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Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to
solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical
handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations.
In particular, by exploiting sus2d % sus2d and sus2d % sus2d % us1d subalgebras of the full SUs4d dynamical
group of the system, the nontrivial part of the final calculation is reduced to a single Riccatisfirst-order,
quadratically nonlineard equation, itself simply solved. Examples are provided of two-qubit problems from the
recent literature, including implementation of two-qubit gates with Josephson junctions.
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I. INTRODUCTION

Four-level systems are often of interest in quantum optics
and in multiphoton processes. As examples of recent litera-
ture, see, for instance,f1g. Added interest is provided by
recent applications for quantum information and computing
where two qubits constitute a four-level system. Indeed, two
qubits and associated logic gates have been practically real-
ized through Josephson junctionsf2g, the coupling Hamil-
tonian viewed as a 434 matrix.

In recent papers, we have developed a “unitary integra-
tion” technique for solving time-dependent operator equa-
tions such as the Schrödinger or Liouville equation for the
state or density matrix of a quantum systemf3g. The method
seems to have been rediscovered several times, the earliest
work going back to Wei and Normanf4g. In particular, the
extensive series of papers by Dattoliet al., which we became
aware of only after completion of our work, also investigated
two- and three-level systems in quantum optics from a vari-
ety of perspectives. We present here an analogous study of
four levels. We have also shown that the method extends to
more general master equations when dissipation and deco-
herence are presentf5g. The essence of all these approaches
is to write the evolution operator in the form of a product of
exponentials, each exponent itself a product of a classical
function of time and one quantum operator. When these op-
erators form a closed algebra under commutations, first-order
time-dependent equations can be derived for the introduced
classical functions, and their resulting solutions allow the
construction of a complete solution of the quantal problem.
The method works best, of course, when the number of op-
erators in the algebra is small. For one qubit, where the most
general Hamiltonian involves only four operators—the three
Pauli matrices and the unit matrix—the sus2d algebra has just
three elements. Upon including dissipation and decoherence,
a 333 matrix for the elements of the density matrix intro-
duces, at its most general, eight elements of an sus3d algebra
f5g. For special situations when an sus2d subalgebra suffices,

such decoherence problems can also be treated through just
three classical functions whose defining equations further re-
duce to just one nontrivial Riccatisfirst-order, quadratically
nonlineard equationsor, equivalently, to a linear second-order
differential equationd.

The aim of this paper is to examine two-qubit or four-
level problems analogously. The complete description in
terms of the 15 operators of the symmetry group SUs4d sto-
gether with the unit operatord requires 15 exponential factors
in the evolution operator which is cumbersome. However,
judicious choices of subalgebras reduce the problems consid-
erably. These may be of interest since they describe several
of the two-qubit logic gates and four-level systems in the
recent literature. Specifically, we present here the cases per-
taining to two subalgebras sus2d % sus2d and sus2d % sus2d
% us1d. In both instances, the same single Riccati equation
for a single function is all that remains to be solvedsthrough,
for example, a popular Mathematica packagef6gd to provide
complete descriptions of such systems. Other subalgebras—
namely, sos5d with ten operators and sus3d with eight—will
be the subject of future work.

II. ALGEBRA OF OPERATORS
FOR A FOUR-STATE SYSTEM

A. SU„2…ÃSU„2… subgroups

The 16 linearly independent operators of a four-state sys-
tem can be chosen in a variety of matrix representations. One
choice, familiar in nuclear and particle physics applications
f7g, is the 15li matrices of sus4d. This set is suitable for
examining sus3d and sus2d subalgebras involving eight and
three operators, respectively, but for our interest in this pa-
per, an alternative representation proves more convenient.
This starts from two qubits and employs their individual
Pauli matrices, 6 in number, along with tensor products, 9 in
number:12sW , 1

2tW , 1
2sW ^

1
2tW. Together with the unit 434 matrix,

these 16 matrices calledOi are explicitly tabulated in an
earlier paperf8g. sA slightly different arrangement of the
same operators, calledXi, with much useful group-theoretic
discussion, is inf9g.d They have the advantage for the unitary*Electronic address: arau@phys.lsu.edu
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integration proceduresto be described belowd that the square
of each is, to within a factor, the unit matrix. Exponentiation
of these operators is thereby rendered simple, involving just
two terms.

Table I gives the commutatorsfOi ,Ojg and is useful for
picking out subalgebras. For example,fO2,O5g= iO6. The
four states in this representation may be described either in
the four-state language as the column vectorss1,0,0,0d,
s0,1,0,0d, s0,0,1,0d, s0,0,0,1d or in spin notation asu↑↑l, u↑↓l,
u↓↑l, u↓↓l, respectively. Correspondingly, the operators are

O1 = su↑↑lk↑↑u + u↑↓lk↑↓u + u↓↑lk↓↑u + u↓↓lk↓↓ud,

O2 =
1

2
su↑↑lk↑↑u + u↑↓lk↑↓u − u↓↑lk↓↑u − u↓↓lk↓↓ud,

O3 =
1

2
su↑↑lk↑↑u − u↑↓lk↑↓u + u↓↑lk↓↑u − u↓↓lk↓↓ud,

O4 =
1

4
su↑↑lk↑↑u − u↑↓lk↑↓u − u↓↑lk↓↑u + u↓↓lk↓↓ud,

O5 =
1

2
su↑↑lk↓↑u + u↑↓lk↓↓u + u↓↑lk↑↑u + u↓↓lk↑↓ud,

O6 = −
i

2
su↑↑lk↓↑u + u↑↓lk↓↓u − u↓↑lk↑↑u − u↓↓lk↑↓ud,

O7 =
1

4
su↑↑lk↓↑u − u↑↓lk↓↓u + u↓↑lk↑↑u − u↓↓lk↑↓ud,

O8 = −
i

4
su↑↑lk↓↑u − u↑↓lk↓↓u − u↓↑lk↑↑u + u↓↓lk↑↓ud,

O9 =
1

2
su↑↑lk↑↓u + u↑↓lk↑↑u + u↓↑lk↓↓u + u↓↓lk↓↑ud,

O10 = −
i

2
su↑↑lk↑↓u − u↑↓lk↑↑u + u↓↑lk↓↓u − u↓↓lk↓↑ud,

O11 =
1

4
su↑↑lk↑↓u + u↑↓lk↑↑u − u↓↑lk↓↓u − u↓↓lk↓↑ud,

O12 = −
i

4
su↑↑lk↑↓u − u↑↓lk↑↑u − u↓↑lk↓↓u + u↓↓lk↓↑ud,

O13 =
1

4
su↑↑lk↓↓u + u↑↓lk↓↑u + u↓↑lk↑↓u + u↓↓lk↑↑ud,

O14 = −
1

4
su↑↑lk↓↓u − u↑↓lk↓↑u − u↓↑lk↑↓u + u↓↓lk↑↑ud,

O15 = −
i

4
su↑↑lk↓↓u − u↑↓lk↓↑u + u↓↑lk↑↓u − u↓↓lk↑↑ud,

O16 = −
i

4
su↑↑lk↓↓u + u↑↓lk↓↑u − u↓↑lk↑↓u − u↓↓lk↑↑ud.

There is a large set of six-dimensional subalgebras formed
out of two triplets obeying sus2d or, equivalently, sos3d an-
gular momentum commutation relations. One such set
sO2,O5,O6;O3,O9,O10d is the trivial sus2d % sus2d subalge-
bra of local operations on two qubitssW and tW. There are
many equivalent sets generated by a similarity transforma-
tion sSTd acting on the elements of a subalgebra by right-left

TABLE I. Table of commutators. With operatorsOi in the first column andOj in the top row, each entry provides the commutator
fOi ,Ojg.

OX O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

O2 0 0 0 iO6 −iO5 iO8 −iO7 0 0 0 0 iO16 −iO15 iO14 −iO13

O3 0 0 0 0 0 0 0 iO10 −iO9 iO12 −iO11 iO15 −iO16 −iO13 iO14

O4 0 0 0 iO8 −iO7 si /4dO6 −si /4dO5 iO12 −iO11 si /4dO10 −si /4dO9 0 0 0 0

O5 −iO6 0 −iO8 0 iO2 0 iO4 0 0 −iO16 −iO14 0 iO12 0 iO11

O6 iO5 0 iO7 −iO2 0 −iO4 0 0 0 iO13 iO15 −iO11 0 −iO12 0

O7 −iO8 0 −si /4dO6 0 iO4 0 si /4dO2 iO15 −iO13 0 0 si /4dO10 0 −si /4dO9 0

O8 iO7 0 si /4dO5 −iO4 0 −si /4dO2 0 iO14 −iO16 0 0 0 −si /4dO9 0 si /4dO10

O9 0 −iO10 −iO12 0 0 −iO15 −iO14 0 iO3 0 iO4 0 iO8 iO7 0

O10 0 iO9 iO11 0 0 iO13 iO16 −iO3 0 −iO4 0 −iO7 0 0 −iO8

O11 0 −iO12 −si /4dO10 iO16 −iO13 0 0 0 iO4 0 si /4dO3 si /4dO6 0 0 −si /4dO5

O12 0 iO11 si /4dO9 iO14 −iO15 0 0 −iO4 0 −si /4dO3 0 0 −si /4dO5 si /4dO6 0

O13 −iO16 −iO15 0 0 iO11 −si /4dO10 0 0 iO7 −si /4dO6 0 0 0 si /4dO3 si /4dO2

O14 iO15 iO16 0 −iO12 0 0 si /4dO9 −iO8 0 0 si /4dO5 0 0 −si /4dO2 −si /4dO3

O15 −iO14 iO13 0 0 iO12 si /4dO9 0 −iO7 0 0 −si /4dO6 −si /4dO3 si /4dO2 0 0

O16 iO13 −iO14 0 −iO11 0 0 −si /4dO10 0 iO8 si /4dO5 0 −si /4dO2 si /4dO3 0 0
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multiplication by an arbitrary element of the full SUs4d
group. LetW be a unitary 434 matrix andx an sus4d algebra
element. Then, the, ST acts as

x8 = WxW−1 ; WxW†.

In this section we will use only a discrete subgroup of all
possible ST’s, which have the property that the set of 15
operatorsOi is transformed into the same setOj; i.e., the
action of the ST is equivalent to a permutation among theOi.
In this case the sus2d % sus2d subalgebras, obtained by ST of
sW ,tW, can be identified by direct analysis of subgroup struc-
tures using Table I.

Subgroups different from the trivialsW ,tW one can be gen-
erated only by two-qubit entangling operations, such as
transformation to the Bell basissor magic Bell basisf10gd.
One can easily verify that the setsO9,O8,O14;O6,O11,O13d
is such a subalgebra. That is, the operator setsstx,sytz,sytyd
and ssy,sztx,sxtxd are two mutually commuting triplets
with sus2d commutation relations as shown in Table II.

The ST with the unitary matrix

1
Î21

1 0 0 1

0 1 1 0

0 1 − 1 0

1 0 0 − 1
2 s1d

passes from thesW set to stx,sytz,sytyd and from tW to
ssy,sztx,sxtxd. The basis corresponding to Eq.s1d is the
Bell basis s1,0,0,1d= u↑ ↑ l+ u↓ ↓ l ,s0,1,1,0d= u↑ ↓ l
+ u↓ ↑ l ,s0,1,−1,0d= u↑ ↓ l− u↓ ↑ l ,s1,0,0,−1d= u↑ ↑ l− u↓ ↓ l,
which are simultaneous eigenstates ofsxtx andsyty f10g.

All such subalgebras are maximal sus2d % sus2d subalge-
bras of sus4d, in the sense that, if any operator from Table I is
added to the six already chosen, the algebra closessas a Lie
algebrad only in the full sus4d algebra. Another perspective
on the above Bell basis is provided by considering a four-
level system with nearest-neighbor couplings as in the
Hamiltonian

H =1
0 a 0 0

a 0 b 0

0 b 0 g

0 0 g 0
2 . s2d

Such a matrix may be viewed as built up of three symmetric
434 matricesmjk, with unit entries in rowscolumnd j and

column srowd k and zero everywhere else, so thatH=am12
+bm23+gm34. Starting with these three real, symmetric ma-
trices, we define two nonzero commutators between them,
m13=−ifm12,m23g andm24=−ifm23,m34g, to give two imagi-
nary, antisymmetric matrices, and a final real symmetric
m14=−ifm13,m34g to complete a full six-dimensional sos4d
algebra. Using the well-known relation between sos4d and
SUs2d3SUs2d groups, this subalgebra decomposes into two
sets of mutually commuting triplets,m12+m34,m13
−m24,m12−m34 andm12−m34,m13+m24,m23−m14. These lin-
ear combinations correspond to the subalgebra
sO9,O8,O14;O6,O11,O13d of the full sus4d algebra. Such a
construction generalizes ton-level systems,n.4, with
nearest-neighbor couplings. The matricesmjk defined as

smjkdpq = s− idu j−ku−1fd jpdkq + s− 1dk−j−1d jqdkpg

providensn−1d /2 generators of a sosnd algebra. These form
a subalgebra of thesn2−1d-dimensional susnd algebra al-
though, forn.4, the sosnd no longer reduces to a product of
sus2d algebras.

B. SU„2…ÃSU„2…ÃU„1… subgroups

A class of maximal seven-dimensional subalgebras of
sus4d, different from the one considered in the previous sub-
section, can be constructed by taking linear combinations of
On generators. Inspection of Table I shows that the first seven
elements form a diagonal subblock closed under commuta-
tion, isomorphic to a sos4d algebra. WithO3 commuting with
all the rest of this subblock, the other six divide into two
mutually commuting sus2d triplets upon forming appropriate
linear combinations which pass from a standard 434 anti-
symmetric real-matrix representation of sos4d to sus2d
% sus2d matrix s434d form. Another such example, previ-
ously considered by one of usf8g, is provided by
sO2,O3,O13,O14,O15,O16d, with O4 commuting with all of
them. The linear combinations, defined inf8g as “pseu-
dospins,” obey sus2d commutation relations while not being
isomorphic to Pauli spinors. While the Pauli matrices consti-
tute a matrix algebra with the unit operator as the identity
element, the pseudospin matrix algebra has as its identity

element the operator12sÎ ±sztzd. One implication is that this
particular type of sus2d % sus2d algebra is not related by a ST
operation to the sus2d % sus2d algebras considered in the pre-
vious section scontrast Tables II and IIId. These sus2d
% sus2d % us1d sets arise, for example, in the physical context
of nuclear magnetic resonancef8g with scalar coupling and
heteronuclear two-spin coherences. For applications in meth-
ods such as unitary integration which require closure under
commutation, such pseudospins work equally well as we will
see below. There are many such subalgebras which can be
obtained by the discrete subgroup of ST operations as dis-
cussed in the previous section. For example, one can simply
relabelsx,y,zd. Indeed, each rowsor columnd of Table I has
seven zero entries. The corresponding seven operators con-
stitute such an algebra for a total of 15 setsf11g.

The recent demonstration of two qubit gates formed out
of Josephson junctionsf2g considers the Hamiltonian

TABLE II. Commutators of one of the sus2d % sus2d
subalgebras.

OX O8 O9 O14 O6 O11 O13

O8 0 iO14 −si /4dO9 0 0 0

O9 −iO14 0 iO8 0 0 0

O14 si /4dO9 −iO8 0 0 0 0

O6 0 0 0 0 iO13 −iO11

O11 0 0 0 −iO13 0 si /4dO6

O13 0 0 0 iO11 −si /4dO6 0
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H =1
E00 −

1

2
EJ1 −

1

2
EJ2 0

−
1

2
EJ1 E10 0 −

1

2
EJ2

−
1

2
EJ2 0 E10 −

1

2
EJ1

0 −
1

2
EJ2 −

1

2
EJ1 E00

2 . s3d

Expressing in terms of theOi matrices in Table I, this Hamil-
tonian is a linear combination ofsO1,O4,O5,O9d. Together
with sO8,O12,O14d, they form a closed subalgebra as shown
in Table III, and the operatorO13 commutes with all of them.
For applications below in Sec. III, we record the Hamiltonian
in terms of the Pauli spinors,

H =
1

2
sE00 + E10d −

1

2
sEJ2sx + EJ1txd +

1

2
sE00 − E10dsztz

s4d

and

H =
1

2
sE00 + E10dI +

1

2
sv+Sz + v−szd

+
1

4
sE00 − E10dss+ + s− − S+ − S−d, s5d

where we have definedv±=−EJ27EJ1,Sz=
1
2ssx+txd ,sz

= 1
2ssx−txd, and

S± =
1

2
ssy ± iszdsty ± itzd, s± =

1

2
ssy ± iszdsty 7 itzd.

s6d

The setssSz,S±d and ssz,s±d mutually commute and each
obeys the commutation relations of an sus2d algebra, but as
in f8g, they are not completely isomorphic to the 434 matrix
si or ti algebras, as discussed above. In particular, as is eas-
ily seen, the squares ofSz andsz are not the unit operator but
involve sxtx as well. While sharing the same commutation
relations as the similar pseudospins defined inf8g, the sets

here differ as 434 matrices, being in the “x representation”
instead of the counterpart “z representation” inf8g.

III. UNITARY INTEGRATION
OF THE EVOLUTION OPERATOR

Time-dependent quantum problems can be conveniently
handled through the unitary integration procedure off3,4g.
Solutions of the Schrödinger equation for the quantum state
are obtained through the evolution operator Ustd defined by

iU̇std = HstdUstd, Us0d = I, s7d

where an overdot denotes differentiation with respect to
time. For more general treatment that includes mixed states,
master equations such as the Liuoville–von Neumann–
Lindblad equationf12g

i ṙ = fH,rg +
1

2
io

k

sfLkr,Lk
†g + fLk,rLk

†gd

= fH,rg −
1

2
io

k

sLk
†Lkr + rLk

†Lk − 2LkrLk
†d, s8d

when first cast in terms of the individual density matrix ele-
ments, take a form similar to Eq.s7d: namely,

iḣstd = Lhstd, s9d

whereh are appropriate linear combinations of matrix ele-
ments of the density matrixri j f5g, such as, for example, the
ones obtained by a decomposition ofri j in the set of genera-
tors of the corresponding SUsnd group f13g. We have

h = fr11 − r22,sr11 + r22 − 2r33d/Î3,sr11 + r22 + r33

− 3r44d/Î6,r12 + r21,isr12 − r21d,r13 + r31,isr13

− r31d,r14 + r41,isr14 − r41d,r23 + r32,isr23 − r32d,r24

+ r42,isr24 − r42d,r34 + r43,isr34 − r43dg. s10d

In either case of Eq.s7d or Eq. s9d, unitary inte-
gration writes the solution as a product of exponentials,
P j expf−im jstdAjg, with time-dependent, classical functions
m jstd, andAj the elements of a complete algebraf3,4g. Upon
substituting this form into Eq.s7d or Eq. s9d, a consistent set
of defining equations for them j follows as long as each ele-
ment of the algebra is included in the above product. As
shown inf3,5g, as long as one has an sus2d algebra, solving
this set definingm j reduces to just one nontrivial step, the
solution of a single Riccati equation. This remains true if
more than one sus2d is involved as long as they are mutually
commuting, each set involving one Riccati equation. Note
also that since only commutators ofAj are involved in the
derivation, the results apply also to pseudospins as in the
previous section or for other algebras such as sos3d or
sus1,1d, differing only in the sign or value of the structure
coefficients which do not change the form of the defining
equations for them.

It is this feature that we now exploit in applying to four-
level or two qubit problems that fall into the two categories

TABLE III. An sus2d % sus2d subalgebra different from the type
in Table II. Together withO13, which commutes with all the six
operators shown, these form an sus2d % sus2d % us1d subalgebra of
sus4d.

OX O4 O5 O8 O14 O9 O12

O4 0 iO8 −si /4dO5 0 iO12 −si /4dO9

O5 −iO8 0 iO4 iO12 0 −iO14

O8 si /4dO5 −iO4 0 −si /4dO9 iO14 0

O14 0 −iO12 si /4dO9 0 −iO8 si /4dO5

O9 −iO12 0 −iO14 iO8 0 iO4

O12 si /4dO9 iO14 0 −si /4dO5 −iO4 0
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of the sus2d % sus2d and sus2d % sus2d % us1d subalgebras dis-
cussed in Sec. III. An example of the former is a recent
discussionf14g of geometric phases with two qubits. More
general time dependences than considered in that reference
are amenable to our procedure presented below. For the
coupled pair of Josephson junctions off2g with the Hamil-
tonian in Eq.s5d, we have from our previous derivation inf5g
the evolution operator

Ustd = expf− iV0stdgexpF−
1

2
in+stdS+GexpF−

1

2
in−stdS−G

3 expF−
1

2
in3stdSzGexpF−

1

2
im+stds+G

3expF−
1

2
im−stds−GexpF−

1

2
im3stdszG . s11d

The setsm andn are for the two SUs2d’s involved in prob-
lems such as those inf2g. An additional term insxtx in Eq.
s5d could also be accommodated through an additional expo-
nential factor in Eq.s11d and would correspond to an Us1d.
These classical functions in the exponents are obtained
through the set of equationsf5g ssee the Appendixd

V̇0 = sE00 + E10d/2,

ṁ+ − m+
2k− + iv−m+ = k+,

ṁ− − im−ṁ3 = k−, m3 − 2ik−m+ = v−, s12d

with a similar set for the functionsn which haveK± instead
of k±. These parameters for theH in Eq. s5d take the values
K±=−k±=sE00−E10d /2. For applications withk constant as
in f2g andv± functions of time, the first, and only nontrivial,
equation of the set in Eq.s12d can also be recast asf3g

u̇std = k −
1

2
v−stdsin 2ustd, s13d

with m+; tansu+ktd, or

g̈std + iv−stdġstd + k2gstd = 0, s14d

with m+;−s1/kdsd/dtdsln gd. In any of these alternative
forms, m+ sand, similarly,n+d can be solved for a givenv±,
following which the rest of the set in Eq.s12d yields to
simple integration.

In Figs. 1–3 we present results for the two-qubit Joseph-
son junction system off2g. The parameters of that study were
E00−E10=7.85 GHz,EJ1=13.4 GHz, andEJ2=9.1 GHz. All
these parameters were held constant in that study, but, with
an eye to future applications where these energies may vary
with time, we consider such applications of our general time-
dependent formalism. Specifically, were the voltages to be
harmonically modulated, withEJ1=13.4 cossvt+dd and EJ2

=9.1 cossvtd, solution of Eq.s12d leads to diagonal and off-

FIG. 1. Time evolution of the diagonal elements of the density
matrix of an=4 two-qubit Josephson junction system. The horizon-
tal axis is svt /2pd, parameters as given in the text withv
=1 GHz,d=0, and the initial configurationrs0d=di1d j1.

FIG. 2. As in Fig. 1 but for the real part of the off-diagonal
elements of the density matrix.

FIG. 3. As in Fig. 1 but for the imaginary part of the off-
diagonal elements of the density matrix.
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diagonal components of the density matrix shown in Figs.
1–3. Starting with an initial pure states1, 0, 0, 0d, the density
matrix, rstd=Urs0dU† is evaluated and exhibits complicated
oscillatory population of the four levelssdiagonal density
matrix elements in Fig. 1 which, of course, always sum to
unity for all td as also coherencessoff-diagonal elements in
Figs. 2 and 3d. Figures 4–6 show the effect of a phase dif-
ference between the two driving fields, leading to interesting
differences when compared to Figs. 1–3 where the driving
fields are in phase. The complicated frequency spectrum seen
in these figures even though there is a single driving fre-
quencyv is due to the “Floquet”-like structure of Eq.s11d
which has oscillatorym in exponents. As shown inf5g
through an analytically solvable model, when the amplitudes
in such exponents become large, a much richer frequency
spectrum emerges.

Extension to decoherence and the master equations8d re-
quires handling the 15315 problem in Eq.s9d rather than
434 and is necessarily more involved numerically. How-
ever, as in earlier studiesf3,5g, a simplified model in which
the sum in Eq.s8d runs over allLk=Ok of Table I reduces to
the same 434 calculation of unitary evolution above, with
the only difference being to multiplyhstd in Eq. s10d by
exps−Gtd. Figures 7–9 show the results of such a calculation
for the same choice of parameters as in Figs. 1–3 but with
the additionalG=0.5 GHz. The smallt dependences of the
two sets of figures coincide but the oscillations are damped
by the decoherence such that, asymptotically, the density ma-
trix evolves to that of a mixed state—namely, diagonal com-
ponents of 1/4—while all off-diagonal elements vanish. This
evolution from a pure state to a completely mixed state is
accompanied by a monotonic rise of the entropy from 0 to ln
4, paralleling the similar results inf3,5g.

FIG. 4. Time evolution of the diagonal elements of the density
matrix of an=4 two-qubit Josephson junction system. The horizon-
tal axis is svt /2pd, parameters as given in the text withv
=1 GHz, d=p /4, and the initial configurationrs0d=di1d j1. Con-
trast with Fig. 1 to see differences due to a mutual phase between
the driving fields.

FIG. 5. As in Fig. 4 but for the real part of the off-diagonal
elements of the density matrix.

FIG. 6. As in Fig. 4 but for the imaginary part of the off-
diagonal elements of the density matrix.

FIG. 7. As in Fig. 1 but with a damping constantG=0.5 GHz.
Note the differences from Fig. 1 as the oscillations damp out to give
asymptotic values of 1/4.
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APPENDIX

To illustrate the derivation of Eq.s12d, consider

Ustd = e−im+stdJ+e−im−stdJ−e−im3stdJz,

with angular momentum commutation relationsfJz,J±g
= ±J± and fJ+,J−g=2Jz. Taking the derivative gives

iU̇ = ṁ+J+e−im+stdJ+e−im−stdJ−e−im3stdJz

+ e−im+stdJ+ṁ−J−e−im−stdJ−e−im3stdJz

+ e−im+stdJ+e−im−stdJ−ṁ3Jze
−im3stdJz.

Using the Baker-Campbell-Hausdorff identity to recast the
second two terms so as to gather the three exponential factors
together on the right, we get

iU̇ = fṁ+J+ + sJz + im+J+dṁ3 + sṁ− − im−ṁ3d

3sJ− − 2im+Jz + m+
2J+dgU.

Each of the mutually commuting SUs2d in Eq. s11d involving
J=s/2 andJ=S/2 lead independently to such terms in the
square brackets above, one with coefficientsm and the other
with n, respectively. Upon equating these terms in square
brackets to the Hamiltonian in Eq.s5d, we get Eq.s12d.
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