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In this paper we develop a unified framework to study the coherent control of trapped ions subject to
state-dependent forces. Taking different limits in our theory, we can reproduce previous designs of quantum
gates and propose a different design of fast gates based on continuous laser beams. We demonstrate how to
simulate Ising Hamiltonians in a many ions setup, and how to create highly entangled states and induce
squeezing. Finally, in a detailed analysis we identify the physical limits of this technique and study the
dependence of errors on the temperature.
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I. INTRODUCTION

Trapped ions constitute one of the most promising sys-
tems to implement a scalable quantum computerf1g. In such
a computer, information is stored in long-lived atomic states,
and a universal set of gates is obtained by manipulating these
states with lasers and entangling the ions via the vibrational
modesf2g. During the last years we have seen experimental
demonstrations of various two-qubit gatesf3–6g, and it re-
mains to implement a robust scheme for scalability. Current
visions of a scalable computer are based on the idea of mov-
ing the ions out of their storage areasor quantum memoryd
and make them interact in pairs, performing two-qubit gates
f2,7g. Basic steps toward the experimental implementation of
this idea have been already demonstratedf8g.

However, outside quantum computing there are other
promising areas in which trapped ions may be of use. On the
one hand, there is a great interest in preparing highly en-
tangled or squeezed states, which can be used both for me-
trology f9,10g, or—in a more fundamental fashion—to char-
acterize their decoherence properties. The entanglement of
ions is covered in a variety of theoretical papersf11–14g, and
it has been experimentally demonstrated for small systems
f15–17g. On the other hand, it has also been suggested that
ion traps can be used to simulate a various spin Hamilto-
nians, ranging from local to long-range interactionsf18,19g.

In all of these tasks—quantum computing, creation of en-
tanglement, and quantum simulation—the goal is to induce
some unitary evolution on the internal state of the ions,
which is used to store the information. For instance, in the
case of quantum computing it suffices to realize a phase gate
between two ions,

UphsTd = eips1
zs2

z/4, s1d

while in the case of quantum simulation we want a more
general evolution,

UsTd = eisoi,jsW iJijsW j+oiB
W

isW idT, s2d

where the matricesJij and the vectorsBW i determine the spin
Hamiltonian that we want to simulate. Since the real interac-
tion between the ions is described by more complicated
Hamiltoniansfsee Eq.s3d belowg, any of these transforma-
tions is an effective one, realized after influencing the dy-
namics of the ions with external fields.

This process, in which we dynamically modify the param-
eters of the system—Rabi frequencies, detunings, magnetic
fields, etc.—in order to achieve a well-defined target opera-
tion, is calledcoherent quantum control. The development of
coherent control has been tightly connected to the fields of
nuclear magnetic resonancesNMRd f20g and atomic and mo-
lecular spectroscopyf21g. While in the last field we have
seen a strong development of optimal control, the theoretical
and experimental achievements have been oriented toward
controlling the evolution of particular states, so as to opti-
mize atomic or molecular transitions, or certain chemical
processes. Instead, for applications to quantum computing,
we need to be able to control the evolution of a linear sub-
space of our Hilbert space as a whole. This requirement has
been identified in NMR, where pulse sequences have been
developed to simulate arbitrary Hamiltonians and reduce de-
coherencef20g.

Coherent control has been also implicit in any proposal
for quantum computingf2,13,22–30g and quantum simula-
tion f18,19g with trapped ions. While in these works the de-
sign of the control relied always on the intuition of the re-
searcher and on a clever choice of approximations, in this
paper we show that many of these schemes can be translated
into a unified framework based on state dependent forces and
tunable traps. As characteristic examples, we will show how
to implement the pushing gatef2g and the fast gates based on
laser pulses from Ref.f28g. We will also propose an alterna-
tive and more general model of fast gate based on continuous
off-resonant lasers. As further applications, we demonstrate
how to induce collectiveH=soisi

zd2 and nearest-neighbor
H=oiJsi

zsi+1
z Ising interactions, and use them to produce
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Zeilinger sGHZd states of up to 30 atoms within a extremely
short time,T=Os1/vd, wherev is the frequency of the ion
trap.

Furthermore, within this unified framework we can ad-
dress important requirements of all these coherent processes.
Namely, they should:sid be independent of temperaturesso
that one does not need to cool the ions to their ground state
after they are moved to or from their storage aread; sii d re-
quire no addressabilitysto allow the ions to be as close as
possible during the gate so as to strengthen their interactiond,
andsiii d be fastsin order to minimize the effects of decoher-
ence during the gate, and to speed up the computationd. All
of these requirements can be formulated as constraints of the
control problem, and as we will see below, they can be easily
solved. Last but not least, we study the scaling of resources
as we try to make our control faster and answer the question
of what is the ultimate limit for the speed of our quantum
gates or entangling processes, which is shown to be deter-
mined both by dissipation and nonharmonic contributions to
the restoring forces.

The paper is organized as follows. In Sec. II we develop
the formalism to study our system. First of all, we introduce
the Hamiltonian for any number of ions subject to state de-
pendent forces and quasi-1D confinement, and derive the
harmonic approximation and the normal modes. Then, we
show how to implement a unitary transformation,U
=expfifshsi

zjdg, made of robust geometric gates, while leav-
ing the motional state unchanged. In Sec. III we apply our
methods to quantum computing in two-qubit setups. We
demonstrate how to recover previous designs of a phase gate,
including the adiabatic pushing gatef2g and the fast gate
based onp /2 laser pulses that kick the ionsf28g. Most im-
portant, since the generation of perfect and very short laser
pulses is a difficult task, we design an arbitrarily fast quan-
tum gate based on continuous laser sources. In Sec. IV we
study the coherent control of many-ion setups. We prove that
arbitrary spin interactions of the types2d can be simulated
with the appropriate time-dependent forces, and develop a
numerical method to find them. As applications, we demon-
strate numerically the creation of squeezed, cluster, and GHZ
states of up to 30 ions in a very short time. Section V focuses
on the study of errors. First of all we introduce a model for
dissipation on the vibrational degrees of freedom. Next, we
solve this model exactly and analyze the fidelity of the ef-
fective unitary operationss1d, s2d. We prove that for a perfect
control and no dissipation our scheme is insensitive to tem-
perature. Furthermore, the errors due to interaction with the
environment can be computed and optimized using the same
tools of quantum control as in Secs. III and IV. Finally, we
study the errors due to anharmonic terms in the interaction
and show that both this and dissipation set an upper bound
on the speed of the gate. In Sec. VI we summarize our results
and offer perspectives for future work.

II. THEORY

A. Normal modes

As mentioned before, this paper studies a set ofN ions, in
an essentially one-dimensional confinementf45g and subject

to some external forces. Our model Hamiltonian is

H = o
i
F pi

2

2m
+ Ve,isxid − FistdxiG + o

i, j

e2

4pe0

1

uxi − xju
. s3d

In this equation,Ve,i is the trapping potential that confines the
kth ion, and it may be the same for all of them or may change
from ion to ion as in the case of microtrapsf2g. The time-
dependent external forces are denoted byFistd and, as we
will see below, they depend on the internal state of the ion,
si

z.
If we expand the previous energy around the equi-

librium configuration without forces, given bys]H /
]xidsx1

s0d ,… ,xN
s0dd=0 and Fi =0, we obtain a set of coupled

harmonic oscillatorsf31g,

H = o
i
F pi

2

2m
− FistdxiG +

1

2
mVijxixj + E0. s4d

The constantE0 is the energy of the ions at their equilibrium
positions. The matrixV describes the restoring forces: it is
symmetric, positive definite, and it can decomposed asV
=MV2Mt, with a positive diagonal matrix of frequencies,
Vkl=vkdkl, and an orthogonal transformationsMMt=MtM
=Id. Using this canonical transformation to define the normal
modesxi =okMikQk, pi =okMikPk, we arrive at the Hamil-
tonian

H = o
k
F Pk

2

2m
+

1

2
mvk

2Qk
2 − o

i

FiMikQkG . s5d

It is now useful to write this Hamiltonian in dimensionless
form, using the characteristic length of the oscillators,ak

=s" /mvkd1/2, so that Pk="P̃k/ak and Qk=akQ̃k, M̃ik

=Mikak. With this we arrive to

H = o
k
F1

2
"vksP̃k

2 + Q̃k
2d − o

i

FiM̃ikQ̃kG , s6d

or, using Fock operators,ak;sQ̃k+ iP̃kd /Î2,

H = o
k
F"vkSak

†ak +
1

2
D − o

i

FiM̃ik

Î2
sak

† + akdG . s7d

B. Robust phases

We will now demonstrate how to obtain a robust phase by
applying forces to a harmonic oscillator. Let us begin with
the toy model

H = "va†a − fstd
1
Î2

sa† + ad. s8d

When integrating the Schrödinger equation associated with
this Hamiltonian, it will convenient to use the overcomplete
basis of coherent statesf32,33g,

GARCÍA-RIPOLL, ZOLLER, AND CIRAC PHYSICAL REVIEW A71, 062309s2005d

062309-2



uzl ª e−uzu2/2o
n

zn

În!
unl ¬ uQ + iPl. s9d

Under the Hamiltonians8d, the coherent states behave some-
how like classical particles in phase space, because their cen-
ter, given bykQl andkPl, follows a classical trajectory, while
the width of these wave packets, given by the uncertainty of
Q andP, remains fixed.

More precisely, for an initial coherent state,ucs0dl= uz0l,
the solution to the Schrödinger equationi"ċ=Hstdc is given
also by a coherent stateucstdl=eifstduzstdl, whose phase and
position satisfy

dz

dt
= − ivz+ i

1
Î2"

fstd, s10ad

df

dt
=

1

2Î2"
fstdsz̄+ zd. s10bd

The first equation has a solution,

zstd = e−ivtFz0 +
i

Î2"
E

0

t

dt eivtfstdG , s11d

that results from composing a displacement with a rotation of
angular speedv. Using the rotating phase-space coordinates,
zrªeivtz¬Qr + iPr, we get rid of the motion due to the un-
forced harmonic oscillators and find

dzr

dt
= ieivtfstd/"Î2, s12ad

df

dt
= Im

dzr

dt
z̄r =

dPr

dt
Qr −

dQr

dt
Pr = 2

dA

dt
. s12bd

The last equation means indeed that the growth of the phase
ḟ is proportional to the areaA spanned by the coherent state
as it moves through the phase space. The phase is not only
geometric in this sense, but also in the extended definition of
geometric phase given in Ref.f34g. Applying the formulas in
the previous reference one finds that if the total phase isfstd,
and the dynamical phase is always twice the geometric one,
fdstd=−2fgstd, so that in the endfstd=−fgstd.

In this work we are interested in this phase and on making
it depend on the internal state of the particles governed by
the oscillator. We want, however, neither to influence the
motional state of the particles, nor to entangle internal and
motional degrees of freedom. For this reason we set a time
limit on the duration of the force and impose that after a
fixed timeT the coherent wave packet is restored to its origi-
nal state,

E
0

T

dt eivtfstd = 0. s13d

Using this condition we derive a simple formula for the total
phase,

fsTd = ImE
0

T

dt
i

Î2"
eivtfstdz̄rstd

=
1

2"2ImE
0

T

dt1E
0

t1

dt2e
ivst1−t2dfst1dfst2d. s14d

As a simple application, in Fig. 1 we show the phase-
space trajectories obtained by forcing two coherent states
with a sinusoidal force,Fstd~sins2vtd, wherev is the fre-
quency of the Harmonic oscillator. Even though looking at
Fig. 1sad the orbits of different initial conditions also seem
very different, on the rotating frame of reference the en-
closed areaA is always the samefFig. 1sbdg. In other words,
the phasef is insensitive to the initial motional state of the
system and it is thus robust. This property is of crucial im-
portance when we seek applications to real systems that can-
not be cooled to the zero-phonon limit, but which thanks to
Eq. s13d will pick up the same phase regardless of the tem-
perature.

C. Phase of two ions

We will now apply the results from Sec. II B to a pair of
ions. In this case there are two normal modes: the center of
mass,xc=sx1+x2d /2, which oscillates with frequencyvc, and
the stretch mode,xs=x2−x1, which oscillates with frequency
vs. If the ions are stored in the same harmonic trap,
Ve,ksxkd= 1

2mv2xk
2, these frequencies are found to be incom-

mensurate,vc=v and vs=vÎ3. If we store the ions in two
microtrapssor in a more complicated potentiald, the value of
vs can be tuned fromvÎ3 down tov.

If we exert a similar state-dependent force on both ions,
for instance by means of an off-resonance laser that induces
an AC Stark shift on one of the internal state of the ions, the
Hamiltonians3d will look as follows:

H = "vac
†a + "vsas

†as − Fstds1
zx1 − Fstds2

zx2

= "vac
†a + "vsas

†as + Fstdss2
z − s1

zdd − Fstdss1
z + s2

zd
ac

Î2

3sac + ac
†d − Fstdss2

z − s1
zd

as

2Î2
sas + as

†d, s15d

FIG. 1. Trajectories on phase space of a coherent wave packet
subject to a single forced harmonic oscillator,H=va†a
+F sins2tdsa+a†d. In sad we plot the usual phase-space trajectories,
kal=kX+ iPl /Î2, without forcingsdashedd and withF=0.1 ssolidd,
for two initial conditionssempty circlesd. In sbd we plot the same,
but on a rotating frame of reference,kal=ke−ivtsXr + iPrdl /Î2.

COHERENT CONTROL OF TRAPPED IONS USING OFF-… PHYSICAL REVIEW A 71, 062309s2005d

062309-3



where d is the equilibrium distance between the ions,ac,r
2

=" /mvc,r are the characteristic length scales of the oscilla-
tors, andsi

z is an operator that takes value +1 or −1 depend-
ing on whether the ion is on internal stateu+1l or u−1l.

Since the modes are now decoupled, we can apply the
formulas of Sec. II B almost directly. We first obtain a pair of
commensurability relations on the force,

E
0

T

dt eivc,rtFstd = 0, s16d

which are just a generalization of Eq.s13d. Next we obtain
the total phase, which up to local and global contributions is

f = s1
zs2

zE
0

T

dt1E
0

T

dt2Gst1 − t2dFst1dFst2d, s17d

whereGstd=fs1/vcdsinsvcutud−s1/vsdsinsvsutudg /2m".
The goal in Sec. III will be to tune the forces so that Eq.

s16d is satisfied and the phase becomesf=ps1
zs2

z /4, the
required value for a two-qubit quantum phases1d. We will
then show two optimal solutions to this problem, which use
either pulsed or continous forces.

D. Phase for any number of ions

The case ofN.2 ions exhibits a richer structure, due to
the fact that the phase depends on all pair productssi

zs j
z of

the polarizations of the atoms. If we apply the formula for
the phase of one harmonic oscillators14d to each of the
modes in the effective Hamiltonian for the chains7d, we
obtain a total phase

f = o
i j

si
zs j

zE
0

TE
0

T

dt1dt2Fist1dGi jst1 − t2dFjst2d, s18d

with a Hermitian kernel

Gijstd = o
k

MikMjk

2mvk"
sinsvkutud, s19d

plus a generalization of Eq.s16d

o
i
E

0

T

dteivktakMikFistd = 0, ∀ k. s20d

In Sec. IV we will show how Eq.s18d can be related to an
effective Ising interaction,H=oi j Jijsi

zs j
z, whose precise

shape can be engineered and which can produce interesting
entangled states. Remarkably, the interaction is always pair-
wise due to the harmonic model with which we are working.

III. FAST PHASE GATE FOR TWO IONS

A very important application of the techniques studied so
far is to design a two-qubit quantum gate that is robust
enough to be included in a scalable ion-trap quantum com-
puter. This task has been pursued in a previous workf28g
using a slightly more complicated method, in which the force
was achieved by kicking the ion withp /2 laser pulses, and
the distribution and number of these pulses had to be de-

signed “by hand.” In this section we review this work in the
light of our formalism and rephrase it as an optimal control
problem. This allows us to consider more general forces, and
to find, for instance, a design of a gate that involves the
shortest time, and the weakest and smoothest varying forces.

A. Kicking forces

We will consider two ions in a one-dimensional harmonic
trap, interacting with a laser beam on resonance. The Hamil-
tonian modeling this system can be written asH=H0+H1
whereH0="vcac

†ac+"vsas
†as describes the normal modes of

the ions and

Hl =
Vstd

2
fs1

+ei"kx1 + s2
+ei"kx2 + H.c.g s21d

=
Vstd

2
fs1

xe−i"kx1s1
z
+ s2

xe−i"kx2s2
z
g. s22d

This term describes processes in which the internal state of
an ion is changed and, as a consequence of the absorption
and emission of photons, the atom gains momentum,"k. The
Rabi frequencyVstd is a function of the intensity of the
lasers that induce these internal transitions, and looking for
the simplest setup we assume that it is the same for both
ions.

In Ref. f28g we explained how to use the HamiltonianHl
to kick the ions. The process consists of applying very fast
laser pulses, in which the Rabi frequencyVstd and the dura-
tion of the pulsedt satisfye0

dtVstddt=p anddt!2p /v. Let
us study the evolution of the ions under a single laser pulse.
Since the pulse is much shorter than a period of the trap, we
can neglect the influence ofH0. We then use the formula

T expFiE
0

dt

dt
Vstd

2
nWsWG = cossud + i sinsudnWsW , s23d

where T is the time-ordering operator;inW i =1 is a unitary
vector and we impose that ap /2 pulse is produced:u
=e0

dtVstd /2=p /2. Under these conditions the unitary evolu-
tion is described by

Ukick = s1
xs2

xei"ksx1s1
z+x2s2

zd. s24d

If at times ht1,t2,… ,tNp
j we send groups of

h2n1,2n2,… ,2nNp
j very short laser pulses with alternating

momenta, +k,−k,+k, …, the total operation can be written as
U=pl expfnl 3 i"ksx1s1

z+x2s2
zdg, and can be thought of as

induced by the effective force

Fistd = o
l=1

Np

2nl 3 "ksi
zdst − tld. s25d

When the number of pulses is odd, similar considerations
can be done, but now a total spin flips1

xs2
x has to be included

by hand at the end of the process.

B. Phase gate based on kicks

The parametrization of Eq.s25d is a means to simplify the
problem of finding the optimal forces that produce the phase
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gates1d. Using the previous notation, the conditions for re-
storing the motional state of the ions become

o
l=1

Np

nle
−ivc,rtk = 0. s26d

If these equations are satisfied, the accumulated phase will be

f = o
l,m=1

Np Fsinsvctlmd
vc

−
sinsvstlmd

vs
G2"k2nlnm

m
= p/4,

s27d

where tlm= utl − tmu is the time between thelth and themth
kicks.

In Ref. f28g we have found two possible solutions for
these equations. The first protocol that we proposed, per-
forms the phase gate in a timeT=1.08/n, using about four
pulses, while the second protocol allows for an arbitrarily
short gating timeT,Np

−2/3/n at the expense of using more
pulses or kicks.

The method for the first protocol is illustrated in Figs. 2sad
and 2sbd, where we plot the phase space trajectories followed
by the center-of-mass mode. This sequence consists basically
on four groups of pulses given bysnl /n,tld=hsg ,−t1d ,s1,
−t2d ,s−1,t2d ,s−g ,t1dj. The numbern tells us how many
pulses are sent within each group. The parameter 0,g
=cossud,1.0 is a real number that describes how much the
kicking lasers are tilted with respect to the axis of the trap. It
is always possible to find a solution to Eq.s26d with t1
.0.538s4ds2p /nd.t2.0. The results for the performance
of the gate are summarized in Figs. 2scd and 2sdd: for realis-
tic values of the Lamb-Dicke parameterf4g we only need to
apply the sequence of pulses one or two times to implement
a phase gate. A minor tilting angle will be, however, required

to compensate for small deviations from the value of the
phasep /4 for different Lamb-Dicke parameters.

The second protocol performs the gate in an arbitrarily
short timeT. For shortening the time we now require six
groups of pulses, distributed according tosnl /n,tnd=hs−2,
−t1d ,s3,−t2d ,s−2,−t3d ,s2,t3d ,s−3,t2d ,s2,t1dj, where the
times t1, t2, and t3 are found numerically by solving the
transcendental equationss26d, with the constraint that the
whole process takes a timeT=2t1. As Fig. 2 shows, the
number of pulses,N=14n, increases with decreasing time as
Np~T−3/2. This is just a consequence of a more general result
that is shown later.

C. Phase gate based on continuous forces

The use ofp /2 pulses to introduce momentum in the ions
has some inconveniences. First of all, each of the pulses has
to be perfect, and induce a complete population transfer from
one internal state to the other one. If this is not the case,
systematic errors on each of the pulses can lead to an expo-
nential decrease of the fidelity. Furthermore, as we increase
the gating speed, the pulses may become too long to be con-
sidered as instantaneous kicks, and the previous formalism
fails.

What we have found, and what is also one of the main
results of this paper, is that the phase gate may be produced
also by applying continuous forces. The search for this forces
is then no more difficult than solving an eigenvalue equation,
where one may add restrictions such as smoothness of the
force, and minimal total work.

Let us take the real vector spaceL2sf0,Tgd of space of
square integrable real forces in thef0,Tg interval, with the
usual scalar productsf ,gd=e0

t fstdgstddt. From this Hilbert
space, we choose a subspaceH of functions which are or-
thogonal to the modeseivc,rt,

E
0

T

dt eivctFstd =E
0

T

dt eivstFstd = 0. s28d

Within H, the phase and the smoothness of the gate are given
by ffFg=sF ,GFd and SfFgª (F ,−sd2/dt2dF), respectively.
We will prove that the optimalsi.e., smoothestd force that
produces a phase gatef=p /4, is simply proportional toFm,
whereFm is the eigenstate,

− m
d2

dt2
Fm = GFm, s29d

with largest eigenvalueumu. If rather than measuring the op-
timality with SfFg we use just the norm,NfFgª iFi2

=sF ,Fd, then the eigenvalue problem is simpler,

mFm = GFm. s30d

Let us prove this useful result. We have to work with four
functionals, which are theSfFg andffFg defined above plus
two more, which measure the displacements originated by
the force:Dr,cfFg=e0

Tdt eivc,rtFstd. By choosing the space of
real periodic functions which are orthogonal to the Fourier
modeseivc,rt we ensure that everything is well defined and

FIG. 2. sad Trajectory in phase space of the center-of-mass state

of the ionssQ̃c, P̃cd during the two-qubit gatessolid lined, connect-
ing a possible initial statesblack filled circled to its final statesgrey
filled circled, for the protocol designed in Sec. III B. Partsbd shows
how the laser pulsessbarsd distribute in time for this scheme. Below
we plot scd the number of pairs of pulses, andsdd maximum dis-
placement in phase space required to produce a phase gate using
this scheme.
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also that the constraintsDc,rfFg=0 are satisfied. This leaves
us with the problem of finding a force which minimizesSfFg,
while satisfying the last constraintffFg=p /4. There exists,
however, a much easier dual problem which is formulated as
finding the maximum offfFg subject to the quadratic con-
straint SfFg=1. Using the theory of Lagrange multipliers,
this amounts to finding the maximum of

LfFg = ffFg − msSfFg − 1d, s31d

wherem is the Lagrange multiplier. Differentiating the La-
grangian we obtain Eq.s29d, from where it follows that
m iFi2

2=f is the maximal phase to be achieved, and the as-
sociated eigenstateFmÎp / s4md / iFi2 is the force we were
looking for.

One might wonder about the need for solving the dual
problem instead of the original one and whether indeed both
problems are equivalent. The answer to the first question is
that the resulting generalized eigenvalue equation behaves
better. Thanks to the operator −d2/dt2 being semidefinite
positive, its presence on the left-hand side of the eigenvalue
equations30d can be handled by redefining the scalar prod-
uct. To answer the second question let us assume thatF is a
solution of the original problem. We defineFdªF /ÎSfFg, a
solution which hasSfFdg=1 andffFdg=p /4SfFg¬fd. Not
let us assume that there exists a functiong with Sfgg=1 and
a larger phase, ffgg¬fg.fd. We can define go

ªgÎp /4fg which now hasffgog=p /4 andSfgog=p /4fg

,p /4fd=SfFg, which contradicts the fact thatF was the
optimal solution of the original problem. A similar reasoning
can be done the other way around, thus proving the equiva-
lence of both problems.

Even though we have been able to relate the control prob-
lem to an eigenvalue equations29d, there exists no simple
analytical solution to this problem and we have to resort to
some simple numerics. However, a very nice feature of the
two-ion problem is that, by scaling quantities with respect to
the trap strengthv and the wave-packet sizea=s" /mvd−1/2,
we can compute the optimal force independent of the setup.
Using these units and expanding the force in terms of Fourier
modes,

fstd = o
m=−Nm

Nm

cne
i2mpt/T =

Fstda
"v

, s32d

we can express Eq.s29d as an eigenvalue equation for the
vector cW, that is to be solved numerically. The number of

modesNm can in principle be any number above 3, because
some degrees of freedom are lost when satisfying the con-
straint s16d. However, the numerical experiments show that
indeedNm=4 provides very good solutions. As an example,
in Fig. 3sad we show three possible forces for a duration of
the gateTv /2p=2.1, 1.5, and 0.9. We have computed other
solutions for a wider range of gate speeds. In Fig. 3sbd we
plot the mean intensityif i =e0

Tufstdudt vs the total timeT, and
demonstrate the lawT−3/2 obtained above.

An interesting question is how much energy we have to
put into the system in order to produce faster and faster
gates. With our current formalism, this can be answered very
quickly. Let us assume that we have the optimal force that
produces a phase gate in timeT!2p /vc,r. Since the time is
very short, we can perform a Taylor expansion of the func-
tion Gstd obtaining

ufu . UE
0

TE
0

T

dt1dt2Fst1dFst2d
svc

2 − vs
2d

12m"
ut1 − t2u3U

ø
vc

2 − vs
2

12m"
T3iFi1

2, s33d

whereiFi1=e0
TdtuFstdu is just a measure of the force applied.

From here we see that

iFi1 . T−3/2 s34d

or, in the case of the kicked ions,Np.T−3/2, the scaling that
the numerical simulations already showed.

D. Adiabatic pushing

As a final remark, we want to relate the methods pre-
sented here with thepushing gateintroduced in Ref.f2g.
That work proposed to trap the ions in separate microtraps,
Ve,isxid= 1

2mv2sxi −xi
s0dd2, and to apply a state-dependent

force on two neighboring ions. This force should be switched
on and off adiabatically with respect to the period of the
traps, 2p /v, in order to approach the ions to each other and
later on return them to their equilibrium positions. The adia-
baticity condition ensures that the ions remain at all times in
the ground state of the effective Hamiltonians4d, which is
now time dependent, because the equilibrium positionsxk

s0d

and the equilibrium energyE0 both depend on the instanta-
neous value of the forces. After restoring the ions to their
original positions, the only effect on the quantum state of the
ions is a state-dependent phase,

FIG. 3. sad Optimal forcing for a gating time
Tn=2.1 ssolidd, 1.5 sdashedd, and 0.9sdash-dotd,
wherev=2p3n is the frequency of the ion trap.
sbd Intensity of the force vs duration of the gate
ssolidd and visual aidsTnd−3/2 sdashedd. All mag-
nitudes have been adimensionalized following
the text.
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f =E
0

T

E0fx1
s0dstd,…,xN

s0dstdgdt. s35d

The previous analysis is found in Refs.f2,35,36g. A very
important point is that, in order not to excite the ions and
regard the process as truly adiabatic, the forces have to be
weak and change very slowly, and no cubic contributions to
the energy should appear. In other words, we should be able
to describe the change ofE0 using at most quadratic terms,
E0fxWs0dstdg.E0fxWs0ds0dg+ 1

2mVijdxi
s0ddxj

s0d. Hence rather than
using the adiabatic theorem we can integrate the problem
exactly. For a single harmonic oscillator we get

zstd = e−ivtz0 +
1
Î2

fstd −
1
Î2
E

0

t

dt eivt 1

v
f8std, s36d

where the adiabatic condition corresponds to neglecting the
last term f8std /v, and the force only has to satisfyfsTd
= fs0d=0. Repeating the arguments of previous sections, for
two ions in neighboring traps the total phase becomes

f =E
0

T

dt
vc

−1 − vs
−1

2m"
Fstd2s1

zs2
z. s37d

Herevc=v andvs now depend slightly on the separation of
the microtraps, but the same formula applies for the case in
which both ions coexist in the same trap—a situation that
could not be considered with the formalism of previous pa-
pers.

IV. QUANTUM CONTROL OF SEVERAL IONS

We will now study one-dimensionals1Dd setups with
more than two ions. As we showed before, we can still con-
trol the geometric phases and use them to simulate a variety
of spin HamiltonianssSec. IV Ad. The design of the forces
for these simulations is still a control problem, but a much
more difficult one. For instance, a crucial difference is that in
setups with more than two ions either addressability or a
spatial modulation of the forces are required. As a possible
application of this result we study how to optimally generate
entangled states and squeezing. In particular, we show that
this can be done for a large number of ionssup to 30d in a
very short timesSec. IV Bd.

A. Simulation of spin Hamiltonians

Given any Ising Hamiltonian

HJ = o
i j

Jijsi
zs j

z, J = Jt P RN3N,

and a timeT, it is possible to design a set of state-dependent
forcesFist ;Jd such that after applying these forces for a time
T, the dynamics of the ions simulates this spin Hamiltonian.
In other words,

T feie0
t Hstddtg = e−iHJT,

whereT denotes the time-ordered product andH is the true
Hamiltonian of the ionss4d.

The proof is very simple. Let us slice the time interval
f0,Tg into N2 subintervals, 0, t11= t12, ¯ , tN,N−1,T. In a
given time interval,I =ftij ,ti,j+1g, we will switch on two
forces, and leave all other ions on their own,

Fkstd = 0, t P ftij ,ti,j+1g, ∀ k Þ i, j .

The active forcesFistd and Fjstd must satisfy several equa-
tions,

0 =E
I

eivktMkaFastddt, a = i, j , k = 1¯ N,

Jij =
1

ti,j+1 − tij
E

I
E

I

dt1dt2Fist1dGi jst1 − t2dFjst2d. s38d

It is not difficult to convince oneself that these equations
always have a solution, and that by repeating this procedure
we will get an effective total phasef that resembles the one
produced by the Ising model during a timeT. h

We have to make several remarks here. The first one is
that since the operator that we want to simulate is symmetric,
Jij =Jji , and since the diagonal terms only contribute to a
global phase, the number of intervals can be actually de-
creased toNsN−1d /2.

However, more important is the fact that we can use co-

herent control to find optimal forcesFW , which instead of
piecewise continuous are the smoothest possible and have
the optimal norm, while giving rise to the same effective
Hamiltonian. This task has been performed numerically for
some models, and the results will be shown in the following
section.

From the point of view of quantum simulation, we would
like to be able to model more than just an Ising model, which
is essentially classical. For instance, one would like to be
able to introduce transverse magnetic fieldsoihisi

x or to
simulate a Heisenberg interactionsW isW j and in general, a uni-
tary operation of the forms2d would be desirable. The an-
swer to this problem is once more the stroboscopic evolu-
tion, or a Trotter expansion of the operators2d,

U . H p
a=x,y,z

eisT/Ndtsoi j Jij
asi

as j
a+oihi

asi
adJN

. s39d

In this expansion, we decompose the total unitary as a prod-
uct of phase gates, that are originated by forces that depend
on si

x, si
y, andsi

z. In practice, one would switch on a mag-
netic field hi

z and perform a phase gate with coefficientsJij
z

for a timeT/N, rotate the spins so thatsy becomessz, apply
the phases withJij

y , etc.
This technique is equivalent to the sequences of pulses

developed in NMR quantum computingf20g to induce a
given unitary by combining the evolution under a fixed in-
teraction Hamiltoniansi.e., the one that describes the inter-
action of the atomd with external magnetic fields that rotate
the interacting spins.
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It is also worth noticing that if we switch on the state-
dependent forces acting on different ions, and make them
oscillate with a single frequencyV around a constant value,
Fistd= f i sinsVtdsi

z, for a long time, the effective interaction
is a particular spin Hamiltonian,

H = o
i jk

f i
MikMjkf1 + dV,0g
4m"svk

2 − V2d
f jsi

zs j
z + OS f i

2

vk
2D . s40d

In the limit V→0, this model corresponds to the one found
in Ref. f18g. As it was shown there, depending on whether
the forces operate longitudinally or transversely to the ion
trap, this continuous force will give rise to long-range or
short-range interactions.

B. Coherent control and design of entanglers

The simulation of an Ising interaction is by itself interest-
ing, and has important applications such as creation of many-
qubit quantum gates, quantum simulation, and adiabatic
quantum computing. However, a most straightforward and
useful application of an Ising Hamiltonian is the generation
of many-body highly entangled states calledgraph states
f37g. Roughly speaking, let us imagine that we have a set of
N spins, which we represent by points or vertices, and let us
connect these points by lines or edges. The resulting graph
can be described by an adjacency matrix which takes value
Jij =1 only if the spinsi and j are connectedf38g. To each
graph we can thus associate a Hamiltonian of the formHJ
=oi,jJijsi

zs j
z. It has been shown that after applying this inter-

action over a certain time on a transversely polarized state,
the outcome is a highly entangled state called a graph state:

ucGl =
1

2N/2e−isp/8dHGsu0l + u1ld^N. s41d

When the graph has a lattice geometry, these states are also
known as cluster statesf39g, and form the basic ingredient of
the one-way quantum computerf40g. However, a particularly
important case without lattice geometry is the GHZ state,

uGHZl , u0l^N + u1l^N, s42d

which is essentially generated by the interactionJij =1 or
HJ=soisi

zd2. The GHZ state is one of the best studied en-
tangled states; it constitutes a canonical example of
Schrödinger cat state, and it could have important applica-
tions in the field of precision frequency measurements, pro-
viding a 1/ÎN precision increase forN entangled ionsf9,10g,
a point already demonstrated experimentally in Ref.f17g.

We have investigated how to implement these highly en-
tangled states using our quantum control techniques. The
idea is very simple: we design a matrixJij for our graph
state, and look for the time- and state-dependent forces that
implement the phase transformation exps−ipHJp /4d within
a fixed timeT. For simplicity, even though it is not warranted
to succeed, we look for forces that have a common time
dependenceFistd=gi fstdsi

z, ugiuø1. These forces could be
implemented with an appropriate intensity mask, which de-
termines the relative amplitudesgi, and a global intensity
modulation, which gives the functionfstd. Expanding this

modulation in Fourier modes, we findNsN−1d /2+N equa-
tions which define a possible entangling procedure. We have
solved numerically these equations, both for the GHZ state
and for the cluster state. While in the first case we always
found exact solutions with a small number of modessi.e., 50
modes for 30 ionsd, the generation of the cluster state was
always approximate with high fidelity,F.99.9%. The error
in this case has its origin in our particular choice of forces.

In Fig. 4 we show the entangling procedure for a setup
with 10 and 20 ions, even though chains of up to 30 ions
have been considered. We measure the fidelity of the process
as the overlap between the target state and the one achieved.
If dJ is the difference between the desired interaction and the
achieved one, thenF=s1/2NdosWe

−isWtdJTsW, where the sum is
performed over all possible spin configurations,sk= ±1. The
time scales for the generation of the interaction are indepen-
dent of the size of the system, and for instance we can pro-
duce a GHZ state of 20 ions in a timeT=1.1/v, to be com-
pared with the timeT=3000p /v required when individually
addressing one of the vibrational modesf12g. The strength of
the forces, though, grows moderately with the number of
ions, which can be inconvenient. However, thanks to the pe-
riodicity of the forcing fstd, if we divide the intensity of the
forces by a factor of 2,fstd→ fstd /2, the same gate is pro-
duced in a longer time 4T. Furthermore, the forces that we
present in this paper are not optimal, and have been found
with a straightforward Gauss-Newton method. If high fidel-
ity is not required, one may find better solutions with fewer
Fourier modesfNm in Eq. s32dg, but most important we ex-
pect significant improvements by the application of better

FIG. 4. Generation of asad,scd cluster state ofN=10 ions and of
sbd,sdd a GHZ state ofN=20 ions, using common forcing for a time
T=1.1/v. sad,sbd Time dependence of the forces,gstd. scd,sdd Fidel-
ity F, with respect to the target state as a function of time.
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numerical algorithms to search for the optimal entanglers.
Using the Ising interaction we cannot only produce graph

states, but also squeezed states: states in which the variance
of one spin componentDSx has been decreased at the ex-
pense of increasing the other variances. As it was shown in
Ref. f41g, a Hamiltonian of the formH=Jz

2 ssingle axis
squeezingd or H=Jx

2−Jy
2 stwo-axis squeezingd can be used to

produce squeezing. Both models can be simulated using our
tools, either directly, as in the single-axis squeezing, or stro-
boscopically, for theXY interaction. Indeed, the stroboscopic
simulation of the two-axis squeezing resembles the scheme
of p /2 pulses used in Ref.f42g to effectively switch off the
interaction in two-mode Bose-Einstein condensatesf43g.

V. OPTIMAL CONTROL OF ERRORS

Up to now, we have assumed that the motion of the ions is
not disturbed during the time when the controlling forces are
applied. In this section we will show how to take these ef-
fects into account for a realistic model of dissipation. The
main result is that the fidelity of the process can still be
computed and that there are two sources of error: one due to
an imperfect control of the ions, which introduces some tem-
perature dependence on the fidelitysSec. V Cd, and another
one due to the dissipation, that can be treated as another
constraint for the control problemsSec. V Bd. Finally, we
will comment on possible extensions outside the harmonic
regimesSec. V Dd.

A. The model and an exact solution

We study the dissipation with a master equation that arises
from coupling the phonon modes with a “classical” Bosonic
bath in thermal equilibrium,

d

dt
r =

i

"
fHI,rg + o

k

gNks2ak
†rak − akak

†r − rakak
†d + o

k

gksNk

+ 1ds2akrak
† − ak

†akr − rak
†akd. s43d

Heregk describes the coupling to an external bath andNk is
the mean number of bosons in that bath and it is related to its
temperature. The Hamiltonian in Eq.s43d is written in the
interaction picture

HI = o
ki

"fgkistdak + gki
! ak

†gsi
z. s44d

In order not to obscure the discussion, we will assume that
each phonon mode interacts with an independent bath. In
that case, the forces in the rotating frame of reference be-
come"gkistd=s1/Î2dFistdMikake

−ivkt. However, it is easy to
generalize the following analysis to a more realistic model in
which each ion couples independently to the environment,
and the operatorsak andak

† do not represent the phonons, but
the displacements of the ions.

To study the fidelity of a gate we only need to know the
matrix elements of the reduced density matrix for the internal
degrees of freedom. This matrix may be written as a collec-
tion of expectation values,

rreal= o
s,r

kSs,rlSs,r , s45d

where Ss,r = us1¯sNlkr1¯ rNu, rk, sk= ±1 form a complete
basis for the space of 2N32N complex matrices.

The calculations that provide us with the evolution of
kSs,rl are detailed in the Appendix . Here we will only sum-
marize the main result, which is that the reduced density
matrix can be written as

kSs,rlstd = e−ks,re−iS jkJjksjskkSs,rls0deiS jkJjkr jrk. s46d

In other words, the spin density matrix has the form

rrealstd = e−LfUrreals0dU†g, s47d

whereU=exps−i oJjks j
zsk

zd is the operation that we want to
perform, andLsrd=os,rks,rSs,rrSs,r is responsible for the
decay of coherences.

In comparison with the previous part of the paper, the
unperturbed orbits in phase space, that is, the evolution with-
out external forcing, are now not circular orbits, but spirally
decaying ones. This fact translates into new conditions for
uncoupling internal and motional degrees of freedoms20d,

E
0

t

dte−sivk+gkdtFjstd = 0, ∀ j ,k, s48d

which now depend on the exponential decay rategk given by
our dissipation model. This model dependence is also evi-
dent in the kernel that produces our unitary operationJij ,
which now reads

G jlstd = o
k

MjkMlkak
2

2mvk"
sinsvkutudegkutu. s49d

Finally, we would like to remark that the conditions for re-
storing the motional state, as well as the expressions for the
phase and the kernel, are only slightly modified when we
consider a local coupling to the environment.

B. Quantum control of errors due to dissipation

To understand better the implications of Eq.s47d, let us
study the dynamics of a single ion. In this case the reduced
density matrix can be expressed uniquely in terms of the
expectation valueskszl and ks+l. Furthermore, since the
magnetization is constant, we can compute the Uhlmann fi-
delity f46g exactly as a function ofks+l. Let us assume that
initially the system is in a pure state, and defineks+lreal

=eidf−kks+lid, where the subindex “id” denotes the ideal
value obtained in absence of errors. The Uhlmann fidelity of
the gate is

Fsrreal,ridd = Î1 + uks+lidu2f2e−k cossdfd − 1g. s50d

Two types of errors contribute to the decay of the fidelity.
The first type is made of control errors. These errors contrib-
ute both to the spurious phasessdfd and to an effective
decay due to not restoring the motional state of the ionsfk
Þ0 becausebsTdÞ0 and UsTdÞ1g. These errors cause a
smooth dependence on the temperature to appear, as shown
later in Sec. V C.

COHERENT CONTROL OF TRAPPED IONS USING OFF-… PHYSICAL REVIEW A 71, 062309s2005d

062309-9



The second type of errors is due to dissipation during the
forcing of the ions. Their contribution to the exponential de-
cay is

kdissip= gSN +
1

2
DE

0

t

dtubstdu2. s51d

One would be led to think that if dissipation acts on a much
larger scale than the time required to perform our gate we
can neglect it completely. However, a simple argument
shows that this is not the case. As we saw before in Sec.
III C, the strength of the forces scales roughly asF.T−5.
This scaling allows us to give a worst case estimate ofbstd
.Ft and conclude that

kdissip, gT−2, T ! 1/v. s52d

What this means is that slower gates will involve smaller
displacements of the ions, which in turn translates into less
dissipation. On the other hand, a too long application of a
force also gives more time for the dissipation to operate and
the optimal duration should be a compromise between both
processes. It is thus possible and recommended tooptimize
the forces Fstd taking not only into account the properties of
the forcesi.e., differentiablity and intensityd, but alsotrying
to minimize the decayk induced by the force. From the nu-
merical point of view, this new control problem is only
slightly more complicated than the ones we have solved in
Secs. III and IV, becausekdissip is a nonlinear function of the
forces.

C. Errors due to an imperfect control: Influence
of temperature

Let us denote byUid=expsoi j Jijsi
zs j

zd the ideal operation
that we want to perform, and byUreal the operation with
errors. In this section, the only source of error that we con-
sider is an imperfect control, denoted by a perturbation of the
state-dependent force induced on the ions,fFistd+dFistdgsi

z.
According to the previous analysis, the effect of this pertur-
bation will be a residual state dependent displacement of the
coherent wave packets at the end of the process,bksTd,

bk = − iE
0

T

dt eivktakMikdFistd
"Î2

si
z
¬ o

k,i
bkisi

z. s53d

plus a perturbation of the phase

df = o
i j

dJijsi
zs j

z, s54d

which can be interpreted as a change in the effective inter-
action between ionssSec. IVd,

dJij =E
0

TE
0

T

dt1dt2Gi jst2 − t1d

3fFist1ddFjst2d + dFist1dFjst2dg.

We will assume as an initial condition a pure state of the
internal degrees of freedom and a thermal state of the vibra-
tional onesrs0d= uclkcu ^ rvibsTd. The Uhlmann fidelity at
the end of the process is given by

F„rid,rrealstd… = TrvibskcuUid
† rstdUiducld

= kcuTrvibfUid
† rstdUidgucl. s55d

Expandingucl=ocsus1¯sNl, we obtain

F = o
s,r

cs
!crkSs,rlrstd. s56d

When we neglect dissipation, the previous expectation val-
ues can be computed in terms of the final displacementsbkstd
and the residual phases as follows:

kSs,rlUid
† rstdUid

= TrHp
k

Dfbkstdssk − rkdgrvibsTdJ
3 eisstdJs−r tdJr dcscr

!. s57d

Here Dszd=expsza†−z!ad is the displacement operator,
rvibsTd is a thermal state,

rvibsTd = ^
k=1

N "vk

pkBT /
dzdz̄e−uzu2"vk/kBTuzlkkzu, s58d

and thuskDszdl=expf−uzu2s1/2+kBT/"vkdg;expsCkd so that
the total fidelity becomes

F = o
s,r

ucsu2icr u2eisstdJs−r tdJr deCkssk − rkd2. s59d

D. Errors due to larger displacements

The previous studies can be generalized to arbitrary inter-
actions and trapping potentials. Let us assume a complicated
Hamiltonian,

H = o
i
F pi

2

2m
− f istdsi

zxiG + Vsx1,…,xNd, s60d

describing the traps and the ion-ion interaction. The evolu-
tion equation for the position of the ions are of the form

ẋi =
pk

m
, ṗi = −

]V

]xi
+ f istdsi

z. s61d

Since the operatorssi
z are conserved quantities, the previous

equations can be thought of as a simple problem of Newton-
ian mechanics, even though in practice, bothxi and pi are
operators. We can thus represent a general solution as
hxist ;sd ,pist ;sdj, wheres denotes the values ofsi

z opera-
tors. The phase of the ions is then computed by analyzing the
evolution of thesi

+ operators. These operators must undergo
a unitary transformations+std=Ustdsi

+s0dU†std in which the
dependence on thehsi

zj operators must be of the formf47g

Ustd = expFo
i

uistdsi
z + o

i j

fi jstdsi
zs j

zG = eif. s62d

Using the commutation relationfsi
+,s j

zg=−2di jsi
zsi

+, we ob-
tain

si
+std = e2uisi

z+2o jÞifi j stdsi
zs j

z
si

+s0d. s63d

Combining this with the Heisenberg equation forsi
+,
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i"
dsi

+

dt
= 2f istdxisi

zsi
+ = 2

]2f

]t ] si
zsi

+, s64d

we find, up to global phases,

f , o
i
E

0

T

dtf istdxistdsi
z. s65d

From this analysis we see that we must impose two con-
ditions on the process. On one hand, the orbits of the ions
must be periodic so as to disentangle the internal and mo-
tional degrees of freedom,

xisT;sd . xis0d,pisT;sd . pis0d. s66d

On the other hand, the phasef must be independent of the
initial conditions,hxis0d ,pis0dj. Satisfying both conditions is
impossible in general, but if we restrict ourselves to small
displacements and harmonic restoring forces,]V/]xi
.o jVijxj, it is possible to integrate Eq.s61d and recover our
expressions for the phasess18d.

If, however, the qubit and higher terms inVsx1,… ,xNd
become important, we will fail the restoring conditions66d,
and induce some entanglement between the motion and the
spin of the ions. This is the case of very short gates requiring
large displacements in phase spacefFig. 2sddg. The errors
due to the anharmonic terms are of the order

U ]3V

]xi ] xj ] xl
xixjxlU ,

3"va

d
U x

a
U3

, s67d

wherea.Î" /mv is the length associated to the harmonic
oscillator, d3=e2/2pe0mv2 is the equilibrium distance be-
tween two ions, andx is a typical displacement. Since a
trivial analysis of these errors is not possible, we can only
produce a pessimistic, first-order bound that restricts the er-
ror induced by this perturbation on the wave function. First
we will give a worst case prediction for the maximum dis-
placement of the ions asxmax,FmaxT

2/2m, whereFmax is the
maximal force applied on the ions. Next we will use the
scaling f,v2T5Fmax/"m to show that roughlysxmax/ad
,f /4vT. With this, and first-order perturbation theory, we
compute the error and estimate it as

Eanh= Sa

d
D2 f3/2

43/2vT
. s68d

If we want to apply our phase operations to build a quantum
computer, we needE,10−4 and there is a limit on the speed
of the gateT.10−3/v, which, nevertheless, gives gating
rates of the order of 100 MHz.

VI. CONCLUSIONS

We have developed a unified framework to study the co-
herent control of trapped ions by means of state-dependent
forces and robust geometric phases. Our techniques can be
used to perform fast two-qubit gates between pairs of ions.
For an adiabatic switching of the forces and for the case of
pulsed lasers we are able to reproduce the proposals of Refs.
f2,28g, and with very little work we can design the optimal

forces that produce a phase gate in a given time with the
lowest intensity. Using the same tools and a larger number of
ions, we can simulate either continuously or stroboscopically
a number of spins=1/2 Hamiltonians. Furthermore, we are
also able to create highly entangled states and squeezing, and
as prototypical examples we have shown how to obtain a
GHZ state of 20 ions in a very short time,T=1.1/v. Finally
we have studied the sources of error in the application of our
gate, which are an imperfect control, dissipation, and anhar-
monic terms in the interaction. The first type of errors could
be ideally corrected and introduce a smooth decay of the
fidelity with the temperature. The second type of errors in-
duces also a decay of the fidelity, but the amount of this error
can be optimized using the tools of quantum control. Both
dissipation and anharmonicity set upper limits on the speed
of the gate. This limit is, however, very weak, since it allows
theoretically a gating speed of hundreds of MHz, and it could
be overcome by a numerical study of the role of anharmonic
terms in the motion of the ions.

While concluding this paper we became aware of the
work by P. Staanum, M. Drewsen, and K. Mølmerf30g on
performing quantum gates using continuous laser beams. The
ideas shown in Ref.f30g are equivalent to the development
of a two-qubit gate done in Sec. II C, with the difference that
we provide an optimal solution for the problem.
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APPENDIX: SOLUTION OF THE MASTER EQUATION

As we mentioned before, the density matrix is character-
ized by the expectation valueskos,rl. However, it is much
more difficult to work with these expectation values, than
with

Aª o
s,r

Vstd ª o
s,r

eoksbkak
†−bk

!akd. sA1d

By imposing thatVs0d=1 and thatVsTd is at most a phase,
we will be able to relate the reduced density matricesrreals0d
andrrealsTd. It is easy to see that indeed the operatorVstd is
a displacement operator and that Eq.sA1d is essentially the
solution of the nondissipative case, wherebk measures the
separation in phase space between configurations with inter-
nal statess and r .

The equation for the expectation value of an arbitrary op-
eratorA can be written as follows:
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d

dt
kAl = k]tAl +

i

"
kfHI,Agl − gksDaAda + a†sDadl

+ gNkDaDa†A + Da†DaAl. sA2d

Here, DaAª fA,a†g and Da†Aª fa,Ag are two superopera-
tors which first of all commute,fDa,Da†g=0, and second
they are related to the formal derivatives with respect to the
operatorsa and a†. So, for instance,Dafsa,a†d=]afsa,a†d
for any analytical functionf.

If we substitute Eq.sA1d into Eq. sA2d, and use

]tA = o
k

]A

]bk
ḃk + o

k

]A

]bk
! ḃk

!

= Ufḃksak
† − 1

2bk
!d + ḃk

!s− ak − 1
2bkdg, sA3d

we will obtain

d

dt
kAl = io

k

kAfsgkr − gksdak + gkrbk + H.c.gl

+ o
k

kAfḃkak
† − ḃk

!ak + 1
2sḃkbk

! − bkḃk
!dgl

+ o
k

gkNkkAs− bk
!ak + bkak

†dl

− o
k

gksNk + 1
2dubku2kAl, sA4d

with the new parametersgkr ªoigkistdr i.

Here is where we impose a particular evolution of the

displacements on phase space,ḃk+gkbk+ isgkr
! −gks

! d=0. This
equation has a trivial solution,

bkstd = iE
0

t

dt e−gkst−tdfgkr
! std − gks

! stdg. sA5d

After substituting this value all terms containing Fock opera-
tors are cancelled and we are left with

d

dt
kAl = s− k̇ + iḟdkAl, sA6d

where the decayk is

kstd = o
k

gksNk + 1
2dE

0

t

dtubkstdu2, sA7d

and the total phasef=oi j Jijsr i +sidsr j −sjd is determined by
the matrix

Jij ª ImE
0

t

dt1E
0

t1

dt2gkist1dgkjst2d!e−gkst2−t1d. sA8d

Using the symmetry of this matrix, the formula for the phase
can be rewritten asf=oi j Jijsr ir j −sisjd, and the results men-
tioned in Sec. V A quickly follow.
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