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Helstrom theorem from the no-signaling condition

Won-Young Hwan§
Department of Physics Education, Chonnam National University, Kwangjoo 500-757, Republic of Korea
(Received 15 February 2005; published 14 June 2005

We prove a special case of the Helstrom theorem by using the no-signaling condition in the special theory
of relativity that faster-than-light communication is impossible.
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Quantum bits(qubity are fundamentally different from s, |(«a|B)|?=co 6. A pure state|y) is defined as that its
classical bits in that unknown qubits cannot be copied withg|och vectorf, bisects the two Bloch vectofg andf 4 in the
unit efficiency[1-3] (the no-cloning theorejm Another re-  ggme plane, name|f]V:C(fd+fﬁ) whereC is a constant for
lated property of qubits is that nonorthogonal qubits cannofgrmalization. A pure statg) is defined as its Bloch vector
be distinguished with certainfy]. fs makes an angler/2 andw/2+6 with the Bloch vector,

Interestingly, however, it has been found that the N0y 7., in the same plane, respectively. A pure statd is

signaling condition is entangled with other impossibility defined as its Bloch vectdt , is the negative of that d&),

proofs [5-8]. In particular, it has been shown that the no- - .
signaling condition gives the same tight bound on probabilitynf;rr?gly 7 & Note that all Bloch vectors here are in the same

of conclusive measurement as obtained by quantum me- .
y-a Let us start the proof. Consider an entangled state for

chanical formuld7]. .
In this paper, we add one in the list of theorems that carf*iC€ and Bob, who are supposed to be remotely separated

be proven by the no-signaling condition. We prove a speciat'Sually;
case of the Helstrom theorel@]. The result in this paper is —J/nl M _n
closely related to other’s works but different. In particular, 1) = \PIO)A| e + V1 = pl1)al - @
our argument is quite similar to the one in Rg5]. Our  Here,|0) and|1) are two orthogonal qubit# andB denote
contribution is an observation that violation of the HelstromAlice and Bob, andp=1/(1+sinf) and 1-p=siné/(1
theorem implies that two appropriately chogeifferent de-  +sin#). If Alice performs a measurement in tH&),|1)}
compositions of the same density operator can be discrimibasis, therefore, Bob is given a mixture |ef(a| and|y){y|
nated. This paper is organized as follows. We describe th@ith respective probabilitiep and 1-p. Then Bob’s density
proposition that we will prove. We prove it by the no- operatorpg is given by pg=p|a)al+(1-p)|y){y|=(1/2){1
signaling condition and then we conclude. +g- G}, wherefg=pf,+(1-p)F,. Note that the Bloch vector
Roughly speaking, the Helstrom theorem means that thgf 5 mixture is given by sum of Bloch vectors of pure states
more nonorthogonal two qubits are, the more difficult it is to constituting the mixture with corresponding probabilities as
discriminate them by positive operator valued measuremenf;eighting factors. However, the theorem of Gisin-Hughston-
[4]. Let us consider a special case of the Helstrom theoremyo,sa-\Wootters says that, with the state in @& Alice can
Proposition 1 Consider two nonorthogonal qubithy) generate any decomposition of Bob’s mixtyfe12,13 by
and|B), whose overlap{a|B)|? is between 0 and 1. We are the appropriate choice of her measurement baslsually
given a qubit that is eithefa) or [8) with equal a priori  this theorem is known as that of the latter three authors.
probability, 1/2. We want to identify the qubit quantum me- However, the theorem had been already demonstrated by Gi-
chanically. Identifier of the qubit gives either an output, 0, orsjn [5].) However, we have a relation thdg=pf,+(1

the other output, 1P is the probability of making error in -p)f,=pfz+(1-p)f_,, which means that the density opera-
the identification. Minimal value ofPg is given by Pf o/ pg can also be decomposed as

=(1/2[1-\1-[a| B [4]. B
(Proposition 1 has interesting applications in quantum pe = PIBXBl + (1 =p)l= (-1l

cryptography, e.g., the Bennett 1992 quantum key distribuThys the state in E¢(1) can also be written as

tion protocol [10] and quantum remote gambling protocol — —

[11].) Before we prove Proposition 1, let us introduce 1) = Vpl0")alBYs + V1 = p|1")al— Se, (2

the following. Any pure qubiti)i| can be represented by

a three-dimensional Euclidean Bloch vector as |'><L| Now let us assume that there exists a binary detector of
=(1/2)(1+F;-0) [12]. Here 1 is the identity operators  ny kind whose probability of errd? is less tharPT for the
=(0x,0y,07), and oy, 0y, 0, are Pauli operators. Two Bloch o nonorthogonal statels:) and |8). That is, the detector
vectors corresponding tar) and|p) aref, andfs respec-  gives the outcomes 0 and 1 fier) and|8), respectively, with
tively. We define an angle betweép andfz to be 2. That 5 probability 1-Pg. Then Alice and Bob can do faster-than-
light communication in the following way. First Alice and
Bob prepare many copies of the state in Ef). If Alice
*Electronic address: wyhwang@chonnam.ac.kr wants to send a bit (bit 1) then Alice performs measure-

where{|0’),|1")} is another orthogonal basis.
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ments on her qubits in thg0),|1)}({|0"),|1')}) basis. Bob whatever outcomes are given for the other state, Bob can
can discriminate the two cases by performing measurementfiscriminate the two cases.

on his qubits using the detector: In the case of bfbid 1), We proved a special case of Helstrom theorem, Proposi-
|a)(|8)) is generated with probabilitp at Bob's site. Then tion 1, by using no-signaling condition in special theory of
p(1-Pg)>1/2 becaus®e < PF andp(1-Pf)=1/2.Thatis, relativity that faster-than-light communication is impossible.
in the case of bit Obit 1), the detector gives outcome 0

(outcome 1 with a probability larger than 1/2. Therefore, | thank Marco Piani very much for a helpful correction.
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