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From quantum circuits to adiabatic algorithms
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This paper explores several aspects of the adiabatic quantum-computation model. We first show a way that
directly maps any arbitrary circuit in the standard quantum-computing model to an adiabatic algorithm of the
same depth. Specifically, we look for a smooth time-dependent Hamiltonian whose unique ground state slowly
changes from the initial state of the circuit to its final state. Since this construction requires in general an
n-local Hamiltonian, we will study whether approximation is possible using previous results on ground-state
entanglement and perturbation theory. Finally we will point out how the adiabatic model can be relaxed in
various ways to allow for 2-local partially adiabatic algorithms as well as 2-local holonomic quantum

algorithms.
DOI: 10.1103/PhysRevA.71.062314 PACS nuntber03.67.Lx
I. INTRODUCTION The first result we show is that once we spediy the

Adiabatic evolution as a quantum computation model haémitary transformation that takes the eigenstates at the begin-
attracted much attention since its introduction by Fatral.  ning to those at the end of the evolution, afil how we
[1]. The basic idea is the following. Start with a Hamiltonian Want the eigenvalues to evolve, we can immediately derive
whose ground state is easily reachable and prepare our stdfe form of time-dependent Hamiltonian required without the
in the ground state. Change it slowly to a new Hamiltonianuse of any ancilla qubits. Conceptually the simplest example
that encodes the solution of the problem and maintain a largis a time-dependent similarity transfortd (t)H,ioU(t)".
energy gap between the ground state and the excited stafdis observation should allow us to engineer Hamiltonians
that the evolving state couples to. The adiabatic thed@&m according to computational needs. However, a Hamiltonian
then guarantees that the resulted state will be very close tof the type --U2U1HinitiaIUIU£--- can be highly nonlocal
the ground state of the new Hamiltonian. The original formeven if U;,U,... andH;., have simple local forms. Since
of the Hamiltonian considered ii] is a straight-line inter- e are interested in the ground state, we should ask whether
polation:H(s)= (1 -s)Hiital + SHsinai- Recently, it was proved it s possible to find a local approximation.
that any standard quantum circuit, specified by a sequence of |t turns out that while approximations are possible to a
unitary operators, can be implemented as an adiabatic evolgertain extent, there is much constraint. We will demonstrate
tion of this form[3,4]. The authors use computational com- this point in two steps. First we will make use of the results
plexity techniques developed for proving the QMA- by Haselgroveet al.[6], which show how the entanglement
completeness of thielocal Hamiltonian probleniKempeet o the eigenstates of a Hamiltonian is related to what bodies
al. [4] achieved the case ft=2); the evolving state encodes i the system each term in the Hamiltonian acts on nontrivi-
the entire computational history. Roughly speaking, theyqly. ntuitively speaking, if an eigenstate shows strong cor-
construct a Hamiltonian whose ground state is the superpgglation between bodies which the Hamiltonian does not di-
sition of all the stages in a given circuit. If the circuit has rectly couple, i.e., act nontrivially on all as a tensor product,
depth L, the time required to obtain this ground state isthe Hamiltonian cannot distinguish very well between such a
O(1/L%) for the 3-local Hamiltonian and there is &(1/L)  state and other similarly entangled states that are orthogonal
probability of obtaining the final state of the circuit given to it. This results in a small energy gap. Since a quantum
this superposition. On a seemingly unrelated note, Ferhi circuit can generate highly correlated states, when we want
al. [5] showed aftef1] that if we do not restrict adiabatic to make them ground states of a Hamiltonian in an adiabatic
evolution to the straight-line path and add terms that vaniskigorithm, they will be difficult to approximate. Then, as an
at the end points, we may be able to turn an inefficient comexplicit example, we will use the approximation method de-
putation into an efficient one. A general method for findingvek‘)ped in[4], derived from perturbation theory, and app|y it
an efficient path is, however, not known. In light of these twoon our construction. We will see that we could indeed make
developments, we may ask—can we always find an efficieny |ocal approximation under the constraint implied [16],
adiabatic evolution path, not necessarily of the straight-lingyut the resulting evolution can be inefficient.
form, for problems efficiently solvable by quantum circuits  Next we look at how this approach of transforming the
such that we directly obtain the desired final state? Stal’ting{am"tonian adiabatica”y is related to the manipu|ation of
with this question, we will present several variations on howgeometric phase. We start by asking, given that local ap-
to implement the standard circuit model by adiabatic evoluproximation is difficult, why the adiabatic model is more
tion. demanding than the basic circuit model, for which 2-local

Hamiltonians easily suffice witld=exp(iH,.,cat) for each
gate. There are at least two crucial differences between the
*Electronic address: msiu@stanford.edu two models.

1050-2947/2005/786)/0623149)/$23.00 062314-1 ©2005 The American Physical Society



M. STEWART SIU PHYSICAL REVIEW A71, 062314(2005

(I) The adiabatic model keeps track of exactly where theonly the same number of qubits as in the circuit and a run-
state is at every moment throughout the evolution and penahing time of the same order as the depth of the circuit, as
izes any deviation, while the circuit model keeps no infor-shown in Sec. lll. This in general involveslocal Hamilto-
mation about the state at all. This makes the former morgians, and Sec. IV discusses why this can be difficult to
resistant to error. approximate by studying entanglement properties of the

(I) The adiabatic model allows time variability in the ground state of Hamiltonians. In Sec. V we show one way to
application of the Hamiltonian, while the basic circuit model cgnstruct a 2-local Hamiltonian whose worst-case run time
requires precise pulse timing. scales exponentially witim, illustrating a tradeoff between

The word “adiabatic” itself only suggests property Il o0 rce requirement and running time. In Sec. VI, we look

above, so if we are willing to relax property |, we wil havg at how 2-local constructions can be useful for generalized

much more freedom to design our Hamiltonian. The MaN, diabatic algorithms and how computation models that use

issue we need to deal with, as we will show, is the geometri : i . . : .
phase. Suppose we implement the Hamiltonian%‘be“an and non-Abelian geometric pha$gd®] fall into this

U(S)HiniiaU(S)T without making sure that we start with the (r:]?tte%ory. F:nall;r/], (\;vﬁg]rert:jrrr]]n: Sifcin\t/”r to t}::e cogwnputﬁltlrc])r:al
ground state or any eigenstate of the initial Hamiltonian. In- story approac a ote its interesting connection to

stead of havingJ(s) applied on our initial state, there will be N©/0NOMIC quantum computing.
further transformation due to the relative phases accumulated

between different eigenstates. The dynamical component of

the phase is straightforward to cancel out, but the geometric Il. A DIRECT MAPPING

component is more subtle to calculate. To avoid having to We adopt a general definition of adiabatic computation

cancel the geometric component, we may either make SUEhd look for a time-dependent, differentiable Hamiltonian

we always start with an eigenstate of the Hamiltonian, Olhy(s), where 0<s<1 is the time parameter, such th#f0) is
tgke{ja:dvar}tage f[).f thgrrg];_eometlr(ljc pflase”tol |mglemten't[hthe;] d%’n initial Hamiltonian with a unique, easily reachable ground
Isolrneomir:r(]qi;rr]rtrt];l%gmptﬁir\:\éortgo dr:j ;';?/gllos: d [L)]; Z(;na? dio'state ancH(1) is a Hamiltonian with a unique ground state
C . . 4 encoding the solution of our problem. A quantum circuit can
al. [7], which in fact precedes the adiabatic algorithni s be giver?in the formjy)=U,U P U,[0) v?hereu- are uni-
Let us give a lightning review of the idea of holonomic | =1Ll '

. . . .~ tary operators representing one or two qubit gates. To map
quantum computingHQC). Wilzcek and Zee introduced in this transformation into adiabatic evolution, we start with a

[8] the observation that if a Hamiltonian with degenerate L
eigenstates goes through a cycle adiabatically without chang#—'am"tomanH(o)’ whose ground state |6), and we would

ing the degeneracy of each level, the degenerate subspa& ¢ to haveH(s) such th|at|¢>. Is the groupd Stati dﬂ(l.)'
can be viewed as a gauge group on the manifold correspond.1€ MOSt common problem in constructing sucht&s) is
ing to the parameter space of the Hamiltonian. After eactihat the energy gap between the ground state and the first

cyclic evolution, an arbitrary state in the degenerate spacg*Cited state varies during the evolution. A small gap implies
will undergo an unitary transformation depending on the pattf 12rger probability for the ground state to be excited, and in
taken: the set of all possible such unitary transformationdU @ longer evolution time if we want to compensate for it.
given a parameter space that specifies the Hamiltonian is ©Ur main observation is that it is possible to maintain a
called the holonomy group, and the parameter space is oftéfPnStant gap size as long as we keep the HamiltoHighto
called the control manifold. Elements of the group generallyP® Of the f(_)rmp(s)H(_O)UT(s). Let us be more specific. Sup-
do not commute, so the transformation is called the nonP0se the circuit requires us to perform unitary daten state
Abelian geometric phase. Zanastial. [7] applied this idea |0). Let K==i log U and U(s)=exp(isK), such thatU(0)=1

on quantum computing by choosing initial Hamiltonians for g j(1)=U. We start with a Hamiltoniami with |0) as its
which the computational states are completely degeneratsround state:

Transformations are then applied by holonomy. In addition to

time variability, the geometric natufsuch as dependency on Hln) = E|n). (1)

the area of the logpalso gives HQC some resistance to
errors.

Seeing HQC as a generalized adiabatic model brings us
many additional insights. First, we can apply the local ap-
proximation techniques d#] to show that 2-local Hamilto-  if
nians are sufficient to implement HQC. Furthermore, we _ _ _
show that the construction ¢8], etc., originally developed V(s)U(s)|n) =[U(s),H]n) + [f(n,s) = E,JU(S)|n). ()
for com ional complexi roofs, h hidden . - . o
f?eeggmp:rg%t f:)aril b%ovigviedtyasp hoac:fsé hgin%migdci/clg.agﬁiirh's completely specifieg(s), and 'ff(f ’S):E”’ V(s)is just,
view allows us to improve the adiabatic implementation soin the original (computational basis,U(s)HU(s)"-H. It is
that we obtain only the desired final state instead of the comelear that as goes to 1 slowly, we obtaitl|0) as our ground
putational history. state without worrying about a shrinking gap. Note that

This paper is organized as follows. In Sec. II, we give thef(n,s) allows us to manipulate the gap size.
direct way to construct an adiabatic equivalent of any circuit Using the idea above, we can now spell out the explicit
without encoding the computational history. It makes use ofnapping. Giverl, ... ,U,, we first replace the overall time

We can addV(s) such that the following is true:

[H+V(91U(9)|n) = f(n,9)U(s)|n) 2
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parameters by a series of time step parametegsfor i lll. ERROR BOUNDS

-1 5[0, 1]. This means that We now check the evolution time required for each step

~ ~ according to the adiabatic theorel®]. The result here is
H(s) :< I1 U(S))H(O)( I1 UT(S))' ) useful for the construction in Secs. V and VI as well. Under
the adiabatic approximation, the evolving state is propor-
Let the Hamiltonian at the beginning of thi time step  tional to the instantaneous eigenstate of the time-dependent
be H™=3h"=3Ih"+5;h whereh{” denotes individual Hamiltonian. Substituting this into Schrédinger’s equation,
local HamlltomansiH and st refer, respectively, to terms this means the time derivative does not take one eigenstate to
whose qubits overlap with those bf and terms that act on another, i.e.{m,s|d/dt|0,5)~0, m# 0. Thus the correction

i=l,...,1 i=1,...)

different qubits. In this notation, we can writ4s) as to the approximation must be proportional (iwe definek;
” ” =-i log U; below)
V(s) = U hi |Uf(s) - > h. 5
m#0
For illustrative purposes, let us consider a typical term, (DTt
where U; is the controlledZ gate (which with smgle qubit E (m, d[U(S)H' U (S)]|O, )
gates is universahcting on the first two qubits, a ) acts Tm=o (Em—Eo)ds
on the second qub|t as well as some other qubits. The matrix (K. HO- 1]
representation dﬁ andU; for the first two qubits looks like == 2 (m, sq|e'SK M “E e5Ki|0,5)
m#O 0
hl h2 1 E [ | 1)]
o | hgh 1 =23 =0 _Jjos=0)
p=f "3 = _ E.-E
i hy h, .U 1 Tmzo m~ Eo
hs hy -1 =—E - (m.s=0lK{[0,5 =0) 9)
m#:O

ThenU;(s)h{"Uf(s)~h{” . | .
where|m, s;) denotes the instantaneous eigenstate with eigen-

0 value E,, and s=t;/T. HI™V preserves the spectrum of
0 Im,s=0), so the contribution to the above term is duekio
= ism1 . (6) Taking U; to be controlledZ as an example again, the eigen-
_ 0 (€ )hy values ofK; are 0 andr. a(s) is therefore bounded by/T.
(€5™hh, 0 The total time required for the step is proportional to the

, , transition probability to other states, which accordindg2d
Note from this example that i~ =3h{" is m-ocal, V(s) s bounded bylha(s)/(E,~Eg)|? for the smallestE,, Re-
can be at mostm+1)-local, and this happens when exactly markably, the error is not only independent of the total num-
one qubit of a two-qubit gate); overlaps with one qubit of ber of qubitsn, it is also independent af, which means
h(') Thus V(s) can be up ton-local wheren is the total further local variation in evolution speed is not required to
number of qubits. We will study more closely the complexity gchieve optimal timing. Of coursé)(s)=exp(isK) is just
and locality of such Hamiltonians in Sec. IV. one arbitrary choice we make; there may be other forms of

Let us look at another specific example using Pauli matnU( ) that yield bett ; i le-
cesX, Y, andZ as basis. Suppose for two qubits we start with §) that yield better performance or are easier to imple
the Hamiltonian ment. We should note that it is possible to eliminate the error

altogether by adding auxillary terms to the Hamiltonian, but

H=7Z-ZI+1Z (7)  this would only be useful for state preparation as it generally

requires complete knowledge of what we want to generate.

where ZI means aZ on the first qubit and identity on the
second qubit, etc. Clearly the ground staté¢li®. With that
as our starting point, we can apply a controlledlf (CNOT)

gate and see how it turns inbl). The recipe above tells us  |n hindsight it should not be surprising that this direct

IV. LOCALITY OF THE HAMILTONIAN

the Hamiltonian we need to add is mapping yields am-local Hamiltonian. After all, while it is
. ) easy to decompose anlocal unitary operator into a product
V(s) = sin(sm)lY +[1 - cogsm)IZ - sin(sm)YZ—[1 of 2-local ones, since two-qubit gates are universal, it is far
- cogsm)]ZZ (8  more difficult to approximate an-local operator with a sum

of 2-local operators, even with the addition of ancilla qubits.
We can see that as goes to 1, the new Hamiltonian will This section is devoted to the understanding of this difficulty.

becomeH+V(1)=-ZZ+ZI+1Z, whose ground state is in- First we review some results by Haselgraateal. [6]. In
deed|11). ThelY andYZterms are zero at the end points, as[6] the authors show how the entanglement of the eigenstates
the extra terms if5] are. of a Hamiltonian is related to its coupling topology. Intu-

062314-3



M. STEWART SIU PHYSICAL REVIEW A71, 062314(2005

itively speaking, if an eigenstate shows strong correlation To generalize this to the case with ancilla qubits, a slight
between bodies that the Hamiltonian does not directly couplextension of Theorem 1 is needed. Let the ground states of
(i.e., act nontrivially on all of them as a tensor produthe  thek-local approximation béy)|a;), wherela)), j=1,... m,
Hamiltonian cannot distinguish very well between such aenumerates the degeneracies due to the ancilla qubits. This
state and other similarly entangled states that are orthogonptoduct form is necessary if we want the computational qu-
to it. This results in a small energy gap. The following theo-bits to remain as). Let p’=31,p® |a;)(a;|/m. SettingE,

rem from[6] makes this idea concrete and suffices for our=0; it is easy to check that (H’H):Ejriltr(p(@|aj><aj|/m)

purpose. =0, which would force the ground-state degeneracy to be
Theorem 1 Consider a statgy) and a HamiltonianH ~ 2m, This in turn implies that there must be degenerate
whose eigenvalues and eigenstates Brand |E;), respec-  ground states due to states orthogonalitp contradicting
tively, with j=0, ... d-1; d is the dimension of the Hilbert the assumption that there is lkalocal Hamiltonian with
space andE,) is the ground state dfi. Let F be the overlap |¢>|aj> as the only ground states. =
of [¢) with |Eq) andEyy be the difference between the maxi-  So far we have seen that a local Hamiltonian cannot have
mum and minimum eigenvalues. Then for all density matri-certain states as its ground state, as showfst0]. This is
ces p with eigenvaluesp;<p,<ps..., such that tpH)  rather expected as it is well knowa1] that there are quan-
=(y{H[y), the following inequality holds: tum states not determined by any reduced density matrices.
The more interesting connection we would like to point out
2 here, however, is the trade-off between proximity to a non-
E(EJ ~Eo)pjra < (1 -F)EBq: (10 |ocal state and the energy gap, as apparent in Theorem 1.
Since the energy gap condition is essential to adiabatic algo-
The proof is elementary and we will refer the readers to theithms (while some forms of adiabatic theorem without the
lucid explanation if6]. Now we may apply this theorem on gap condition exist, they cannot guarantee the final state to
the construction in Sec?2). arbitrary accuracy12]), this places another direct trade-off
Claim 1 Let Hy be a 1-local Hamiltonian with unique between accuracy and running time. Now that an exact ap-
ground statg0). There does not exist a genekalocal ap-  proximation is not possible, we will look at how close we
proximation for then-local HamiltonianUH,U', wherek  can get.
<n-1 andU is a polynomial-sized circuit, such that the In[4], a 2-local approximation for 3-local Hamiltonians is
approximation produces exactly the same ground state armbnstructed(see Sec. ¥ Normalizing the total energy to
first excited state. Specifically, one cannot always construct anity, the ground-state energy gap for the 2-local Hamil-
k-local Hamiltonian which hasU|0) as a nondegenerate tonian scales a® for a ground stat®©(é) close to the origi-
eigenstate. nal ground state. In fact we can use Theorem 1 to make this
Proof. We will start with the case without ancilla qubits. more precise: If the energy gap scalessjghe ground state
Consider the state|$)=(1/y2)(]000..)+|111..)), the for the 2-local Hamiltonian has to be at leadts°) away
n-qubit Greenberger-Horne-ZeilingéGHZ) state. Consider from an original GHZ-type ground state. This proves that
also ak-local HamiltonianH whose ground statfEg)=|¢),  there does not exist an approximation scheme better[#ian
soF=1. If we choose in such a way that the energy gap scales, say, logarithmically
L [i.e.,0(1/logs™1)] instead of polynomially with the accuracy
_ = O(9) of the ground state.
P 2(|OOO...><OOO...| Hjdr. o)Ay Following this idea, we can place some bounds on how

here © » i indi L good the approximation for an-local Hamiltonian can be.
where °..." again indicates zeros or ones, it Is easy 10 See o simplicity we will consider a 2-local approximation,

that th_p=tr_|¢/)(¢ for k<n-1, where t_, means tracing  gnouid one exist, that has a unique ground state, ancilla qu-
over any n—k qubits. It then follows that fork=n-1, bits included. Consider the stafi):

tr(pH)=(y/H|¢) for a k-local HamiltonianH. Putting this
into the inequality in Theorem 1, we obtdi —E;=0, mean- 1 1
ing that the ground state correspondingGpis degenerate. |#) = §(|000> +[11)) ® §(|000> +H11Y) e -+, (12
Now suppose ak-local exact approximation exists.
Choose the n-qubit polynomial-sized circuit U  which is a tensor product of mostly three-qubit GHZ states.
=(HadamarghIT.=7}(cNoT); 144, i.e., @ Hadamard gate acts It is not difficult to see that there are2"® orthogonal states
on the first qubit, followed by a series aNOT gates on the to it that are not distinguishable by 2-local terms. Thus we
first and second, the second and third, and so on. Clearly, thizgan form a density operator of ramk2™? and substitute it
circuit acting on the initial staté00...) produceg ). Sup-  into the inequality(10). This tells us that the average energy
pose we start with a simple 1-local Hamiltonibig (e.g., set ~ of these=2"? states has a gap with the ground state that is at
Ho=2M,0") which has|000...) as a nondegenerate ground most(1-F?)~0O(8). We can tighten this bound a little by
state. If there exists a procedure that exactly approximatesonsidering the distribution of states. If we start with the
UHoUT with a k-local Hamiltonian,k<n-1, this implies  1-local HamiltonianHy=={.,07, (the minimal form required
there exists &-local Hamiltonian which hagy) as a nonde- for a unique ground state UHy U™ hasn eigenvaluesE;
generate ground state. Hence we have arrived at a contradig{/n with degeneracy!/[j!(n—j)!]. Simple counting shows
tion. that for the lowest=2"3 states, the average energy is at least

d-1
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~nE;/6. Thus we can tighten the bound tB;-E, scaled down by at least a factor ©f$) for an allowed error
<O(8/n). of O(6). Repeatedly approximating approximate Hamilto-

Before we conclude this section, we should briefly notenians thus results in an energy gap of at mogs-). This
another line of attack due fd.0]. Generalizing beyond the would hold true for any schemes.

GHZ-type states, states corresponding to nondegenerate We may now look at the specific scheme based4jin
quantum error correction codé@ECC3 also turn out to be  The authors develop a framework of perturbation theory that
interesting for the study of local Hamiltonians. These aregives sufficient conditions for how one Hamiltonian can ap-
states with the property that, for some constanisually  proximate another. The basic idea they consider is as fol-
much smaller tham, any Pauli matrix operators acting non- lows. A 3-local HamiltonianH; can be represented as a
trivially on up to t qubits will take the state to a set of 2-local Hamiltonian restricted to a certain subspace, the in-
orthogonal states. Therefore, for a QECC stade if the  tuition being that when the interaction involves more bodies,
operatorH—-El is t-local, (H-El)|x) will be a sum of or- we have finer restrictions on the eigenspaces. Let this 2-local
thogonal states, implying thitH —E1)|x)|| cannot be close to  Hamiltonian beV, and the subspace I& If we add another
zero. This prevents any QECC states from being even clos2-local HamiltonianH,, such thatH, is zero on S and large
to any eigenstate of &local Hamiltonian. Recasting this everywhere else, it is not difficult to see that the lower spec-
result in our language, we see that there does not exist @um of H,=H,+V, is close to that oHs, asH, gives pen-
k-local approximation to arbitraryn-local Hamiltonians ity to states outside of S and restriststo S.
UHoU" for sufficiently largen without ancilla qubits be- With this intuition, the next tool we need is a good mea-
fjr%siigﬁi%czsségteéfce?gnaclzg ?Elg]e)nevr\?:ﬁdaifgﬁl':nélzb?équa&]re of the lower spectrum dfl,. This is provided by the

. ' : . ' self-energy>_(z) (analogous to the sum of one-particle-
however, cancellation can occur fgi —EI)|x)|a) if |a) is not ireducible diagrams in field theordefined as foll First
a QECC state. We obtain instead a set of constraint equations i Y o~ v ned as ToIows. s
that the approximation Hamiltonian has to satisfy in order toVe define the Green's functio@(z) of H, as
produce QECC states as an eigenstate. - -

We hope that the discussion above would be useful for G(2) = (zI-Hy™. (13
further research on not only the possibility of local approxi- i
mation, but also the connection between local properties oOW We defineX_(z) by
Hamiltonians and polynomial-sized quantum circuits. ~
G_(29=[zI.-2(2]™, (14)
V. A LOCAL APPROXIMATION USING THE

THREE-QUBIT GADGET whereG__(z) is G(z) restricted to the lower spectrum bk,

_ . _ ~ (not H,). With this definition,[4] proved that(Theorem 4,
After an abstract discussion of possible local approximai emma 9 if

tions, we will now look explicitly at how an approximation

scheme can be used in an adiabatic algorithm. We will use as [2(2) =Hetll < 6 (15
an example the 3- to 2-local reduction introduced [BY,
referred to as the three-qubit gadget from now on. for some operatoH.ss, then both the lower eigenvalues and

Let us begin with some general considerations. In order tehe ground states cﬁiz will be O() close toHg¢r. From this
directly map a quantum circuit to an adiabatic algorithm gat&esult, we would have a good approximation Foyif there is
by gate with some apprOXimation every time, we would neeqin Heff that is manifest]y the same a$3 on the Computa_
L approximations wheré is the depth of the circuit. To tjonal qubits in the energy range we are interested in.
achieve an error withiD(e) for the final state, including the For any 3-local ternH,, Kempeet al. propose arH, on
error due to adiabatic approximation discussed in Sec. lll, wencilla qubits and &/, coupling the computational qubits
can estimate the required accuracy at each step as the followith ancilla qubits, such that when we calculaie, the
ing. Consider the worst-case scenario, when all the errorghove equation is satisfied. This construction is called a
accumulated are in the same direction. We first express th@ree-qubit gadget. To apply this to our adiabatic algorithm,
angle between the correct final state and the approximaige note from Sec. Il that for each 2-qubit quantum gate we
final state a®=0(v¢) for small 6. The average angle accu- add to the Hamiltonian, am-local Hamiltonian can become
mulated at each step /L because the unitary gates pre- at most(m+1)-local. This means if we start with a 1- or
serve angles. The allowed error at each step is therefore d-Jocal Hamiltonian and apply the three-qubit gadget at ev-
—cos(0/L)=0(e/L?). Hence as long as the energy gap sizeery step, we should arrive at a 2-local Hamiltonian at the
scales polynomially with this allowed error, the adiabatic al-end. Let us write out the terms explicitly.
gorithm is efficient. We will see one such example in Sec. To begin with, the following Hamiltonian on the ancilla

VI. qubits (playing the role ofH, above is added:
At every step, however, if we repeatedly apply the same
approximation procedure on the approximate Hamiltonian 3
from the previous step, the energy gap size would generallylanc=~ TE 21e (Oim10im2 + Oim1ima  Ofma0ims = 31).
not scale polynomially with the allowed error. This is be- =L m
cause, as observed in Sec. IV, the energy gap will have to be (16)
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Terms likeo?,,; are Pauli matrices on ancilla qubits iden- ~ Since theB’s are semipositive definite, the lowest eigen-
tified by three indicest corresponds to the time step which value is achieved whemr},, ® o7, ® o5 is replaced by 1
runs from 1 tol; the meaning of the second and third indices[i.e., the ancilla qubits are /000 +[111)/2; H,, has
will become clear shortlys would become the error of the restricted the ancilla qubits to be in the subspace spanned by
2-local approximation; a smalles would correspond to a |000) and|111)], and we effectively recover(s). We can see
better approximated spectrum and ground state. Next wghat the purpose of those,,,... terms is to enforce the prod-
give a stepwise approximation, such that given a 2-localict relation among théBiy;, Bimz, Bima}- Notice that the first
HamiltonianH'™" at the beginning of each time stépee  excited state is also the same ad/iis) because th terms
Sec. 1), we find a 2-local perturbatiod’(s) to approximate  are positive definite, so if the ancilla qubits are (j600)

. _ i + i . —
the possibly 3-locaV(s)(=UH""YU/=H""Y) when U is  _|111))/\2, the increase in energy will be more than that of
applied. To do this, we first write E¢5) in the following  he excited states due to the computational qubits.
form: Under what condition will this procedure be inefficient?

Note that in Eq.(18), the originalB;,,; terms are multiplied

I I . . . .
~ ™ - by 672. The local reduction requires the approximating terms
V(s) = Ui<~°«)(2 hJ(I)) UiT(Si) - E hj(l) to be very large compared to other terms in the Hamiltonian.
' ' If reduction is later applied repeatedly to terms coupling to
=Y, - 6>, Bim1Bim2Bima (17) ancilla qubits from the previous steps, the energy level re-
m quired for the reduction scales exponentially. When we nor-

malize the total energy to unity, this equivalently means the
whereY; is 2-local and thé8’s are positive semidefinite com- gap between the ground state and the first excited state
muting operators acting on three different qubits. This deshrinks exponentially. Such repeated approximation could be
composition is always possible because the Pauli matrixiseful when we need to implement a shallow circuit with the
product c®® o ® o forms a basis for 3-local matrices. If noise-resistant properties of the adiabatic computation model
the coefficient of a term is positive, we can rewrite the basisand the restriction of 2-local interaction. For example, in
term as(l+0%) ® (1+0P)® (L+07)+2-local terms; if it is  conjunction with teleportation circuits, the repeated approxi-
negative, we can rewrite it as(t-c%) ® (1+0f) ® (1+5?) mation may not be necessary as we can teleport many inde-
+2-local terms. This way we arrive at the form of Ed7), pendently and adiabatically prepared unitary operations. For
and we can see that is the number of such product terms in a generally efficient mapping, we would need either a proce-
the decomposition. Note that while this decomposition maydure that directly reduces amlocal Hamiltonian to a 2-local
not be obvious in practice, it is a constructive procedure thaapproximation, subjected to the constraints described in Sec.
can be done with a classical computer program. Now we calV, or some kind of adaptive mapping that exploit structures

constructV'(s): of specific circuits.
In the next section, we will see how similar repeated use
V/(s) =Y + s YB2. + B2, + B2 of the three-qubit gadget can give rise to an efficient adia-
(8)=Y %{ (Bira* Bng + Bi) batic algorithm once we relax the model.

= 5 4Bimy ® Oy * Bim2 ® 0o+ Bima © 0lf)}
(18) VI. GENERALIZED ADIABATIC ALGORITHMS AND
HOLONOMIC QUANTUM COMPUTING

where the Pauli matrices in the last sum act on the ancilla

qubits. Each term in the sum involving three ancillae is a As mentioned in the Introduc_:tlon_, if we are willing to
three-qubit gadget. In summary, our total Hamiltonian isrelax the property that the Hamiltonian keeps track exactly

, . . . what the correct state is, we will have more freedom to de-
:""“C:ZET?);EN fs')’ ar??. the etrro&nﬁt)roduced in this 2-local sign the Hamiltonian. Going back to the construction in Sec.
pproximation at €ach time step ' _ I, it is clear that we need different Hamiltonians for theame
—VTO- chec; thatE(_fsansfles Eq.(15), put Hp=Hane Va2 guantum gate at different stages of the computation. Yet we
=V'(s), and expanc._ as know that the unitary transformation due to the application
_ -1 - of a time-dependent Hamiltonian over a period of tire,
2=Vt (27 A)TVL Ve + (22 A)VL VLV, =Texdif{H(t)dt] is independent of the state, so why do we
+(z=A) 3V, VL VLVt need different Hamiltonians for different stages? The reason
is that we have so far ignored the phases of the transforma-
whereA is the gap oH, andV,_ denotes the part of, that  tion due to the adiabatic evolution. The phases include both
couples the lower spectrum to the upper spectrum, etc. Weynamical and geometric components:
can obtain, after some algebra,

T
M W(T) = —f E,(t)dt 'nT) 20
2—(2) = Yi ® Ianc_ 62 BimlBimZBim3 ® (O{ml ® O{mZ ® a{m?:) d) ( ) ex% | 0 ( ) o ( ) ( )
m=1
+0(9). (19)  where
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T d tion. We have thus arrived at the holonomic quantum com-
YlT) = if <n,t|a|n,t>dt (21)  putation mode[7].

0 In order to have a nontrivial control manifold, we can use
is the geometric phaand E,(t), [n,t) are the eigenvalues dubits with stateg0) and|1) as the usual qubit states af®l
and eigenvectors of(t). Therefore, if we naively apply for control, or we can add ancilla qubits. In general, identi-
U(t)HaU'(t) to a statdy) without making sure thdi) is an  f¥ing the manifold that has the right holonomy group and
eigenstate oH,, relative phases can develop between thef'nfj'”g the path for eac_:h two-qubit transfo_rmatlon in the cir-
eigenstates superposed to fof. It is not difficult to can- ~ Cuit model is very difficult. Recently, Tanimuret al. [14]
cel out the relative dynamical phases—all we need to do is t§&ttled the mathematical question of finding a shortest path
apply -H, for the same period of timéor modulo 27). For ~ 9iven an arbitrary holonomy group element in a homoge-
the geometric phases, they are often ignored in an open-pafffeus bundle, which implies that with the addition of just
evolution since they can be gauged away by choosing a dif?n€ ancilla qubit, we can implement any two-qubit transfor-
ferent set of basis. However, the moment we decompgse mation in the space of computational states. Let us conslder
into eigenstates ofl(0), the gauge is fixed; if we choose a th€ implementation of &NOT gate as an example of this
different set of basis at some other time, we would not obtaif€SUlt: Take the Hamiltonian on the ancilla qubit to be
Uly) at the end. Therefore the open-path geometric phase E, O
must be taken into account and cancelled accordingly. This H0:< 0 E )
gives rise to the following partially adiabatic algorithm. 1

To apply two-qubit gatéJ from a circuit, We can write the time-dependent Hamiltonian, including
(1) pick a SITD'& 1-local H?mlltomahio, [Hol <1; the two qubits to be transformed, as
(2) apply thes[1+U(t)HU(t)'] at any rate fromi=0to T; ~ _
U(0)=I andU(T)=U: H() = E;e™VyVie ™+ Ege™Vovie™, te[0,1],
(3) calculateG such thatG|n)=y,|n); (22

(4) apply 3(1-Ho+2G/T) for time T.

This algorithm, of course, does not enjoy property Il for
all time because of step 4. But if we make good use of the I4 0
transformation due to the geometric phase, such that, for ex- Vo= 0 » V1T
ample,€®U(T)=U [which is nontrivial to solve sinc& de-
pends on the patb(t)], the G term can be dropped from step !4 denotes the & 4 identity matrix. We start by preparing the
4, and the cancellation can be greatly simplified—in fact theanCilla qubit in the ground stati,. To implement acNOT
cancellation would be the same whatever gate we want tgate optimally[14] found X to be:
implement. A B

This is also reminisicent of the geometric quantum com- X:( T )
putation mode[9], which uses the Abelian geometric phase -B 0
to implement each gate and requires the cancellation of dyyhereA andB are
namical phases. The difference is that our algorithm uses an
open path and thus involves nongeometric components.

Next let us consider how we can avoid having to cancel _
the phases. This is only possible if any state we want to ~ A=im -1
apply the quantum gate on is an eigenstate pfBut Sec. IV
tells us this state cannot be a unique eigenstate withigut 000 1

becomingn-local in ggneral, so we will have to deal with  \ve can see that the Hamiltonian only acts on the two
degenerate states. Without any knowledge about the state, wgmpytational qubits and the one ancilla qubit, so other com-
would have to make all 2n-qubit states degenerate—but ,,tational qubits are not affected at all. To do the same com-
this means thaﬂo acts tpwally on all qubits. The_ dilemma is putation using 2-local Hamiltonians, we can now apply the
solved by adding ancilla qubits—we can arrive at a Nonyhree-qubit gadgets di4] described earlier. At the end of
t_r|V|aI U(t)H_OU(t)T if U(t) couplgs betwepn the c;omputa— each cycle, unlike the case in Sec. V, the ancilla qubits for
tional qubits and the ancilla qubits. Notice that the reduction can be discarded and reused in the next step.
U(0)HoU(0)'=U(T)H,oU(T) since both are trivial on compu- The total number of ancilla qubits required is three times the
tational qubits, so the Hamiltonian goes through a cycle. Allhumber of terms if2,,B;y1BimoBimz Of E. (17), which is a
the relative phases are accumulated between states corgnstant. Following the same analysis, if we want the final
sponding to the ancilla qubits and do not affect our calculastate to be accurate up @(e), the allowed error at each step
should beO(e/L?) wherel is the depth of the circuit. The

IThis is not a closed path and thus is not gauge invariant, a§N€rgy gap required is th@(€*/L%) and the running time is
pointed out in[13]. We will nonetheless keep the terminology. To O(L*?/€%). Note that this bound may be far from tight, and it
readers unfamiliar with Berry’s phase, the word “gauge” here referds quite possible that most circuits can be implemented in far
to the U1) degree of freedom associated with a normalized eigenshorter time. In any case, we have arrived at a fully adiabatic
vector in the Hilbert space. evolution that computes efficiently any problem solvable by

whereVy,V, are 8<4 matrices:

s

0
0

o O o N
o o N O
B O O
B O O
5
o O o
o O o
o O o
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quantum circuit using only 2-local Hamiltonians and a con-
stant number of ancilla qubits.

VII. CONNECTION TO THE HISTORY APPROACH

Comparing the above running time estimate to the results

PHYSICAL REVIEW A71, 062314(2005

let us make the connection more explicit. Define the time-
dependent Hamiltonian

H = [P & [0X0F + QI @ |1)af*~ RU & 10

-R(HUT ® [0)(1]] (30)

in [3,4], which we will refer to as the history approach, it

appears that the latter still seems superior even though guch thatP=R=0, Q=2 givesHj,; and P=Q=R=1 gives
produces the entire history of the computation instead oHrina- It i €asy to see that

only the final output[This just means one has to repeat the
processO(L) times to get the final output or put in identity
gates] It is natural to ask what is special about this approach
and how it is related to the models we have studied. For a
circuit of n qubits andL gates, the history approach has theis a ground state as long #Q=R? and Pa=Rg. Suppose
following final state: we have completed the original evolution and obtained
|inary (a, B=1), but decided to keep going. We can slowly
change fromP=Q=R=1 to P=2, Q=R=0 while maintain-
ing PQ=R? (this helps to keep a large gamnd we would

. . . arrive atU|0)® |1)¢ («=0,8=1). This is essentially a holo-
where|1/0-)¢ denotes the state afancilla qubits serving as  nomic cycle if we adiabatically rotate the clock qubit back to
a clock. We refer the readers 8] for the general form of |gc | practice we can just relabel the clock qubit if we want
the 3-local Hamiltonian which has the above state as it$g o this repeatedly.

unique ground state. Let us just look at the simplest Thjs gives rise to the interpretation that the history ap-
example—a circuit with one two-qubit gateandn compu-  proach is in fact half of a holonomic cycle. The cycle we
tational qubits. The initial and final states are have just shown is very similar to ttenoT example in Sec.
VI, as it requires a 3-local Hamiltonian, which too can be

|i4()) = {normalization «(t)|0) ® |0)°+ B(t)U|0) ® |1)]
(31

L

1
|¢final> = /=E UUp_y - |0> ® |:|.IOI‘_I>C

(23
VL+ 1=

— Cc
[t =10 @ 10)°, 29 reduced by the three-qubit gadget, and one ancilla qubit; it is
1 merely a different path in the control manifold. Repeated
|iina = —=(|0) ® [0)¢ + U|0) ® |1)°), (25)  application of the gadget allows efficient universal quantum
V2 computing, as described in Sec. VI.

We can take this further and interpret the history approach
for L quantum gates as part of a holonomic cycle with a
control manifold augmented with the spacelo&ncilla qu-

where one ancilla qubit suffices for the clock. The corre-
sponding Hamiltonians are

Hini = |1)(1]C, (26) bits. For the 3-local Hamiltonian case, this is not difficult to
see. Suppose we have starting Hamiltontdn and final
1 HamiltonianH;, such that linear adiabatic evolution takes the
Hou= E(l ® 00|+ 1 ® |1)(1|°- U ® |1)(0|° starting state
-UT® |0)1]%). (27) % =10) ® |0)° (32
Actually we have deliberately omitted a term to
2, 1D eoxoe L
that would make;,) the unique ground state éf;,;. This Y=—— > U UglO) ® [i)® (33
does not change our analysis as long as we prepare the state VL + Li=o,...L

in [¢n;) at the beginning. 1h3] this is theH;,, term, which S _

does not affect the evolution equation because it remainghere Up=1 and we have simplified the notation for the

zero for all time. Aharonovet al. show—for this case, Cclock. These Hamiltonians can be constructed according to

trivially—that slowly interpolating fromH;, to Hy,y takes — [3], except we omit the terrhl;,p,=2i1)(1]; ® [0)(0|° so that

[hini) 1O |inay- Notice that the Hamiltonians are highly de- we preserve the gauge freedom mentioned above. This does

generate in the sense that if we replagg) and|¢q.) by  not affect the adiabatic evolution because the Hamiltonian
does not couple between the degenerate spaces. Now we can

) = VI0) ® |0)°, (28)  similarly construct another pair of Hamiltoniakt and H;
corresponding to a reverse circui,U_,,... such that it
, 1 takes
|Whina) = "_E(V|O> ®[0)°+UV[0) ® [1)9) (29
v

. o Y =UL---Ug0) ® |0)° (34)
for someU(n) unitary operatolV, the same analysis will go

through. This gauge freedom is already reminiscent of HQCto
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. 1 - ties of such Hamiltonians, namely, those of the fddid U’
= a1 2 Ui+ Ugo) @ fi)e. (35 whereH, is a simple Hamiltonian ant) is a polynomial-
v =0,k sized circuit. If it isn-local, in what sense is it simpler than
Simple inspection shows that; and ¢; are the same up to the most general Hamiltonian? Are there things about a cir-
relabeling of clock qubits. Therefore, if we implement the cuit that we can learn through this corresponding Hamil-
evolution H; — H(H{) —H/ up to relabeled clocks, we can tonian?(2) We discussed in Sec. IV various constraints on
take approximatingUH,U™ with k-local terms. The general pic-
ture is still unclear; it would be useful to understand pre-
% =10) ®|0)° (36)  cisely under what condition an-local Hamiltonian can be
approximated by a 2-local oné3) We have proposed one
partially adiabatic algorithm in Sec. VI and we have sug-
i =UL -+ Ugl0) ® |0)° (37)  gested that the adiabatic construction in Sec. V could be

. ) useful as a small section of a larger algorithm. It is interest-
and thus complete a holonomic implementation of the 4 5 jnvestigate what merits, if any, these partially adiabatic
gates. This opens up the poss_|b|_llty of further optimizing thealgorithms posses$4) For HQC, there should be room for
path; a more complete analysis is left for the future. improvement. If we implement one two-qubit gate at a time,

it is important to see how the use of three-qubit gadget can
VIIl. DISCUSSION be optimized and how a tighter bound on the evolution time
can be obtained. At the same time, the history approach dis-

co%ve tr::'\gi I;)r?(lj(es? ?e\(/jatrrzoeqrsr;(;rom?cgfrsdIa?e?ggn?:izturg |ussed in Sec. VIl may lead to a further class of HQC meth-
putatl udi ! u qui Weds that implement many gates together efficientdy. In

as possible approximations. One issue we have not addressg er to build an efficient computation model using only

at all is what noise-resistant properties different models can o o1 Hamiltonian and adiabatic evolution, we have been

have. It would appear that the direct, nonholonomic ap'naturally led to the use of non-Abelian geometric phase. The

. aces songer condiions on e sates, ke of hlonomy, hwever,may nt b the onl optio, For
y d 9 9y, 9 ample, open-path non-Abelian geometric phgkig can

states in the holonomic approach have no protection againﬁ nontrivial as well and may lead to further ways of imple-

transition within the degenerate level. This generalizatio%enting multiple qubit gates. These questions are beyond the

may, however, be simplistic; a better analysis should be Wm%cope of this paper, and we believe that adiabatic quantum
respect to particular experimental implementations. We sim- '

ply hope that this paper has provided a more unifying picturecompuung remains an exciting area to explore.
of adiabatic algorithms that will eventually lead to a toolbox
experimentalists can refer to for different specific applica-
tions. M.S. would like to thank Julia Kempe, Geordie Rose,
There are at least a few directions for further studigs. Yaoyun Shi, and Colin Williams for valuable discussions and
In Sec. Il we constructed an adiabatic equivalent of any arerucial correspondence at various stages of the preparation of

bitrary circuit. What remain unclear are the general properthis work.

to
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