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We prove a special case of the Helstrom theorem by using the no-signaling condition in the special theory
of relativity that faster-than-light communication is impossible.
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Quantum bitssqubitsd are fundamentally different from
classical bits in that unknown qubits cannot be copied with
unit efficiency f1–3g sthe no-cloning theoremd. Another re-
lated property of qubits is that nonorthogonal qubits cannot
be distinguished with certaintyf4g.

Interestingly, however, it has been found that the no-
signaling condition is entangled with other impossibility
proofs f5–8g. In particular, it has been shown that the no-
signaling condition gives the same tight bound on probability
of conclusive measurement as obtained by quantum me-
chanical formulaf7g.

In this paper, we add one in the list of theorems that can
be proven by the no-signaling condition. We prove a special
case of the Helstrom theoremf9g. The result in this paper is
closely related to other’s works but different. In particular,
our argument is quite similar to the one in Ref.f5g. Our
contribution is an observation that violation of the Helstrom
theorem implies that two appropriately chosensdifferentd de-
compositions of the same density operator can be discrimi-
nated. This paper is organized as follows. We describe the
proposition that we will prove. We prove it by the no-
signaling condition and then we conclude.

Roughly speaking, the Helstrom theorem means that the
more nonorthogonal two qubits are, the more difficult it is to
discriminate them by positive operator valued measurement
f4g. Let us consider a special case of the Helstrom theorem.

Proposition 1. Consider two nonorthogonal qubits,ual
andubl, whose overlap,uka ublu2, is between 0 and 1. We are
given a qubit that is eitherual or ubl with equal a priori
probability, 1 /2. We want to identify the qubit quantum me-
chanically. Identifier of the qubit gives either an output, 0, or
the other output, 1.PE is the probability of making error in
the identification. Minimal value ofPE is given by PE

m

=s1/2df1−Î1−uka ublu2g f4g.
sProposition 1 has interesting applications in quantum

cryptography, e.g., the Bennett 1992 quantum key distribu-
tion protocol f10g and quantum remote gambling protocol
f11g.d Before we prove Proposition 1, let us introduce
the following. Any pure qubituilki u can be represented by
a three-dimensional Euclidean Bloch vectorr̂ i as uilki u
=s1/2ds1+ r̂ i ·sW d f12g. Here 1 is the identity operator,sW
=ssx,sy,szd, andsx,sy,sz are Pauli operators. Two Bloch
vectors corresponding toual and ubl are r̂a and r̂b, respec-
tively. We define an angle betweenr̂a and r̂b to be 2u. That

is, uka ublu2=cos2 u. A pure stateugl is defined as that its
Bloch vectorr̂g bisects the two Bloch vectorsr̂a andr̂b in the
same plane, namely,r̂g=Csr̂a+ r̂bd whereC is a constant for
normalization. A pure stateudl is defined as its Bloch vector
r̂d makes an anglep /2 andp /2+u with the Bloch vectorr̂g

and r̂a, in the same plane, respectively. A pure stateu−dl is
defined as its Bloch vectorr̂−d is the negative of that ofudl,
namely −r̂d. Note that all Bloch vectors here are in the same
plane.

Let us start the proof. Consider an entangled state for
Alice and Bob, who are supposed to be remotely separated
usually,

ucl = Îpu0lAualB + Î1 − pu1lAudlB. s1d

Here, u0l and u1l are two orthogonal qubits,A andB denote
Alice and Bob, andp=1/s1+sinud and 1−p=sinu / s1
+sinud. If Alice performs a measurement in thehu0l , u1lj
basis, therefore, Bob is given a mixture ofualkau and uglkgu
with respective probabilitiesp and 1−p. Then Bob’s density
operatorrB is given by rB=pualkau+s1−pduglkgu=s1/2dh1
+ r̂B·sW j, wherer̂B=pr̂a+s1−pdr̂g. Note that the Bloch vector
of a mixture is given by sum of Bloch vectors of pure states
constituting the mixture with corresponding probabilities as
weighting factors. However, the theorem of Gisin-Hughston-
Jozsa-Wootters says that, with the state in Eq.s1d, Alice can
generate any decomposition of Bob’s mixturef5,12,13g by
the appropriate choice of her measurement basis.sUsually
this theorem is known as that of the latter three authors.
However, the theorem had been already demonstrated by Gi-
sin f5g.d However, we have a relation thatr̂B=pr̂a+s1
−pdr̂g=pr̂b+s1−pdr̂−g, which means that the density opera-
tor rB can also be decomposed as

rB = publkbu + s1 − pdu− glk− gu.

Thus the state in Eq.s1d can also be written as

ucl = Îpu08lAublB + Î1 − pu18lAu− dlB, s2d

wherehu08l , u18lj is another orthogonal basis.
Now let us assume that there exists a binary detector of

any kind whose probability of errorPE is less thanPE
m for the

two nonorthogonal statesual and ubl. That is, the detector
gives the outcomes 0 and 1 forual andubl, respectively, with
a probability 1−PE. Then Alice and Bob can do faster-than-
light communication in the following way. First Alice and
Bob prepare many copies of the state in Eq.s1d. If Alice
wants to send a bit 0sbit 1d then Alice performs measure-*Electronic address: wyhwang@chonnam.ac.kr
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ments on her qubits in thehu0l , u1ljshu08l , u18ljd basis. Bob
can discriminate the two cases by performing measurements
on his qubits using the detector: In the case of bit 0sbit 1d,
ualsubld is generated with probabilityp at Bob’s site. Then
ps1−PEd.1/2 becausePE, PE

m andps1−PE
md=1/2.That is,

in the case of bit 0sbit 1d, the detector gives outcome 0
soutcome 1d with a probability larger than 1/2. Therefore,

whatever outcomes are given for the other state, Bob can
discriminate the two cases.

We proved a special case of Helstrom theorem, Proposi-
tion 1, by using no-signaling condition in special theory of
relativity that faster-than-light communication is impossible.

I thank Marco Piani very much for a helpful correction.
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