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Long-range quantum entanglement in noisy cluster states
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We describe a phase transition for long-range entanglement in a three-dimensional cluster state affected by
noise. The partially decohered state is modeled by the thermal state of a short-range translation-invariant
Hamiltonian. We find that the temperature at which the entanglement length changes from infinite to finite is
nonzero. We give an upper and lower bound to this transition temperature.
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I. INTRODUCTION 1 1
o . . = — + .
Nonlocality is an essential feature of quantum mechanics, Pcs 2l e [1+ tanf(Aar2)K, ] 3)

put to the test by the famous Bell inequalit[d@$ and verified _ _ _
in a series of experimentsee, e.g.[2]). Entanglemen{3] is Let A,BCC be two distant regions on the lattice. Our goal
an embodiment of this nonlocality which has become a cenis to create as much entanglement betwdesmdB as pos-
tral notion in quantum-information theory. sible by doing local measurements on all spins not belonging

In realistic physical systems, decoherence represents ta AUB. Denotea as the list of all outcomes obtained in
formidable but surmountable obstacle to the creation of enthese measurements apff as the state oA andB condi-
tanglement among far distant particles. Devices such agoned on the outcomesg. Let E[p] be some measure of
quantum repeatefst] and fault-tolerant quantum computers pipartite entanglement. Followini@] we define the localiz-
are being envisioned in which the entanglement lefi§tfl  4pje entanglement betwed@nandB as
is infinite, provided the noise is below a critical level. Here
we are interested in the question of whether an infinite en- _ AB
tanglement length can also be found in spin chains with a E(AB) = max% PoELP, ], @
short-range interaction that are subjected to noise. A prereg-
uisite for our investigation is the existence of systems withwherep,, is a probability to observe the outcomeand the
infinite entanglement length at zero temperature. An examplénaximum is taken over all possible patterns of local mea-
of such behavior has been discovered by Verstraete, Martisyrements. To specify the entanglement mea&iifd it is
Delgado, and Cira¢7] with spin-1 chains in the Affleck- sefy| to regarg”® as an encoded two-qubit state with the
Kennedy-Lieb-Tasaki mod¢B], and by Pachos and Plenio . logical qubita residing inA and the second iB. We
with cluster Hamiltonian§9]; see als¢10]. In this paper, we chooseE[ p] as the maximum amount of two-qubit entangle-

study the case of finite temperature. We present a Shorﬁwent(as measured by entanglement of formaticontained

range, translation-invariant Hamiltonian for which the en-. . S
tanglement length remains infinite until a critical temperatureIn p- Thus O<E(A,B)<1 and an equalitiE(A,B)=1 implies

T, is reached. The system we consider is a thermal clustdf@t @ perfect Bell pair can be created betwéemnd B.
state in three dimensions. We show that the transition front-OnVverselyE(A,B)=0 implies that any choice of a measure-
infinite to finite entanglement length occurs in the intervalMent pattern produces a separable state.
0.3\ <T.<1.15\, with A being the energy gap of the  In this paper we consider a finite 3D cluster
Hamiltonian.

We consider a simple three-dimensiof@ID) cubic lattice
C with one spin-1/2 particléqubit) living at each vertex of
the lattice. LetX,, Y,, andZ, be the Pauli operators acting on

C={u=(upuyuz):l<u,u,+1<l;l<suz<d}

and choose a pair of opposite 2D facesfaand B:

the spin at a vertex € C. The model Hamiltonian is A={ue Cus=1}, B={ue Cus=d},
A . . .
H=-=> K, K.,=%, Il z. (1)  so that the separation between the two regiond-id. In
24ec veNu) Sec. Il we show thdt
Here N(u) is a set of nearest neighbors of vertax The i _
X : im E(A,B)=1 for T<O0.3QA.
ground state oH obeys eigenvalue equatiols|®).=|®). |, d—os (AB)
and coincides with a cluster stdt&l]. We define a thermal
cluster state at a temperatu‘fas Further, we show in Sec. Ill that if >1.15A then E(A,B)

=0 for d=2 and arbitrarily largd.

1
Pcs= Z exp(— BH), (2
1Reference$15,l€ﬂ consider a lattice with proportions of a cube,
where Z=Tre " is a partition function angB=T"%. Since  corresponding td=d. However, numerical simulations indicate that
all terms inH commute, one can easily get lim; 4. E(A,B)=1 even ifl=CIn(d); see remarks to Sec. I.
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II. LOWER BOUND

WA
t

We relate the lower bound on the transition temperature to
guantum error correction. From EE3) it follows that pcg 8 271

smooth edge

can be prepared from the perfect cluster stabe by apply- 1
ing the Pauli operataf,, to each spiru e C with a probability 0t
1 (@
= 5
P v expa) ®
41
Thus, thermal fluctuations are equivalent to independent lo- 3
cal Z errors with an error rate. .

We use a single copy @i-sand apply a specific pattern of
local measurements which creates an encoded Bell state
among sets of particles ih andB. For encoding we use the
planar code, which belongs to the family of surface codes
introduced by Kitaev. The 3D cluster state has, as opposed to (c) w3 even (d)
its 1D counterparf11], an intrinsic error correction capabil-
ity which we use in the measurement pattern described be- FIG. 1. (Color onling (a) Measurement pattern on the first and
low. Therein, the measurement outcomes are individuallyast slice ofC, for [=5. The resulting state is in the code space of the
random but not independent; parity constraints exist amonglanar code.(The unmeasured qubits are displayed as shaded
them. The violation of any of these indicates an error. Giverfircles) (b) Lattice for the planar codec) and (d) Measurement
sufficiently many such constraints, the measurement oute@ttern for even and odd inner slices.
comes specify a syndrome from which typical errors can be
reliably identified. The optimal error correction given this R={u=(o,e,d),(e0,d) e C} CB.
syndrome breaks down at a certain error r@enperaturg ) ) ) ) )
and the Bell correlations can no longer be mediated. Thi§ach qubitu e Cis measured either in thieor X basis unless
temperature is a lower bound Tg, because in principle there it belongs tol or R. Denoting byMy andM; local X andZ

To describe the measurement pattern we use, let us intro- M, O ueV(T)UW(Ty,

duce two cubic sublatticek,, T,CC with a double spacing. ©6)
Each qubitu e C becomes either a vertex or an edge in one of M 0O ueE(T

. ; UET)\(LUR).
the sublatticesT, and T,. The sets of vertice®(T,) and x < BT (To)\( )
V(T,) are defined as We denote the measurement outcome 1 at vertey z, or

X, respectively. A graphic illustration of the measurement
V(T ={u=(eee) e C}, patterns for the individual slices is given in Fig. 1.

Before we consider errors, let us discuss the effect of this
measurement pattern on a perfect cluster state. Consider
some fixed outcomel},{z,} of local measurements and let

Jn g be the reduced state of the unmeasured qlbasdR.

e will now show that|i),  is, modulo local unitaries, an
encoded Bell pair, with each qubit encoded by the planar
code[13], the planar counterpart of the toric codet]. The
initial cluster state obeys eigenvalue equati&ipss).=|®).

This implies for the reduced state

E(To) ={u=(0,0,6),(0,€,0),(€,0,0) € C}. ZpulYhr=Npulr O u=(eel), (7

V(T,) ={u=(0,0,0) € C},

wheree ando stand for even and odd coordinates. The set
of edgesE(T,) andE(T,) are defined as

E(Te) ={u=(e,e0),(g,0,6),(0,e€) € C},

The latticesT,, T, play an important role in the identification whereZp ,=®, .nwnLZ, IS @ plaquettéz-type) stabilizer op-
of error correction on the cluster state witliagauge model erator for the planar codd 3]. The eigenvaluép , depends
[12]. They are displayed in Fig. 2 below. upon the measurements OUtCOMESAAS=XyZ(y, u,2)- Note

Let us assume that the lengthandd are oddf The Bell  that in the planar code the qubits live on the edges of a lattice
pair to be created betweeh and B will be encoded into rather than on its vertices. The planar code lattice is distinct

subsets of qubits from the cluster lattic&; see Figs. 1 and 2.
From the equatiorl, cnwK,|#)c=|d)e, for u=(0,0,1),
L={u=(o,e,1),(g,0,1) € C} CA, we obtain
Xslr=Asd¥r 0O u=(0,0,1), (8)

“There is no loss of generality here since one can decrease the size o ) ]
of the lattice by measuring all of the qubits on some of the 2D facedVhere Xg,=®,nwnLX, coincides with a site(x-type)
in the Z basis. stabilizer operator for the planar cod¢l13], and
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T —_——
0_‘ Z ZRlh)r= Nz irs (10)
with >\zz=HueT<Z“21+1>uT<“1‘1>ZuHUET<ZL'21>XU- Thus the eigenvalue

Y4
equationg7)—(10) show that the measurement pattern of Eq.

W

| BRI

| RRNN
R
i

| y (6) projects the initial perfect cluster state into a state equiva-
] jz z Zﬁz. lent under local unitaries to the Bell pair, with each qubit
07 > = X7 encoded by the planar code.
1 g ! It is crucial that the measurement outcorieg and{x,}
(@) “ are not completely independent. Indeed, for any verex
T, e T, with 1<uz<d the eigenvalue equatioli, . nw)K,|®)c
_ _ _ _ =|¢). implies the constraint
-1
L
‘ > II x Il z=1. (11)
2 WOy 3 5 5 A veNU)  weNy(U)
Q:;: : St C Analogously, for any vertex € T, one has a constraint
0 1 k) k) k) LB
S I x I z=1, (12)
(b) 1 u, 4 veNU)  weNg(u)

whereN, refers to a neighborhood relat ion on the latfice

FIG. 2. (Color onling The measurement pattern on the cluster - Thys there exists one syndrome bit for each verteX.aind
The sublattice§, andT, are displayedthick lines. For reference, T, (with an exception for the vertices df, with us=1 or
the cluster lattice is also show(thin lineg and the axis labeling Uug=d)

shows the cluster coordinates. Cluster qubits measured ir¥ the What are the errors detected by these syndrome bits?
basis(on the sites Oﬂ.—° andTe) are displayed in blaCk.’ and qubits Since we have only errors(for generalization, see remark .
measured in th& basis(on the edges of , andT,) are displayed in 1), only the X measurements are affected by,them Exch
gray (red. The large circles to left and to the right denote the éasured Ubit is on an edae of eitfieror T.. Thus W'e can
unmeasured qubits which form the encoded Bell pair. The measurég tify th ql fi fth gl t & & V\E"I' d
ment pattern has a bce symmetry. identify the locations of the elementary errors wWitT,) an
E(Te). From Egs.(11) and (12), each error located on an
edge creates a syndrome at its end vertices.
) ) . ) Let us briefly compare with12]. Therein, independent
relation on the sublattic,. The code stabilizer operators in |41 X andZ errors were considered for storage whose cor-
Egs. (7) and (8) are algebraically independent. There are o tion runs completely independently. THeerrors in this
(I°=1)/2 code stabilizer generators fof+1)/2 unmeasured el correspond to o errors on qubits ifE(T,), and the
g_Ub'tS' SUICh thar: there ?X'Sts one er:jcoddedbqulblLoBBy Z storage errors to ouZ errors on qubits irE(T,), if the X

Irect analogy, there Is also one encoded qubit locateR.on 5,47 error correction phases 2] are pictured as alternat-
_ Next, We_show_that@,_R is an eigenstate 0K Xg and  ing in time.
Z,Zg, whereX andZ are the encoded Pauli operatotsand The syndrome information provided by Eq1) and(12)
Z, respectively, i.e.|#) r is an encoded Bell pair. The en- is not yet complete. There are two important issues to be
coded Pauli operatord13] on L and R are X g addressed(i) There are no syndrome bits at the vertices of
B — T, with uz=1 or u;=d; (ii) edges ofT, with u;=1 or uz=d
=®u, odXw,u, 1) fOr any even u, and Zir  haye only one end vertex, so errors that occur on these edges
=®u, everf(uyu,1d)) fOr any oddu,. To derive the Bell corre-  create only one syndrome bit. Concemifig, to get the

Asu=Xu, u,2Zlly cnywZ, WhereN, refers to a neighborhood

lations of |¢)  let us introduce 2D slices missing syndrome bits we will measure eigenvalgg and
\s, for the plaquette and the site stabilizer operators living
Te? ={u=(0,u30) € C}C Ty, on the facesA andB [see Eqs(7) and(8)]. Such measure-

ments are local operations withih or within B, so they
cannot increase entanglement betwéeand B. For anyu

(Ug) — 1=
Tz ={u=(u.ee) eCiCTe =(0,0,1) oru=(0,0,d) it follows from Eg. (8) that

.The.eigenvalue equatioHUET§3§>KU|¢>C:|¢>C with evenu, N T z=1 for us=1,
implies for the reduced state veNg(W)
- (13
X XR| ¥R = Mxxl LR 9) AsuX(uy up,0-1)Zu H( ) z,=1 for uz=d.
veNg(u

with )_‘X?FH”ET§<U>%+1)UT§<U§_1)Z”HUET%%)‘(LUWXU' Here a.nd. here- o any vertexu=(0,0,1) or u=(0,0,d) there are several
after it is understood that,=z,=1 for all ue C. Similarly,  eqges of the latticd, incident onu. It is easy to see that a
from [@)c=I1, . 1uyK,|$)e, for u; odd, we obtain for the re- sjngle 7 error that occurs on any of these edges changes a
duced state sign in Egs.(13). Thus, these two constraints yield the syn-
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drome bits living at the vertices=(0,0,1) andu=(0,0,d), Ty nonrivial, - vial e
so the issuéi) is addressed. Concernil(ig), we make use of | ° > i
Eq. (7) and obtain N . 7
MpXZu,u,2=1 forany u=(eel), = 149 ® ° P
(14 ! ,
NpXuZu u,d-n =1, forany u=(ee.d). 01 o '
: ; : ; ; } 1
Since we have only errors, the eigenvaluesy, and the 1 uy a !

outcomesz, u, 2, Zu, u,d-1) are not affected by errors. Thus
the syndrome bits Eq$14) are equal to -1 if and only if an FIG. 3. (Color online A homologically nontrivial and a homo-
error has occurred on the edge(e,e, 1) or u=(e,e,d) of logically trivial error cycle on the latticd,. The nontrivial error

the lattice T.. Since each of these errors shows itself in acycle stretches from one rough face to the opposite one while the
corresponding syndrome bit which is not affected by anytrivial error has both ends on the same face. Only the qubits belong-
other error, we can reliably identify these errors. This ising to T, are shown and the qubits important for establishing the
equivalent to actively correcting them with unit successX,Xg-correlation are displayed enlarged.

probability. We can therefore assume in the subsequent

analysis that no errors occur on the eddese,1) and

(e,e,d), which cor:jcl;_;des the d|scu§s_|on of the |I|S$l“_£‘ . code. Via the measurement pattern ), we may introduce
dAS n E]14]’ we Ie Ine ?n error ¢ ha'ﬁ as a codecélonho ¢ ttwo latticesT,, T, such that1) syndrome bits are located on
edges where an elementary €rror has occurred. Each o I?ﬁe vertices of these lattice€) independent errors live on

two latticesT, andT, has its own error chain. An error chain the edges and show a syndrome on their boundary,(@nd
£ shows a syndrome only at its boundaitf), and errors . L o )
only the homologically nontrivial cycles give rise to a logical

with the same boundary thus have the same syndrome. One

. : . efror. This error model can be mapped onto a random
vr\r/li?rzl ;(jg;]gfg an erroi only modulo a cycleb, &'=£+D, plaquetteZ,-gauge field theory in three dimensiofk2,15

There are homologically trivial and nontrivial cycles. A which undergoes a p_hase transif[ion between an ordered low-
cycleD is trivial if it is a closed loop inT, (T.), and homo- temperature and a disordered high-temperature phase. In the

logically nontrivial if it stretches from one rough face T limit of 1,d—ec, full error correction is possible in the low-
(T.) to another. A rough face here is the 2D analog of a rougtiemPerature phase. »
edge on a planar code3]. The rough faces of,, are on the In our setting, the error probabilities for all edges are
upper and lower sides @f and the rough faces df, are on  €dual top. For this case the critical error probability has been
the front and back of (recall that no errors occur on the left cOmputed numerically in a lattice simulatiofi6], p.
and right rough faces of,). =0.033+0.001. This value corresponds, via Eg), to T,
Let us now study the effect of error cycles on the identi-=(0.296+0.003A. . _

fication of the statéy) g from the measurement outcomes. Remark 1 The error model equivalent to E(B), i.e., Z
We only discuss the error chains dg here, which poten- errors only, is very restricted. We have a physical motivation
tially affect the eigenvalue Eq(9). The discussion of the for this model, but we would like to point out that the very
error chains inT—which disturb thez, Z correlations—is Strong assumptions we have made about the noise are not
analogous. An individual qubit error ane C will modify the ~ crucial to our result of the threshold error rate being nonzero.
X Xg correlation of|y) g if it affects eitherX,, Xg Or Axy. One may, for example, generallz.e. the error modgl from a
That happens ib e T2, Now, the vertices inT\"?" corre- dephasing channel to a depolarizing channel, viiff py

PP XX ’ ) XX i =p,=p’/3. Then, two changes need to be addressed, those in
spond to edges iil,. If an error cycleD in T, is homologi- h Kk h he f . h
cally trivial, it intersectsT\"? in an even number of vertices; the bulk and those on the facésand R Concernmg the
see Fig 3 This has nt))(Xeffect on the eigenvalue @ ' faces, the errors on the rough faces to the left and right, of
Howeve.r h.c the cycle is homologically nontrivial, i.e. if it canno longer be unambiguously identified by measurements

stretches between the upper and lower faceCothen it of the code stabilize(14), which raises the question of
- (up) - : [ whether—for depolarizing errors—it may be these surface
intersectsT, ' in an odd number of vertices. This does

modify the eigenvalue Eq) by a sign factor of-1) on the errors that set the threshold for long-range entanglement.

left-hand side, which leads to a logical error. Therefore, forTIhIS Is not the caset; To seehtr:jls, nohte Ithfat tV\éjO .S“r(;?;()f 2b
large system size, we require the probability of misinterpret'USter states may be attached to the left and right, at

ing the syndrome by a nontrivial cycle to be negligipte]: ~ Ys=0,~1 anduz=d+1, d+2. The required operations are
assumed to be perfect. They do not change the localizable

> prol(&) > prob(£+D|&) = 0. (15 entanglement between the left and right sides of the cldster
£ D nontrivial because they act locally on the slices -1,...,1 dnd. d

We have now traced back the problem of reconstructing aff 2: 'eSpectively. The subsetsandB of spins are relocated
encoded Bell paiy) g to the same setting that was found in t0 the slices -1 and+2, with the corresponding changes in
[12] to describe fault-tolerant data storage with the toricthe measurement pattern. The effect of this procedure is that
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0 . . . . — (@) TN R (b)
/'T// ' .—)—-\—. K
= AN 1.
21 o
4 . T S Ce0
4r e o . e |
g ///"// - x 1 T - e
ré; r T - e /% - 1
=) = }///*/ ] FIG. 5. (Color onling (a) Correspondence between physical and
T sl P ] virtual qubits. Domains are shown by dashed lings.A bipartite
= %/ ':- 5 cut of a cubic lattice. The regions andB are highlighted.
= . e — oric —
-10 T EL//// - Loric=7 — ||
T Lioric =9 —— code need only scalegarithmically with the distanced.
e . . Ltorig = 11+ —=— Remark 3 For evend, the construction presented above
3 4 5 6 7 8 can be used to mediate an encoded conditighglate on
1og dhoric distant encoded qubits located on slices 1 dnd
FIG. 4. This figure plots data for simulations of error correction IIl. UPPER BOUND
on anL X L X dy,ic lattice, with periodic boundary conditions in the ) ) ) _
first two directions, for various. and diyc (d=20c+1,/=2L). In this section we analyze the high-temperature behavior

The error rate isp=0.01. The logarithms have are baseTwo  of thermal cluster states and find an upper bound on the
standard deviations above and below the computed véhsegiven  critical temperatur& .. Our analysis is based on the isomor-
by statistical noise due to the sample sjza® shown by the error phism between cluster states and the so-called valence bond
bars. The solid lines each have slope 1, and they are spacesblids (VBSs) pointed out by Verstraete and Cirac [ih7]
equally apart. This lends good support to the model of fidelitywhich can easily be generalized to a finite temperature.
F~exd-dk;exp(-lkz)] for error rates below threshold. With each physical qubit e C we associate a domain s
of d(u) virtual qubits, whered(u)=|N(u)| is the number of

the leftmost and rightmost slices of the enlarged cluster areearest neighbors af [see Fig. 53)]. Let us label virtual
error free? and only the bulk errors matter. qubits from a domaim.* asu.v, v € N(u). DenoteE to be

Concerning the bulk, note that the cluster qubits measurethe set of edges of the lattie® and define a thermal VBS
in the Z basis serve no purpose and may be left out from thestatep, g5 as
beginning. Then, the considered lattice for the initial cluster 1
state has a bcc symmetry and double spacing. The lattices _ <
T,, Te remain unchanged. FurtheX, errors are absorbed in Pves= (;(}:[)i 200X, 2y )+ 02y, X, ). (16)
the X measurements and errors act likeZ errors, such that ) )
we still map to the original,, gauge model12] at the Nishi-  Here {w¢} are arbitrary weights such that<Que<1. It
mori line. The threshold for local depolarizing channels ap-should be emphasized tha{gs is a state of virtual qubits
plied to this configuration is thug,=3/2p,=4.9%. In addi- rather than physical ones. Our goal is to conyggsinto pcs
tion, numerical simulations performed for the initial simple Y local transformations mapping a domain into a single
cubic cluster and depolarizing channel yield an estimate oflubitu e C. The following theorem is a straightforward gen-

the critical error probability op!/=1.4%. eralization of the Verstraete and Cirac constructioare we
Remark 2. Finite-size effectVe carried out numerical PUtA/2=1).
simulations of error correction on anx|xd lattice with Theorem 1Let pcs be a thermal cluster state on the 3D

periodic boundary condition&s opposed to the open bound- cubic latticeC at a temperaturd@ = 871 Cons[der a the_rmal
ary conditions of the planar codes within the cluster $tate VBS statepygsas in Eq.(16) such that the weighte, satisfy
For differing error rates below the threshold value of 2.9%
[15], we found good agreement for the fidelfybetween the
perfect and the error-corrected encoded Bell state with the
modelF ~ exd —dk; exp(-Ik,)]. Some data are shown in Fig. Then pygs can be converted intpcs by applying a com-
4 corresponding to & error rate of 1.0%. Provided that pletely positive transformationV, to each domaini.*,
planar codes and toric codes have similar behavior away _ _

from threshold, our simulations suggest that, in order to pes=Wpves), W_fiW”' (18)
achieve constant fidelity, the lengttspecifying the surface

11 o) = tanh(B) for eachu e C. (17)
veN(u)

Let us first discuss the consequences of this theorem. Note

—_ ) ) that each edge € E of pyggcarries a two-qubit state
3The following operations are required to attach a slitpA(Z)

gates within the slice(ll) A(Z) gates between the slice and its next 1

neighboring slice, andll) X andZ measurements within the slice Pe= Z(l + 0X1Zo) (1 + weZ1X5). (19
(see Fig. 1 All these operations are assumed to be perfect, and the

errors on slices 1 and are not propagated to slices -1 a2 by ~ The Peres-Horodecki partial transpose criteifiv8,19 tells
the A(Z) gates(ll). us thatp, is separable if and only if».<y2-1. Consider a
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bipartite cut of the lattice by a hyperplane of codimension 1

[see Fig. B)]. We can satisfy Eq.17) by setting w,
=tanhB) for all edges crossing the cut and setting=1 for
all other edges. Clearly, the stat@gsis biseparable when-
ever taniyg)<\2-1. But biseparability ofp,gs implies

biseparability ofpcs We conclude that the localizable en-

tanglement between the regioAsand B is zero whenever
tanhB) < +v2-1, which yields the upper bound oR. pre-
sented earlier.

Remarks We can also satisfy Eq17) by settingw,=w

PHYSICAL REVIEW A71, 062313(2005

7]u: ]__[ w(U,U)' (22)

1
Wipved = 7ig L1 1+ mKo),
veN(u)

ueC

We can regard the state in E@2) as a thermal cluster state
with a local temperature taf,)= 7, depending uponu.
The inequality of Eq(17) implies thatB,= g for all u. To
achieve a uniform temperature distributigiy=/8 one can
intentionally apply loca errors with properly chosen prob-

for all e  E, with wS=tant(). This choice demonstrates that aPilities.

pcs is completely separable for tafB) < (v2-1)° (that is,
T=200. It reproduces the upper bourd@0] of Dir and

Briegel on the separability threshold error rate for cluster

states.

In the remainder of this section we prove Theorem 1.

IV. CONCLUSION

Thermal cluster states in three dimensions exhibit a tran-

Consider an algebra, of operators acting on some particu- sition from infinite to finite entanglement length at a nonzero

lar domainu.x*. It is generated by the Pauli operatig,
andX,, with v e N(u). The transformationV, maps.A, into
the one-qubit algebra generated by the Pauli operaipasd
X, First, we choose

Wa(m) =WigW,, W, = |029W)0] + 19wy,
One can easily check that
Wz, =zW and Zz,,W,=W,Z,, (20)

for anyv e N(u). As for commutation relations betweéi,
andX,, one has
Wi TT X We=x,,
veN(u)

WZ( I ><u_v)wu -0, (21)

veS

for any nonempty proper subse&C N(u). Taking W=
®uecWW, and using Eqs(20) and(21) one can easily get

transition temperaturd,. We have given a lower and an
upper bound td@, 0.3AA<T.=<1.15 (A is the energy gap of

the Hamiltonian. The reason fofl. being nonzero is an in-
trinsic error-correction capability of 3D cluster states. We
have devised an explicit measurement pattern that establishes
a connection between cluster states and surface codes. Using
this, we have described how to create a Bell state of far
separated encoded qubits in the low-temperature redime
<0.3A, making the entanglement contained in the initial
thermal state accessible for quantum communication and
computation.
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