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Precision control of a quantum system requires accurate determination of the effective system Hamiltonian.
We develop a method for estimating the Hamiltonian parameters for some unknown two-state system and
providing uncertainty bounds on these parameters. This method requires only one measurement basis and the
ability to initialize the system in some arbitrary state which is not an eigenstate of the Hamiltonian in question.
The scaling of the uncertainty is studied for large numbers of measurements and found to be proportional to the
reciprocal of the square root of the number of measurements.
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I. INTRODUCTION

High-precision control of quantum systems inevitably re-
quires high-precision characterization of the system dynam-
ics. Quantum computers are an example of a device requir-
ing especially high-precision characterization, but this
precision is also required for detailed studies of interactions
in quantum systems. For qubits, this characterization is usu-
ally performed using state and process tomography, where
the full density matrix is measured for a range of different
input statesf1–4g. An alternative approach is to directly char-
acterize the Hamiltonian, which then gives the evolution of
the system for any initial state. This approach is especially
useful when the system approaches aclosed system and
therefore its dynamics can be treated as purely Hamiltonian.
While this will not be the case in general, it is an essential
requirement for constructing a qubit for quantum-computing
applications and is approximately true for many other sys-
tems of interest.

Tomographic methods typically require measurement in
several different bases or require the ability to perform rota-
tions around particular axes before the system has been com-
pletely characterized. In contrast, a general procedure devel-
oped recently for identifying an arbitrary two-state
Hamiltonianf5g requires measurement in only one basis and
initialization in a single known state. The requirement for
only one measurement basis is especially attractive for sys-
tems with limited measurement devices, for example many
solid-state qubits. We build on this result by deriving a sys-
tematic method to calculate the Hamiltonian parameters to
any required accuracy from a time series of measurement
data.

In previous workf5g the Hamiltonian is assumed to be a
linear combination of some free-evolution Hamiltonian and
various control fields, where characterization requires finding

both the base Hamiltonian and the dependence on the control
field. In this work, we take a more pragmatic approach to the
problem of characterization of a two-state system. We pro-
vide a method to answer the question “What measurements
must be taken to determine the form of a two-state Hamil-
tonian to a given precision?” Assuming that the system
evolves under some Hamiltonian, which corresponds to a
certain “position on a dial” in the laboratory, the parameters
for this particular Hamiltonian can be determined to some
arbitrary precision. If the two-state system is to be used as a
qubit for quantum-information processingsQIPd applica-
tions, the process can then be repeated for some other lin-
early independent Hamiltonian, giving two “axes” that are
sufficient to construct any arbitrary single-qubit rotationf6g.
In general, the response of the system to various dial settings
would be required to construct efficient single-qubit gates. To
do this, the Hamiltonian parameters and their uncertainty
would need to be determined for a number of points and the
response determined. In the case of linear response, this be-
comes completely equivalent to the process discussed in Ref.
f5g but more generally will require fitting to an appropriate
functional form.

The basic outline of this method and the relevant equa-
tions are given in Secs. II, III, and VI. The uncertainty in
these estimates is then analyzed and a series of uncertainty
relations are given in Secs. V, VII, and VIII which allows the
Hamiltonian to be estimated with error bounds on all its
parameters. Section IV covers some technical details on the
use of the discrete Fourier transformsDFTd to analyze the
time series data and how its accuracy can be controlled for
this particular application. In Sec. IX we numerically simu-
late this method for some example Hamiltonians and com-
pare the statistical spread of results with the estimated uncer-
tainty, finding very good agreement. We also investigate how
the accuracy of the Hamiltonian parameters scales as a func-
tion of the number of measurements. Finally, in Sec. X we
discuss the effect of this scaling on the characterization and
operation of single-qubit gates for QIP applications.*Electronic address: j.cole@physics.unimelb.edu.au
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II. CHARACTERIZING A TWO-STATE HAMILTONIAN

Some insight into the time evolution of an arbitrary su-
perposition state can be gained by considering the Bloch
sphere picture for a two-state system. The Hamiltonian of an
arbitrary two-level system can be written in terms of the
Pauli matrices,

H =
d · s

2
=

udu
2

sd0I + dxsx + dysy + dzszd, s1d

wheredx, dy, anddz are real constants andd0 results in an
unobservable global phase factor which can be ignored. If
the state of the system is mapped to the Bloch sphere, its
position in the sphere is the Bloch vectorssd where usuø1,
with a pure state havingusu=1. The evolution of the Bloch
vector due to some HamiltoniansHd will be to precess
around a unit vectorsdx,dy,dzdT with angular rotation fre-
quency given byudu. If the system is in an eigenstate of the
Hamiltonian, the Bloch vector is parallel to the axis of rota-
tion and therefore does not precess, as expected. This process
is illustrated in Fig. 1.

If the system can be repeatedly initialized in a known
state and then measured in some basis at progressively
longer time periods, the trajectory of the Bloch vector can be
mapped. Assuming this is an idealized projective measure-
ment, the sinusoidal variation of the projection onto the mea-
surement axis depends on both the magnitude and direction
of the vectord and therefore on the parameters in the Hamil-
tonian. A schematic of this process is shown in Fig. 2 where
the minimum controllable time interval is given byDt and
the longest time the system is allowed to evolve istob giving
the total number of time pointsNs= tob/Dt. This process is
then repeatedNe times to build up an ensemble average for
each time point, giving a total ofNT=Netob/Dt=NeNs mea-
surements. The true evolutionzstd is then approximated by
the measured functionzmstd.

For simplicity, we will use polar coordinates to describe
both the position of the Bloch vector and the Hamiltonian

vector, as illustrated in Fig. 1. In these coordinates, the
Hamiltonian vector is given by d= udusdx,dy,dzdT

= udufsinsudcossfd ,sinsudsinsfd ,cossudgT. As the complex
phasesfd is unobservable in a single two-state system, we
can setf=0 and therefore align the Hamiltonian with thex
axis. If the reference axes are defined based on experimental
grounds, this can be corrected with a trivial rotation.

If the system is initialized in the stateucs0dl= u0l fwhich
corresponds tou=f=0 ors0=s0,0,1dTg, the evolution of the
z component of the state vector is

zstd = cossvtdsin2sud + cos2sud, s2d

where v= udu sin units such that"=1d ssee Ref.f5g or the
Appendix for an alternative derivationd. Determining the pa-
rametersv and cos2sud gives the values ofudu, dx, and dz.
Throughout this discussion, we assume that the Hamiltonian
is constant in time and that the initial state of the system is
not an eigenstate of the Hamiltonian, i.e.,uÞ0, otherwise
the system will not precess. The process of characterizing the
Hamiltonian thus involves measuringzmstd and analyzing it
to determine the appropriate parameters.

III. ESTIMATING THE HAMILTONIAN PARAMETERS
FROM FOURIER COMPONENTS

Oncezmstd is determined, the data can be fitted in the time
domain to determine the Hamiltonian parametersf5g. While
this is sufficient for approximate estimates or data containing
only a few oscillation periods, a more elegant method is to
take the discrete Fourier transform of the datazmstd and cal-
culate the parameters from the Fourier coefficients. This
method provides both the Hamiltonian parameters and an
estimate of the uncertainty in these values. In order for this
method to be effective, the Hamiltonian must be constant in
time, or more precisely, the fields controlling the Hamil-

FIG. 1. Bloch sphere representation of the state of a qubit and its
trajectory given an arbitrary Hamiltoniand. If the system is not in
an eigenstate of the Hamiltonian, the state given by the unit vector
s precesses around an axis defined byd. The components ofd are
given by the Hamiltonian using Eq.s1d where theudu gives the
angular precession frequency around the vectorsdx,dy,dzdT.

FIG. 2. To mapzstd the system must be repeatedly initialized,
allowed to evolve under the Hamiltonian to be measuredHstd and
then measured. To map the time evolution of the system, the Hamil-
tonian step is applied for progressively longer time intervalssiDt for
i =1,2, . . . ,nd whereDt is the minimum controllable time interval
and tob=nDt is the maximum time over which the system is
observed.
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tonian must be stable to higher precision than that required
for characterization.1

As zstd is a pure sinusoid, ifzmstd consists of an integer
number of periods of oscillation, its Fourier transformFsnd
=F fzmstdg will take on a simple form consisting ofd func-
tions atn=0 and ±np wherenp refers to the position of the
peaks. Using the definition of the inverse discrete Fourier
transformF−1, zmstd can be rewritten in terms of the discrete
Fourier components for the zerofFs0dg and peak frequencies
fFsnpdg,

F−1hF fzmstdgj = o
n=−Ns/2

Ns/2

Fsndei2psn/Nsdt

= Fs0d + Fsnpdei2pnpt/Ns + Fs− npde−i2pnpt/Ns

= Fs0d + 2Fsnpdcoss2pnpt/Nsd . zstd.

In this way, the angleu and the angular precession frequency
v can be determined directly from the Fourier spectrum
without the need for fitting the data in the time domain.

The effect of a measurement error probability can also be
included by assuming some probabilityhP f0,1g of obtain-
ing the incorrect value from a single measurement. This cor-
responds to a bit-flip errorssxd occurring the instant before
measurement with some probabilityh. Assuming the Bloch
vector always starts atucs0dl= u0l, zstd should reach a maxi-
mum of 1 after each period. The measurement error will
reduce this maximum, independent of the angleur, and can
therefore be determined directly from the DFT. If we model
the effect of this measurement error aszmstd=s1−2hdzstd,
then the following equations can be derived:

h =
1 − Fs0d

2
− Fsnpd, s3d

cossud =Î Fs0d
1 − 2h

, s4d

v = 2pnp/Ns. s5d

As we can only perform projective measurements onto
one axis, many measurements are required to accurately de-
terminezmstd, so NT will typically be quite large. Once the
time resolution and observation time are chosen, the mea-
surements for each time point can be repeated until a suffi-
ciently resolved peak is seen in the DFT spectrum. An ex-
ample of this process is shown in Fig. 3 for progressively
larger numbers of measurements at each time point. In this
way, the number of measurements need not be chosen at the
start but the experiment is repeated until a sufficient signal-
to-noise ratio is obtained.

IV. DETERMINING THE PRECESSION FREQUENCY TO
ARBITRARY ACCURACY

Performing a discrete Fourier transform on the measure-
ment results immediately places some constraints on the se-
lection of the measurement parameters. In order to satisfy the
Nyquist sampling criteria, at least two sample points for ev-
ery period of oscillation are required to avoid aliasing. This
means that some estimate for the oscillation periodTpredict
must be known in order to guarantee thatDt,Tpredict/2,
though in practice the period of oscillation will usually be
known approximately on theoretical or experimental
grounds.

Conventional DFT theory states that the frequency reso-
lution sDnd of a DFT signal is the inverse of half the total
time of the signal,Dn=2/tob f7g. This means that to resolve
the frequency signal we need to observe at least two com-
plete oscillation periods, though typically many more periods
will need to be observed to obtain a clearly defined peak in
the frequency spectra. For an arbitrary signal the frequency
resolution of the spectra also limits the precision with which
one can determine the frequencysn±Dnd. The more periods
observed the more accurate is the determined frequency of
oscillation. Ultimately this will be restricted by the decoher-
ence time of the system as decoherence reduces the ampli-
tude of the oscillations for long observation times.

To use Eqs.s3d–s5d, we require that the observation time
tob is an integer number of periods. To ensure this, we need
to know the precession frequency to the same precision as
the time controlsDn /np<Dt / tobd. Conversely, if we can
guarantee that we have an integer number of periods, this
will yield the corresponding frequency.

The DFT of a pure sinusoid has some special properties in
that it only approaches ad function when the time signal
consists of an integer number of periodssthere is no phase
difference between the start and end of the signald f7g. If
there is some phase difference then the DFT has “leakage”
into the other channels, resulting in an overall spread of the
signal throughout the spectrum. This effect is demonstrated
in Fig. 4 for example sinusoids having various values for the
phase differencefDw=ws0d−wstobdg between the start and
end points in the time signal.

Using this information, we can locate the minimum phase
point sMPPd where the difference in phase between the start

1If the Hamiltonian has some random fluctuations, this will con-
tribute to the noise level in the Fourier spectrum. The magnitude of
this jitter can be found by performing this analysis with progres-
sively higher numbers of time points. If the uncertainty in the pa-
rameters is found to asymptote, this provides an estimate for the
stability of the Hamiltonian.

FIG. 3. The left-hand plot shows an example of a sampled time
signalzstd=fcoss2ptd+1g /2 with Ne=1 sad, 2 sbd, 8 scd, and 500sdd
measurements at each time point, where each measurement is a
projection onto thes1,−1d axis. The corresponding DFT for each
signal is shown on the right fornù0, illustrating the signal-to-noise
improvement as more measurements are taken at each time point.
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and end of the signal is minimized. This amounts to selecting
only an integer number of periods of the signal. As the pe-
riod of the signal is not known beforehand, the easiest
method is to record the data and then reprocess it later to
ignore some of the data points. While this results in throwing
away some information, the lost data consists of at most one
period.

An effective way of locating the MPP is to compare the
magnitude of the channel comprising the central frequency
peak Fsnpd and its adjoining channelsFsnp−1d and Fsnp

+1d. When the leakage is minimized, the ratio of the central
channel to its neighbors should be a maximum. An example
test function which was found to perform well with varying
levels of noise is

Pstpd =
2Fsnpd − Fsnp − 1d − Fsnp + 1d

Fsnp − 1d + Fsnp + 1d
, s6d

where once againFsnd is the normalized DFT of the original
signal from zms0d to zmstpd where tob−Tpredictø tpø tob. An
example plot ofPstpd is shown in Fig. 5. A clear peak is
observed at the point where the phase of the sinusoidswd is
an integer multiple of 2p, i.e., ws0d=wstp=2pmd for some
integerm. Once the MPP has been determined, the frequency
is given byv=2pn/ tp wheren is the peak channel number
and tp is the MPP.

The advantage of this method is that the MPP can usually
be determined to an accuracy of close toDt / tob and the full

width at half maximumsFWHMd of the functionPstpd gives
an estimate for the uncertainty of the resulting frequency.

V. ESTIMATING THE UNCERTAINTY
IN THE MEASURED QUANTITIES

For most practical applications, if we wish to estimate the
parameters of a two-state system, we also need to know the
uncertainty in those estimates. For the rest of the discussion
we will use the following notation:x̂ is the estimate obtained
for some true valuex anddx refers to the predicted standard
deviation of this estimate. In the ideal situationx−3dxø x̂
øx+3dx, with 99.7% confidence.

As we are determining the parameters of interest from the
components of the Fourier spectrum, we have a straightfor-
ward way of calculating the uncertainty from the spectral
noise. We define the noise spectrumnsnd to be the parts of
the Fourier spectrum which do not includeFs±npd andFs0d.
This is a good approximation whentob constitutes an integer
number of periods and thereforeFs±npd andFs0d approachd
functions.

In general the noise due to the discrete measurement of
the system will be a limiting factor in the analysis, though
other factors like noise in the control Hamiltonian will also
contribute. The uncertainty in the frequency will be primarily
controlled by the precision in the time control of the mea-
surements. Ideally the uncertainty in the angular frequency
measurement should be of the same order as the time reso-
lution in the measured signalsdv /v<Dt / tobd. In practice a
more accurate estimate for the uncertainty can be obtained
from the FWHM of Pstpd, as discussed earlier. The uncer-
tainty in the angledu and the measurement errordh will be
primarily limited by the noise level in the Fourier spectrum.
Typically, the fractional uncertainty inv will be an order of
magnitude smaller than foru or h as findingv only requires
finding the peak location whereas the other parameters de-
pend on the peak height which is directly affected by the
spectral noise.

The uncertainty in the Fourier peaks is given by the stan-
dard deviationsSd of the noise spectrum. For simplicity we
will define dF=S fnsndg anddv=2p /W fPstpdg, whereW is
the FWHM so that the resulting uncertainty approximates the
predicted standard deviation of the parameter estimate. Once
we have the uncertainty in the frequencydv and the Fourier
spectrumdF, using conventional uncertainty analysisf8g we
can derive the expressions for the uncertainty in the calcu-
lated values. Throughout this discussion we will use the stan-
dard error propagation methodf9g where the variance of
some functionw= fsx,yd is given in terms of the variances
varsx̂d and varsŷd and the covariance covsx,yd betweenx and
y.2 In its simplest form, the variance of a function can be
calculated using

2In this situation there is a correlation between the error inFs0d
and that inFsnpd as this error comes from the shared white-noise
floor of the Fourier spectrum. This means the covariance is not zero
and is approximately equal to the variance of the noise signal itself.

FIG. 4. The left-hand plot shows time signals which are trun-
cated at various time points to produce a net phase difference of
Dw=p sad, p /2 sbd, and 0 scd between the start and end of the
signal. The corresponding DFT for each signal is shown on the
right, where the peak approaches ad function only forDw<0.

FIG. 5. The test functionPstpd used to locate the point at which
there is zero phase difference between the first and last sample
points. The amount of the time signal to use in the DFT is given by
tp and the uncertainty is given by the FWHM ofPstpd.
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varsŵd = F ]F

]X
G2

varsx̂d + F ]F

]Y
G2

varsŷd

+ 2F ]F

]X
GF ]F

]Y
Gcovsx̂,ŷd, s7d

for small variances in the measured parameters.
Using this approach, the uncertainty in each of the calcu-

lated quantities in Eqs.s3d ands4d can be estimated using the
following equations:

dh =
3

2
dF, s8d

dA2 =
Fs0d

1 − 2h
FS dF

2Fs0dD
2

+ S dh

1 − 2h
D2G

+ U1 − 2h − Fs0d
s1 − 2hd3 UdF2 s9d

and

du = us1 − A2d−1/2udA, s10d

whereA=cossud.
This process results in an estimate and its associated un-

certainty for the angular frequencyv, rotation axis,u, and
measurement errorh. A simplistic error analysis is given
here to illustrate the ideas. The use of more sophisticated
techniques such as maximum-likelihood estimation should
provide tighter bounds on the estimated parameters for a
given set of dataf3,10,11g.

VI. DETERMINING THE PHASE ANGLE BETWEEN TWO
HAMILTONIANS

The process discussed so far is sufficient to characterize a
single two-state Hamiltonian, asdy can be arbitrarily set to
zero. To provide a completely controllable two-state system,
such as is needed for QIP, a second control Hamiltonian is
required to implement all possible single-qubit rotations. If
we consider characterizing some reference HamiltoniansHrd,
we can use this to define the coordinate axes and then con-
sider a second HamiltoniansHkd. This provides a second axis
to rotate around which must also be characterized and the
angle f between these two axes must be determined. To
measure this azimuthal angle, a different initialization point
must be chosen whose Bloch vector is linear independent of
the original initialization point. A convenient choice is to
rotates around the first axissdrd until it is on the equator
defined byu=p /2. The second Hamiltonian is then switched
on instead and the qubit precesses arounddk. The z projec-
tion of this rotation can then be used to determine the angle
f between the two axes. Asdr and dk have already been
completely characterized, the entire process can be boot-
strapped, progressively learning more information about the
system. Of course, this process of measuring different
Hamiltonians is equivalent to measuring the dependence of a
system Hamiltonian on the settings of a dial where each
Hamiltonian corresponds to a different value for the input
parameters.

To rotates onto the equator, starting ats0 we applydr for
a time

t =
1

vr
arccosFcoss2urd + 1

coss2urd − 1
G , s11d

which places the system in states1=fcossbd ,sinsbd ,0gT

where b=arctanf−secsurdÎ−2 coss2urdg f5g. If we then use
this as the new initialization point, thez component of the
precession aboutdk is given by

zstd = Cf1 − cossvktdg + D sinsvktd, s12d

where C= 1
2 sins2ukdcossf−bd and D=sinsukdsinsf−bd.

This procedure can only be applied ifur P fp /4 ,3p /4g. If ur

or uk is not within this range, a more elaborate pulsing
scheme is required. Once the two axesdr anddk have been
characterized, measuring Eq.s12d allows both Hamiltonians
to be completely reconstructed.

Using a similar method as in the previous section, the
parametersC andD can be determined from the components
of the Fourier spectrum,

F−1hF fzmstdgj = o
n=−Ns/2

Ns/2

Fsndei2psn/Nsdt

= Fs0d + FRsnpdei2pnpt/Ns + FRs− npde−i2pnpt/Ns

+ iFIsnpdei2pnpt/Ns − iFIs− npde−i2pnpt/Ns

= Fs0d + 2FRsnpdcoss2pnpt/Nsd

− 2FIsnpdsins2pnp/Nsd . zstd,

where FR and FI are the real and imaginary parts of the
Fourier components. As the measurement error of the system
has already been determined from the measurements of the
other axes, the constantsC andD can be determined directly
using

C =
− 2FRsnpd
s1 − 2hd

s13d

and

D =
− 2FIsnpd
s1 − 2hd

. s14d

These equations are valid if the MPP has been found exactly,
though this will very rarely be the case. Any error induced in
the magnitude of the Fourier components by this effect will
be small, but the error induced in the complexphasesde-
notedx so as not to be confused with the Hamiltonian angle
ud will not be negligible and must be corrected. We may do
this by observing that in Eq.s12d the constant term and the
negative amplitude of the cosine term must be equal. We can
define the corrected complex anglexc so that this is the case
using

xc = arccosF − Fs0d
2FRsnpdG , s15d

such that the corrected Fourier component
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Fcsnpd = uFsnpdufcossxcd + i sinsxcdg s16d

is then used in Eqs.s13d and s14d.
At this point, in order to keep track of the various sine and

cosine terms and their uncertainties, we will introduce the
following notation. When dealing with an angle we useAF

=cossF̂d anddAF to refer to the cosine of the angle and its

uncertainty, respectively. Likewise, we defineBF=sinsF̂d as
the sine of the angle giving the relationshipAF=Î1−BF

2 and
AFdAF=BFdBF.

As the value ofuk has already been determined,f can be
found from eitherC or D, depending on the value ofuk. For
instance using

Af−b = cossf − bd = 2C/sins2ukd = C/sAuk
Buk

d, uk .
3p

8
,

Bf−b = sgnsDdÎ1 − Af−b
2 , s17d

or

Bf−b = sinsf − bd = D/sinsukd = D/Buk
, uk ,

3p

8
,

Af−b = Î1 − Bf−b
2 , s18d

depending on the value ofuk, will minimize the effects of
noise. The anglef is then given by

f = arccossAf−bd + b, s19d

as expected.
As the rotation about the axisdr can only be performed to

the same accuracy as the axis itself is characterized, there

will also be some uncertainty in the angleb̂. This can be
approximated by settingdur <db, which gives the uncer-
tainty

dAb =
Bb

Bur

dAur
s20d

in Ab=cossb̂d.

VII. ESTIMATING THE UNCERTAINTY IN f

The uncertainty inf̂ will depend on the uncertainty in
both the original axis characterization and the noise in the
Fourier spectrum used to computeC andD. The uncertainty
in the parametersC andD can be calculated using

dC2 = U 3

2s1 − 2hd
U2

dF2 + U 2C

s1 − 2hd
U2

dh2 s21d

and

dD2 = U 2

s1 − 2hd
U2

dF2 + U 2D

s1 − 2hd
U2

dh2 s22d

wheredF anddh are those defined in Sec. V. Here, we have
ignored the covariance term to simplify the analysis. The
contribution due to correlated errors is small as the calcula-

tion of f depends on three sets of measurementssdr, dk, and
Af−bd which are independent of each other.

We can then define the uncertainty inAf−b in terms ofC
or D as

dAf−b
2 = Af−b

2 FSdC

C
D2

+ SdAuk

Auk

D2

+ SdBuk

Buk

D2G s23d

or

dAf−b
2 = Af−b

2 FSdD

D
D2

+ SdBuk

Buk

D2G . s24d

Writing the cosine off̂ as

Af = cossf̂d = AbAf−b − BbBf−b s25d

gives the uncertainty relationship

dAf
2 = SAf−b

2 +
Bf−b

2 Ab
2

Bb
2 DdAb

2 + SAb
2 +

Bb
2Af−b

2

Bf−b
2 DdAf−b

2 .

s26d

VIII. ESTIMATING THE UNCERTAINTY IN THE
HAMILTONIAN PARAMETERS

Once the estimatesûr, ûk, f̂, v̂r, andv̂k have been found,
the Hamiltonians can be estimated using the following equa-
tions:

Ĥr =
v̂r

2
sBur

sx + Aur
szd = Hr,xsx + Hr,zsz s27d

and

Ĥk =
v̂k

2
sBuk

Afsx + Buk
Bfsy + Auk

szd

= Hk,xsx + Hk,ysy + Hk,zsz, s28d

whereHj ,i is the ith component of thej th Hamiltonian. The
uncertainty in each of the components ofHr is given by

SdHr,x

Ĥr,x
D2

= SdBur

Bur

D2

+ Sdvr

v̂r
D2

s29d

and

SdHr,z

Ĥr,z
D2

= SdAur

Aur

D2

+ Sdvr

v̂r
D2

. s30d

For Hk the component uncertainties are

SdHk,x

Ĥk,x
D2

= SdBuk

Buk

D2

+ Sdvk

v̂k
D2

+ SdAf

Af
D2

, s31d

SdHk,y

Ĥk,y
D2

= SdBuk

Buk

D2

+ Sdvk

v̂k
D2

+ SdBf

Bf
D2

, s32d

and
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SdHk,z

Ĥk,z
D2

= SdAuk

Auk

D2

+ Sdvk

v̂k
D2

. s33d

IX. EXAMPLE SIMULATIONS

To illustrate these ideas and determine the accuracy of the
parameter estimate and its uncertainty, we simulated the
measurement procedure on an arbitrary example systemHr
=0.1sx+0.05sz. Using an observation timetob=500 and pro-
gressively larger numbers of measurements, the increase in
precision can be observed. In Fig. 6, the componentsHr,x and
Hr,z are plotted for increasing numbers of measurements. The
errors bars are given by 3dH which should be equivalent to
the 3s level and the true value is shown as a solid line. As
the number of measurements increases, the uncertainty re-
duces and the estimated values converge to the true value, as
expected. The complete process is then simulated using a
second example HamiltoniansHk=0.6sx+0.45sy+0.1szd
and similar results are obtained but with increased uncer-
tainty as the components ofHk rely on the measurements of
both Hr and Hk, so there is more scope for accumulated
errors.

In order to compare the uncertainty calculated using the
equations in Sec. VIII with the expected spread of the data,
we repeated the simulations of the example system many
times with the same number of measurements. By looking at
the spread of the resulting estimates from many experiments
and comparing this to the derived uncertainty from one ex-
periment we can confirm that the uncertainty provides a good
bound. Providing a good error bound on the Hamiltonian
parameters alleviates the need to perform characterization
many times to obtain good statistics.

A. Accuracy of the uncertainty estimate

To measure the distance between the real Hamiltonian

vectord and its estimated̂ we use the distance metric

D =
ud − d̂u

udu
s34d

and a measure of the uncertainties is

dD =
Îddx

2 + ddy
2 + ddz

2

ud̂u
=

uddu

ud̂u
. s35d

We simulated the characterization procedure for the ex-
ample system usingtob=500,Ns=10 000, andNe=50 with a
measurement error probability of 10%sh=0.1d. Figure 7sad
shows a histogram ofD for Hr over 5000 simulated runs; the
average uncertaintydD over 5000 runs is also shown. For
this example 98.4% of the simulation runs lie within 3dD,
illustrating that the uncertainty provides a good bound on the
estimated parameters.

The fidelityD for Hk shows a similar distribution, though
the absolute uncertainty is greater for a given number of
measurements as more steps are required to determine the
azimuthal anglef. Figure 7sbd shows the equivalent histo-
gram for determination of the HamiltonianHk over 5000
simulated runs. Three times the average uncertaintys3dDd
includes 98.7% of the data. The intervals for bothDr andDk
are slightly too small as a 3s interval should contain ap-
proximately 99.7% of the data. This discrepancy is due to the
effect of correlated errors between the Fourier components
dF and the uncertainty in the MPP locationsdvd. In general,
as the noise level in the Fourier spectrum increases, the
width of the peakPstpd will also increase. This results in a

small correlation between the uncertainties inv̂ andû which
has not been taken into account. For a given set of experi-
mental data, the width ofPstpd and the standard deviation of
the the noise floor of the Fourier spectrum will decrease as
the number of measurements increases. The relationship be-
tween these errors can then be determine and will besin
generald nontrivial. The covariance can then be calculated,
the result of which would be to add an additional term to
Eqs. s27d–s33d and therefore increasing the overall uncer-
tainty. This additional term will be small as the fractional

uncertainty inv̂ is typically much smaller than inû which
implies the covariance between them will also be small, rela-
tive to the other uncertainties.

The measurement error estimatesĥd is found to be very
well behaved, with 99.5% of the estimates lying within the
error bounds, which is very close to what is expected for a
3s confidence interval. A histogram ofĥ is shown in Fig. 8
with 3dh labeled for 5000 runs, each run consisting ofNT
=53105 measurements.

B. Scaling behaviour of the uncertainty

The usefulness of this technique is ultimately governed by
how many measurements are required to obtain a given pre-
cision in the final Hamiltonian estimate. To investigate this,
the example system was characterized with progressively
larger numbers of measurements. The average of the result-
ing estimated uncertaintydDr is plotted in Fig. 9 for several
different values of the measurement errorshd. For increasing

FIG. 6. An example of the systematic reduction in the uncer-
tainty of the Hamiltonian parameters as the number of measure-
ments is increased. The error bars are given by three times the
uncertainty estimate for each point and the solid line gives the
“true” value sHr,x=0.1, Hr,z=0.05d. The estimates are seen to con-
verge to the true value as the number of measurements is increased.
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numbers of measurements, the Hamiltonian estimate gets
progressively more accurate, as expected. This scaling is ap-
proximately proportional to 1/ÎN with the achievable preci-
sion reduced by the effect of the measurement error. This
constant factor is effectively a “penalty” which depends on
the measurement error but is largely independent of the num-
ber of measurements.

From this type of analysis we can estimate how many
measurements are required to achieve a certain precision in
the final result. Assuming all other factors are negligible, the
achievable precision scales as the reciprocal of the square
root of the number of measurements. Other factors, such as
control field fluctuations, will ultimately limit this process.
This is easily identified as the achievable precision will tend
to asymptote to some value which is limited by these fluc-
tuations.

X. IMPLICATIONS FOR SINGLE-QUBIT ROTATIONS IN
QUANTUM COMPUTING

In order to be able to perform single-qubit rotations of the
type required for quantum-computing applications, a certain
level of accuracy is required. The threshold theorem for
quantum error correction states that if a physical error rate of
p=10−4–10−5 can be achieved then concatenated quantum
error correction protocols can be implemented successfully
for arbitrary precision computationf12g. This physical error
rate gives the probability of a discrete error due to decoher-
ence of the system. The errors introduced due to inaccurate
characterization will also contribute, though in a less predict-
able way. Typically, gate operations are assumed to have a
precision of 10−6 or better but from the previous analysis,
this would require 1012 measurements during characteriza-

FIG. 7. The distribution ofD for the esti-
mated sad Hr and sbd Hk over 5000 simulated
runs. For these simulations,sad 98.4% andsbd
98.7% of the estimates are found to lie within the
average uncertainty intervals3dDd. The absolute
uncertainty inHk is greater than forHr as more
steps are required, giving a larger accumulated
error.
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tion. For a typical measurement readout time of 1ms this
gives an initial characterization time of approximately
12 days.

This turns out to be an overly simplistic view as the pre-
cision of the gate operations is not equivalent to the prob-
ability of a discrete error due to decoherence. For a single
gate rotation around an ideal angleu, the true rotation will be
around an angleus1+ed and therefore the probability of a
discrete errorp~ sed2 where e<du /u. Given the previous
discussion on the scaling ofdu with number of characteriza-

tion measurementsN, the probability of discrete error on a
single gate operation actually scales proportional toN−1,
which requires only 106 rather than 1012 measurements.

As well as errors induced by inaccurate knowledge of the
Hamiltonian anglesud, errors can also be introduced due to
an inaccurate rotation frequency, the “over-rotation error.” In
general this will have a similar effect to an angle character-
ization error assfor small errorsd they are equivalent. In ad-
dition, for the characterization process discussed in this pa-
per, the percentage uncertainty in the rotation frequency is
typically an order of magnitude smaller than the uncertainty
in the Hamiltonian angle which means that angle errors are
the dominant source of gate error.

For multiple gate operations, the probability of a discrete
error scales asnp wheren is the number of gate operation
time steps and therefore the number of possible error loca-
tions f13g, assuming that errors in different qubits are uncor-
related. In the worst case, the rotation error accumulates as
ne which givespT=np~ sned2, the total probability of error
for n possible error locations. This means it is possiblesin
the worst cased for the uncertainty in the angle to accumulate
over multiple rotations. This will not always be the case as
certain rotationsssuch as a 2p rotationd are less susceptible
to characterization errors than others and it is possible to get
error cancellation. While this discussion is not newf12,13g,
the 1/ÎN scaling of the achievable precision indu highlights
the very real constraints imposed by the measurement and
therefore characterization time of any prospective quantum
computing proposal.

Several techniques exist for dealing with characterization
errors of this kindf14,15g, much of which has recently re-
gained interest for QIP applicationsf16,17g. One such tech-
nique, which has been known in the NMR literature for some
time, is composite pulsingf18g. This involves carefully con-
structing a pulse sequence for a given rotation in order to
reduce characterization errors in both the anglesoff-resonant
errorsd and the rotation frequencyspulse length errorsd. Re-
cent work by Brownet al. f19g has shown that in fact, sys-

FIG. 8. The distribution of the estimated mea-
surement errorsĥd for 5000 simulated runs. For
this simulation, 99.5% of the estimates lie within
the uncertainty ±3dh.

FIG. 9. The average uncertaintydDr of the estimate for the
Hamiltonian Hr as a function of total number of measurements.
Each data point is the average of ten simulation runs. The solid line
shows 1/ÎN whereN is the number of measurements. As the total
number of measurements increases, the overall precision with
which the Hamiltonian is known increases. For a random measure-
ment error, the achievable precision is reduced but still asymptotes
to a scaling of the reciprocal of the square root of the number of
measurements.
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tematic characterization errors can be eliminated to arbitrary
order using strings of composite pules. For a single imperfect
gate with fractional errore, the resulting gate error can be
reduced toOsend for arbitrary n using a composite pulse
sequence whose length scales asn3. Using this or similar
techniques, we can imagine a trade-off between long initial
characterization timeslarge number of characterization mea-
surementsd and longer composite pulse sequences for our
gate operationssslower operating speedd. In addition, by
choosing fine time samplingslarge Nsd we can obtain very
precise frequency estimates at the expense of poor angular
resolution due to small numbers of ensemble measurements
sNed. The imprecise angular estimate could then be ac-
counted for using composite pulsing. Similarly, poor time
resolution and large numbers of ensemble measurements will
give accurate angle estimates at the expense of rotation fre-
quency resolution. There may also be situations where it is
advantageous to precisely characterize some gates and/or qu-
bits but not others.

XI. CONCLUSION

As the precision and level of complexity of quantum con-
trol experiments increases, the accuracy to which pertinent
system parameters are known must also increase. While this
is most commonly discussed in the context of quantum com-
puting, the ability to precisely measure the terms in an arbi-
trary Hamiltonian has much broader application to the study
of quantum systems.

The procedure given here for characterizing an arbitrary
two-state Hamiltonian has distinct advantages over other
methods. Given only one measurement axis and assuming
the system can be repeatedly initialized in a single state
which is not an eigenstate of the Hamiltonian to be charac-
terized, the Hamiltonian parameters can be determined to
arbitrary accuracy. By taking the discrete Fourier transform
of a series of measurements of the evolution of the system,
the parameters in the Hamiltonian can be computed directly
from the Fourier components.

Using signal-processing techniques, the uncertainty in the
Hamiltonian parameters can be estimated and we have de-
rived example expressions for these uncertainties. If a ran-
dom measurement error is present, this too can be character-
ized with an uncertainty. This uncertainty estimate is found
to scale proportionally to the reciprocal of the square root of
the total number of measurements. The introduction of mea-
surement error reduces the achievable precision by a constant
factor which is independent of the number of measurements.

In the laboratory, this procedure can be applied as the
experiment progresses, giving an increasingly more accurate
estimate of the parameters in question. It also means that if
the response of a Hamiltonian to a given input parameter is
required, as the input parameter is varied, the resulting sys-
tem can be determine with an uncertainty at each point. This
enables the usualsnondlinear fitting routines to be applied to
the problem to find the general response function.

Being able to accurately characterize a Hamiltonian is vi-
tally important if we are to move beyond proof-of-concept

experiments and build working devices for QIP. The trade-
off between more accurate initial characterization and more
sophisticated gate sequences allows these devices to be op-
timized for a particular application.
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APPENDIX: DERIVATION OF THE TIME EVOLUTION
OF Šsz‹ UNDER AN ARBITRARY TWO-STATE

HAMILTONIAN

Given an arbitrary two-state Hamiltonian, we can write it
in terms of the Pauli matrices using Eq.s1d. The free evolu-
tion of the system under this Hamiltonian is given by the
operatorUstd=e−iHt which, using a generalized de Moivre
formula f20g, can be rewritten as

Ustd = e−id0t/2FI cosS udut
2
D − id̂ · sW sinS udut

2
DG . sA1d

If the system is initially in the stateucs0dl= u0l su=f=0d
then sconverting to polar coordinatesd the evolution of the
system is given by

ucstdl = Ustducs0dl

= eid0t/2HFcosS udut
2
D − i cosu sinS udut

2
DGu0l

+ sinu sinS udut
2
Dssinf − i cosfdu1lJ . sA2d

The observable in this case is the projection onto thez axis
so we will useź= u0lk0u− u1lk1u as the operator which gives
the expectation value of thez projection,

kszl = kźl = kcstduźucstdl. sA3d

After canceling the global phase and rearranging terms, this
becomes

kszl = cos2S udut
2
D + scos2 u − sin2 udsin2S udut

2
D . sA4d

If we setudu=v, the angular frequency of the precession, this
gives the time dependence of thez projection

zstd = kszl = cosvt sin2 u + cos2 u, sA5d

as expected.
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