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Four-level and two-qubit systems, subalgebras, and unitary integration
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Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to
solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical
handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations.
In particular, by exploiting s(2) ®su2) and su2) & su?2) @ u(l) subalgebras of the full S4¥) dynamical
group of the system, the nontrivial part of the final calculation is reduced to a single Rificgttorder,
guadratically nonlinearequation, itself simply solved. Examples are provided of two-qubit problems from the
recent literature, including implementation of two-qubit gates with Josephson junctions.
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I. INTRODUCTION such decoherence problems can also be treated through just

three classical functions whose defining equations further re-

Four-level systems are often of interest in quantum opticgy,ce to just one nontrivial Riccatfirst-order, quadratically

and in multiphoton processes. As examples of recent literansniineay equation(or, equivalently, to a linear second-order
ture, see, for instancdl]. Added interest is provided by iferential equation

recent applications for quantum information and computing The aim of this paper is to examine two-qubit or four-

where two qubits constitute a four-level system. Indeed, tWqeye| problems analogously. The complete description in
qublts and associated Iog_lc gates have been pracncall_y redbsrms of the 15 operators of the symmetry group@Uto-

ized through Josephson junctiof®], the coupling Hamil-  gether with the unit operatprequires 15 exponential factors
tonian viewed as a % 4 matrix. o in the evolution operator which is cumbersome. However,

_ 'f] recent papers, we have developed a “unitary integrayygicious choices of subalgebras reduce the problems consid-
tion” technique for solving time-dependent operator equagraply. These may be of interest since they describe several
tions such as the S(_:hrodlnger or Liouville equation for theys e two-qubit logic gates and four-level systems in the
state or density matrix of a quantum systf8h The method  ecent literature. Specifically, we present here the cases per-
seems to have been rediscovered several times, the ear“?éfning to two subalgebras @) ®su2) and s@2) ®su2)

work going back tfo wei anbd Nor&a{rxll]. Irr:_psrticulljar, the & 4(1). In both instances, the same single Riccati equation
extensive series of papers by Datidial, which we became for a single function is all that remains to be sol\#ttough,

aware of only after completion of our work, also investigatedfor example, a popular Mathematica pack&6p to provide
two- and three-level systems in quantum optics from a vari mplete descriptions of such systems. Other subalgebras—

ety of perspectives. We present here an analogous study Abmelv. sé5) with ten operators and with eiatht—uwill
four levels. We have also shown that the method extends Be they’suk()]?gct of futurepwork & g

more general master equations when dissipation and deco-
herence are presefi]. The essence of all these approaches
is to write the evolution operator in the form of a product of
exponentials, each exponent itself a product of a classical
function of time and one quantum operator. When these op-
erators form a closed algebra under commutations, first-order A. SU(2) X SU(2) subgroups

time-dependent equations can be derived for the introduced he 16 linearly independent operators of a four-state sys-

classical _functions, and their re_sulting solutions allow théiam can be chosen in a variety of matrix representations. One
construction of a complete solution of the quantal problemcpgice, familiar in nuclear and particle physics applications
The method works best, of course, when the number of OR7], is the 15\; matrices of s(#). This set is suitable for

erators in the' algt_abrq is small. For one qubit, where the mo%xamining s(8) and si2) subalgebras involving eight and
general Hamiltonian involves only four operators—the threg e gperators, respectively, but for our interest in this pa-
Pauli matrices and the unit matrix—the(8lialgebra has just ey an alternative representation proves more convenient.
three elements. Upon including dissipation and decoherencgyis starts from two qubits and employs their individual

a 3x 3 matrix for the elements of the density matrix intro- paji matrices, 6 in number, along with tensor products, 9 in
duces, at its most general, eight elements of 48)salgebra 1

O : number:3a,37,36® 37. Together with the unit & 4 matrix,
[5]. For special situations when an(8usubalgebra suffices, ase 16 matrices calle® are explicitly tabulated in an

earlier paper[8]. (A slightly different arrangement of the
same operators, called, with much useful group-theoretic
*Electronic address: arau@phys.Isu.edu discussion, is ifi9].) They have the advantage for the unitary

Il. ALGEBRA OF OPERATORS
FOR A FOUR-STATE SYSTEM
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TABLE I. Table of commutators. With operatof; in the first column andd; in the top row, each entry provides the commutator

[Gi, O]

Ox O, O3 Oy Os Og O; Os Oy Oy On O12 O13 O14 O1s O16
0o, 0 0 0  i0g -i0s O 0, 0 0 0 0 0,6 -0y 014  -iOyg
0, 0 0 0 o 0 0 0 0y -0y Oy  -iOy  iOj5 -0 -iO;3 O
o 0 0 0  i0g -i0; (/405 =(i/4)0s 01, -0y (i/4)0y —(i/405 O 0 0 0
O, -0 0 -0 0 0, O 0, 0 0 -A0;5 -0y O 04, 0 04,
Os i0s O i0, -0, 0 -0, 0 0 0 05 0 -0y 0 0, O
0, -i0s 0 ~—(i/40s 0 0, O (i/8)0, 05 -0y O 0  (i/40, O —(i/40y O
Oy i0; 0 (/405 -0, O /40, 0 Oy -0 O 0 0 /40, 0  (i/4)0y
Oy 0 -0 -i0p O O -0;5 -0y O 03 O i0, 0 i0g o, 0
Op 0 0y 0 O 0 O 0, -0 0 -0, 0 -io, 0 0 -0g
Oy 0 -0y ~(i/4)0y 1045 -0 O 0 0 0, 0  (i/490, (/405 O 0 ~i/4)0s
O, 0 Oy (/40s Oy -iOp O 0 40, 0 ~(i/40; 0 0 /405 (/405 0
Ops -0y -0 0 0 0y -(i/40, O 0 0, —(i/40s 0 0 0 (/40; (i/40,
Oy 015 05 0 -0 O 0 (i/490, -i05 O 0 (/1905 0 0 /40, ~(i/4)0s
Ops -0y 015 O 0 0, (/40 0 -0, 0 0 /40 ~(i/4)0;5 (i/40, 0 0
Oy O3 =04 O -0y O 0 /40, 0 05 (/405 0  —(i/40, (/405 O 0

integration proceduréo be described belowhat the square
of each is, to within a factor, the unit matrix. Exponentiation

1
Og = SATTXT LI+ [TOC T+ DKLU+ [LIXLTD,

of these operators is thereby rendered simple, involving just

two terms.
Table | gives the commutatof©;,O;] and is useful for
picking out subalgebras. For exampl&),,05]=i0g. The

Oso= = ST U =TT+ XL =1L D,

four states in this representation may be described either in

the four-state language as the column vect(,0,0,
(0,1,0,0, (0,0,1,0, (0,0,0,2 or in spin notation a$[ 1), |T1),
[11), [L1), respectively. Correspondingly, the operators are

Op = (ITTXT T+ 1T DXL+ LT+ LLIXLLD,

1

Op = SUTDC T+ [TDA L = XL = [LIXLLD,
1

O3= 5(|TT><TT| = [TDA L+ =[EIXLD,
1

O,= Z(ITT)(TTI = [TDXT L =TT+ TLICLLD,

1
Os = SUTTXLTT+[TOXL LT+ IO T+ [LIXT LD,

Og == S(TIXLTT+ T IXLL =D = 11X 1D,
1

07 = ZTIXUTI= T+ XTI =1L,

Og == Z(TIXUTI= T DXL =D+ LIXT 1D,

Ouy= (1T U+ 1T 11 = 11X L= L 1D,
Oug== ST =[N = LU+ LD,
Ouo= g (TN + TN+ LD L+ 1D,
Owa== (1N =1L = LD L+ 1D,
Oss== (TTXLUI = TXLTT+ LT L= LT 1D,

Osg== ZTIXLLI+ [T =D L= 1L,

There is a large set of six-dimensional subalgebras formed
out of two triplets obeying @) or, equivalently, s(8) an-
gular momentum commutation relations. One such set
(0,,05,04;045,04,0;() is the trivial sy2) & su2) subalge-
bra of local operations on two qubiis and 7. There are
many equivalent sets generated by a similarity transforma-
tion (ST) acting on the elements of a subalgebra by right-left
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TABLE 1I.
subalgebras.

Commutators of one of the $éB) @su?2)

Ox Os Oy Ou4 Oe On O13
0s 0 0y (/405 O 0 0
0y -0y O i0g 0 0 0
Oy (i140y -0 0 0 0 0
05 O 0 0 0 i0;s  -iOy,
O, O 0 0  -0; 0 (/40
O 0 0 0 i0,, -(i/40 0

multiplication by an arbitrary element of the full $4
group. LetW be a unitary 4< 4 matrix andx an su4) algebra
element. Then, the, ST acts as

X' = WxW!=WxW.

In this section we will use only a discrete subgroup of al
possible ST’s, which have the property that the set of 1

operatorsQ; is transformed into the same s@}; i.e., the
action of the ST is equivalent to a permutation amongQhe

In this case the 4@) @ su2) subalgebras, obtained by ST of
o, 7, can be identified by direct analysis of subgroup struc-

tures using Table I.
Subgroups different from the triviaf, 7 one can be gen-

erated only by two-qubit entangling operations, such a

transformation to the Bell basi®r magic Bell basig§10]).

One can easily verify that the s@g,Og,014; 0,011,013

is such a subalgebra. That is, the operator &gt 7,, o 7)

and (oy,0,7y,047) are two mutually commuting triplets

with su2) commutation relations as shown in Table II.
The ST with the unitary matrix

10 0 1

@
-1

passes from ther set to (7y,0,7,0y7) and from 7 to
(ay, 0,7, 0x7). The basis corresponding to E(L) is the
Bell  basis (1,0,0,3=[11)+[|]),(0,1,1,0=|1])
+/11),(0,1,-1,0=[11)=[11),(1,0,0,=3=[1 1)=[] 1),
which are simultaneous eigenstatesogf, and o7, [10].
All such subalgebras are maximal(2u® su2) subalge-

PHYSICAL REVIEW A 71, 062316(2005

column (row) k and zero everywhere else, so tiét am,,

+ Bmya+ ymg,. Starting with these three real, symmetric ma-
trices, we define two nonzero commutators between them,
My 3=—1[ My, My3] and my,=—i[My3,My,], to give two imagi-
nary, antisymmetric matrices, and a final real symmetric
my,=-i[mMy3,my,] to complete a full six-dimensional &b
algebra. Using the well-known relation betweer(4gcand
SU(2) X SU(2) groups, this subalgebra decomposes into two
sets of mutually commuting triplets, m;,+mg,, M3
—My4, My o= Mgy ANA M= Mgy, My 3+ My, Mog—My 4. These lin-

ear combinations correspond to the subalgebra
(Og,0g,044;0g,011,0;5) of the full su4) algebra. Such a
construction generalizes to-level systems,n>4, with
nearest-neighbor couplings. The matriceg defined as

(Mpa= (= DI 5580+ (= DM 500
providen(n—-1)/2 generators of a $0) algebra. These form
|a subalgebra of thgn?-1)-dimensional s(n) algebra al-
éhough, forn>4, the s¢n) no longer reduces to a product of
su2) algebras.

B. SU(2) X SU(2) X U(1) subgroups

A class of maximal seven-dimensional subalgebras of
su4), different from the one considered in the previous sub-
ection, can be constructed by taking linear combinations of
» generators. Inspection of Table | shows that the first seven
elements form a diagonal subblock closed under commuta-
tion, isomorphic to a 9@) algebra. WithO; commuting with
all the rest of this subblock, the other six divide into two
mutually commuting s{2) triplets upon forming appropriate
linear combinations which pass from a standapd 4 anti-
symmetric real-matrix representation of (4p to su?2)
®su2) matrix (4% 4) form. Another such example, previ-
ously considered by one of u$8], is provided by
(0,,05,013,014,045,04¢), with O, commuting with all of
them. The linear combinations, defined [i] as “pseu-
dospins,” obey s{2) commutation relations while not being
isomorphic to Pauli spinors. While the Pauli matrices consti-
tute a matrix algebra with the unit operator as the identity
element, the pseudospin matrix algebra has as its identity

element the operat«a’j(fi o,7,). One implication is that this
particular type of s(2) @ su2) algebra is not related by a ST
operation to the ) ® su(2) algebras considered in the pre-

bras of s@), in the sense that, if any operator from Table | is Vious section (contrast Tables Il and 0l These s(g)

added to the six already chosen, the algebra cltaes Lie

@ su2) @ u(l) sets arise, for example, in the physical context

algebra only in the full su4) algebra. Another perspective Of nuclear magnetic resonanf| with scalar coupling and
on the above Bell basis is provided by considering a fourheteronuclear two-spin coherences: For appllcatlons in meth-
level system with nearest-neighbor couplings as in theds such as unitary integration which require closure under

Hamiltonian commutation, such pseudospins work equally well as we will
see below. There are many such subalgebras which can be
0 a00 obtained by the discrete subgroup of ST operations as dis-
|« 0 B0 cussed in the previous section. For example, one can simply
H= 080 v (2 relabel(x,y,z). Indeed, each rowor column of Table | has
00 v0 seven zero entries. The corresponding seven operators con-

stitute such an algebra for a total of 15 Sgit4].
Such a matrix may be viewed as built up of three symmetric The recent demonstration of two qubit gates formed out
4 X 4 matricesmy, with unit entries in row(column j and  of Josephson junctior[] considers the Hamiltonian
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TABLE Ill. An su(2) ®su2) subalgebra different from the type here differ as 4« 4 matrices, being in thex‘representation”

in Table Il. Together withO,5, which commutes with all the six
operators shown, these form an(®u su2) ® u(1) subalgebra of
su4).

Ox O, Os Os O O O12
o, O 05 —(i/4)0g 0 05, —(i/4)0g
Os -iOg 0 i04 i015 0 -0y,
05 (/405 -iO, 0 ~i/4)0g 0y, 0
Ou 0 -0y, (/40 0 -0 (i/4)0s
Oy -0, O ~i014 iOg 0 i0,
Oy, (i/4)0g Oy, 0 ~(i/4)05 -iO, 0
1 1
Eoo _EEJl EEJz 0
1 1
! - EEJl Eio o - EEJZ "
“le, 0 Ep iy
2 2
0 _EEJZ _EEJl EOO
2 2

Expressing in terms of th®; matrices in Table I, this Hamil-
tonian is a linear combination df;,0,,05,04). Together

instead of the counterpart tepresentation” ii8].

IIl. UNITARY INTEGRATION
OF THE EVOLUTION OPERATOR

Time-dependent quantum problems can be conveniently
handled through the unitary integration procedurd .
Solutions of the Schrodinger equation for the quantum state
are obtained through the evolution operatdt)Ulefined by

()

where an overdot denotes differentiation with respect to
time. For more general treatment that includes mixed states,
master equations such as the Liuoville—~von Neumann—
Lindblad equatiorj12]

iU(t) =H(®HU®), U0) =1,

ih=[H,p]+ %.% ([l L]+ [LiopL D

1
=[H.p] = Si2 (b + plili— 2Ly, (8)
k
when first cast in terms of the individual density matrix ele-

ments, take a form similar to E¢7): namely,

in(t) = Ln(t), 9

with (Og,04,,014), they form a closed subalgebra as shownwhere 5 are appropriate linear combinations of matrix ele-

in Table Ill, and the operataDd;; commutes with all of them.

ments of the density matrix; [5], such as, for example, the

For applications below in Sec. Ill, we record the Hamiltonianones obtained by a decompositiongfin the set of genera-

in terms of the Pauli spinors,

1 1 1
H= E(Eoo"' = E(EJZUX+ Enmd + E(Eoo_ Eino,7,

(4)
and

1 1
H= é(Eoo"' Ei0Z + §(w+5z+ 0_S)

+ 4 B Erd(5+5 - S,-S), (5)

where we have definech)i:—EjzlEJl,SZ:%(ch+rX),sZ
1
_E(UX_TX)' and

1 1
S = E(in io)(ryxir), s.= E(UYi io)(my ¥ 7).

(6)

The sets(S,,S,) and (s,,s.) mutually commute and each

obeys the commutation relations of an(3ualgebra, but as
in [8], they are not completely isomorphic to th&4 matrix

tors of the corresponding $b) group[13]. We have

7=[p11= P2z (p11+ P22~ 2P33)/\°'§a(l311 * P22t p33
= 3p4/\6.p15+ po1,i(pr2= p21). pra+ pavi(paz
= p31):P1a* Pari (P14~ Par), P23+ P32, (P23~ P32, P2a
+ p42,1(P24= Pa2)sP3a+ Pazi(p3s— pad)]. (10)

In either case of Eq.7) or Eg. (9), unitary inte-
gration writes the solution as a product of exponentials,
IT; exd —i u;()A;], with time-dependent, classical functions
(), andA; the elements of a complete algelhgad]. Upon
substituting this form into Eq(7) or Eq.(9), a consistent set
of defining equations for thg, follows as long as each ele-
ment of the algebra is included in the above product. As
shown in[3,5], as long as one has an(8ualgebra, solving
this set definingu; reduces to just one nontrivial step, the
solution of a single Riccati equation. This remains true if
more than one 4@) is involved as long as they are mutually
commuting, each set involving one Riccati equation. Note
also that since only commutators &f are involved in the
derivation, the results apply also to pseudospins as in the
previous section or for other algebras such ag3)s@r
su1,1), differing only in the sign or value of the structure

o; or 7; algebras, as discussed above. In particular, as is easeefficients which do not change the form of the defining
ily seen, the squares & ands, are not the unit operator but equations for theu.

involve oy7, as well. While sharing the same commutation

relations as the similar pseudospins defined8h the sets

It is this feature that we now exploit in applying to four-
level or two qubit problems that fall into the two categories

062316-4
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Re pll Re p13
1 - 06 Re p22 0.5 Re;[)12 0.25 A :? n
. A .25 4 M 0.1
oSl T 05 H Ozgu"l’ L] : o Wi :
025/l Eo.zs 020 S o it ol
v V) - : L .
I A e LI S B
0.55 Re p33 1 Re 1044I
0.25 0.25 0.55 ] TO.SS
0.25 N 0.25
[RT VY v
0 2 4 6 8 0 2 4 6 8
FIG. 1. Time evolution of the diagonal elements of the density Re p24 Re p34
matrix of an=4 two-qubit Josephson junction system. The horizon- 025 - I 0.5 0.25
tal axis is (wt/27), parameters as given in the text with Oﬁ'd\ 0 0‘23“,\ M ITEWN | O.
=1 GHz, 6=0, and the initial configuratiop(0)=&;. | Py 0.5 |vl" \Ilv ‘Ll ‘8'55
-0.25 0 2 4 6 8
of the su2) ® su2) and si2) ® su2) ® u(1) subalgebras dis- 0 2 4 6 8
cussed in Sec. lll. An example of the former is a recent g 2. As in Fig. 1 but for the real part of the off-diagonal

discussion14] of geometric phases with two qubits. More gjements of the density matrix.
general time dependences than considered in that reference
are amenable to our procedure presented below. For the

. . - 2 —_
coupled pair of Josephson junctions[@f with the Hamil- D) +io- (A1) + kA1) =0, (14)
tonian in Eq.(5), we have from our previous derivation[i]

forms, u, (and, similarly,v,) can be solved for a given,,
, 1. 1 following which the rest of the set in Eq12) yields to
U(t) =exd- |Qo(t)]exp{— EI v+(t)&] exp{— EI v_(t)S_} simple integration.
In Figs. 1-3 we present results for the two-qubit Joseph-

1 1 son junction system d2]. The parameters of that study were
X -_—— —_— .
eXp[ 2”’3(051} eXp[ 2"“(05*] Eyo—E1o=7.85 GHz,Ey=13.4 GHz, ancE;,=9.1 GHz. All
these parameters were held constant in that study, but, with
Xexp[— i,u_(t)&]exp[— iMS(t)Sz:|- (11) aneyeto future applications whgre .these energies may vary
with time, we consider such applications of our general time-

. ) dependent formalism. Specifically, were the voltages to be
The setsu and v are for the two SI)’s involved in prob- harmonically modulated, witlE;;=13.4 cogwt+ ) and Es

lems such as those [i2]. An additional term inoy7y in Eq.  _ ; - 3
(5) could also be accommodated through an additional expo- 9.1 cogwt), solution of £q.(12) leads to diagonal and off

nential factor in Eq(11) and would correspond to an(l).

These classical functions in the exponents are obtainec g5 ,Implzl 0.5 Impl3,
through the set of equations] (see the Appendix 0.25 [ 0.25 025 a4 0.25
0 0 0 0
' -0. ' -0.25  -0.25 -0.25
QO:(EOO+E10)/21 025| A l| 1" _0.5 0 L H 1 ~0.5
0 2 4 6 87 0 2 4 6 8
: 2] H —
— K Fio_u =k,
Mo = My w_p, =k, 0.5 1Im pl4h 0.1 P23
0.25HfH V% 025  0.05— 4 0.05
o =iy = K, - 2ik_py = o, 12 0 0 damwia M'W 0
ok He He 12 _0.25W-HH—-025  -0.05 ]I A 0.05
with a similar set for the functions which haveK, instead 0 2 4 6 80> 0 2 4 6 89!
of k.. These parameters for th¢in Eq. (5) take the values
K.=-k.=(Epp—E;10)/2. For applications wittk constant as Imp24 Imp34
. ‘2 ‘d f fi f1i the first d | trivial 0.5 T 0.5 T T
in[ ]_an . functions of time, the first, and only nontrivial, 4 55— L1 0.25 0251l 0.25
equation of the set in Eq12) can also be recast 3] O\f'nM \VL a 0 0 0
-0.250Y M v -0.25 ~-0.25¢(7 LN -0.25
- 1 . —J-0.5 — 17 0.5
o(t) =k - Ew_(t)sm 20(t), (13) 0 2 4 6 8 0 2 4 6 8
FIG. 3. As in Fig. 1 but for the imaginary part of the off-
with u, =tan(6+kt), or diagonal elements of the density matrix.
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Re pll -
1 e p 05 Re p22 0.5 Imp12i‘
0.25 1 4 41 0.25
AL N
05 [ Mo.s o0.25[1] pllo25 Ol NWUIU\H‘“_O
-0.25 T HYH-0.25
AT ALY ! = — 0.5
VY u i 0 0 2 4 6 8
0 2 4 6 &0 0 2 4 6 8
3 Re pd4 05 Impld
Re ep 9| I i
05— — I 0.2sIAN I 0.25
0.75[ T —10.75 oA ©
0.25 0.25 05§ \v b{N A 0.5 -0.25 'l -0.25
0.25 ]l ‘UI ’]'U 025 =4 € 805
0 2 4 6 80 0 2 4 6 8
Imp24
FIG. 4. Time evolution of the diagonal elements of the density © -5 3 - 26
matrix of an=4 two-qubit Josephson junction system. The horizon- 0 I Lt 8‘
tal axis is (wt/27), parameters as given in the text with ~0.25 _0.25
=1 GHz, 6==/4, and the initial configuratiom(0)=d18;;. Con- ) 1 I 0.5
trast with Fig. 1 to see differences due to a mutual phase betweet, 0 2 4 6 8

the driving fields.

05 lImplB
O'zg&fﬁ i 8.25
-0.25 -0.25

2 4 6 8%

0.2 Imp23
0.1 byl 0.1

oA
-0.1HH R :gi

0 2 4 6 8

05 IIm034l
0.25—4 ﬂ EF 0.25
—0.22 LD I ‘8,25

0 2z 4 6 8°°°

FIG. 6. As in Fig. 4 but for the imaginary part of the off-

diagonal elements of the density matrix.

diagonal components of the density matrix shown in Figs.

1-3. Starting with an initial pure stat&, 0, 0, 0, the density
matrix, p(t)=Up(0)UT is evaluated and exhibits complicated

fields are in phase. The complicated frequency spectrum seen
in these figures even though there is a single driving fre
guencyw is due to the “Floquet™like structure of Ell)
which has oscillatoryu in exponents. As shown if5]
through an analytically solvable model, when the amplitud
in such exponents become large, a much richer frequen

spectrum emerges.

Repl2

0.4 Re p24
0.2—} — 0.2
L TE
-0.2 IR | -0.2

H -0.35

0 2 4 6 8

elements of the density matrix.

0.5
0.25
0
-0.25

Re pl3

]

o

LM

Re p23

1 |
0 2 4 6 8

o]

5

OO OO

25
5

0.1

0.5
0.25
0
-0.25

Re p34
1

-0.1

0.25

—

A A

0

et

ML

-0.25

-0.5

0 2 4 6 8

Extension to decoherence and the master equégjore-
oscillatory population of the four level&diagonal density quires handling the 1815 problem in Eq.9) rather than
matrix elements in Fig. 1 which, of course, always sum t04x 4 and is necessarily more involved numerically. How-
unity for all t) as also coherencesff-diagonal elements in eyer, as in earlier studid8,5], a simplified model in which
Figs. 2 and B Figures 4-6 show the effect of a phase dif- the sym in Eq(8) runs over allL,=0, of Table I reduces to
ference between the two driving fields, leading to interestingpna same « 4 calculation of unitary evolution above, with
differences when compared to Figs. 1-3 where the drivinqhe only difference being to multiply(t) in Eq. (10) by

p(-I't). Figures 7-9 show the results of such a calculation

for the same choice of parameters as in Figs. 1-3 but with
the additionall’'=0.5 GHz. The smalt dependences of the

C%5)/wo sets of figures coincide but the oscillations are damped

y the decoherence such that, asymptotically, the density ma-
rix evolves to that of a mixed state—namely, diagonal com-

ponents of 1/4—uwhile all off-diagonal elements vanish. This
evolution from a pure state to a completely mixed state is
accompanied by a monotonic rise of the entropy from 0 to In

4, paralleling the similar results ir8,5].
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1 e
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0.5 €0
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"'
0 z 4 6 8°
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L)
0 2 ¢4 & 8’
0.75 Re 044
0.sH—F 0.5
" A
0.25 TP —m=—10.25
0z 4 6 &

FIG. 7. As in Fig. 1 but with a damping constaint0.5 GHz.
FIG. 5. As in Fig. 4 but for the real part of the off-diagonal Note the differences from Fig. 1 as the oscillations damp out to give
asymptotic values of 1/4.
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FIG. 8. As in Fig. 2 but with a damping constain& 0.5 GHz. FIG. 9. As in Fig. 3 but with a damping constait 0.5 GHz.
Note the_ differences from Fig. 2 as the oscillations damp oulygie the differences from Fig. 3 as the oscillations damp out
asymptotically. asymptotically.
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APPENDIX U = [ieads + (3 + i pads)its + (o — i puoisg)
To illustrate the derivation of Eq12), consider X (o= 2 dp+ w2310,
i (0T (O ta()] Each of the mutually commuting $P) in Eq. (1) involving
U(t) = e7HetDgrti-igtialy, J=s/2 andJ=S/2 lead independently to such terms in the

. _ . square brackets above, one with coefficigatand the other
with angular momentum commutation relations,,J.]  with », respectively. Upon equating these terms in square

=+J, and[J,,J_]=21,. Taking the derivative gives brackets to the Hamiltonian in E¢p), we get Eq.(12).
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