1-F) in the 2D case for collective
(solid ling), OG (dot-dashed ling FG (dashed ling and greedy
(diamond$ schemes.

FIG. 1. Average fidelities in terms of the number of copies in the
2D case for the optimal collective measurem@atid line), tomog-
raphic OG(dot-dashed ling tomographic FGdashed ling and a
simulation of the greedy schengdots.

The 2D case is included in Fig. 1, where the average
fidelity for the OG guess and fax in the range 10-60 is

MiFG(a) = L_ 4.3 shown. The fidelity approaches unity ldsncreases, and the
2 (25— 1)2 OG (dot-dashed line always s better than the FG, as it
i should. Notice that to make the graphs more easily readable
. we have interpolated between integer points.
Notice the normalization factor which ensures thist™C| At this point, it is convenient to define the scaled error

=1; henceMFC always corresponds to a physical pure statefunction
[30]. In this case

en=N(1-F) (4.7
AFC=3 f dn - MF&(@)py(a), (4.9 and the limit
where p,(«) is defined in Eq.(4.2). The behavior of the 6=,\||le6’\" (4.8

corresponding fidelityc™® for 2D andN up to 60 is repre-

sented by a dashed line in Fig.(&imilar plots can be ob- which gives the first-order coefficient of the fidelity in the
tained for 3D. The fidelity of any acceptable estimation largeN expansionfF=1-¢/N+--- (the asymptotic behavior
scheme is expected to lie between this line and the solid on&ill be properly discussed in Sec)Mrigure 2 shows as a
corresponding to the collective bound discussed in the prefunction of N for 2D states. One readily sees that the FG

vious section. gives €"®~3/8[22], while for collective measurements one
Next, we turn to the Bayesian approach. The OG for thishase“©-~1/4, in agreement with Eq3.7). The stability of
measurement schemeM°%(a)=V(a)/|V(a)|, where the curvese{°" and €. shows that the fidelity is well ap-

proximated byF=1-¢€/N for such small values dfl as those
. in the figure. This asymptotic regime is not yet achieved by
V(a) = f dnnpy(a). (4.5  the OG; however, we will show in Sec. V that the OG gives
€°C=1/4, thus matching the collective bourtd.?) for large
N.

Figure 3 shows the scaled error in the 3D case. Again, one
readily sees that the OG performs better than the FG, but it
does not appear to be as good as in the 2D case.

1 In previous paragraphs we have presented the most basic
fdn NN n =8 8.6 iy, (4.6 scheme, i.e., that with a minimal number of orientations of
re a Ky e e T4 the measuring devices and without exploiting classical com-
o ) . munication. A next step in complexity is to consider a more
where the normalization factor iK,=q!! in 2D and Ky general set of fixed directiorfsn . It is intuitively clear that,
=(q+1)!!in 3D, the indexes in curly brackets are fully sym- 555;ming some sort of approximate isotropy, the more direc-
metrized, e.g., 5{i1i26i3i4}:5i1i25i3i4+‘Sili35|2i4+5ili45i2i3’ and,  tions are taken into account, the better the estimation proce-
obviously, the integral4.6) vanishes foig odd. These results dure will be. For instance, in 2D we may consider a set of
follow from very general symmetry arguments. For largerdirections given by the angle&=kx/N, wherek=1,...,N.
values ofN the expressions become rather involved and weThe set of outcomeg can be expressed as Brdigit binary
have resorted to a numerical calculation. numbery=iyin-1- - isi1, Wherei (=0,1) and

From Egs.(2.8) and (2.9), the optimal fidelity read$=[1
+2,V(a)]/2. Closed expressions of the OG fidelity for the
lowest values ofN can be derived from Ed4.5) using
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FIG. 3. Scaled erroey=N(1-F) in the 3D case for collective N

(solid line), tomographic OG(dot-dashed ling tomographic FG

? - FIG. 4. Scaled erroey of the RD schemédtriangleg as com-
(dashed ling and greedy(diamond$ schemes.

pared to the OGdot-dashed lineand the optimal collective scheme

(solid line).
oN-1 N I
o 1+ (=D'*A-m ) )
A'SO= dnaf] fk (4.9  which we choose the local measurements according to the
x=00--0 k=1 information gathered from previous outcomes. In principle,

Analytical results for lowN can be obtained using E¢.6). these schemes should be more efficient than those considered

For largeN, numerical computations show that this “isotro- SO far since a new resource is available. They can be under-
pic strategy” is indeed better than tomograpge[32] for stood from the Baye5|ar_1 mferen(_:e paradig®e for instance
explicit result$, but the improvement is not very significant. [27] for a comprehensive treatise on Bayesian infergnce
For 3D, however, one expects a completely different sceWhere the probability distribution of the unknown parameters
nario. One can readily see from Fig. 3 that the tomographiéin our casen) is updated using the “evidence” collected
OG line (dot-dashel doesnot approach the collective one after each measurement. Starting with a uniform distribution,
(solid). Indeed, it will be proved analytically in Sec. V and in the posterior probability distributions become more and more
Appendk B 2 that 26=13/12> eOL=1. Intuitively, more peaked around the true value. The convergence can be
general fixed measurement schemes—such as a 3D versi§R€eded up by choosing the measurement that best performs

of the isotropic one we have just discussed—should perfordiP" the updated probability distributioat each stepThis is
significantly better. essentially the point of view if20,21]. Though in line with

There is a difficulty in implementing the isotropic scheme thiS Spirit, the schemes considered in this section do not ex-
for 3D states since the notion of isotropic distribution of p|IC'It|y gpdate t_helr prlors._Our approaqh aims to ach|evmg
directions is not uniquely defined, which contrasts with theOPtimality by directly solving the conditions of maximum
2D case. A particularly interesting scheme that encapsulatéd/eraged fidelity under some simplifying assumptions.
this notion (at least for large enougN) and enables us to

. . . 1. One-step adaptive
perform analytical computations consists of measurements

along a set of random directioiRDs). With the same nota- We first review a method put forward by Gill and Massar
tion as in Eq.(4.9), we have [19], which we call “one-step adaptive.” It uses classical
\ communication only once, which makes it very simple from
21 N 1 +(=1)A -y, both theoretical and practical perspectives.
ARP= J kH dmy f dn nf . The basic idea of the method is to split the measurements
X=0---0 =1

in two stages. In the first one, a small number of copies is
(4.10  ysed to obtain a rough estimad of the state. In the second
In Fig. 4 we show the scaled erreg obtained from nu- Stage the remaining copies are used to refine the estimate by
merical simulations for rather largd. One readily sees the measuring on a plane orthogonal My. This strategy has a
improvement of the RD scheme over the tomographic OGglear motivation from the information theory point of view.
We will show in Sec. V that the former indeed attains theA measurement can be regarded as a query that one makes to

collective bound asymptotically. The RD scheme thus exema system. The most informative queries are those for which
plifies that classical communication is not required forthe prior probabilities of each outcome are the same. Mea-

asymptotic optimality. A fit gives a value€e®®  surements on the orthogonal planeMg have this feature.
=1.002+0.008, which pI’OVidES a numerical check of the To be more concrete, suppose we are gngeries of an

analytical results of Sec. V below. unknown qubit state. L&, stand for the number of copies
_ used in the first stage and I8t=N-N, stand for the rest. In
B. Adaptive measurements the 2D (3D) case, one measuréd,/2(N,/3) copies along

In this subsection we discuss schemes that make use 80 (threg fixed orthogonal directions and infers the guess
classical communication. By that we mean schemes foM,. In the second stage, one measuNéN/2) alongU(d,v),
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and infers the final guesls?l. The method turns out to be show in Appendix B that in this situation the optimal local

efficient if the number of copies used in each of the two_measurement at each gtep is indeed of von Neumann type,
any other POVM will perform worse.

. . : £+
stages is carefully chosen. Our numerical analysis reveals

that the optimal choice, i.e., the one that yields the Iargesgd:‘;;élsssongggt\rﬂ?éeh;\?e :)he,iml]?;é dssﬁie) O:emigrrﬁggy
fidelity, corresponds toN,~ VN. For other choices the - SUPp P P

surements and have obtained a string of outcoges. To

re- . . .
ment schemes. For the benefit of the reader, we present%ase the notation, let us denote the direction of the last mea-

detailed discussion of the method and a derivation of theesﬁéﬁn;ggtj ?gnr]r:‘z’ax?ri?z]gly’ My =M(Oxy-2) = ~M(Lyy-o). We
asymptotic limit in Appendix C. This method has also the
interesting property that in spite of its simplicity, it suffices
to show in a very straightforward way that local measure-

ments attain the collective bounds in 2D and 3D. Here

d(xn) = V(Oxn)| + V(Lxn-o)| - (4.14

- +(=1)'NA-m

o V(iNXN—l):Jdn ﬁpn(XN—l)M,
We now move forward to more sophisticated schemes and 2
discuss one that exploits classical communication much (4.15
more efficiently. The idea behind it is to maximize the aver- )
age fidelity at each single measurement step. It is calle@'. €quivalently,
“greedy” because it does not take into account the total num-
ber of available copies; instead, it treats each copy as if it
were the last one.

We first need to introduce some notation. Recall that the . . . L
set of outcomesy can be expressed as anhdigit binary whereA is the real positive symmetric matrix with elements
number y=iyin_1---isiq (ix=0, 1). Since we allow thekth
measurement to depend on the list of previous outcomes Ak|(XN_l):fdn Ny Pr(Xn-1) - (4.17
Iketies: * izl = xi (note thaty=yxy), we havem(y,) instead
of my. This is a compact notation where the lengtbf the  Therefore
string x, denotes the number of copies upon with we have
already measured. The orthogonality of the von Neumann ! IV(xneg) + (= 1)'NA (x|
measurements is imposed by the constraint (=2 >

2. Greedy scheme

V(xn-) + (= INA(xn- )y
> ,

V(inxn-1) = (4.16

(4.18
iN=0

M(Lxk-1) = = M(Oxi-1), (4.1

where Iy, is the list of lengthk obtained by prepending 1
to the list y,_1, and similarly for Q.. In general, the num-
ber of independent vectors for a givéhis (EE:12K)IZ:2N
—-1. For example, iN=2 there are three independent direc- o (A%a)=1, (4.19
tions, which can be chosen a¥0), m(00), m(01), and the ) ) _ o

other three are obtained using E4.11). Since the first mea- Which also defines an ellipsellipsoid in 3D centered at the
surement can be chosen at will, this number is reduced t8M9in- As usual, optimality tells us that the maximum of

Notice that for 2D states and fixed(y,) the points u

=Ammy lie on an ellipse with focus at\:f(an ellipsoid for 3D
state$. In addition they satisfy the normalization constraint

N_o d(xn) occurs at the points of tangency of the ellipgelip-
The general expression of the conditional probability thusS0ids. This provides a geometrical procedure for finding the
reads optimal direction my and an algorithm for computing
IVOx)l-

N > >
1—[1+n-m()(k)

4.12 We now proceed to obtain some explicit expressions for
~ 2 ' ’
k=1

low N. We discuss only the 3D case, as the 2D case is com-
pletely analogougsnumerical results for 2D states are shown
and, as discussed in Sec. Il, the OG gives in Figs. 1 and 2

When we only have one copy of the stdtks 1, the Bloch
vector of the measurement can be chosen in any direction,
sayé,, i.e.,m(0)=—m(1)=€,. The explicit computation of the
We could in principle attempt to maximize this expressionveCtorV in Eq. (2.7 gives
with respect toall the independent variables, i.e., all inde- - 1.
pendent{m(y,)}. However, the maximization process very V(Xl):ém()ﬂ)a (4.20
quickly becomes extremely difficult. In the greedy scheme
one takes a more modest approach: one maximizes at eaehd F=2/3, asexpected from Eq(3.12 [or Eq.(3.3)].
stepk. This enables us to find a compact algorithm for com-  The first nontrivial case idl=2. The matrixA(y;) reads

Pn(x) =

2N-1

A= 3

x=00 -0

. (4.13

f dn Ap,(x)
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(-1
\"5

1 2
Aulxe) = g% x=0.1, (4.20) M(xs) = kZl M(xi) X M(x3). (4.27)

i.e., A(x,) is independent of; and proportional to the iden- Again, one can see that the vectonsy,) are orthogonal to
tity. The maximum of (4.18 occurs form, L&, so we the guess one would have made with the first three measure-
chooser, =€, which meansf(00)=m(01)=¢, [notice that ~ments. The fidelity in this case is

in general these two vectors do not need to be equal, they are =
only required to be orthogonal tt(0)]. Because of Eq. |:(4):15+_\"91_ (4.28
(4.11), we also haven(10)=m(11)=-§,. The OG reads 30
. . For largerN, we have computed the fidelity of the greedy
NM@(y) = M(x2) + M(x2) (4.27  Scheme by numerical simulations. In Fig(Rgs. 1 and 2 for
V2 ' ' 2D statey we show the results for ®N<60 (diamonds.

Notice that the greedy scheme is indeed better than fixed
measurement schemes and approaches the collective bound
(solid line) very fast.

Actually, the greedy scheme is the best we can use if the
number of copies that will be available is not knowpriori;

e.g., M@(0)=[m(01)+m(1)]/\2=[M(01)-m(0)]/\2=[§,
-&]/\2. We also obtain

|\7(X )| = \_2 4.23 obviously, the best one can do in these circumstances is to
2 12 ) optimize at each step. HoweverNfis known, we have extra
information that some efficient schemes could exploit to in-
for all y,, which implies crease the fidelity. We next show that this is indeed the case.
3+42 3. General LOCC scheme
F@ = . (4.24) .
6 In the most general LOCC scheme one is allowed to op-

timize over all the Bloch vector§m(x,)}, thus taking into

The caseN=3 can be computed along the same lines. ONg,..qnt the whole history of outcomes. UpNe3 the re-
can easily see thafi(ys) has to be perpendicular ®(x,)  gyts are the same as for the greedy scheme: orthogonal

andm(y,). This shows that, up tbI=3, the greedy approach pjoch vectors for the measurements and no classical commu-
does not use classical communication, i.e., the directions Gfication required. The resultd.24) and(4.26 are, therefore,
the measuring devices are only required to be mutually oryye |argest fidelity that can be attained by any LOCC scheme.
thogonal, independently of the outcomes. The optimal guess The most interesting features appeaNat4. Here there

is straightforward generalization ¢4.22): are 14 independent vectors, which can be grouped into two
independent families of seven vectors. With such a large

Ve, () = M(x3) + M(x2) + M(x7) (4.25 number of vectors an analytical calculation is too involved

X) = 3 ' ) and we have resorted partially to a numerical optimization.

The solution exhibits some interesting properties. First, one
obtains thatm(x;) L M(x,), for all y; and x,, as in theN

and the fidelity reads .
y =2 and 3 cases. Therefore one can chodgg;)=(-1)"1&,

= and rﬁ(Xz):(—l)iZéy. Only for the third and fourth measure-
3 _ 3+\3 ) . .
F@®==""% (4.26) ments has one really to take different choices in accordance
6 to the sequence of the preceding outcomes. The Bloch vec-

The above results could have been anticipated. As alread@s ©f the third measurement can be parametrized by a

mentioned, the outcomes of a measurement on the plane orndle anglex as

thogonal to the guess have roughly the same probability and — 1)3f(va) = cosa i +sinac 4.29
are, hence, most informative. One can regard these measure- (= Dismixs) @ ti(x2) avixa),  (4.29
ments as corresponding to mutually unbiased observableghere

i.e., those for which the overlap between states of different

basis(related to each observablis constan{33]. Hence, Us(x2) = Mlx2) X Mlxz),
there is no redundancy in the information about the state
acquired from the different observables. This point of view v1(x2) = Uy(x2) X S(x2),
also allows to extend the notion @Bloch vectoj orthogo-
nality to states in spaces of arbitrary dimension. - M(x,) + M(xy)
The casedN=4 is even more interesting, since four mutu- Slx2) = T (4.30

ally orthogonal vectors cannot fit onto the Bloch sphere. We

expect classical communication to start playing a role hereNotice that, rather unexpectediyi x1), M(x.), andm(ys) are
Indeed, the Bloch vectonsi(x,) do depend on the outcomes not mutually orthogonal. The optimal value of this angle is
of previous measurements. They can be compactly written ag=0.502. Although we cannot give any insight as to why
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this value is optimal, in agreement with our intuition one 1 H(n

Axa) L M(xy), i - Fp) =1+ <tr—"+ (5.
sees thatm(ys) L M(x»), i.e., the third measurement probes 2N () 7 '
the plane orthogonal to the Bloch vector one would guess ] ) ) )
from the first two outcomefsee Eq(4.22]. The vectors of WhereH is the Hessian matrix ofy(x) as a function of the

the fourth measurement can be parametrized by two agles State parameters, which we refer generically;aand! is the
andy as Fisher information matrix, defined in E¢B5). The theorem

o ) ) applies to the “pointwise” fidelity=( 7), which is the average
(= 1)'*m(xa4) = cOsy Up(xa) +Sinyva(xas), (4.3)  of f,(x) over all possible outcomes, E(B3). It provides an
upper bound that is attained by the maximum likelihood es-

where . .
timator (MLE), defined after Eq(B5), and by the OG.
Ua(xa) = S(x2) X M(x3), Let us start with 2D states. This case is rather simple
because such states have just one parameter and the Fisher
G(xa) = COSB M(xa) - sin BS(xy).- (4.32) information is a single number. Moreovanyvon Neumann

measurement whose vector lies on the equator of the Bloch
The optimal values of these angles #e0.584,y=0.538, sphere performed on a 2D system hiasl, as can be
and the corresponding fidelity E(‘gneraFO.SZOG. This is just checked by plugging the corresponding probability
1.5% lower than the absolute £i)ou15d6=0.8333 attained
with collective measurement, E.12. Note that this value _1+cod6- 6y
S - : ; pyxl)=——mF
is slightly larger than the fidelity obtained with the greedy 2
scheme i o Fomeq = (15+/91)/30~0.8180. The extra
information consisting of the number of available copies h
indeed been used to attain a larger fidelity. We conclude th

>

fS(z:rhl;lm:iJ;thoszalj)J/satr(; rfhli)s( ?]z?rgstl:gg \e/\ellé: r\]/v?)tjllcaj’ ?;: t%r?:_d Fish(_ar i(r?\‘f)clrmation for a set dfl measurement§dentical or
mark that if, for some reason, some copies are lost or cann&Ot) IS I7=N. L .
be measured, the most general scheme will not be optimal, Since the Hessian ibi=-1/2, any §en5|ble local mea-
since it has been designed for a specific number of copie§.urement scheme on 2D states will yield
We have also computed the values of the maximal LOCC

(5.2

aé'nto Eqg.(B5). In this equatiory,, is the polar angle of, the
irection along which the von Neumann measurement is per-
ormed, andd is the polar angle ofi. Therefore, in 2D the

1
fidelities for N=5,6: F\o, . .0.8450 andF(>  =0.8637. F(O)=1-,5+ (5.3
Beyond N=6 the sma?l differences between this and the
greedy scheme become negligible. Note that this fidelity is independent @ so it coincides
with the average fidelityr=[d# F(0)/(27r)=1-1/(4N). We
V. LOCAL SCHEMES IN THE ASYMPTOTIC LIMIT further note that it coincides with the collective bound Eq.

) ~ (3.7, as anticipated in Sec. IV A.
Any acceptable scheme, such as those considered in this we next turn to the 3D case, which is more involved. The
paper, achieves a unit fidelity in the limiN—o. The sub-  resyits shown in Fig. 3 hint that the tomographic scheme
leading term of the asymptotic expansion of the fidelitywjth the OG (dot-dashed linedoes not attain the collective

(typically of orderN™) carries nontrivial information, as an- pound. Indeed, a straightforward calculatiédetails are
ticipated in the discussion after E@.8). It enables us, e.g., gjven in Appendix B 2 gives

to compare different schemes independently of the number

of copies. If two schemes have the same asymptotic fidelity 13

(the same subleading teymit is justified to say that they 12N
have the same efficiency, and conversely. In addition, this

term is important in statistics since it is related to the vari-which is less tharF=1-1/N, Eq. (3.14).
ance of certain type of estimators to which many powerful At this point, the question arises whether classical com-
techniques apply. In this section we will compute suchmunication is necessary to attain the collective bound. We
asymptotic fidelities. We will show that, asymptotically, clas- next show that this is not the case by considering the so-
sical communication is not needed to attain the absolute upsalled RD scheme. Recall that in this scheme measurements
per bound given by the maximum fidelity of the most generalare performed along RDs chosen from an isotropic distribu-
collective measurements. Some of the results that we presefi@n. This is equivalent to performing a covariaiontinu-
below were obtained by two of the authors by explicit com-ous POVM on each one of the copies separately. Here, we
putation in[22]. Here we will use a statistical approach that stick to the RD picture and regard each individual measure-
relates the Fisher informatidr{34] with the average fidelity ~ment as von Neumannand a classical ancilla, e.g., a “rou-

F and uses the Cramér-Rao bound. This approach willette,” that gives us the direction of the measurement. From
greatly simplify our earlier derivations. A brief introduction this point of view, the outcome parameters are givenyby

for nonpractitioners is in Appendix B, where some technical=(¢,(U=cos®),¢), where ¢ and ¢ are the azimuthal and

(5.9

details are also included. polar angles of the directiam(u, ¢) of the measurement, and
The main theorem that we need in this section is in Eq£é==1 is the corresponding outcome. Using Es11) [or Eq.
(B7), whose no-frill version reads (B7)] we obtain(see Appendi B 3 for detailsg
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RD 1 Neumann type(see Appendix D i.e., no general local
Fo=1-9% - (5.9 POVM will perform better in this context. We have illus-
trated the performance of the method with numerical simu-
We conclude that asymptotically classical communicatioriations and have shown that the behavior of the optimal col-
is not required to saturate the collective bound: a measurdective scheme is reached for very low valuesNof This
ment scheme based on a set of RDs does the job. occurs forN as low as 20 in 2D and slightly above, 45, in
3D.
In the most general scheme we see that upl+®3 (2 in
2D) there is no need for classical communication: the opti-

We have presented a self-contained and detailed study #pal measurements correspond to a set of mutually unbiased
several estimation schemes when a numikeof identical  ©bservables. For largéd, the knowledge of the actual value
copies of a qubit state is available. We have used the fidelitpf N provides an extra information that translates into an
as a figure of merit and presented a general Bayesian fram#icrease of the fidelity. From the practical point of view,
work which has enabled us to find the optimal schemes ndowever, this difference is negligible already at the level of a
only in the asymptotic limit but foany number of copies. few copies(N=6).

We have considered two interesting situations: that of a com- Our approach may be extended to other situations. For
pletely unknown qubit staté3D casg, and that of a qubit instance, the problem of estimatingubit) mixed states,
|y|ng on the equator of the Bloch sphd@ Case_ For com- which is much more involved, can be tackled along the lines
pleteness, we have reviewed the optimal measurements afigscribed herg23]. It would also be interesting to consider
maximum fidelities for the most general collective strategiesdudits and check whether a set of mutually unbiased observ-
However, this paper focused on measurements that can [#les provides the optimal local estimation scheme when the
implemented in a laboratory with technology availablenumber of copies coincides with the number of independent
nowadays: local von Neumann measurements. Special enfariables that parametrize the qudit state.

phasis has been put on situations where a finite number of
copies are available, an aspect of state estimation that has not
been extensively covered in the literature.

In the 2D case we have shown that, quite surprisingly, the 1t js g pleasure to thank M. Baig for his collaboration at
most basic tomographic scheme, i.e., measurements aloRgyly stages of this work. We also thank R. Gill and M.
two fixed orthogonal directions with adequate data processgyjjester for useful discussions. We acknowledge financial
ing (the OG, gives already a fidelity that is asymptotically sypport from Spanish Ministry of Science and Technology
equal to the collective bound. Project No. BFM2002-02588, CIRIT Project No. SGR-

For the 3D states, tomography, i.e., measurements alongy185 and QUPRODIS working group EEC Contract No.
three fixed orthogonal directions, fails to give the asymptoticsT.2001-38877.

collective bound, even with the best data processing. The
main reason of this failure is that the Bloch sphere is not
explored thoroughly. We have considered an extension that is APPENDIX A
asymptotically isotropic: a series of von Neumann measure- ] o ]
scheme, which does not make use of classical communicdl- The 2D and 3D cases are treated on the same footing,
tion, does saturate the collective bound. This illustrates tha#/hich gives a homogeneous picture of the problem under
in the largeN limit an estimation procedure based on local consideration.
measurements without classical communication does per-
form as well as the most efficient and sophisticated collective
schemes.

We have also discussed local schemes with classical com- por 2D states Eq(2.9) reads
munication, i.e., schemes in which the measurements are de-
vised in such a way that they take into account previous
outcomes. We have studied in detail the one-step adaptive A=Y
scheme of Gill and Mass4@.9]. The economy of resources N
in this scheme may raise doubts about its efficiency. In Ap-
pendix C we give a simple proof that for largeit indeed
attains the collective bounds for both 2D and 3D.

We have also studied strategies that make a more inte
sive use of classical communication. In the greedy scheme, A
optimization is performed at each measurement [26p21. p(6) = 2 €M™V o) mxnl, (A2)
This scheme is the best approach one can take if the actual mn
number of available copies is not known. We have given a
geometrical condition for sequentially finding the optimal wherep, is defined in Eq(3.2). We can now readily com-
measurements and have proved that they have to be of vgute Eq.(Al) to obtain

VI. SUMMARY AND CONCLUSIONS

ACKNOWLEDGMENTS

1. 2D states

: (A1)

| S2autp000
ko

where we can writgy,, as in Eq.(3.1). In the standard basis
rij>z|m>,u(¢9) is diagonal and we have
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do .
A=3 |3 [ 2oy (000 Ty
x | mn
J-1
=E 2 (P0)mm+ 1L OO Jmem | » (A3)
x | m==J

where [O(x)]nn={(m|O(x)|n). The following inequalities
give an upper bound foh:

1
A<D X |(p0)mmeal OO0 Il
x m=-J
J1 -1
< 2 1(po)mmal 2 [0 ] = 2 [(P0)mmeal
m=-J X m=-J
(Ad)
where in the last step we have used that
(A5)

E |[O(X)]m+1 m| =<1,
X

as follows from positivity and Eq(2.4). More precisely,
positivity implies
LOO) Il OO Ime1 me1 = |[O(X)]m m+1|21

and the Schwarz inequality yields

> 1000 Im meal = JZ |O<x>]mm\/2 [0(0) me1 me1= 1.
X X X

(A6)

(A7)

Recalling Eqs(3.2) and(A4) one had8]

J-1
1 N N
A< — A
2Nm§_J (J+m>(J+m+1>’ (A8)
where we have used that
J
1 N
— [\ —

99 =0 = zjma (H Irn)|Jm> (A9)

(recall thatJ=N/2). The inequality(A8) can also be written
as in(3.3.

We next show that there are POVMs that attain this

bound. To saturate the first inequality (A4) the phase of
[O(x)]m me1 Must be independent afi. This is ensured if this
phase is a function af—n. Similarly, a set of positive op-
erators for which|O(x)m=const for all y, m, and n will
certainly saturate the remaining inequalities(A#). In par-
ticular, the covarian{continuoug POVM, whose elements
are given by

[O(h)]mn=€"""¢, (A10)

PHYSICAL REVIEW A 71, 062318(2005

with parametereai=N andp=1/2. Wesimply need to expand
(3.3 in powers ofm, i.e., aroundm)=0, to obtain

SRS AES
N \J+m N N> N

+ O(l/N3’2)}

ACOL =

(A11)

(notice that the sum oven is shifted byJ with respect to the
usual binomial distribution The moments are well known to
be (1)=1, (m)=0, ang(mz>:N/4. The latter shows than
has “dimensions” of/N, which helps to organize the expan-
sion in powers of 1N. We finally obtain Eq(3.6).

2. 3D states

It is convenient to define an operatdry) in such a way
that

O(x) = UIM(x)1Q(U'TM(x)],

Where|\7I(X) is given by Eq(2.6). Taking into account thak
is rotationally invariant one obtains

A=

(A12)

J dn ntrfpn Q01| - (A13)

We readily see thanzzcosazi)&.)(ﬁ), where the rotation
matrices@iﬁm are defined in the standard wa@zg)m(ﬁ)
=(jm|u(n)|jm’). We then have

A= X

X | mnf

f dn DB () Py L)

= [2 Qmmm} J NN (p)mm  (A14)
ml x

where in the second equality we have used that

fdngg)lo)(ﬁ)(Pn)mm: mm(fdngé)%))(ﬁ)(ljn)mm,

(A15)

as follows from Schur’s lemma after realizing that the left-
hand side of Eq(A15) commutes withU(6), the unitary
transformations defined right after E8.2). Recall that these
transformations, which are a(l) subgroup of S(R), have
only one-dimensional irreducible representations, labeled by
the magnetic quantum numben, thus yielding relation
(A15). In Eqg. (A14) we have removed the absolute value as
all terms are positivésee below. Tracing(A12) one obtains
2tr Q(x)=2,tr O(x) =d,. Therefore

satisfies all the requirements. Note that we have labeled the

outcomes by a rotation angkg, which plays the role of.
Hence, condition(2.4) becomesfO(¢)d¢/(27)=1, which

certainly holds for Eq(A10). These are rank-1 operators,

and can also be written as {8.4).

In the asymptotic limit the fidelity can be obtained in where

terms of the moments of a binomial distribution Binp)

J
A< d;,maxf dn D (1) (pp)mm= Max10;ImIm?= ——,
m m J+1

(A16)

in the second equality we have used that

pmm=©§f,(ﬁ)©%(ﬁ) and the well-known orthogonality rela-
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tions of the SW2) irreducible representatiori85]. This is a Inp,(x) dIn pn(X)
the inequality(3.11) in the main text. lij(m) = 2 I I
Let us finally give a POVM that saturates all the inequali- : y

ties. The maximum of the Clebsch-GordetD ImIm) in - e conditional probabilitp,(x) regarded as a function of
Eq. (A16) occurs atm=J. Hence, to attain the bound we s called the likelihood functiort () =p,(x). It is also well
need to choose known that the boundB4) is attained by the MLE37],
_ _ defined asyM-E=argmax£ (7). Hence this bound is tight.

Qmnd X) = € Om E = (AL7) A link between the Fisher information and the fidelity is

obtained by combining Eq$B2) and(B4), and noticing that
where the coefficients, are positive. This leads straightfor- H(y) is negative definite. We thus have

wardly to the optimal contlnuous POVM in E(B.13.

(B5)

F(p <1+ tr H() (B6)

1(7)

to leading order and for any unbiased estimation scheme.
The Fisher information is additive. This means that if
)(X x')= pn(X)p’(X) which happens when we perform

We label the independent state parameters by the symbBNO measuremenisay, {O(y)} and{O’(x')}] on two identi-
». This symbol will refer to the two angles, ¢ for 3D  cal states, the Fisher information of the combined measure-

states: 7= (6, ¢); and the polar angl® for 2D states:y7 ~ Mentis simplyl@(7)=1(x)+1'(7). In particular, forN iden-
=0 tical measurements, we hav®’(7)=NI(7).

Assume that under a sensible measurement and estimation Finally, since the OG is a better estimator, and it is as-
scheme(we mean by that a scheme that leads to a perfectmptotically unbiased, we must have
determination of the state wheN goes to infinity, i.e.,
limy_..F=1) the estimated state is close to the signal state, FOS(7) = FMLE(7) =1 + (’7) (B7)
that is, their respective parameteysy) and » differ by a I( 7)
small amount. In this section, a caret will always refer to
estimated parameters, the fidelity(y), Eq. (2.2), will be o leading order, where the fidelities refer to an estimation
denoted byf,(7), and similarly, the probability,(x) will be scheme consisting df identical measurements. We use Eq.
written asp,(x). Note that the guessed parametdts) are (B7) to compute '.[he asymptotic limits of t.he flxed. measure-
based on a particular outcome This dependence will be ment schemes discussed in Sec. I\(details are given be-
implicitly understood when no confusion arises. low).

The fidelity can be approximated by the first terms of its
series expansion 2. Tomography of 3D states

APPENDIX B

1. The Cramér-Rao bound: A glossary

2

f(7) =1 +} Gr=m(n—m).  (B1) Consider a scheme that consists in repeatitimes the
K 2 93 9% T TN ) following: take three copies of the state and perform a mea-
R surement along@, on the first copy, alon@y on the second
where we have used théj(7)=1 anddf,/d7|;-,=0. Aver-  copy, and alongg, on the third copy(recall thatN=3\).

aging over all possible outcomes, we have These three von Neumann measurements can be regarded as
a single measurement with¥ possible outcomes labeled by
1 = here x;=+1. The probability of obtaini
F(7) = 1+ =tr[H(9)V(9)], (B2)  X=(X1.x2:x3), where;=+1. The probability of obtaining
2 an outcomey is
where 1
. p,0= I Z(@+xfi-é). (B8)
F(n) =2 p, 007001, (B3) ! jxy.z 2 o
X

. Wi g g ; . . The Fisher information matriX(6,¢) of this elementary
is the “pointwise” fidelity, H is the Hessian matrix of ) : o .
P Y, H(») measurement is obtained by substituting E§8) in Eq.

Ir,:((azis?/t 77,7:) n,zagd(;/)((%) |sn';r(1;a7 ve717r|)ance matrix, with ele- (B5). Note that the Fisher information of this scheme as a
i ( xFn VAT 0%

It is well known that the variance of an unbiased estimato Wh\(;\llef:SL (6. ¢) bM(a 9)-

is bounded by ith this, we obtain

1 H(6,¢) _ 31+ 6 codd+cod6 - sin'6 cos 4p
= — tr
V=10, (B4) 1(6,) 4  1+7co26-sidcos 4

. (B9)

the so called Cramér-Rao boufid, 25,38, where the Fisher Integrating over the isotropic prior probabilityn, Eq.(3.10),
information matrixl(#) is defined as we obtain Eq(5.4).
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3. Random direction scheme

We parametrize the state by=((v =co0s#6), ¢). Since this
strategy is isotropic, the pointwise fidelify(7) is indepen-
dent of %, and we conveniently choosg=((v=0),0)=0. By
the same argument, no average ovewill be needed:F
=F(#). The probability is given by

1+&n-mu,¢)

5 , (B10)

P,(x) =

and the Fisher information reads

du do d1np,(x) dInp,(x)
li(m =2 P, (X) . =
! =11 4z 7 In, an;
(B11)
The diagonal elements read
1 u’du de 1
IW(Q)=8—E J——Z ==, (B12
Tia J 1+E/1-U’cose 2
1 (1-uwsirfedude 1
| 4(0) = — - =—. (B13
a0 87T§=2ﬂ 1+&/1-u’cose 2 (B13

As for the off-diagonal elements, a straightforward calcula-
tion givesl, 40)=1,4,(0)=0, as one could expect, since gain-

ing information orv does not provide information o, and

vice versa. Plugging these results and the Hessian of thﬁ

fidelity, which isH;;(0)=-6;/2, in Eq.(B7) we finally obtain
Eq. (5.5).

APPENDIX C

In this appendix we review the “one-step adaptivet

Gill-Massa) scheme and give a straightforward and compre-
hensive proof that it saturates the collective bound for large
N. We consider only the 3D case, as the simpler 2D case can

be worked out along the same lines.

First stage One performsNy=N*0<a<1) measure-
ments with a sensible estimator, in the sense of Sec. V, and

obtains an estimatioh?l(J with a fidelity Fq:

Fo= 3 [ ant Ty 00, e
X0

where y, stands for the list of outcomes obtained in this first

stage.

Second stageit this point we use the FG on the remain-

ing N=2N=N-N, copies by measuring alortg/o perpen-
diculars directionsi andv on the plane orthogonal td. In
this basis the final guess can be written as

M = I\7IO(XO)COSw + (GcosT+ vsin 7)sin w. (C2

This parametrization ensures thtis unitary. The angles

and 7 depend on the outcomes of this second stage, which

are the frequenciesyNV,(1-a;) N (fori=u,v). The prob-
abilities are given byp,(«) in Eq. (4.2), with n,=n-d and

PHYSICAL REVIEW A 71, 062318(2005

n,=n-v. Since we measure on the plane orthogondﬁltp

the two outcomes of each measurement have roughly the
same probabilitye; = 1/2, and they are most informative. It

is convenient to define the two-dimensional veatomwith
components

riEZai—l, i=U,U, (C3)

which, on average, is close ta This vector gives an esti-
mation of the projection of the signal Bloch vectoon the
measurement plan@iv plang. Hence,w is expected to be

small (l\7|ox |\7|) and we make the ansatz

~— r
w=)\\ﬂr3+rf, tanr= -2,
u

(C9

where the positive parametgrwill be determined later.
The final fidelity for a signal statg@ and outcomes$yg, )
is

1+A-M(xo,h)

fn(XO-F) = 2 ’ (Cs)

and the average fidelitlf reads

F=3 J an= UMD o P (CH

- 2
Xof

Notice that the probability of obtaining the outconie
amely,p(r'| xo)[=pn(@) in Eq. (4.2) with i=u, v], is condi-
tioned on xy through the dependence of the second-stage
measurements ol&lo()(o).

Since we will compute different averages ovgg, I
=(r,,r,), andn, it is convenient to introduce the following
notation:

<f>0 = 2 fn(XO! F)pn()(o), (C7)
X0

(=2 falxo NPa(Flx0), (c8)

<f>n = f dn fn(XO!F)! (Cg)

and similarly for averages of other functions xgf, 1, andn.
We will denote composite averaging by simply combining
subscripts(i.e., {((F);)o=(F) o). Therefore, we write

F= <f>r,0,n = (f). (C10
SinceF=(1+A)/2, we have
A=(i-M). (C11)

In the expansions that we perform below, we keep only
the terms that contribute to the fidelity up to orderNLl/
Recalling thatw is expected to be small, it follows that

2

A
cosw=1 —E[rﬁ+ r?], (C12

062318-12
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Sinw COST= Iy, (C13

sinw sinT=Ar,, (C149

PHYSICAL REVIEW A 71, 062318(2005

1
F=l-"+-- (C24)
N

This concludes the proof.

to leading order. Therefore, the expectation value in Eq.

(C11) can be written as

A= <(l - %20’5 + I’5>r)ﬁ . Mo> + )\<<ru>rnu + <ru>rnv>0,n-
o,n
(C19

Sincer,, r, (or equivalentlye,, «,) are binomially distrib-
uted, one readily sees that

<ri>r:niv (C16)

2 _ .2 1_ni2
(ryy=ni+ N (C17)

We further recall thafi is unitary and tha{l\7|0,l],z7} is an
orthonormal basis, henag+n2=1-(fi-My)?, and Eq.(C15
can be cast as

A=)+ 1—7‘—2<1+3) (i - Modon = M(A - M)
- 2 N 0/0,n 0/ /0,n
2 1 R
+ %(1 - N)((ﬁ Moo - (C19

To compute the moment$n - l\7lo)q>0,n, we consider the angle

8 betweem and l\7|0, which is also expected to be small. We
have

2Fp— 1 =(- M) =(C0SS)o =1

—wz%, (C19

where we have used E{C1). Therefore

(A Moo, = (€080 = 1 = (B = 1 = 21 ~Fo).

(C20
Now we plug this result back into EC18) to obtain
1-41-Fp)
F=(fH=1-(1-MN¥1-Fg) - ———\2
(H=1-(1-NA1-Fg - =
(C2)

Since the term(1-\)%(1-F) is always positive, the maxi-
mum fidelity is obtained with the choice=1, and we are
left with

C1-41-Fy
o

Since the first estimation is asymptotically unbiasedf4 -
vanishes for largé\, (i.e., for largeN) and
1

le—ﬂl

Recalling that\V'=(N-N®&)/2, we finally have

F=1 (C22)

(C23

APPENDIX D

In this appendix we prove that in the greedy scheme the
optimal individual measurements on each copy are of von
Neumann type. We sketch the proof for 2D states. The 3D
case can be worked out along the same lines.

The history of outcomes will be denoted, as usual by
Notice that here we consider general local measurentkents
cal POVMg with R outcomes, wherdR is possibly larger
than 2. Thereforey is an N-digit integer number in bask:
X=inin-1-+11(,=0,1,...,R-1). As in Sec. IV B we use the
notation x,=iyix_1-**i1. A measurement on thkth copy is
defined by a set of non-negative rank-1 operators
{000} =5={0(xi-1) [1=0,1,...,R- 1}, where

O(xw) = c(xi[1 +m(x) - 7. (D1)

The non-negative constant§y,) and the vectorsi(y,) are
subject to the constraints

R-1
> clx)=1, (D2)
i =0
R-1
> clxdmix =0, (D3)
i=0
IM(x)| =1, (D4)

which ensure thaO(x,) =0 andZ; O(x)=1. Note that we
allow c(yy) to be zero, thus taking into account the possibil-
ity that each local POVM may have a different number of
outcomes without lettindR depend ork.

Assume we have measured all but the last copy and we
wish to optimize the last measurement. To simplify the no-
tation, let us defing =iy, M =mM(ryy_1), and ¢, =c(r xn-1)-
Then,

Pn(X) = Pa(xn-DlC (1 +0-mp)] (D5)
and
A= V-0l = 2 din-). (D6)
XN-1 T XN-1
where we have defined(xy-1) as
d(XN—l) = E C f dn Fpn()(N—l)(l +0- I'ﬁr) . (D7)

We further Write\7£\7(XN_1) and define the symmetric posi-
tive matrix

Ajj = Ajj(xn-1) = f dn nn;pn(xn-1)- (D8)

Equation(D7) becomes

062318-13
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=3 Cr|\7+Arﬁr|- (D9) Eq. (D14) by c, andﬁ sum over taking into account the
r constraintsA =0 andI'=0].

(Hereafter the dependency qi-; will be implicitly under- Finally, consider the variations ofy in Eq. (D10). We

stood to simplify the notation. obtain

Our task is to maximize Eq(D9). Introducing the
Lagrange multipliers\, y, and w,, the function we need to
maximize is actually - .

AL D15)
L=d-\ A_';/'F_Ewrﬂry (D10) Cr |\7+Arﬁr| Y| = om, (
r
where the constraints
A=2 ¢ -1, (D1Y) which means that the vector inside the parentheses is propor-
p

tional to m,. Note that the conditiof),=0 defines a unit
circle, and the orthogonal vector to this curveriis So we
= > cm, (D12) only need to prove that the orthogonal vector at pampif
r the ellipsef defined in Eq(D14) has precisely this direction.
This follows straightforwardly by taking variations with re-
-1 spect tom, in Eq. (D14). Therefore, the solution is given by
5 (D13)  the tangency points of the ellips® and the circleQ,=0.
There are only two such points; they are in opposite direc-
can be read off from Eq$D2)—(D4). The factor 2 in the last tions, and all constraints and maximization equations are sat-
expression is introduced for later convenience. Variationssfied with ¢, ,=1/2. This proves that the optimal measure-

with respect tac, yield ments in the greedy scheme are indeed von Neumann'’s.
sl Notice that this is a stronger statement than it looks: local
— = |\7+Afﬁr| -y-m -\=0. (D14) measurements with a larger number of outcomes will per-

r form worse.

Notice that the pointsn, that satisfy this equation define an

ellipse& with focus at A"V, Notice also that the parameter 'For the 3D case we just have to replace ellipses by ellipsoids and
\ at the maximum is the value dfin Eq.(D9) [just multiply  circles by spheres.
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