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This paper explores several aspects of the adiabatic quantum-computation model. We first show a way that
directly maps any arbitrary circuit in the standard quantum-computing model to an adiabatic algorithm of the
same depth. Specifically, we look for a smooth time-dependent Hamiltonian whose unique ground state slowly
changes from the initial state of the circuit to its final state. Since this construction requires in general an
n-local Hamiltonian, we will study whether approximation is possible using previous results on ground-state
entanglement and perturbation theory. Finally we will point out how the adiabatic model can be relaxed in
various ways to allow for 2-local partially adiabatic algorithms as well as 2-local holonomic quantum
algorithms.
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I. INTRODUCTION

Adiabatic evolution as a quantum computation model has
attracted much attention since its introduction by Farhiet al.
f1g. The basic idea is the following. Start with a Hamiltonian
whose ground state is easily reachable and prepare our state
in the ground state. Change it slowly to a new Hamiltonian
that encodes the solution of the problem and maintain a large
energy gap between the ground state and the excited state
that the evolving state couples to. The adiabatic theoremf2g
then guarantees that the resulted state will be very close to
the ground state of the new Hamiltonian. The original form
of the Hamiltonian considered inf1g is a straight-line inter-
polation:Hssd=s1−sdHinitial +sHfinal. Recently, it was proved
that any standard quantum circuit, specified by a sequence of
unitary operators, can be implemented as an adiabatic evolu-
tion of this form f3,4g. The authors use computational com-
plexity techniques developed for proving the QMA-
completeness of thek-local Hamiltonian problemsKempeet
al. f4g achieved the case fork=2d; the evolving state encodes
the entire computational history. Roughly speaking, they
construct a Hamiltonian whose ground state is the superpo-
sition of all the stages in a given circuit. If the circuit has
depth L, the time required to obtain this ground state is
Os1/L6d for the 3-local Hamiltonian and there is anOs1/Ld
probability of obtaining the final state of the circuit given
this superposition. On a seemingly unrelated note, Farhiet
al. f5g showed afterf1g that if we do not restrict adiabatic
evolution to the straight-line path and add terms that vanish
at the end points, we may be able to turn an inefficient com-
putation into an efficient one. A general method for finding
an efficient path is, however, not known. In light of these two
developments, we may ask—can we always find an efficient
adiabatic evolution path, not necessarily of the straight-line
form, for problems efficiently solvable by quantum circuits
such that we directly obtain the desired final state? Starting
with this question, we will present several variations on how
to implement the standard circuit model by adiabatic evolu-
tion.

The first result we show is that once we specifysad the
unitary transformation that takes the eigenstates at the begin-
ning to those at the end of the evolution, andsbd how we
want the eigenvalues to evolve, we can immediately derive
the form of time-dependent Hamiltonian required without the
use of any ancilla qubits. Conceptually the simplest example
is a time-dependent similarity transformUstdHinitialUstd†.
This observation should allow us to engineer Hamiltonians
according to computational needs. However, a Hamiltonian
of the type . . .U2U1HinitialU1

†U2
†. . . can be highly nonlocal

even if U1,U2. . . andHinitial have simple local forms. Since
we are interested in the ground state, we should ask whether
it is possible to find a local approximation.

It turns out that while approximations are possible to a
certain extent, there is much constraint. We will demonstrate
this point in two steps. First we will make use of the results
by Haselgroveet al. f6g, which show how the entanglement
of the eigenstates of a Hamiltonian is related to what bodies
in the system each term in the Hamiltonian acts on nontrivi-
ally. Intuitively speaking, if an eigenstate shows strong cor-
relation between bodies which the Hamiltonian does not di-
rectly couple, i.e., act nontrivially on all as a tensor product,
the Hamiltonian cannot distinguish very well between such a
state and other similarly entangled states that are orthogonal
to it. This results in a small energy gap. Since a quantum
circuit can generate highly correlated states, when we want
to make them ground states of a Hamiltonian in an adiabatic
algorithm, they will be difficult to approximate. Then, as an
explicit example, we will use the approximation method de-
veloped inf4g, derived from perturbation theory, and apply it
on our construction. We will see that we could indeed make
a local approximation under the constraint implied byf6g,
but the resulting evolution can be inefficient.

Next we look at how this approach of transforming the
Hamiltonian adiabatically is related to the manipulation of
geometric phase. We start by asking, given that local ap-
proximation is difficult, why the adiabatic model is more
demanding than the basic circuit model, for which 2-local
Hamiltonians easily suffice withU=expsiH2-localtd for each
gate. There are at least two crucial differences between the
two models.*Electronic address: msiu@stanford.edu
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sId The adiabatic model keeps track of exactly where the
state is at every moment throughout the evolution and penal-
izes any deviation, while the circuit model keeps no infor-
mation about the state at all. This makes the former more
resistant to error.

sII d The adiabatic model allows time variability in the
application of the Hamiltonian, while the basic circuit model
requires precise pulse timing.

The word “adiabatic” itself only suggests property II
above, so if we are willing to relax property I, we will have
much more freedom to design our Hamiltonian. The main
issue we need to deal with, as we will show, is the geometric
phase. Suppose we implement the Hamiltonian
UssdHinitialUssd† without making sure that we start with the
ground state or any eigenstate of the initial Hamiltonian. In-
stead of havingUssd applied on our initial state, there will be
further transformation due to the relative phases accumulated
between different eigenstates. The dynamical component of
the phase is straightforward to cancel out, but the geometric
component is more subtle to calculate. To avoid having to
cancel the geometric component, we may either make sure
we always start with an eigenstate of the Hamiltonian, or
take advantage of the geometric phase to implement the de-
sired transformation. This would naturally lead us to the ho-
lonomic quantum computing model developed by Zanardiet
al. f7g, which in fact precedes the adiabatic algorithm off5g.

Let us give a lightning review of the idea of holonomic
quantum computingsHQCd. Wilzcek and Zee introduced in
f8g the observation that if a Hamiltonian with degenerate
eigenstates goes through a cycle adiabatically without chang-
ing the degeneracy of each level, the degenerate subspace
can be viewed as a gauge group on the manifold correspond-
ing to the parameter space of the Hamiltonian. After each
cyclic evolution, an arbitrary state in the degenerate space
will undergo an unitary transformation depending on the path
taken; the set of all possible such unitary transformations
given a parameter space that specifies the Hamiltonian is
called the holonomy group, and the parameter space is often
called the control manifold. Elements of the group generally
do not commute, so the transformation is called the non-
Abelian geometric phase. Zanardiet al. f7g applied this idea
on quantum computing by choosing initial Hamiltonians for
which the computational states are completely degenerate.
Transformations are then applied by holonomy. In addition to
time variability, the geometric naturessuch as dependency on
the area of the loopd also gives HQC some resistance to
errors.

Seeing HQC as a generalized adiabatic model brings us
many additional insights. First, we can apply the local ap-
proximation techniques off4g to show that 2-local Hamilto-
nians are sufficient to implement HQC. Furthermore, we
show that the construction off3g, etc., originally developed
for computational complexity proofs, has a hidden gauge
freedom and can be viewed as half a holonomic cycle. This
view allows us to improve the adiabatic implementation so
that we obtain only the desired final state instead of the com-
putational history.

This paper is organized as follows. In Sec. II, we give the
direct way to construct an adiabatic equivalent of any circuit
without encoding the computational history. It makes use of

only the same number of qubits as in the circuit and a run-
ning time of the same order as the depth of the circuit, as
shown in Sec. III. This in general involvesn-local Hamilto-
nians, and Sec. IV discusses why this can be difficult to
approximate by studying entanglement properties of the
ground state of Hamiltonians. In Sec. V we show one way to
construct a 2-local Hamiltonian whose worst-case run time
scales exponentially withn, illustrating a tradeoff between
resource requirement and running time. In Sec. VI, we look
at how 2-local constructions can be useful for generalized
adiabatic algorithms and how computation models that use
Abelian and non-Abelian geometric phasesf7,9g fall into this
category. Finally, we return in Sec. VII to the computational
history approach off3g and note its interesting connection to
holonomic quantum computing.

II. A DIRECT MAPPING

We adopt a general definition of adiabatic computation
and look for a time-dependent, differentiable Hamiltonian
Hssd, where 0,s,1 is the time parameter, such thatHs0d is
an initial Hamiltonian with a unique, easily reachable ground
state andHs1d is a Hamiltonian with a unique ground state
encoding the solution of our problem. A quantum circuit can
be given in the formucl=UlUl−1. . .U1u0l, whereUi are uni-
tary operators representing one or two qubit gates. To map
this transformation into adiabatic evolution, we start with a
HamiltonianHs0d, whose ground state isu0l, and we would
like to haveHssd such thatucl is the ground state ofHs1d.
The most common problem in constructing such anHssd is
that the energy gap between the ground state and the first
excited state varies during the evolution. A small gap implies
a larger probability for the ground state to be excited, and in
turn a longer evolution time if we want to compensate for it.

Our main observation is that it is possible to maintain a
constant gap size as long as we keep the HamiltonianHssd to
be of the formUssdHs0dU†ssd. Let us be more specific. Sup-
pose the circuit requires us to perform unitary gateU on state

u0l. Let K=−i log U and Ũssd=expsisKd, such thatŨs0d=1

and Ũs1d=U. We start with a HamiltonianH with u0l as its
ground state:

Hunl = Enunl. s1d

We can addVssd such that the following is true:

fH + VssdgŨssdunl = fsn,sdŨssdunl s2d

if

VssdŨssdunl = fŨssd,Hgunl + ffsn,sd − EngŨssdunl. s3d

This completely specifiesVssd, and if fsn,sd=En, Vssd is just,

in the original scomputationald basis,ŨssdHŨssd†−H. It is
clear that ass goes to 1 slowly, we obtainUu0l as our ground
state without worrying about a shrinking gap. Note that
fsn,sd allows us to manipulate the gap size.

Using the idea above, we can now spell out the explicit
mapping. GivenU1, . . . ,Ul, we first replace the overall time
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parameters by a series of time step parameterssi for i
=1, . . . ,l, si , f0,1g. This means that

Hssd = S p
i=l,. . .,1

ŨssidDHs0dS p
i=1,. . .,l

Ũ†ssidD . s4d

Let the Hamiltonian at the beginning of theith time step
beHsi−1d=o jhj

sid=o j
ihj

sid+o j
'hj

sid wherehj
sid denotes individual

local Hamiltonians.oi and o' refer, respectively, to terms
whose qubits overlap with those ofUi and terms that act on
different qubits. In this notation, we can writeVssid as

Vssid = ŨissidSo
j

i

hj
sidDŨi

†ssid − o
j

i

hj
sid. s5d

For illustrative purposes, let us consider a typical term,
whereUi is the controlled-Z gate swhich with single-qubit
gates is universald acting on the first two qubits, andhj

sid acts
on the second qubit as well as some other qubits. The matrix
representation ofhj

sid andUi for the first two qubits looks like

hj
sid =1

h1 h2

h3 h4

h1 h2

h3 h4

2, Ui =1
1

1

1

− 1
2 .

Then Ũissidhj
sidŨi

†ssid−hj
sid

=1
0

0

0 se−isp−1dh2

seisp−1dh3 0
2 . s6d

Note from this example that ifHsi−1d=ohj
sid is m-local, Vssid

can be at mostsm+1d-local, and this happens when exactly
one qubit of a two-qubit gateUi overlaps with one qubit of
hj

sid. Thus Vssid can be up ton-local wheren is the total
number of qubits. We will study more closely the complexity
and locality of such Hamiltonians in Sec. IV.

Let us look at another specific example using Pauli matri-
cesX, Y, andZ as basis. Suppose for two qubits we start with
the Hamiltonian

H = ZZ− ZI + IZ s7d

where ZI means aZ on the first qubit and identity on the
second qubit, etc. Clearly the ground state isu10l. With that
as our starting point, we can apply a controlled-NOT sCNOTd
gate and see how it turns intou11l. The recipe above tells us
the Hamiltonian we need to add is

Vssd = sinsspdIY + f1 − cossspdgIZ − sinsspdYZ− f1

− cossspdgZZ. s8d

We can see that ass goes to 1, the new Hamiltonian will
becomeH+Vs1d=−ZZ+ZI+ IZ, whose ground state is in-
deedu11l. The IY andYZ terms are zero at the end points, as
the extra terms inf5g are.

III. ERROR BOUNDS

We now check the evolution time required for each step
according to the adiabatic theoremf2g. The result here is
useful for the construction in Secs. V and VI as well. Under
the adiabatic approximation, the evolving state is propor-
tional to the instantaneous eigenstate of the time-dependent
Hamiltonian. Substituting this into Schrödinger’s equation,
this means the time derivative does not take one eigenstate to
another, i.e.,km,siud/dtiu0,sil,0, mÞ0. Thus the correction
to the approximation must be proportional toswe defineKi
=−i log Ui belowd

assid , o
mÞ0

km,siu
d

dti
u0,sil

=
1

T
o
mÞ0

km,siu
dfŨssidHsi−1dŨ†ssidg

sEm − E0ddsi
u0,sil

=
1

T
o
mÞ0

km,siueisiKi
fKi,H

si−1dg
Em − E0

e−isiKiu0,sil

=
1

T
o
mÞ0

km,si = 0u
fKi,H

si−1dg
Em − E0

u0,si = 0l

=
1

T
o
mÞ0

− km,si = 0uKiu0,si = 0l s9d

whereum,sil denotes the instantaneous eigenstate with eigen-
value Em and si = ti /T. Hsi−1d preserves the spectrum of
um,si =0l, so the contribution to the above term is due toKi.
TakingUi to be controlledZ as an example again, the eigen-
values ofKi are 0 andp. assid is therefore bounded byp /T.
The total time required for the step is proportional to the
transition probability to other states, which according tof2g,
is bounded byu"assid / sEm−E0du2 for the smallestEm. Re-
markably, the error is not only independent of the total num-
ber of qubitsn, it is also independent ofsi, which means
further local variation in evolution speed is not required to

achieve optimal timing. Of course,Ũssid=expsisKd is just
one arbitrary choice we make; there may be other forms of

Ũssid that yield better performance or are easier to imple-
ment. We should note that it is possible to eliminate the error
altogether by adding auxillary terms to the Hamiltonian, but
this would only be useful for state preparation as it generally
requires complete knowledge of what we want to generate.

IV. LOCALITY OF THE HAMILTONIAN

In hindsight it should not be surprising that this direct
mapping yields ann-local Hamiltonian. After all, while it is
easy to decompose ann-local unitary operator into a product
of 2-local ones, since two-qubit gates are universal, it is far
more difficult to approximate ann-local operator with a sum
of 2-local operators, even with the addition of ancilla qubits.
This section is devoted to the understanding of this difficulty.

First we review some results by Haselgroveet al. f6g. In
f6g the authors show how the entanglement of the eigenstates
of a Hamiltonian is related to its coupling topology. Intu-
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itively speaking, if an eigenstate shows strong correlation
between bodies that the Hamiltonian does not directly couple
si.e., act nontrivially on all of them as a tensor productd, the
Hamiltonian cannot distinguish very well between such a
state and other similarly entangled states that are orthogonal
to it. This results in a small energy gap. The following theo-
rem from f6g makes this idea concrete and suffices for our
purpose.

Theorem 1. Consider a stateucl and a HamiltonianH
whose eigenvalues and eigenstates areEj and uEjl, respec-
tively, with j =0, . . . ,d−1; d is the dimension of the Hilbert
space anduE0l is the ground state ofH. Let F be the overlap
of ucl with uE0l andEtot be the difference between the maxi-
mum and minimum eigenvalues. Then for all density matri-
ces r with eigenvaluesr1ør2ør3. . ., such that trsrHd
=kcuHucl, the following inequality holds:

o
j=1

d−1

sEj − E0dr j+1 ø s1 − F2dEtot. s10d

The proof is elementary and we will refer the readers to the
lucid explanation inf6g. Now we may apply this theorem on
the construction in Sec.s2d.

Claim 1. Let H0 be a 1-local Hamiltonian with unique
ground stateu0l. There does not exist a generalk-local ap-
proximation for then-local HamiltonianUH0U

†, where k
øn−1 and U is a polynomial-sized circuit, such that the
approximation produces exactly the same ground state and
first excited state. Specifically, one cannot always construct a
k-local Hamiltonian which hasUu0l as a nondegenerate
eigenstate.

Proof. We will start with the case without ancilla qubits.
Consider the stateucl=s1/Î2dsu000. . .l+ u111. . .ld, the
n-qubit Greenberger-Horne-ZeilingersGHZd state. Consider
also ak-local HamiltonianH whose ground stateuE0l= ucl,
so F=1. If we choose

r =
1

2
su000 . . .lk000 . . .u + u111 . . .lk111 . . .ud s11d

where “…” again indicatesn zeros or ones, it is easy to see
that trn−kr=trn−kuclkc for køn−1, where trn−k means tracing
over any n−k qubits. It then follows that forkøn−1,
trsrHd=kcuHucl for a k-local HamiltonianH. Putting this
into the inequality in Theorem 1, we obtainE1−E0=0, mean-
ing that the ground state corresponding toE0 is degenerate.

Now suppose ak-local exact approximation exists.
Choose the n-qubit polynomial-sized circuit U
=sHadamardd1pi=1

i=n−1sCNOTdi,i+1, i.e., a Hadamard gate acts
on the first qubit, followed by a series ofCNOT gates on the
first and second, the second and third, and so on. Clearly, this
circuit acting on the initial stateu000…l producesucl. Sup-
pose we start with a simple 1-local HamiltonianH0 se.g., set
H0=oi=1

n sz
i d which hasu000…l as a nondegenerate ground

state. If there exists a procedure that exactly approximates
UH0U

† with a k-local Hamiltonian,køn−1, this implies
there exists ak-local Hamiltonian which hasucl as a nonde-
generate ground state. Hence we have arrived at a contradic-
tion.

To generalize this to the case with ancilla qubits, a slight
extension of Theorem 1 is needed. Let the ground states of
the k-local approximation beucluajl, whereuajl, j =1, . . . ,m,
enumerates the degeneracies due to the ancilla qubits. This
product form is necessary if we want the computational qu-
bits to remain asucl. Let r8=o j=1

m r ^ uajlkaju /m. SettingE0

=0; it is easy to check that trsr8Hd=o j=1
m trsr ^ uajlkaju /md

=0, which would force the ground-state degeneracy to be
2m. This in turn implies that there must be degenerate
ground states due to states orthogonal toucl, contradicting
the assumption that there is ak-local Hamiltonian with
ucluajl as the only ground states. j

So far we have seen that a local Hamiltonian cannot have
certain states as its ground state, as shown byf6,10g. This is
rather expected as it is well knownf11g that there are quan-
tum states not determined by any reduced density matrices.
The more interesting connection we would like to point out
here, however, is the trade-off between proximity to a non-
local state and the energy gap, as apparent in Theorem 1.
Since the energy gap condition is essential to adiabatic algo-
rithms swhile some forms of adiabatic theorem without the
gap condition exist, they cannot guarantee the final state to
arbitrary accuracyf12gd, this places another direct trade-off
between accuracy and running time. Now that an exact ap-
proximation is not possible, we will look at how close we
can get.

In f4g, a 2-local approximation for 3-local Hamiltonians is
constructedssee Sec. Vd. Normalizing the total energy to
unity, the ground-state energy gap for the 2-local Hamil-
tonian scales asd3 for a ground stateOsdd close to the origi-
nal ground state. In fact we can use Theorem 1 to make this
more precise: If the energy gap scales asd3, the ground state
for the 2-local Hamiltonian has to be at leastOsd3d away
from an original GHZ-type ground state. This proves that
there does not exist an approximation scheme better thanf4g
in such a way that the energy gap scales, say, logarithmically
fi.e.,Os1/ logd−1dg instead of polynomially with the accuracy
Osdd of the ground state.

Following this idea, we can place some bounds on how
good the approximation for ann-local Hamiltonian can be.
For simplicity we will consider a 2-local approximation,
should one exist, that has a unique ground state, ancilla qu-
bits included. Consider the stateufl:

ufl =
1

2
su000l + u111ld ^

1

2
su000l + u111ld ^ ¯ , s12d

which is a tensor product of mostly three-qubit GHZ states.
It is not difficult to see that there are<2n/3 orthogonal states
to it that are not distinguishable by 2-local terms. Thus we
can form a density operator of rank<2n/3 and substitute it
into the inequalitys10d. This tells us that the average energy
of these<2n/3 states has a gap with the ground state that is at
most s1−F2d,Osdd. We can tighten this bound a little by
considering the distribution of states. If we start with the
1-local HamiltonianH0=oi=1

n sz
i sthe minimal form required

for a unique ground stated, UH0U
† has n eigenvaluesEj

= j /n with degeneracyn! / f j !sn− jd!g. Simple counting shows
that for the lowest<2n/3 states, the average energy is at least
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<nE1/6. Thus we can tighten the bound toE1−E0
,Osd /nd.

Before we conclude this section, we should briefly note
another line of attack due tof10g. Generalizing beyond the
GHZ-type states, states corresponding to nondegenerate
quantum error correction codessQECCsd also turn out to be
interesting for the study of local Hamiltonians. These are
states with the property that, for some constantt usually
much smaller thann, any Pauli matrix operators acting non-
trivially on up to t qubits will take the state to a set of
orthogonal states. Therefore, for a QECC stateuxl, if the
operatorH−EI is t-local, sH−EIduxl will be a sum of or-
thogonal states, implying thatisH−EIduxli cannot be close to
zero. This prevents any QECC states from being even close
to any eigenstate of at-local Hamiltonian. Recasting this
result in our language, we see that there does not exist a
k-local approximation to arbitraryn-local Hamiltonians
UH0U

† for sufficiently largen without ancilla qubits, be-
cause QECC states can also be generated efficiently by quan-
tum circuits ssee references inf10gd. With ancilla qubits,
however, cancellation can occur forsH−EIduxlual if ual is not
a QECC state. We obtain instead a set of constraint equations
that the approximation Hamiltonian has to satisfy in order to
produce QECC states as an eigenstate.

We hope that the discussion above would be useful for
further research on not only the possibility of local approxi-
mation, but also the connection between local properties of
Hamiltonians and polynomial-sized quantum circuits.

V. A LOCAL APPROXIMATION USING THE
THREE-QUBIT GADGET

After an abstract discussion of possible local approxima-
tions, we will now look explicitly at how an approximation
scheme can be used in an adiabatic algorithm. We will use as
an example the 3- to 2-local reduction introduced byf4g,
referred to as the three-qubit gadget from now on.

Let us begin with some general considerations. In order to
directly map a quantum circuit to an adiabatic algorithm gate
by gate with some approximation every time, we would need
L approximations whereL is the depth of the circuit. To
achieve an error withinOsed for the final state, including the
error due to adiabatic approximation discussed in Sec. III, we
can estimate the required accuracy at each step as the follow-
ing. Consider the worst-case scenario, when all the errors
accumulated are in the same direction. We first express the
angle between the correct final state and the approximate
final state asu=OsÎed for small u. The average angle accu-
mulated at each step isu /L because the unitary gates pre-
serve angles. The allowed error at each step is therefore 1
−cos2su /Ld=Ose /L2d. Hence as long as the energy gap size
scales polynomially with this allowed error, the adiabatic al-
gorithm is efficient. We will see one such example in Sec.
VI.

At every step, however, if we repeatedly apply the same
approximation procedure on the approximate Hamiltonian
from the previous step, the energy gap size would generally
not scale polynomially with the allowed error. This is be-
cause, as observed in Sec. IV, the energy gap will have to be

scaled down by at least a factor ofOsdd for an allowed error
of Osdd. Repeatedly approximating approximate Hamilto-
nians thus results in an energy gap of at mostOsdLd. This
would hold true for any schemes.

We may now look at the specific scheme based onf4g.
The authors develop a framework of perturbation theory that
gives sufficient conditions for how one Hamiltonian can ap-
proximate another. The basic idea they consider is as fol-
lows. A 3-local HamiltonianH3 can be represented as a
2-local Hamiltonian restricted to a certain subspace, the in-
tuition being that when the interaction involves more bodies,
we have finer restrictions on the eigenspaces. Let this 2-local
Hamiltonian beV2 and the subspace beS. If we add another
2-local HamiltonianH2, such thatH2 is zero on S and large
everywhere else, it is not difficult to see that the lower spec-

trum of H̃2=H2+V2 is close to that ofH3, asH2 gives pen-
alty to states outside of S and restrictsV2 to S.

With this intuition, the next tool we need is a good mea-

sure of the lower spectrum ofH̃2. This is provided by the
self-energyS−szd sanalogous to the sum of one-particle-
irreducible diagrams in field theoryd defined as follows. First

we define the Green’s functionG̃szd of H̃2 as

G̃szd = szI − H̃2d−1. s13d

Now we defineS−szd by

G̃−−szd = fzI− − S−szdg−1, s14d

whereG̃−−szd is G̃szd restricted to the lower spectrum ofH2

snot H̃2d. With this definition,f4g proved thatsTheorem 4,
Lemma 9d if

iS−szd − Heffi ø d s15d

for some operatorHeff, then both the lower eigenvalues and

the ground states ofH̃2 will be Osdd close toHeff. From this
result, we would have a good approximation forH3 if there is
an Heff that is manifestly the same asH3 on the computa-
tional qubits in the energy range we are interested in.

For any 3-local termH3, Kempeet al. propose anH2 on
ancilla qubits and aV2 coupling the computational qubits
with ancilla qubits, such that when we calculateS−, the
above equation is satisfied. This construction is called a
three-qubit gadget. To apply this to our adiabatic algorithm,
we note from Sec. II that for each 2-qubit quantum gate we
add to the Hamiltonian, anm-local Hamiltonian can become
at most sm+1d-local. This means if we start with a 1- or
2-local Hamiltonian and apply the three-qubit gadget at ev-
ery step, we should arrive at a 2-local Hamiltonian at the
end. Let us write out the terms explicitly.

To begin with, the following Hamiltonian on the ancilla
qubits splaying the role ofH2 aboved is added:

Hanc= −
d−3

4 o
i=1

l

o
m

I ^ ssim1
z sim2

z + sim1
z sim3

z + sim2
z sim3

z − 3Id.

s16d
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Terms likesim1
z are Pauli matrices on ancilla qubits iden-

tified by three indices:i corresponds to the time step which
runs from 1 tol; the meaning of the second and third indices
will become clear shortly.d would become the error of the
2-local approximation; a smallerd would correspond to a
better approximated spectrum and ground state. Next we
give a stepwise approximation, such that given a 2-local
Hamiltonian Hsi−1d at the beginning of each time stepssee
Sec. IId, we find a 2-local perturbationV8ssid to approximate
the possibly 3-localVssids=UiH

si−1dUi
†−Hsi−1dd when Ui is

applied. To do this, we first write Eq.s5d in the following
form:

Vssid = ŨissidSo
i

i

hj
sidDŨi

†ssid − o
i

i

hj
sid

= Yi − 6o
m

Bim1Bim2Bim3 s17d

whereYi is 2-local and theB’s are positive semidefinite com-
muting operators acting on three different qubits. This de-
composition is always possible because the Pauli matrix
product sa ^ sb ^ sg forms a basis for 3-local matrices. If
the coefficient of a term is positive, we can rewrite the basis
term ass1+sad ^ s1+sbd ^ s1+sgd+2-local terms; if it is
negative, we can rewrite it as −s1−sad ^ s1+sbd ^ s1+sgd
+2-local terms. This way we arrive at the form of Eq.s17d,
and we can see thatm is the number of such product terms in
the decomposition. Note that while this decomposition may
not be obvious in practice, it is a constructive procedure that
can be done with a classical computer program. Now we can
constructV8ssid:

V8ssid = Yi + o
m

hd−1sBm1
2 + Bm2

2 + Bm3
2 d

− d−2sBim1 ^ sim1
x + Bim2 ^ sim2

x + Bim3 ^ sim3
x dj

s18d

where the Pauli matrices in the last sum act on the ancilla
qubits. Each term in the sum involving three ancillae is a
three-qubit gadget. In summary, our total Hamiltonian is
Hanc+Hs0d+oiV8ssid, and the error introduced in this 2-local
approximation at each time step isOsdd.

To check thatS− satisfies Eq.s15d, put H2=Hanc, V2
=V8ssid, and expandS− as

S−szd = V−− + sz− Dd−1V−+V+− + sz− Dd−2V−+V++V+−

+ sz− Dd−3V−+V++V++V+− + ¯

whereD is the gap ofH2 andV+− denotes the part ofV2 that
couples the lower spectrum to the upper spectrum, etc. We
can obtain, after some algebra,

S−szd = Yi ^ Ianc− 6o
m=1

M

Bim1Bim2Bim3 ^ ssim1
x

^ sim2
x

^ sim3
x d

+ Osdd. s19d

Since theB’s are semipositive definite, the lowest eigen-
value is achieved whensim1

x
^ sim2

x
^ sim3

x is replaced by 1
fi.e., the ancilla qubits are insu000l+ u111ld /Î2; Hanc has
restricted the ancilla qubits to be in the subspace spanned by
u000l andu111lg, and we effectively recoverVssid. We can see
that the purpose of thosesim1¯ terms is to enforce the prod-
uct relation among thehBim1,Bim2,Bim3j. Notice that the first
excited state is also the same as inVssid because theB terms
are positive definite, so if the ancilla qubits are insu000l
− u111ld /Î2, the increase in energy will be more than that of
the excited states due to the computational qubits.

Under what condition will this procedure be inefficient?
Note that in Eq.s18d, the originalBim1 terms are multiplied
by d−2. The local reduction requires the approximating terms
to be very large compared to other terms in the Hamiltonian.
If reduction is later applied repeatedly to terms coupling to
ancilla qubits from the previous steps, the energy level re-
quired for the reduction scales exponentially. When we nor-
malize the total energy to unity, this equivalently means the
gap between the ground state and the first excited state
shrinks exponentially. Such repeated approximation could be
useful when we need to implement a shallow circuit with the
noise-resistant properties of the adiabatic computation model
and the restriction of 2-local interaction. For example, in
conjunction with teleportation circuits, the repeated approxi-
mation may not be necessary as we can teleport many inde-
pendently and adiabatically prepared unitary operations. For
a generally efficient mapping, we would need either a proce-
dure that directly reduces ann-local Hamiltonian to a 2-local
approximation, subjected to the constraints described in Sec.
IV, or some kind of adaptive mapping that exploit structures
of specific circuits.

In the next section, we will see how similar repeated use
of the three-qubit gadget can give rise to an efficient adia-
batic algorithm once we relax the model.

VI. GENERALIZED ADIABATIC ALGORITHMS AND
HOLONOMIC QUANTUM COMPUTING

As mentioned in the Introduction, if we are willing to
relax the property that the Hamiltonian keeps track exactly
what the correct state is, we will have more freedom to de-
sign the Hamiltonian. Going back to the construction in Sec.
I, it is clear that we need different Hamiltonians for thesame
quantum gate at different stages of the computation. Yet we
know that the unitary transformation due to the application
of a time-dependent Hamiltonian over a period of time,U
=T expfie0

THstddtg is independent of the state, so why do we
need different Hamiltonians for different stages? The reason
is that we have so far ignored the phases of the transforma-
tion due to the adiabatic evolution. The phases include both
dynamical and geometric components:

fnsTd = expS− iE
0

T

Enstddt + ignsTdD s20d

where
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gnsTd = iE
0

T

kn,tu
d

dt
un,tldt s21d

is the geometric phase1 and Enstd, un,tl are the eigenvalues
and eigenvectors ofHstd. Therefore, if we naively apply
UstdH0U

†std to a stateucl without making sure thatucl is an
eigenstate ofH0, relative phases can develop between the
eigenstates superposed to formucl. It is not difficult to can-
cel out the relative dynamical phases—all we need to do is to
apply −H0 for the same period of timesor modulo 2pd. For
the geometric phases, they are often ignored in an open-path
evolution since they can be gauged away by choosing a dif-
ferent set of basis. However, the moment we decomposeucl
into eigenstates ofHs0d, the gauge is fixed; if we choose a
different set of basis at some other time, we would not obtain
Uucl at the end. Therefore the open-path geometric phase
must be taken into account and cancelled accordingly. This
gives rise to the following partially adiabatic algorithm.

To apply two-qubit gateU from a circuit,
s1d pick a simple, 1-local HamiltonianH0, iH0iø1;
s2d apply the1

2fI +UstdH0Ustd†g at any rate fromt=0 toT;
Us0d= I andUsTd=U;

s3d calculateG such thatGunl=gnunl;
s4d apply 1

2sI −H0+2G/Td for time T.
This algorithm, of course, does not enjoy property II for

all time because of step 4. But if we make good use of the
transformation due to the geometric phase, such that, for ex-
ample,eiGUsTd=U fwhich is nontrivial to solve sinceG de-
pends on the pathUstdg, theG term can be dropped from step
4, and the cancellation can be greatly simplified—in fact the
cancellation would be the same whatever gate we want to
implement.

This is also reminisicent of the geometric quantum com-
putation modelf9g, which uses the Abelian geometric phase
to implement each gate and requires the cancellation of dy-
namical phases. The difference is that our algorithm uses an
open path and thus involves nongeometric components.

Next let us consider how we can avoid having to cancel
the phases. This is only possible if any state we want to
apply the quantum gate on is an eigenstate ofH0. But Sec. IV
tells us this state cannot be a unique eigenstate withoutH0
becomingn-local in general, so we will have to deal with
degenerate states. Without any knowledge about the state, we
would have to make all 2n n-qubit states degenerate—but
this means thatH0 acts trivially on all qubits. The dilemma is
solved by adding ancilla qubits—we can arrive at a non-
trivial UstdH0Ustd† if Ustd couples between the computa-
tional qubits and the ancilla qubits. Notice that
Us0dH0Us0d†=UsTdH0UsTd since both are trivial on compu-
tational qubits, so the Hamiltonian goes through a cycle. All
the relative phases are accumulated between states corre-
sponding to the ancilla qubits and do not affect our calcula-

tion. We have thus arrived at the holonomic quantum com-
putation modelf7g.

In order to have a nontrivial control manifold, we can use
qubits with statesu0l and u1l as the usual qubit states andu2l
for control, or we can add ancilla qubits. In general, identi-
fying the manifold that has the right holonomy group and
finding the path for each two-qubit transformation in the cir-
cuit model is very difficult. Recently, Tanimuraet al. f14g
settled the mathematical question of finding a shortest path
given an arbitrary holonomy group element in a homoge-
neous bundle, which implies that with the addition of just
one ancilla qubit, we can implement any two-qubit transfor-
mation in the space of computational states. Let us consider
the implementation of aCNOT gate as an example of this
result. Take the Hamiltonian on the ancilla qubit to be

H0 = SE0 0

0 E1
D .

We can write the time-dependent Hamiltonian, including
the two qubits to be transformed, as

Hstd = E1e
tXV1V1

†e−tX + E0e
tXV0V0

†e−tX, t P f0,1g,

s22d

whereV0,V1 are 834 matrices:

V0 = SI4

0
D, V1 = S0

I4
D .

I4 denotes the 434 identity matrix. We start by preparing the
ancilla qubit in the ground stateE0. To implement aCNOT

gate optimally,f14g found X to be:

X = S A B

− B† 0
D

whereA andB are

A = ip1
2 0 0 0

0 2 0 0

0 0 1 1

0 0 1 1
2, B =

ip
Î21

0 0 0 0

0 0 0 0

0 0 0 − 1

0 0 0 1
2 .

We can see that the Hamiltonian only acts on the two
computational qubits and the one ancilla qubit, so other com-
putational qubits are not affected at all. To do the same com-
putation using 2-local Hamiltonians, we can now apply the
three-qubit gadgets off4g described earlier. At the end of
each cycle, unlike the case in Sec. V, the ancilla qubits for
the reduction can be discarded and reused in the next step.
The total number of ancilla qubits required is three times the
number of terms inomBim1Bim2Bim3 of Eq. s17d, which is a
constant. Following the same analysis, if we want the final
state to be accurate up toOsed, the allowed error at each step
should beOse /L2d whereL is the depth of the circuit. The
energy gap required is thusOse3/L6d and the running time is
OsL12/e6d. Note that this bound may be far from tight, and it
is quite possible that most circuits can be implemented in far
shorter time. In any case, we have arrived at a fully adiabatic
evolution that computes efficiently any problem solvable by

1This is not a closed path and thus is not gauge invariant, as
pointed out inf13g. We will nonetheless keep the terminology. To
readers unfamiliar with Berry’s phase, the word “gauge” here refers
to the Us1d degree of freedom associated with a normalized eigen-
vector in the Hilbert space.
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quantum circuit using only 2-local Hamiltonians and a con-
stant number of ancilla qubits.

VII. CONNECTION TO THE HISTORY APPROACH

Comparing the above running time estimate to the results
in f3,4g, which we will refer to as the history approach, it
appears that the latter still seems superior even though it
produces the entire history of the computation instead of
only the final output.fThis just means one has to repeat the
processOsLd times to get the final output or put in identity
gates.g It is natural to ask what is special about this approach
and how it is related to the models we have studied. For a
circuit of n qubits andL gates, the history approach has the
following final state:

uc finall =
1

ÎL + 1
o
l=0

L

UlUl−1¯ u0l ^ u1l0L−llc s23d

whereu1l0L−llc denotes the state ofL ancilla qubits serving as
a clock. We refer the readers tof3g for the general form of
the 3-local Hamiltonian which has the above state as its
unique ground state. Let us just look at the simplest
example—a circuit with one two-qubit gateU andn compu-
tational qubits. The initial and final states are

ucinil = u0l ^ u0lc, s24d

uc finall =
1
Î2

su0l ^ u0lc + Uu0l ^ u1lcd, s25d

where one ancilla qubit suffices for the clock. The corre-
sponding Hamiltonians are

Hini = u1lk1uc, s26d

Hout =
1

2
sI ^ u0lk0uc + I ^ u1lk1uc − U ^ u1lk0uc

− U†
^ u0lk1ucd. s27d

Actually we have deliberately omitted a term

on
u1lk1u ^ u0lk0uc

that would makeucinil the unique ground state ofHini. This
does not change our analysis as long as we prepare the state
in ucinil at the beginning. Inf3g this is theHinput term, which
does not affect the evolution equation because it remains
zero for all time. Aharonovet al. show—for this case,
trivially—that slowly interpolating fromHini to Hfinal takes
ucinil to uc finall. Notice that the Hamiltonians are highly de-
generate in the sense that if we replaceucinil and uc finall by

ucini8 l = Vu0l ^ u0lc, s28d

uc final8 l =
1
Î2

sVu0l ^ u0lc + UVu0l ^ u1lcd s29d

for someUsnd unitary operatorV, the same analysis will go
through. This gauge freedom is already reminiscent of HQC;

let us make the connection more explicit. Define the time-
dependent Hamiltonian

Hstd =
1

2
fPstdI ^ u0lk0uc + QstdI ^ u1lk1uc − RstdU ^ u1lk0uc

− RstdU†
^ u0lk1ucg s30d

such thatP=R=0, Q=2 gives Hini and P=Q=R=1 gives
Hfinal. It is easy to see that

ucstdl = hnormalizationjfastdu0l ^ u0lc + bstdUu0l ^ u1lcg
s31d

is a ground state as long asPQ=R2 and Pa=Rb. Suppose
we have completed the original evolution and obtained
uc finall sa ,b=1d, but decided to keep going. We can slowly
change fromP=Q=R=1 to P=2, Q=R=0 while maintain-
ing PQ=R2 sthis helps to keep a large gapd, and we would
arrive atUu0l ^ u1lc sa=0,b=1d. This is essentially a holo-
nomic cycle if we adiabatically rotate the clock qubit back to
u0lc. In practice we can just relabel the clock qubit if we want
to do this repeatedly.

This gives rise to the interpretation that the history ap-
proach is in fact half of a holonomic cycle. The cycle we
have just shown is very similar to theCNOT example in Sec.
VI, as it requires a 3-local Hamiltonian, which too can be
reduced by the three-qubit gadget, and one ancilla qubit; it is
merely a different path in the control manifold. Repeated
application of the gadget allows efficient universal quantum
computing, as described in Sec. VI.

We can take this further and interpret the history approach
for L quantum gates as part of a holonomic cycle with a
control manifold augmented with the space ofL ancilla qu-
bits. For the 3-local Hamiltonian case, this is not difficult to
see. Suppose we have starting HamiltonianHi and final
HamiltonianHf, such that linear adiabatic evolution takes the
starting state

ci = u0l ^ u0lc s32d

to

c f =
1

ÎL + 1
o

i=0,. . .,L
Ui ¯ U0u0l ^ uilc s33d

where U0=1 and we have simplified the notation for the
clock. These Hamiltonians can be constructed according to
f3g, except we omit the termHinput=oiu1lk1ui ^ u0lk0uc so that
we preserve the gauge freedom mentioned above. This does
not affect the adiabatic evolution because the Hamiltonian
does not couple between the degenerate spaces. Now we can
similarly construct another pair of HamiltoniansHi8 and Hf8
corresponding to a reverse circuitUL

† ,UL−1
† , . . . such that it

takes

ci8 = UL ¯ U0u0l ^ u0lc s34d

to
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c f8 =
1

ÎL + 1
o

i=0,. . .,L
UL−i ¯ U0u0l ^ uilc. s35d

Simple inspection shows thatc f and c f8 are the same up to
relabeling of clock qubits. Therefore, if we implement the
evolution Hi →HfsHf8d→Hi8 up to relabeled clocks, we can
take

ci = u0l ^ u0lc s36d

to

ci8 = UL ¯ U0u0l ^ u0lc s37d

and thus complete a holonomic implementation of theL
gates. This opens up the possibility of further optimizing the
path; a more complete analysis is left for the future.

VIII. DISCUSSION

We have looked at various forms of adiabatic quantum
computation and studied their resource requirements as well
as possible approximations. One issue we have not addressed
at all is what noise-resistant properties different models can
have. It would appear that the direct, nonholonomic ap-
proach in Sec. II places stronger conditions on the states, as
any deviation requires higher energy, whereas the degenerate
states in the holonomic approach have no protection against
transition within the degenerate level. This generalization
may, however, be simplistic; a better analysis should be with
respect to particular experimental implementations. We sim-
ply hope that this paper has provided a more unifying picture
of adiabatic algorithms that will eventually lead to a toolbox
experimentalists can refer to for different specific applica-
tions.

There are at least a few directions for further studies.s1d
In Sec. II we constructed an adiabatic equivalent of any ar-
bitrary circuit. What remain unclear are the general proper-

ties of such Hamiltonians, namely, those of the formUH0U
†

whereH0 is a simple Hamiltonian andU is a polynomial-
sized circuit. If it isn-local, in what sense is it simpler than
the most general Hamiltonian? Are there things about a cir-
cuit that we can learn through this corresponding Hamil-
tonian?s2d We discussed in Sec. IV various constraints on
approximatingUH0U

† with k-local terms. The general pic-
ture is still unclear; it would be useful to understand pre-
cisely under what condition ann-local Hamiltonian can be
approximated by a 2-local one.s3d We have proposed one
partially adiabatic algorithm in Sec. VI and we have sug-
gested that the adiabatic construction in Sec. V could be
useful as a small section of a larger algorithm. It is interest-
ing to investigate what merits, if any, these partially adiabatic
algorithms possess.s4d For HQC, there should be room for
improvement. If we implement one two-qubit gate at a time,
it is important to see how the use of three-qubit gadget can
be optimized and how a tighter bound on the evolution time
can be obtained. At the same time, the history approach dis-
cussed in Sec. VII may lead to a further class of HQC meth-
ods that implement many gates together efficiently.s5d In
order to build an efficient computation model using only
2-local Hamiltonian and adiabatic evolution, we have been
naturally led to the use of non-Abelian geometric phase. The
use of holonomy, however, may not be the only option. For
example, open-path non-Abelian geometric phasef15g can
be nontrivial as well and may lead to further ways of imple-
menting multiple qubit gates. These questions are beyond the
scope of this paper, and we believe that adiabatic quantum
computing remains an exciting area to explore.
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