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Identifying an experimental two-state Hamiltonian to arbitrary accuracy
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Precision control of a quantum system requires accurate determination of the effective system Hamiltonian.
We develop a method for estimating the Hamiltonian parameters for some unknown two-state system and
providing uncertainty bounds on these parameters. This method requires only one measurement basis and the
ability to initialize the system in some arbitrary state which is not an eigenstate of the Hamiltonian in question.
The scaling of the uncertainty is studied for large numbers of measurements and found to be proportional to the
reciprocal of the square root of the number of measurements.
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[. INTRODUCTION both the base Hamiltonian and the dependence on the control
field. In this work, we take a more pragmatic approach to the
problem of characterization of a two-state system. We pro-
MJide a method to answer the guestion “What measurements
) : . o oc Ifust be taken to determine the form of a two-state Hamil-
Ny .e.spe_c|ally hlgh—premsmn characterization, but Fh'stonian to a given precision?” Assuming that the system

Rvolves under some Hamiltonian, which corresponds to a

|n”quan:cum SléSterT‘S- For qu'tdS’ this characterlzatlc;‘n 1S ESLEertain “position on a dial” in the laboratory, the parameters
ally performed using state and process tomography, Wherg, . i particular Hamiltonian can be determined to some

the full deni'tﬁ m:ltrlxl is measured forr?_rangdg of ;j'ﬁehrentarbitrary precision. If the two-state system is to be used as a
input state$1-4]. An alternative approach is to directly char- qubit for quantum-information processin@IP) applica-

acterize the Hamiltonian, which then gives the evolutloq Oftions, the process can then be repeated for some other lin-

ful wh h heslased g Béarly independent Hamiltonian, giving two “axes” that are
useful when the system approacheslased system and g gicient to construct any arbitrary single-qubit rotat[@i.

;c/r\llir_lefo[]e_ its _(Iz:ynambms ﬁan be tr_eated as lpl!fe_'y Hamﬂtomgqn general, the response of the system to various dial settings
lle this will not be the case in general, it is an essential 4 pe required to construct efficient single-qubit gates. To

requirement for constructing a qubit for quantum-computingy, his the Hamiltonian parameters and their uncertainty

applications and is approximately true for many other SYSwould need to be determined for a number of points and the
tems of interest.

. response determined. In the case of linear response, this be-
. : . "tomes completely equivalent to the process discussed in Ref.
s_everal different pases or require the ability to perform rota 5] but more generally will require fitting to an appropriate
tions around part_lcular axes before the system has been co linctional form.

Pletely characterized. !n contrast, a ge”e“ﬂ?' procedure devel- The basic outline of this method and the relevant equa-
oped recently for identifying an arbitrary two-state ions are given in Secs. Il, Ill, and VI. The uncertainty in

Hamiltonian[5] requires measurement in only one basis angy,aqe estimates is then analyzed and a series of uncertainty

initialization in a single known state. The requirement for o a4iqng are given in Secs. V, VII, and VIl which allows the
only one measurement basis is especially attractive for Syg3,miitonian to be estimated with error bounds on all its

tems with I'm'ted measurement c_iewces, for ex"?‘mp'e man)barameters. Section IV covers some technical details on the
solid-state qubits. We build on this result by deriving a sys- qo of the discrete Fourier transfof@FT) to analyze the

fime series data and how its accuracy can be controlled for
Yhis particular application. In Sec. IX we numerically simu-
late this method for some example Hamiltonians and com-
pare the statistical spread of results with the estimated uncer-
tainty, finding very good agreement. We also investigate how
9he accuracy of the Hamiltonian parameters scales as a func-
tion of the number of measurements. Finally, in Sec. X we
discuss the effect of this scaling on the characterization and
*Electronic address: j.cole@physics.unimelb.edu.au operation of single-qubit gates for QIP applications.

High-precision control of quantum systems inevitably re-

any required accuracy from a time series of measureme
data.

In previous work[5] the Hamiltonian is assumed to be a
linear combination of some free-evolution Hamiltonian and
various control fields, where characterization requires findin
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FIG. 1. Bloch sphere representation of the state of a qubit and itg/lowed to evolve under the Hamiltonian to be measutéd and

FIG. 2. To mapz(t) the system must be repeatedly initialized,

trajectory given an arbitrary Hamiltoniah If the system is not in ~ then measured. To map the time evolution of the system, the Hamil-
an eigenstate of the Hamiltonian, the state given by the unit vectoionian step is applied for progressively longer time interls for

s precesses around an axis defineddbyrhe components o are i=1,2,...n) whereAt is j[he mln_lmum controll_able time |nterva!
given by the Hamiltonian using Eq1) where the|d| gives the — and to,=nAt is the maximum time over which the system is
angular precession frequency around the veCdQ;dy,dZ)T. observed.

Il. CHARACTERIZING A TWO-STATE HAMILTONIAN vector, as illustrated in Fig. 1. In these coordinates, the
o . _ _ Hamiltonian  vector is given by d=|d|(dy,d,.d,)"
Som_e_ insight into the t|me_ evolution of_an _arbltrary SU- = |d|[sin(6)cos &), sin(@)sin(4) ,cogH)]T. As the complex
perposition state can be gained by considering the BIOCEhase(qb) is unobservable in a single two-state system, we
sphere picture for a two-state system. The Hamiltonian of a an setp=0 and therefore align the Hamiltonian with the

arbitrary two-level system can be written in terms of the5yiq it the reference axes are defined based on experimental

Pauli matrices, grounds, this can be corrected with a trivial rotation.
d-o |[d If the system is initialized in the staté/(0))=|0) [which
H= T = ?(dol +dyoy + dyoy +d,o,), (1) corresponds t@=¢$=0 ors,=(0,0,1 7], the evolution of the

z component of the state vector is

whered,, d,, andd, are real constants ardj results in an

unobservable global phase factor which can be ignored. If _ .

the state of the system is mapped to the Bloch sphere, its 2(t) = cogwsirr(6) + cos(9), 2

position in the sphere is the Bloch vect® where|s <1,

with a pure state havings|=1. The evolution of the Bloch where w=|d| (in units such that:=1) (see Ref[5] or the

vector due to some HamiltoniafH) will be to precess Appendix for an alternative derivatiprDetermining the pa-

around a unit vectotd,,d,,d,)" with angular rotation fre- rametersw and cod(6) gives the values ofd|, d,, andd,.

quency given byd|. If the system is in an eigenstate of the Throughout this discussion, we assume that the Hamiltonian

Hamiltonian, the Bloch vector is parallel to the axis of rota-is constant in time and that the initial state of the system is

tion and therefore does not precess, as expected. This processt an eigenstate of the Hamiltonian, i.8# 0, otherwise

is illustrated in Fig. 1. the system will not precess. The process of characterizing the
If the system can be repeatedly initialized in a knownHamiltonian thus involves measurirag,(t) and analyzing it

state and then measured in some basis at progressively determine the appropriate parameters.

longer time periods, the trajectory of the Bloch vector can be

mapped. Assuming this is an idealized projective measure-

ment, the sinusoidal variation of the projection onto the mea- 1ll. ESTIMATING THE HAMILTONIAN PARAMETERS

surement axis depends on both the magnitude and direction FROM FOURIER COMPONENTS

of the vectord and therefore on the parameters in the Hamil-

tonian. A schematic of this process is shown in Fig. 2 where Oncez,(t) is determined, the data can be fitted in the time

the minimum controllable time interval is given iyt and  domain to determine the Hamiltonian parameféis While

the longest time the system is allowed to evolvgjgiving  this is sufficient for approximate estimates or data containing

the total number of time pointbls=t,,/At. This process is only a few oscillation periods, a more elegant method is to

then repeated\, times to build up an ensemble average fortake the discrete Fourier transform of the daté) and cal-

each time point, giving a total dfiy=Ngt,,/ At=NNg mea-  culate the parameters from the Fourier coefficients. This

surements. The true evolutiarit) is then approximated by method provides both the Hamiltonian parameters and an

the measured function(t). estimate of the uncertainty in these values. In order for this
For simplicity, we will use polar coordinates to describe method to be effective, the Hamiltonian must be constant in

both the position of the Bloch vector and the Hamiltoniantime, or more precisely, the fields controlling the Hamil-
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tonian must be stable to higher precision than that required @
for characterization. (a) WUWWWUW LA
As z(t) is a pure sinusoid, if,(t) consists of an integer (b) M/\\WH\/JW RO

number of periods of oscillation, its Fourier transfoRtw)

=F[zy(t)] will take on a simple form consisting aof func- () W\/W\/W (©)
tions atv=0 and 4, wherev, refers to the position of the @ \A/\/\/\/W\/\/\/ (d)

peaks. Usmg the definition of_the inverse dlscrete_Fourler Time (1) Frequency (v)
transformZ -, z,(t) can be rewritten in terms of the discrete
Fourier components for the zefB6(0)] and peak frequencies  FIG. 3. The left-hand plot shows an example of a sampled time
[F(vp)], signalz(t)=[cog2mxt) +1]/2 with No=1 (a), 2 (b), 8 (c), and 500(d)
Ng2 measurements at each time point, where each measurement is a
1 B 2N projection onto thg1,-1) axis. The corresponding DFT for each
FHF[z(D]} = _2 F(v)e2mNJ signal is shown on the right for=0, illustrating the signal-to-noise
v=oNg2 A . improvement as more measurements are taken at each time point.
— F(O) + F(Vp)eIZWth/NS+ F(— Vp)e—IZWth/NS

= F(0) + 2F(vp)cod 2mwgt/Ng = z(t).

IV. DETERMINING THE PRECESSION FREQUENCY TO
ARBITRARY ACCURACY

In this way, the angl#® and the angular precession frequency

w can be determined direcﬂy from the Fourier Spectrum Performing a discrete Fourier transform on the measure-

without the need for fitting the data in the time domain. ment results immediately places some constraints on the se-
The effect of a measurement error probabmty can also b&ction of the measurement parameters. In order to SatiSfy the

included by assuming some probabiligy [0,1] of obtain-  Nyquist sampling criteria, at least two sample points for ev-

ing the incorrect value from a single measurement. This cor€y Period of oscillation are required to avoid aliasing. This

responds to a bit-flip errofo,) occurring the instant before Means that some estimate for the oscillation pefigdic:

measurement with some probability Assuming the Bloch Must be known in order to guarantee thiai<Tpgc/2,

vector always starts 4#(0))=|0), z(t) should reach a maxi- though in practl_ce the period of osc_lllatlon will usufally be

mum of 1 after each period. The measurement error wilkNOWn approximately on theoretical or experimental

reduce this maximum, independent of the an@leand can  9rounds.

therefore be determined directly from the DFT. If we model Conventional DFT theory states that the frequency reso-

the effect of this measurement error agt)=(1-27)z(t), Igtion (Av) of a DFT_signaI is the_ inverse of half the total
then the following equations can be derived: time of the S|gn§IAv—2/tob [7]. This means that to resolve
the frequency signal we need to observe at least two com-

1-F(0) plete oscillation periods, though typically many more periods
= 2 F(vp), (3)  will need to be observed to obtain a clearly defined peak in
the frequency spectra. For an arbitrary signal the frequency
resolution of the spectra also limits the precision with which
cog6) = /&, (4) one can determine the frequen@yt Av). The more periods
1-29 observed the more accurate is the determined frequency of

oscillation. Ultimately this will be restricted by the decoher-
w=27vyNs. (5) ence time of th_e system as decoherenc_e reduces the ampli-
o tude of the oscillations for long observation times.

As we can only perform projective measurements onto 1o yse Eqs(3)~(5), we require that the observation time
one axis, many measurements are required to accurately dg: js an integer number of periods. To ensure this, we need
tgrmmezm(t)-, so Ny will typlca_lly b? quite large. Once the o know the precession frequency to the same precision as
time resolution and observation time are chosen, the meghe time control (Av/ vy~ At/t,). Conversely, if we can
surements for each time point can be repeated until a suffig,arantee that we have an integer number of periods, this
ciently resolved peak is seen in the DFT spectrum. An exyyjj| yield the corresponding frequency.
ample of this process is shown in Fig. 3 for progressively  The DFT of a pure sinusoid has some special properties in
larger numbers of measurements at each time point. In thig,5t it only approaches & function when the time signal
way, the number of measurements need not be chosen at thgnsists of an integer number of periodsere is no phase
start but the experiment is repeated until a sufficient signalyjifference between the start and end of the sigfid. If
to-noise ratio is obtained. there is some phase difference then the DFT has “leakage”

into the other channels, resulting in an overall spread of the
Uif the Hamiltonian has some random fluctuations, this will con- Signal throughout the spectrum. This effect is demonstrated
tribute to the noise level in the Fourier spectrum. The magnitude of? Fig. 4 _for example sinusoids having various values for the
this jitter can be found by performing this analysis with progres-phase _d'ffe_rencéAfP:<P(_O)‘<P(tob)] between the start and
sively higher numbers of time points. If the uncertainty in the pa-end points in the time signal.
rameters is found to asymptote, this provides an estimate for the Using this information, we can locate the minimum phase
stability of the Hamiltonian. point (MPP) where the difference in phase between the start
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width at half maximum(FWHM) of the functionP(t,) gives
(@ (@) an estimate for the uncertainty of the resulting frequency.
V. ESTIMATING THE UNCERTAINTY
() () IN THE MEASURED QUANTITIES

Time (t) Frequency (v)

For most practical applications, if we wish to estimate the
FIG. 4. The left-hand plot shows time signals which are trun-parameters of a two-state system, we also need to know the
cated at various time points to produce a net phase difference afncertainty in those estimates. For the rest of the discussion
Ag=m (a), w/2 (b), and 0(c) between the start and end of the we will use the following notationk is the estimate obtained
signal. The corresponding DFT for each signal is shown on theor some true value and o refers to the predicted standard
right, where the peak approaches &unction only forA¢=0. deviation of this estimate. In the ideal situatigr3ox<X
< x+30%, with 99.7% confidence.
and end of the signal is minimized. This amounts to selecting As we are determining the parameters of interest from the
only an integer number of periods of the signal. As the pecomponents of the Fourier spectrum, we have a straightfor-
riod of the signal is not known beforehand, the easiestvard way of calculating the uncertainty from the spectral
method is to record the data and then reprocess it later tooise. We define the noise spectrunfy) to be the parts of
ignore some of the data points. While this results in throwingthe Fourier spectrum which do not incluiétv,) andF(0).
away some information, the lost data consists of at most onhis is a good approximation wheyy, constitutes an integer
period. number of periods and thereforé+v,) andF(0) approachs
An effective way of locating the MPP is to compare the functions.
magnitude of the channel comprising the central frequency In general the noise due to the discrete measurement of
peak F(v,) and its adjoining channelg(v,—1) and F(v,  the system will be a limiting factor in the analysis, though
+1). When the leakage is minimized, the ratio of the centralother factors like noise in the control Hamiltonian will also
channel to its neighbors should be a maximum. An exampleontribute. The uncertainty in the frequency will be primarily
test function which was found to perform well with varying controlled by the precision in the time control of the mea-
levels of noise is surements. Ideally the uncertainty in the angular frequency
measurement should be of the same order as the time reso-
2F(vp) —F(rp= 1) —F(rp+ 1) (6)  lution in the measured signébw/w =~ At/ty). In practice a
Firp~D+F(pp+1) more accurate estimate for the uncertainty can be obtained
from the FWHM of P(t,), as discussed earlier. The uncer-
tainty in the anglesd and the measurement errén will be
primarily limited by the noise level in the Fourier spectrum.
Typically, the fractional uncertainty im will be an order of

P(tp) =

where once agaiR(v) is the normalized DFT of the original
signal from z,(0) to z(t,) wherety,—Toredicr=tp<top. AN

example plot ofP(ty) is shown in Fig. 5. A clear peak is
observed at the point where the phase of the sinuggids magnitude smaller than fa# or » as findingw only requires

an integer multiple of 2, i.e., ¢(0)=¢(t,=27m) for some  gqing the peak location whereas the other parameters de-
integerm. Once the MPP has been determined, the frequencyend on the peak height which is directly affected by the
is given by w=2mmn/t, wheren is the peak channel number spectral noise.

andt, is the MPP. _ _ The uncertainty in the Fourier peaks is given by the stan-
The advantage of this method is that the MPP can usually,ry geviation(s) of the noise spectrum. For simplicity we
be determined to an accuracy of closeAidt,, and the full will define 8F = [n(»)] and sw= 2/ WIP(t,)], whereW is
the FWHM so that the resulting uncertainty approximates the
predicted standard deviation of the parameter estimate. Once
we have the uncertainty in the frequengy and the Fourier
spectrumdF, using conventional uncertainty analyg we
can derive the expressions for the uncertainty in the calcu-
lated values. Throughout this discussion we will use the stan-
dard error propagation methd®] where the variance of
some functionow=f(x,y) is given in terms of the variances
var(x) and vaty) and the covariance c@v,y) betweerx and
y.2 In its simplest form, the variance of a function can be
calculated using

FIG. 5. The test functiof(t,) used to locate the point at which 2In this situation there is a correlation between the errofF (i)
there is zero phase difference between the first and last samplnd that inF(v,) as this error comes from the shared white-noise
points. The amount of the time signal to use in the DFT is given byfloor of the Fourier spectrum. This means the covariance is not zero
t, and the uncertainty is given by the FWHM Bfty). and is approximately equal to the variance of the noise signal itself.
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A El2 12 To rotates onto the equator, starting s we applyd, for
var(w) = | — | var(X) + | — | vany) a time
aX aY
oF |[ oF 1 {cos(zar) + 1]
7 &3 t=— arcco , (11
' 2[ ax} [ aY}COV(X’y)’ " o cos26) -1
for small variances in the measured parameters. which places the system in_stag=[cog),sin(g),0]"

Using this approach, the uncertainty in each of the calcuwhere g=arctafi-sed¢,)—2 cos26,)] [5]. If we then use
lated quantities in Eq$3) and(4) can be estimated using the this as the new initialization point, thecomponent of the
following equations: precession abouwt, is given by

3 = - i
on=2oF, ®) Z(t) =C[1 - codwyt)] + D sin(awyt), (12
where C=3 sin(26)cos¢-B) and D=sin(g)sin(¢-B).

E(O £ \2 s \2 This procedure can only be appliedéfe [7/4,3m/4]. If 6,
SAZ = ©) {( ) ( Ui ) } or 6 is not within this range, a more elaborate pulsing
1-27]\2F(0) 1-29 scheme is required. Once the two axksandd, have been

’ 1- 25— F(0) . characterized, measuring Ed.2) allows both Hamiltonians
— (9)  to be completely reconstructed.
(1-27) Using a similar method as in the previous section, the
and parameter€ andD can be determined from the components
of the Fourier spectrum,

60=(1-A?"V2sA, (10) w2
where A=cog6). FYUF[z, 0 = D F(p)e?2MNo
This process results in an estimate and its associated un- r=-Ng/2

certainty for the angular frequenay, rotation axis,d, and = F(0) + F (1) @2™0Ns + F (= p )& 12mptINs

measurement error. A simplistic error analysis is given Rp R Tp

here to illustrate the ideas. The use of more sophisticated +iF (1) @20 MNs — iF | (= ) e 2 Ns

techniques such as maximum-likelihood estimation should
. L . = +

provide tighter bounds on the estimated parameters for a F(0) + 2Fg(vp)cog2mupt/Ny)

given set of dat§3,10,11. — 2F(vp)sin(2mrvy/Ng) = z(1),
VI. DETERMINING THE PHASE ANGLE BETWEEN TWO where Fr and F, are the real and imaginary parts of the
HAMILTONIANS Fourier components. As the measurement error of the system

has already been determined from the measurements of the
The process discussed so far is sufficient to characterize @her axes, the constar@sandD can be determined directly
single two-state Hamiltonian, ak, can be arbitrarily set to using

zero. To provide a completely controllable two-state system,

such as is needed for QIP, a second control Hamiltonian is c="_ 2FR(VE) (13)
required to implement all possible single-qubit rotations. If (1-29)

we consider characterizing some reference Hamiltottn

we can use this to define the coordinate axes and then coAnd

sider a second Hamiltonigit,). This provides a second axis — 2F, (1)

to rotate around which must also be characterized and the D= —" 2, (14
angle ¢ between these two axes must be determined. To (1-27)

measure this azimuthal angle, a different initialization pointypage equations are valid if the MPP has been found exactly
must t_)el cho_sgn vyhose Bloqh vector is I|n.ear mde.penQent %ough this will very rarely be the case. Any error induced in
the original initialization point. A convenient choice is 10 e magnitude of the Fourier components by this effect will
rotate s around the first axigd,) until it is on the equator o small. but the error induced in the compieiase (de-
defl_ned byb=m/2. The s_econd Hamiltonian is then SV\_lltChed notedy so as not to be confused with the Hamiltonian angle
on instead and the qubit precesses arodpdrhe z projec- ) will not be negligible and must be corrected. We may do
tion of this rotation can then be used to determine the anglgjs by observing that in Eq12) the constant term and the

¢ between the two axes. Ad, and dy have already been negative amplitude of the cosine term must be equal. We can

completely characterized, the entire process can be boofefine the corrected complex anglgso that this is the case
strapped, progressively learning more information about thggjng

system. Of course, this process of measuring different

Hamiltonians is equivalent to measuring the dependence of a -F(0)

system Hamiltonian on the settings of a dial where each Xczarcco{ 2F (v )]’ (15)
Hamiltonian corresponds to a different value for the input P

parameters. such that the corrected Fourier component
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Fc(Vp) = |F(Vp)|[005()(c) +i sin(xo)] (16) tion of ¢ depends on three sets of measureméyisd,, and
) ] A,-p) Which are independent of each other.
is then used in Eq913) and (14). We can then define the uncertaintyAy_, in terms ofC

At this point, in order to keep track of the various sine andy, p a5
cosine terms and their uncertainties, we will introduce the

following notation. When dealing with an angle we u&g sc\2 [ oA, \% [ 8B, \?

. . , SA2 =2 =1+ k) o+ K (23
=coqg®) and dA,, to refer to the cosine of the angle and its =B~ "B

uncertainty, respectively. Likewise, we defiBg=sin(®) as

the sine of the angle giving the relationsiig=\1-B2 and or
Aq)&Aq):B(I)éB(I). ) 5 SD 2 5Bek 2
As the value offy has already been determinesican be oAy =Ryl |\ = | . (29
found from eitherC or D, depending on the value @. For D Bﬂk
Instance using Writing the cosine ofp as
: 3T N
Ag-p=C0d = p) = 2CIsin(26) = Cl(A4By). 6> =~ A,=cos¢) =AsA, 5~ BgB, g (25)
gives the uncertainty relationship
B, =sgr{D)\,1—A2_ , (17) 2 A2 252
=B ] B:,_ A BZA
SN = (A@_w —+58 )5A§+ <A§+ L8 )5A§_E.
or B B
B =B
. . 3T (26)
By-p=sin(¢— p) =DIsin(6) =DIB,, &< ry
VIII. ESTIMATING THE UNCERTAINTY IN THE
JE—
Ay p=\1- Bi_ 5 (18) HAMILTONIAN PARAMETERS
depending on the value d, will minimize the effects of Once the estimateé, ék, &, &, anda have been found,
noise. The angle is then given by the Hamiltonians can be estimated using the following equa-
$=arccosh, ) + B, 19
as eXpeCted' Hr = %(Bero'x + Aaro'z) = Hr,xo'x + Hr,zo'z (27)

As the rotation about the axgs can only be performed to
the same accuracy as the axis itself is characterized, the%d

will also be some uncertainty in the angle This can be

approximated by setting6, = 68, which gives the uncer- oo Wk
talnty r Hk - 2 (ngAqsa'x + B()de,O'y + Agko'z)
B =H +H +H , 28
5A,3 — _éﬁAHr (20) kxOx kyTy k,z0z (29
Bo, whereH;; is theith component of thg¢th Hamiltonian. The
) - uncertainty in each of the componentsHyfis given by
in Ag=cogp).
SH, |2 9 Swy \?
rX - r + T (29)
VII. ESTIMATING THE UNCERTAINTY IN ¢ A B, o
r,X r

The uncertainty ing will depend on the uncertainty in and
both the original axis characterization and the noise in the X
Fourier spectrum used to compu@eandD. The uncertainty (mr’Z)Z ~ ( 5Aar) .\ ( 5wr)2 (30

in the parameter€ andD can be calculated using 0 A, o
rz r r
2 2
2 _3 24 ‘ Y (21) For H, the component uncertainties are
2(1-27) (1-27) 2 5B \2 , ,
e e B e e
‘ 2 |? 2 Hicx By @k As
2= 2+ of (22
(1-29) (1-279) 2 /6B, \2 2 2
7 My |2 [ B} (92)7, (Bo)” 5y
where §F and 67 are those defined in Sec. V. Here, we have a B, Dk B,
ky k

ignored the covariance term to simplify the analysis. The
contribution due to correlated errors is small as the calculaand

062312-6



IDENTIFYING AN EXPERIMENTAL TWO-STATE... PHYSICAL REVIEW A 71, 062312(2005

0.1005 - T T T _ |d_a|

di

and a measure of the uncertainties is

—
- ‘ | spo Vo0t 8dy+ 5d; _ |od]
H di d
- — We simulated the characterization procedure for the ex-
ample system using;,=500, Ng=10 000, and\N.=50 with a
0.0495- i measurement error probability of 1004=0.1). Figure Ta)
- , , . shows a histogram dP for H, over 5000 simulated runs; the

10° 10’ 10° average uncertaintyD over 5000 runs is also shown. For
Number of Measurements this example 98.4% of the simulation runs lie withidZ3,
. L illustrating that the uncertainty provides a good bound on the
FIG. 6. An example of the systematic reduction in the uncer-, i ated parameters.

i f the Hamiltoni h f - o o S
inty of the Hamiltonian parameters as the number of measure- ", 4o 1 for H, shows a similar distribution, though
ments is increased. The error bars are given by three times th

uncertainty estimate for each point and the solid line gives thet%e absolute uncertainty is greater for a given number of

“true” value (H, ,=0.1, H, ,=0.05. The estimates are seen to con- measurements as more steps are required fo determine the
verge to the true value as the number of measurements is in(:rease'r@bz.'mUthaI anglezf)_. F'Qure 1b) shows _the _equwalent histo-
gram for determination of the Hamiltoniad, over 5000
) simulated runs. Three times the average uncertdiB8D)
SHio\2_ [ Py N <%< 2 (33) includes 98.7% of the data. The intervals for bBthand Dy
|:|kz B Ay, ' are elightly too small as aoeinte_rval_ should co_ntain ap-
' proximately 99.7% of the data. This discrepancy is due to the
effect of correlated errors between the Fourier components
IX. EXAMPLE SIMULATIONS SF and the uncertainty in the MPP locati6éw). In general,

To illustrate these ideas and determine the accuracy of th@S the noise level in the Fourier spectrum increases, the
parameter estimate and its uncertainty, we simulated th&idth of the peakP(t,) will also increase. This results in a
measurement procedure on an arbitrary example sybtem small correlation between the uncertaintiesviand 6 which
=0.10,+0.050,. Using an observation timig,=500 and pro- has not been taken into account. For a given set of experi-
gressively larger numbers of measurements, the increase inental data, the width d®(t,) and the standard deviation of
precision can be observed. In Fig. 6, the componknisand  the the noise floor of the Fourier spectrum will decrease as
H, , are plotted for increasing numbers of measurements. Théae number of measurements increases. The relationship be-
errors bars are given bysBl which should be equivalent to tween these errors can then be determine and willibe
the 3o level and the true value is shown as a solid line. Asgeneral nontrivial. The covariance can then be calculated,
the number of measurements increases, the uncertainty réxe result of which would be to add an additional term to
duces and the estimated values converge to the true value, Bgs. (27)<33) and therefore increasing the overall uncer-
expected. The complete process is then simulated using tainty. This additional term will be small as the fractional

second example HamiltoniariH,=0.60,+0.457,+0.10,)  yncertainty in@ is typically much smaller than i@ which

and similar results are obtained but with increased uncefmplies the covariance between them will also be small, rela-

tainty as the components bfy rely on the measurements of tjve to the other uncertainties.

both H, and Hy, so there is more scope for accumulated The measurement error estimédf® is found to be very

errors. well behaved, with 99.5% of the estimates lying within the
In order to compare the uncertainty calculated using therror bounds, which is very close to what is expected for a

equations in Sec. VIII with the expected spread of the datag, confidence interval. A histogram 6f is shown in Fig. 8

we repeated the simulations of the example system manyjth 35y labeled for 5000 runs, each run consistingNaf
times with the same number of measurements. By looking at 5% 10° measurements.

the spread of the resulting estimates from many experiments
and comparing this to the derived uncertainty from one ex-
periment we can confirm that the uncertainty provides a good B. Scaling behaviour of the uncertainty
bound. Providing a good error bound on the Hamiltonian

arameters alleviates the need to perform characterization The usefulness of this technique is ultimately governed by
P ; . d 10 p Fow many measurements are required to obtain a given pre-
many times to obtain good statistics.

cision in the final Hamiltonian estimate. To investigate this,
the example system was characterized with progressively
larger numbers of measurements. The average of the result-
To measure the distfince between the real Hamiltonia[hg estimated ur](;ertair'ﬂ:&l)r is p|otted in F|g 9 for several
vectord and its estimat&l we use the distance metric different values of the measurement erfgy. For increasing

(34)
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A. Accuracy of the uncertainty estimate
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uncertainty inHy is greater than foH, as more
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numbers of measurements, the Hamiltonian estimate getX. IMPLICATIONS FOR SINGLE-QUBIT ROTATIONS IN
progressively more accurate, as expected. This scaling is ap- QUANTUM COMPUTING
proximately proportional to VN with the achievable preci-
sion reduced by the effect of the measurement error. This In order to be able to perform single-qubit rotations of the
constant factor is effectively a “penalty” which depends ontype required for quantum-computing applications, a certain
the measurement error but is largely independent of the nunievel of accuracy is required. The threshold theorem for
ber of measurements. quantum error correction states that if a physical error rate of
From this type of analysis we can estimate how manyp=10%-10"° can be achieved then concatenated quantum
measurements are required to achieve a certain precision @rror correction protocols can be implemented successfully
the final result. Assuming all other factors are negligible, thefor arbitrary precision computatiod 2]. This physical error
achievable precision scales as the reciprocal of the squarate gives the probability of a discrete error due to decoher-
root of the number of measurements. Other factors, such @ance of the system. The errors introduced due to inaccurate
control field fluctuations, will ultimately limit this process. characterization will also contribute, though in a less predict-
This is easily identified as the achievable precision will tendable way. Typically, gate operations are assumed to have a
to asymptote to some value which is limited by these flucprecision of 10° or better but from the previous analysis,
tuations. this would require 1& measurements during characteriza-
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FIG. 8. The distribution of the estimated mea-
surement errof7) for 5000 simulated runs. For
this simulation, 99.5% of the estimates lie within
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tion. For a typical measurement readout time ofd this  tion measurementdl, the probability of discrete error on a
gives an initial characterization time of approximately single gate operation actually scales proportionalNid,
12 days. which requires only 19rather than 18 measurements.

This turns out to be an overly simplistic view as the pre- As well as errors induced by inaccurate knowledge of the
cision of the gate operations is not equivalent to the probHamiltonian angle(6), errors can also be introduced due to
ability of a discrete error due to decoherence. For a singl@n inaccurate rotation frequency, the “over-rotation error.” In
gate rotation around an ideal anglethe true rotation will be ~ general this will have a similar effect to an angle character-
around an angl@(1+e) and therefore the probability of a ization error adfor small errors they are equivalent. In ad-
discrete errom« ()2 where e~ 56/6. Given the previous dition, for the characterization process discussed in this pa-

discussion on the scaling @ with number of characteriza- P€" the percentage uncertainty in the rotation frequency is
typically an order of magnitude smaller than the uncertainty

102 in the Hamiltonian angle which means that angle errors are

Average 6D,
>
[

10 °f

— N2

9 O n=0.0
+ + n=0.1
x n=0.2

o}

10

FIG. 9. The average uncertaingD, of the estimate for the

4

10° 10°
Number of Measurements (N)

the dominant source of gate error.

For multiple gate operations, the probability of a discrete
error scales asp wheren is the number of gate operation
time steps and therefore the number of possible error loca-
tions[13], assuming that errors in different qubits are uncor-
related. In the worst case, the rotation error accumulates as
ne which givespr=np=(ne)?, the total probability of error
for n possible error locations. This means it is possitie
the worst casgfor the uncertainty in the angle to accumulate
over multiple rotations. This will not always be the case as
certain rotationgsuch as a 2 rotatior) are less susceptible
to characterization errors than others and it is possible to get
error cancellation. While this discussion is not ngi,13,
the 1/VN scaling of the achievable precision &8 highlights
the very real constraints imposed by the measurement and
therefore characterization time of any prospective quantum
computing proposal.

Several techniques exist for dealing with characterization

Hamiltonian H, as a function of total number of measurements. €770rs of this kind[14,15], much of which has recently re-
Each data point is the average of ten simulation runs. The solid lingained interest for QIP applicatiof$6,17. One such tech-
shows 14N whereN is the number of measurements. As the total Nique, which has been known in the NMR literature for some
number of measurements increases, the overall precision witHme, is composite pulsinfl8]. This involves carefully con-
which the Hamiltonian is known increases. For a random measurestructing a pulse sequence for a given rotation in order to
ment error, the achievable precision is reduced but still asymptotegeduce characterization errors in both the arigféresonant

to a scaling of the reciprocal of the square root of the number ofrrorg and the rotation frequendypulse length errojs Re-

measurements.

cent work by Brownet al.[19] has shown that in fact, sys-
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tematic characterization errors can be eliminated to arbitrargxperiments and build working devices for QIP. The trade-
order using strings of composite pules. For a single imperfecbff between more accurate initial characterization and more
gate with fractional errok, the resulting gate error can be sophisticated gate sequences allows these devices to be op-
reduced toO(e") for arbitrary n using a composite pulse timized for a particular application.

sequence whose length scalesrds Using this or similar

technique;, we can imagine a trade-off betwqen I'ong initial ACKNOWLEDGMENTS

characterization timélarge number of characterization mea-
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gate operationgslower operating spegdIn addition, by  with S. J. Devitt. This work was supported in part by the
choosing fine time samplinarge Ny we can obtain very Australian Research Council, the Australian government, the
precise frequency estimates at the expense of poor angulbkS. National Security Agency, the Advanced Research and
resolution due to small numbers of ensemble measuremenBevelopment Activity, and the U.S. Army Research Office
(No). The imprecise angular estimate could then be acunder Contract No. DAAD19-01-1-0653. S.G.S. and
counted for using composite pulsing. Similarly, poor timeD.K.L.O. acknowledge funding from the Cambridge-MI
resolution and large numbers of ensemble measurements will institute, Fujitsu, EPSRC, and EU Grants TOPQIP and
give accurate angle estimates at the expense of rotation frfRESQ. D.K.L.O. also thanks Sidney Sussex College for
quency resolution. There may also be situations where it iSupport.

advantageous to precisely characterize some gates and/or qu-

bits but not others. APPENDIX: DERIVATION OF THE TIME EVOLUTION
OF (o, UNDER AN ARBITRARY TWO-STATE
XI. CONCLUSION HAMILTONIAN
As the precision and level of complexity of qugntum con"  Given an arbitrary two-state Hamiltonian, we can write it
trol experiments increases, the accuracy to which pertmenl'r[1 terms of the Pauli matrices using Bd). The free evolu-
system parameters are known must also increase. While thﬂson of the svstem under this Hanqliltoni.an is qiven by the
is most commonly discussed in the context of quantum com- X SiHt i ; 1S9 y
. o . . .operatorU(t)=e™" which, using a generalized de Moivre
puting, the ability to precisely measure the terms in an arbi-

trary Hamiltonian has much broader application to the StudJormula[ZO], can be rewritten as

of quantum systems. . ldit\ .~ . ([dlt
The procedure given here for characterizing an arbitrary U(t) = e | COS(;) —id 'GSIH(7) . (A1)
two-state Hamiltonian has distinct advantages over other
methods. Given only one measurement axis and assumirlfthe system is initially in the staté)(0))=|0) (#=¢=0)
the system can be repeatedly initialized in a single statéhen (converting to polar coordinateshe evolution of the
which is not an eigenstate of the Hamiltonian to be characsystem is given by
terized, the Hamiltonian parameters can be determined to
arbitrary accuracy. By taking the discrete Fourier transform (1)) = U(D)]440))
of a series of measurements of the evolution of the system, . ldlt ldt
the parameters in the Hamiltonian can be computed directly = gdot2 COS(;) —icosf sin<7> 0)
from the Fourier components.
Using signal-processing techniques, the uncertainty in the ) (dt) . _
Hamiltonian parameters can be estimated and we have de- *+singsin == J(sin¢ i cosg)|L) (. (A2)
rived example expressions for these uncertainties. If a ran-
dom measurement error is present, this too can be charactdrhe observable in this case is the projection ontozlais
ized with an uncertainty. This uncertainty estimate is foundso we will usez=|0)(0|-|1)(1| as the operator which gives
to scale proportionally to the reciprocal of the square root othe expectation value of theprojection,
the total number of measurements. The introduction of mea- 3 ;
surement error reduces the achievable precision by a constant (o) = (@) = (WO Z (D)) (A3)
factor which is independent of the number of measurementster canceling the global phase and rearranging terms, this
In the laboratory, this procedure can be applied as thgecomes
experiment progresses, giving an increasingly more accurate di di
estimate of the parameters in question. It also means that if _ . .
the response of a Hamiltonian to a given input parameter is (o9 = C°§<7) +(cos' = sir? 0)5'n2<7
required, as the input parameter is varied, the resulting sys- ) )
tem can be determine with an uncertainty at each point. Thi§f We set|d|=w, the angular frequency of the precession, this
enables the usughon)linear fitting routines to be applied to dives the time dependence of th@rojection
the pr_oblem to find the general response functi_on. o 2(t) = (o) = coswt SiN? 6+ cog 6, (A5)
Being able to accurately characterize a Hamiltonian is vi-
tally important if we are to move beyond proof-of-conceptas expected.

) . (A%
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