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We describe a phase transition for long-range entanglement in a three-dimensional cluster state affected by
noise. The partially decohered state is modeled by the thermal state of a short-range translation-invariant
Hamiltonian. We find that the temperature at which the entanglement length changes from infinite to finite is
nonzero. We give an upper and lower bound to this transition temperature.
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I. INTRODUCTION

Nonlocality is an essential feature of quantum mechanics,
put to the test by the famous Bell inequalitiesf1g and verified
in a series of experimentsssee, e.g.,f2gd. Entanglementf3g is
an embodiment of this nonlocality which has become a cen-
tral notion in quantum-information theory.

In realistic physical systems, decoherence represents a
formidable but surmountable obstacle to the creation of en-
tanglement among far distant particles. Devices such as
quantum repeatersf4g and fault-tolerant quantum computers
are being envisioned in which the entanglement lengthf5,6g
is infinite, provided the noise is below a critical level. Here
we are interested in the question of whether an infinite en-
tanglement length can also be found in spin chains with a
short-range interaction that are subjected to noise. A prereq-
uisite for our investigation is the existence of systems with
infinite entanglement length at zero temperature. An example
of such behavior has been discovered by Verstraete, Martín-
Delgado, and Ciracf7g with spin-1 chains in the Affleck-
Kennedy-Lieb-Tasaki modelf8g, and by Pachos and Plenio
with cluster Hamiltoniansf9g; see alsof10g. In this paper, we
study the case of finite temperature. We present a short-
range, translation-invariant Hamiltonian for which the en-
tanglement length remains infinite until a critical temperature
Tc is reached. The system we consider is a thermal cluster
state in three dimensions. We show that the transition from
infinite to finite entanglement length occurs in the interval
0.30DøTcø1.15D, with D being the energy gap of the
Hamiltonian.

We consider a simple three-dimensionals3Dd cubic lattice
C with one spin-1/2 particlesqubitd living at each vertex of
the lattice. LetXu, Yu, andZu be the Pauli operators acting on
the spin at a vertexuPC. The model Hamiltonian is

H = −
D

2 o
uPC

Ku, Ku = Xu p
vPNsud

Zv. s1d

Here Nsud is a set of nearest neighbors of vertexu. The
ground state ofH obeys eigenvalue equationsKuuflC= uflC
and coincides with a cluster statef11g. We define a thermal
cluster state at a temperatureT as

rCS=
1

Z exps− bHd, s2d

whereZ=Tr e−bH is a partition function andb;T−1. Since
all terms inH commute, one can easily get

rCS=
1

2uCu p
uPC

fI + tanhsbD/2dKug. s3d

Let A,B,C be two distant regions on the lattice. Our goal
is to create as much entanglement betweenA andB as pos-
sible by doing local measurements on all spins not belonging
to AøB. Denotea as the list of all outcomes obtained in
these measurements andra

AB as the state ofA andB condi-
tioned on the outcomesa. Let Efrg be some measure of
bipartite entanglement. Followingf5g we define the localiz-
able entanglement betweenA andB as

EsA,Bd = maxo
a

paEfra
ABg, s4d

wherepa is a probability to observe the outcomea and the
maximum is taken over all possible patterns of local mea-
surements. To specify the entanglement measureEfrg it is
useful to regardra

AB as an encoded two-qubit state with the
first logical qubit residing inA and the second inB. We
chooseEfrg as the maximum amount of two-qubit entangle-
mentsas measured by entanglement of formationd contained
in r. Thus 0øEsA,Bdø1 and an equalityEsA,Bd=1 implies
that a perfect Bell pair can be created betweenA and B.
Conversely,EsA,Bd=0 implies that any choice of a measure-
ment pattern produces a separable state.

In this paper we consider a finite 3D cluster

C = hu = su1,u2,u3d:1 ø u1,u2 + 1 ø l ;1 ø u3 ø dj

and choose a pair of opposite 2D faces asA andB:

A = hu P C:u3 = 1j, B = hu P C:u3 = dj,

so that the separation between the two regions isd−1. In
Sec. II we show that1

lim
l,d→`

EsA,Bd = 1 for T , 0.30D.

Further, we show in Sec. III that ifT.1.15D then EsA,Bd
=0 for dù2 and arbitrarily largel.

1Referencesf15,16g consider a lattice with proportions of a cube,
corresponding tol =d. However, numerical simulations indicate that
lim l,d→` EsA,Bd=1 even if l =C lnsdd; see remarks to Sec. II.
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II. LOWER BOUND

We relate the lower bound on the transition temperature to
quantum error correction. From Eq.s3d it follows that rCS
can be prepared from the perfect cluster stateuflC by apply-
ing the Pauli operatorZu to each spinuPC with a probability

p =
1

1 + expsbDd
. s5d

Thus, thermal fluctuations are equivalent to independent lo-
cal Z errors with an error ratep.

We use a single copy ofrCSand apply a specific pattern of
local measurements which creates an encoded Bell state
among sets of particles inA andB. For encoding we use the
planar code, which belongs to the family of surface codes
introduced by Kitaev. The 3D cluster state has, as opposed to
its 1D counterpartf11g, an intrinsic error correction capabil-
ity which we use in the measurement pattern described be-
low. Therein, the measurement outcomes are individually
random but not independent; parity constraints exist among
them. The violation of any of these indicates an error. Given
sufficiently many such constraints, the measurement out-
comes specify a syndrome from which typical errors can be
reliably identified. The optimal error correction given this
syndrome breaks down at a certain error ratestemperatured,
and the Bell correlations can no longer be mediated. This
temperature is a lower bound toTc, because in principle there
may exist a more effective measurement pattern.

To describe the measurement pattern we use, let us intro-
duce two cubic sublatticesTe, To,C with a double spacing.
Each qubituPC becomes either a vertex or an edge in one of
the sublatticesTe and To. The sets of verticesVsTed and
VsTod are defined as

VsTed = hu = se,e,ed P Cj,

VsTod = hu = so,o,od P Cj,

wheree ando stand for even and odd coordinates. The sets
of edgesEsTed andEsTod are defined as

EsTed = hu = se,e,od,se,o,ed,so,e,ed P Cj,

EsTod = hu = so,o,ed,so,e,od,se,o,od P Cj.

The latticesTe, To play an important role in the identification
of error correction on the cluster state with aZ2 gauge model
f12g. They are displayed in Fig. 2 below.

Let us assume that the lengthsl andd are odd.2 The Bell
pair to be created betweenA and B will be encoded into
subsets of qubits

L = hu = so,e,1d,se,o,1d P Cj , A,

R= hu = so,e,dd,se,o,dd P Cj , B.

Each qubituPC is measured either in theZ or X basis unless
it belongs toL or R. Denoting byMX andMZ local X andZ
measurements, we can now present the measurement pattern:

MZ ∀ u P VsTed ø VsTod,
s6d

MX ∀ u P EsTed ø EsTod \ sL ø Rd.

We denote the measurement outcome ±1 at vertexu by zu or
xu, respectively. A graphic illustration of the measurement
patterns for the individual slices is given in Fig. 1.

Before we consider errors, let us discuss the effect of this
measurement pattern on a perfect cluster state. Consider
some fixed outcomeshxuj ,hzuj of local measurements and let
uclLR be the reduced state of the unmeasured qubitsL andR.
We will now show thatuclLR is, modulo local unitaries, an
encoded Bell pair, with each qubit encoded by the planar
codef13g, the planar counterpart of the toric codef14g. The
initial cluster state obeys eigenvalue equationsKuuflC= uflC.
This implies for the reduced state

ZP,uuclLR = lP,uuclLR ∀ u = se,e,1d, s7d

whereZP,u= ^vPNsudùLZv is a plaquettesz-typed stabilizer op-
erator for the planar codef13g. The eigenvaluelP,u depends
upon the measurements outcomes aslP,u=xuzsu1,u2,2d. Note
that in the planar code the qubits live on the edges of a lattice
rather than on its vertices. The planar code lattice is distinct
from the cluster latticeC; see Figs. 1 and 2.

From the equationpvPNsudKvuflC= uflC, for u=so,o,1d,
we obtain

XS,uuclLR = lS,uuclLR ∀ u = so,o,1d, s8d

where XS,u= ^vPNsudùLXv coincides with a sitesx-typed
stabilizer operator for the planar codef13g, and

2There is no loss of generality here since one can decrease the size
of the lattice by measuring all of the qubits on some of the 2D faces
in the Z basis.

FIG. 1. sColor onlined sad Measurement pattern on the first and
last slice ofC, for l =5. The resulting state is in the code space of the
planar code.sThe unmeasured qubits are displayed as shaded
circles.d sbd Lattice for the planar code.scd and sdd Measurement
pattern for even and odd inner slices.
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lS,u=xsu1,u2,2dzupvPNosudzv, whereNo refers to a neighborhood
relation on the sublatticeTo. The code stabilizer operators in
Eqs. s7d and s8d are algebraically independent. There are
sl2−1d /2 code stabilizer generators forsl2+1d /2 unmeasured
qubits, such that there exists one encoded qubit onL. By
direct analogy, there is also one encoded qubit located onR.

Next, we show thatuclLR is an eigenstate ofX̄LX̄R and

Z̄LZ̄R, whereX̄ and Z̄ are the encoded Pauli operatorsX and
Z, respectively, i.e.,uclLR is an encoded Bell pair. The en-

coded Pauli operatorsf13g on L and R are X̄LfRg

= ^u1 oddXsu1,u2,1fdgd for any even u2, and Z̄LfRg
= ^u2 evenZsu1,u2,1fdgd for any oddu1. To derive the Bell corre-
lations of uclLR let us introduce 2D slices

TXX
su2d = hu = so,u2,od P Cj , To,

TZZ
su1d = hu = su1,e,ed P Cj , Te.

The eigenvalue equationpvPT
XX
su2dKvuflC= uflC with even u2

implies for the reduced state

X̄LX̄RuclLR = lXXuclLR, s9d

with lXX=pvPT
XX
su2+1døT

XX
su2−1dzvpvPT

XX
su2d\sLøRdxv. Here and here-

after it is understood thatxu=zu=1 for all u¹C. Similarly,
from uflC=pvPT

ZZ
su1dKvuflC, for u1 odd, we obtain for the re-

duced state

Z̄LZ̄RuclLR = lZZuclLR, s10d

with lZZ=pvPT
ZZ
su1+1døT

ZZ
su1−1dzvpvPT

ZZ
su1dxv. Thus the eigenvalue

equationss7d–s10d show that the measurement pattern of Eq.
s6d projects the initial perfect cluster state into a state equiva-
lent under local unitaries to the Bell pair, with each qubit
encoded by the planar code.

It is crucial that the measurement outcomeshzuj and hxvj
are not completely independent. Indeed, for any vertexu
PTo with 1,u3,d the eigenvalue equationpvPNsudKvuflC
= uflC implies the constraint

p
vPNsud

xv p
wPNosud

zw = 1. s11d

Analogously, for any vertexuPTe one has a constraint

p
vPNsud

xv p
wPNesud

zw = 1, s12d

whereNe refers to a neighborhood relat ion on the latticeTe.
Thus there exists one syndrome bit for each vertex ofTe and
To swith an exception for the vertices ofTo with u3=1 or
u3=dd.

What are the errors detected by these syndrome bits?
Since we have onlyZ errorssfor generalization, see remark
1d, only theX measurements are affected by them. EachX
measured qubit is on an edge of eitherTo or Te. Thus, we can
identify the locations of the elementary errors withEsTod and
EsTed. From Eqs.s11d and s12d, each error located on an
edge creates a syndrome at its end vertices.

Let us briefly compare withf12g. Therein, independent
local X andZ errors were considered for storage whose cor-
rection runs completely independently. TheX errors in this
model correspond to ourZ errors on qubits inEsTed, and the
Z storage errors to ourZ errors on qubits inEsTod, if the X
andZ error correction phases inf12g are pictured as alternat-
ing in time.

The syndrome information provided by Eqs.s11d ands12d
is not yet complete. There are two important issues to be
addressed:sid There are no syndrome bits at the vertices of
To with u3=1 or u3=d; sii d edges ofTe with u3=1 or u3=d
have only one end vertex, so errors that occur on these edges
create only one syndrome bit. Concerningsid, to get the
missing syndrome bits we will measure eigenvalueslP,u and
lS,u for the plaquette and the site stabilizer operators living
on the facesA andB fsee Eqs.s7d and s8dg. Such measure-
ments are local operations withinA or within B, so they
cannot increase entanglement betweenA and B. For anyu
=so,o,1d or u=so,o,dd it follows from Eq. s8d that

lS,uxsu1,u2,2dzu p
vPNosud

zv = 1 for u3 = 1,

s13d
lS,uxsu1,u2,d−1dzu p

vPNosud
zv = 1 for u3 = d.

For any vertexu=so,o,1d or u=so,o,dd there are several
edges of the latticeTo incident onu. It is easy to see that a
single Z error that occurs on any of these edges changes a
sign in Eqs.s13d. Thus, these two constraints yield the syn-

FIG. 2. sColor onlined The measurement pattern on the clusterC.
The sublatticesTe andTo are displayedsthick linesd. For reference,
the cluster lattice is also shownsthin linesd and the axis labeling
shows the cluster coordinates. Cluster qubits measured in theZ
basisson the sites ofTo andTed are displayed in black, and qubits
measured in theX basisson the edges ofTo andTed are displayed in
gray sredd. The large circles to left and to the right denote the
unmeasured qubits which form the encoded Bell pair. The measure-
ment pattern has a bcc symmetry.
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drome bits living at the verticesu=so,o,1d andu=so,o,dd,
so the issuesid is addressed. Concerningsii d, we make use of
Eq. s7d and obtain

lP,uxuzsu1,u2,2d = 1 for any u = se,e,1d,

s14d
lP,uxuzsu1,u2,d−1d = 1, for any u = se,e,dd.

Since we have onlyZ errors, the eigenvalueslP,u and the
outcomeszsu1,u2,2d ,zsu1,u2,d−1d are not affected by errors. Thus
the syndrome bits Eqs.s14d are equal to −1 if and only if an
error has occurred on the edgeu=se,e,1d or u=se,e,dd of
the latticeTe. Since each of these errors shows itself in a
corresponding syndrome bit which is not affected by any
other error, we can reliably identify these errors. This is
equivalent to actively correcting them with unit success
probability. We can therefore assume in the subsequent
analysis that no errors occur on the edgesse,e,1d and
se,e,dd, which concludes the discussion of the issuesii d.

As in f14g, we define an error chainE as a collection of
edges where an elementary error has occurred. Each of the
two latticesTe andTo has its own error chain. An error chain
E shows a syndrome only at its boundary]sEd, and errors
with the same boundary thus have the same syndrome. One
may identify an errorE only modulo a cycleD, E8=E+D,
with ]sDd=0.

There are homologically trivial and nontrivial cycles. A
cycle D is trivial if it is a closed loop inTo sTed, and homo-
logically nontrivial if it stretches from one rough face inTo
sTed to another. A rough face here is the 2D analog of a rough
edge on a planar codef13g. The rough faces ofTo are on the
upper and lower sides ofC, and the rough faces ofTe are on
the front and back ofC srecall that no errors occur on the left
and right rough faces ofTed.

Let us now study the effect of error cycles on the identi-
fication of the stateuclLR from the measurement outcomes.
We only discuss the error chains onTo here, which poten-
tially affect the eigenvalue Eq.s9d. The discussion of the

error chains inTe—which disturb theZ̄LZ̄R correlations—is
analogous. An individual qubit error onvPC will modify the

X̄LX̄R correlation ofuclLR if it affects eitherX̄L, X̄R or lXX.

That happens ifvPTXX
su2d. Now, the vertices inTXX

su2d corre-
spond to edges inTo. If an error cycleD in To is homologi-
cally trivial, it intersectsTXX

su2d in an even number of vertices;
see Fig. 3. This has no effect on the eigenvalue Eq.s9d.
However, if the cycle is homologically nontrivial, i.e., if it
stretches between the upper and lower face ofC, then it
intersectsTXX

su2d in an odd number of vertices. This does
modify the eigenvalue Eq.s9d by a sign factor ofs−1d on the
left-hand side, which leads to a logical error. Therefore, for
large system size, we require the probability of misinterpret-
ing the syndrome by a nontrivial cycle to be negligiblef12g:

o
E

probsEd o
D nontrivial

probsE + DuEd < 0. s15d

We have now traced back the problem of reconstructing an
encoded Bell pairuclLR to the same setting that was found in
f12g to describe fault-tolerant data storage with the toric

code. Via the measurement pattern Eq.s6d, we may introduce
two latticesTo,Te such thats1d syndrome bits are located on
the vertices of these lattices,s2d independent errors live on
the edges and show a syndrome on their boundary, ands3d
only the homologically nontrivial cycles give rise to a logical
error. This error model can be mapped onto a random
plaquetteZ2-gauge field theory in three dimensionsf12,15g
which undergoes a phase transition between an ordered low-
temperature and a disordered high-temperature phase. In the
limit of l ,d→`, full error correction is possible in the low-
temperature phase.

In our setting, the error probabilities for all edges are
equal top. For this case the critical error probability has been
computed numerically in a lattice simulationf16g, pc

=0.033±0.001. This value corresponds, via Eq.s5d, to Tc

=s0.296±0.003dD.
Remark 1. The error model equivalent to Eq.s3d, i.e., Z

errors only, is very restricted. We have a physical motivation
for this model, but we would like to point out that the very
strong assumptions we have made about the noise are not
crucial to our result of the threshold error rate being nonzero.
One may, for example, generalize the error model from a
dephasing channel to a depolarizing channel, withpx=py

=pz=p8 /3. Then, two changes need to be addressed, those in
the bulk and those on the facesL and R. Concerning the
faces, the errors on the rough faces to the left and right ofTe

can no longer be unambiguously identified by measurements
of the code stabilizers14d, which raises the question of
whether—for depolarizing errors—it may be these surface
errors that set the threshold for long-range entanglement.
This is not the case. To see this, note that two slices of 2D
cluster states may be attached to the left and right ofC, at
u3=0,−1 andu3=d+1, d+2. The required operations are
assumed to be perfect. They do not change the localizable
entanglement between the left and right sides of the clusterC
because they act locally on the slices −1, . . . ,1 andd, . . . ,d
+2, respectively. The subsetsA andB of spins are relocated
to the slices −1 andd+2, with the corresponding changes in
the measurement pattern. The effect of this procedure is that

FIG. 3. sColor onlined A homologically nontrivial and a homo-
logically trivial error cycle on the latticeTo. The nontrivial error
cycle stretches from one rough face to the opposite one while the
trivial error has both ends on the same face. Only the qubits belong-
ing to To are shown and the qubits important for establishing the

X̄AX̄B-correlation are displayed enlarged.
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the leftmost and rightmost slices of the enlarged cluster are
error free,3 and only the bulk errors matter.

Concerning the bulk, note that the cluster qubits measured
in theZ basis serve no purpose and may be left out from the
beginning. Then, the considered lattice for the initial cluster
state has a bcc symmetry and double spacing. The lattices
To,Te remain unchanged. Further,X errors are absorbed in
the X measurements andY errors act likeZ errors, such that
we still map to the originalZ2 gauge modelf12g at the Nishi-
mori line. The threshold for local depolarizing channels ap-
plied to this configuration is thuspc8=3/2pc=4.9%. In addi-
tion, numerical simulations performed for the initial simple
cubic cluster and depolarizing channel yield an estimate of
the critical error probability ofpc9=1.4%.

Remark 2. Finite-size effects. We carried out numerical
simulations of error correction on anl 3 l 3d lattice with
periodic boundary conditionssas opposed to the open bound-
ary conditions of the planar codes within the cluster stated.
For differing error rates below the threshold value of 2.9%
f15g, we found good agreement for the fidelityF between the
perfect and the error-corrected encoded Bell state with the
modelF,expf−dk1 exps−lk2dg. Some data are shown in Fig.
4 corresponding to aZ error rate of 1.0%. Provided that
planar codes and toric codes have similar behavior away
from threshold, our simulations suggest that, in order to
achieve constant fidelity, the lengthl specifying the surface

code need only scalelogarithmically with the distanced.
Remark 3. For evend, the construction presented above

can be used to mediate an encoded conditionalZ gate on
distant encoded qubits located on slices 1 andd.

III. UPPER BOUND

In this section we analyze the high-temperature behavior
of thermal cluster states and find an upper bound on the
critical temperatureTc. Our analysis is based on the isomor-
phism between cluster states and the so-called valence bond
solids sVBSsd pointed out by Verstraete and Cirac inf17g
which can easily be generalized to a finite temperature.

With each physical qubituPC we associate a domainu.p
of dsud virtual qubits, wheredsud= uNsudu is the number of
nearest neighbors ofu fsee Fig. 5sadg. Let us label virtual
qubits from a domainu.p asu.v, vPNsud. DenoteE to be
the set of edges of the latticeC and define a thermal VBS
staterVBS as

rVBS= p
e=su,vdPE

1

4
sI + veXu.vZv.udsI + veZu.vXv.ud. s16d

Here hvej are arbitrary weights such that 0øveø1. It
should be emphasized thatrVBS is a state of virtual qubits
rather than physical ones. Our goal is to convertrVBSinto rCS
by local transformations mapping a domainu.p into a single
qubit uPC. The following theorem is a straightforward gen-
eralization of the Verstraete and Cirac constructionshere we
put D /2=1d.

Theorem 1. Let rCS be a thermal cluster state on the 3D
cubic latticeC at a temperatureT;b−1. Consider a thermal
VBS staterVBSas in Eq.s16d such that the weightsve satisfy

p
vPNsud

vsu,vd ù tanhsbd for eachu P C. s17d

Then rVBS can be converted intorCS by applying a com-
pletely positive transformationWu to each domainu.p,

rCS= WsrVBSd, W = ^
uP

Wu. s18d

Let us first discuss the consequences of this theorem. Note
that each edgeePE of rVBS carries a two-qubit state

re =
1

4
sI + veX1Z2dsI + veZ1X2d. s19d

The Peres-Horodecki partial transpose criterionf18,19g tells
us thatre is separable if and only ifveøÎ2−1. Consider a

3The following operations are required to attach a slice:sId LsZd
gates within the slice,sII d LsZd gates between the slice and its next
neighboring slice, andsIII d X andZ measurements within the slice
ssee Fig. 1d. All these operations are assumed to be perfect, and the
errors on slices 1 andd are not propagated to slices −1 andd+2 by
the LsZd gatessII d.

FIG. 4. This figure plots data for simulations of error correction
on anL3L3dtoric lattice, with periodic boundary conditions in the
first two directions, for variousL and dtoric sd=2dtoric+1,l =2Ld.
The error rate isp=0.01. The logarithms have are basee. Two
standard deviations above and below the computed valuessas given
by statistical noise due to the sample sizesd are shown by the error
bars. The solid lines each have slope 1, and they are spaced
equally apart. This lends good support to the model of fidelity
F,expf−dk1exps−lk2dg for error rates below threshold.

FIG. 5. sColor onlined sad Correspondence between physical and
virtual qubits. Domains are shown by dashed lines.sbd A bipartite
cut of a cubic lattice. The regionsA andB are highlighted.
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bipartite cut of the lattice by a hyperplane of codimension 1
fsee Fig. 5sbdg. We can satisfy Eq.s17d by setting ve
=tanhsbd for all edges crossing the cut and settingve=1 for
all other edges. Clearly, the staterVBS is biseparable when-
ever tanhsbdøÎ2−1. But biseparability ofrVBS implies
biseparability ofrCS. We conclude that the localizable en-
tanglement between the regionsA and B is zero whenever
tanhsbdøÎ2−1, which yields the upper bound onTc pre-
sented earlier.

Remarks. We can also satisfy Eq.s17d by settingve=v
for all ePE, with v6=tanhsbd. This choice demonstrates that
rCS is completely separable for tanhsbd, sÎ2−1d6 sthat is,
T<200d. It reproduces the upper boundf20g of Dür and
Briegel on the separability threshold error rate for cluster
states.

In the remainder of this section we prove Theorem 1.
Consider an algebraAu of operators acting on some particu-
lar domainu.p. It is generated by the Pauli operatorsZu.v
andXu.v with vPNsud. The transformationWu mapsAu into
the one-qubit algebra generated by the Pauli operatorsZu and
Xu. First, we choose

Wushd = Wu
†hWu, Wu = u0^dsudlk0u + u1^dsudlk1u.

One can easily check that

Wu
†Zu.v = ZuWu

† and Zu.vWu = WuZu, s20d

for any vPNsud. As for commutation relations betweenWu

andXu.v one has

Wu
†S p

vPNsud
Xu.vDWu = Xu,

Wu
†Sp

vPS

Xu.vDWu = 0, s21d

for any nonempty proper subsetS,Nsud. Taking W=
^uPCWu and using Eqs.s20d and s21d one can easily get

WsrVBSd =
1

4uEu p
uPC

sI + huKud, hu = p
vPNsud

vsu,vd. s22d

We can regard the state in Eq.s22d as a thermal cluster state
with a local temperature tanhsbud;hu depending uponu.
The inequality of Eq.s17d implies thatbuùb for all u. To
achieve a uniform temperature distributionbu=b one can
intentionally apply localZ errors with properly chosen prob-
abilities.

IV. CONCLUSION

Thermal cluster states in three dimensions exhibit a tran-
sition from infinite to finite entanglement length at a nonzero
transition temperatureTc. We have given a lower and an
upper bound toTc, 0.3DøTcø1.15D sD is the energy gap of
the Hamiltoniand. The reason forTc being nonzero is an in-
trinsic error-correction capability of 3D cluster states. We
have devised an explicit measurement pattern that establishes
a connection between cluster states and surface codes. Using
this, we have described how to create a Bell state of far
separated encoded qubits in the low-temperature regimeT
,0.3D, making the entanglement contained in the initial
thermal state accessible for quantum communication and
computation.
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