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Coherent control of trapped ions using off-resonant lasers
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In this paper we develop a unified framework to study the coherent control of trapped ions subject to
state-dependent forces. Taking different limits in our theory, we can reproduce previous designs of quantum
gates and propose a different design of fast gates based on continuous laser beams. We demonstrate how to
simulate Ising Hamiltonians in a many ions setup, and how to create highly entangled states and induce
squeezing. Finally, in a detailed analysis we identify the physical limits of this technique and study the
dependence of errors on the temperature.
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|. INTRODUCTION U(T) = &% 7+ 2Ba)T, @)

Trapped ions constitute one of the most promising sys-

tems to implement a scalable quantum compltérin such  \here the matriced; and the vector8, determine the spin

a computer, information is stored in long-lived atomic statesygmiltonian that we want to simulate. Since the real interac-
and a universal set of gates is obtained by manipulating thesgn petween the ions is described by more complicated
states with lasers and entangling the ions via the Vibratio”ql-lamiltonians[see Eq.(3) below], any of these transforma-
modes[2]. During the last years we have seen experimentajions s an effective one, realized after influencing the dy-
demonstrations of various two-qubit gafes-6], and it re-  hamics of the ions with external fields.

mains to implement a robust scheme for scalability. Current This process, in which we dynamically modify the param-
yisions pf a scalable computer are based on the idea of Movsiers of the system—Rabi frequencies, detunings, magnetic
ing the ions out of their storage aréar quantum memony  fields, etc.—in order to achieve a well-defined target opera-
and make them interact in pairs, performing two-qubit gatesjon, is calledcoherent quantum contrgThe development of
[2,7]. Basic steps toward the experimental implementation ofoherent control has been tightly connected to the fields of
this idea have been already demonstra&d nuclear magnetic resonan@¢MR) [20] and atomic and mo-

However, outside quantum computing there are othefecylar spectroscop§21]. While in the last field we have
promising areas in which trapped ions may be of use. On thgeen a strong development of optimal control, the theoretical
one hand, there is a great interest in preparing highly enang experimental achievements have been oriented toward
tangled or squeezed states, which can be used both for mggntroliing the evolution of particular states, so as to opti-
trology [9,10], or—in a more fundamental fashion—to char- mize atomic or molecular transitions, or certain chemical
acterize their decoherence properties. The entanglement gfocesses. Instead, for applications to quantum computing,
ions is covered in a variety of theoretical papirs-14, and  \ye need to be able to control the evolution of a linear sub-
it has been experimentally demonstrated for small systemsnace of our Hilbert space as a whole. This requirement has
[15-17. On the other hand, it has also been suggested th@jeen identified in NMR, where pulse sequences have been
ion traps can be used to simulate a various spin Hamiltogeyeloped to simulate arbitrary Hamiltonians and reduce de-
nians, ranging from local to long-range interacti¢ts,19. coherencd20].

In all of these tasks—quantum computing, creation of en-  coherent control has been also implicit in any proposal
tanglement, and quantum simulation—the goal is to inducgg, guantum computing2,13,22-3) and quantum simula-
some unitary evolution on the internal state of the ionsjon [18,19 with trapped ions. While in these works the de-
which is used to store the information. For instance, in thesign of the control relied always on the intuition of the re-
case of quantum computing it suffices to realize a phase gatgarcher and on a clever choice of approximations, in this
between two ions, paper we show that many of these schemes can be translated

into a unified framework based on state dependent forces and
Upr(T) = dmoiosla (1) tunable traps. As char_acteristic examples, we will show how
to implement the pushing gaf2] and the fast gates based on

. , ) laser pulses from Ref28]. We will also propose an alterna-
while in the case of quantum simulation we want a moregjye and more general model of fast gate based on continuous
general evolution, off-resonant lasers. As further applications, we demonstrate

how to induce collectiveH=(;07)?> and nearest-neighbor
H=XJo{of,, Ising interactions, and use them to produce
*Electronic address: Juan.Ripoll@mpg.mpg.de squeezing, and generate cluster and Greenberger-Home-
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Zeilinger (GHZ) states of up to 30 atoms within a extremely to some external forces. Our model Hamiltonian is

short time, T=0(1/w), wherew is the frequency of the ion ) P

trap. _ P B 1
Furthermore, within this unified framework we can ad- H= 2 om * Vei(4) ~ Fi(t)x, +i2<j 4rreg|x = x|

dress important requirements of all these coherent processes.

Namely, they should(i) be independent of temperatu{ |n this equationy,,; is the trapping potential that confines the
that one does not need to cool the ions to their ground statgh ion, and it may be the same for all of them or may change
after they are moved to or from their storage aréa) re-  from ion to ion as in the case of microtraf]. The time-
quire no addressabilityto allow the ions to be as close as dependent external forces are denotedFW) and, as we
possible during the gate so as to strengthen their interagtionyjl| see below, they depend on the internal state of the ion,
and(iii ) be fast(in order to minimize the effects of decoher- ,z
ence during the gate, and to speed up the compula#h |t we expand the previous energy around the equi-
of these requirements can be formulated as constraints of thgyrjum configuration without forces, given by(oH/
control problem, and as we will see below, they can be easil -)(x(O) _
solved. Last but not least, we study the scaling of resourceg ' ’
as we try to make our control faster and answer the question
of what is the ultimate limit for the speed of our quantum p2 1
gates or entangling processes, which is shown to be deter- H=2, {—' - Fi(t)xi} +-mV;xx; + Eo. (4)
mined both by dissipation and nonharmonic contributions to i L2m 2
the restoring forces. . ) ) _
The paper is organized as follows. In Sec. Il we develop! "€ CONstank, is the energy of the ions at their equilibrium
the formalism to study our system. First of all, we introducePositions. The matrix/ describes the restoring forces: it is

the Hamiltonian for any number of ions subject to state deSYmMetric, positive definite, and it can decomposedvas

pendent forces and quasi-1D confinement, and derive hgMQ?M', with a positive diagonal matrix of fretque?mes,
harmonic approximation and the normal modes. Then, wéi=@idq, and an orthogonal transformatigMM'=MM
show how to implement a unitary transformatiot) =[). Using this canonical transformatlon.to define the no.rmal
=exilip({0?})], made of robust geometric gates, while leay-Modesx=2M;Q, p=2M;P, we arrive at the Hamil-
ing the motional state unchanged. In Sec. Ill we apply ouftonian

methods to quantum computing in two-qubit setups. We

2
demonstrate how to recover previous designs of a phase gate, H= Pk + }m 202- S EM. 5
2| ot X FMQ |- (B

3

. ,xﬁ?):o andF;=0, we obtain a set of coupled
armonic oscillator$31],

including the adiabatic pushing gafg] and the fast gate 2

based onm/2 laser pulses that kick the iof28]. Most im-

portant, since the generation of perfect and very short lasdt is now useful to write this Hamiltonian in dimensionless
pulses is a difficult task, we design an arbitrarily fast quanform, using the characteristic length of the oscillatasg,
tum gate based on continuous laser sources. In Sec. IV We(7,/mw,)12, so that P,=/P/a, and Q:=aQ, M
study the co_hgrent control of many-ion setups. Wg prove tha;Mikak_ With this we arrive to

arbitrary spin interactions of the typ@) can be simulated

with the appropriate time-dependent forces, and develop a 1 — -

numerical method to find them. As applications, we demon- H=2> [Eﬁwk(Pﬁ‘* Q- FiMika‘| : (6)
strate numerically the creation of squeezed, cluster, and GHZ K i

states of up to 30 ions in a very short time. Section V focuses . -~ o~ =

on the study of errors. First of all we introduce a model forOr, using Fock operatorsy = (Q,+iPy)/v2,
dissipation on the vibrational degrees of freedom. Next, we

solve this model exactly and analyze the fidelity of the ef- B i1 FiMix 4
fective unitary operationgl), (2). We prove that for a perfect H=2 | fio aga+ 5)~ E _E(ak +ay)
control and no dissipation our scheme is insensitive to tem- K o

perature. Furthermore, the errors due to interaction with the
environment can be computed and optimized using the same
tools of quantum control as in Secs. Il and IV. Finally, we
study the errors due to anharmonic terms in the interaction We will now demonstrate how to obtain a robust phase by
and show that both this and dissipation set an upper boun@pplying forces to a harmonic oscillator. Let us begin with
on the speed of the gate. In Sec. VI we summarize our result§e toy model

and offer perspectives for future work.

ik

.

B. Robust phases

1
H=hwa'a-f(t)-=(a'+a). (8)
II. THEORY V2

A. Normal modes When integrating the Schrodinger equation associated with

As mentioned before, this paper studies a séi @ns, in  this Hamiltonian, it will convenient to use the overcomplete
an essentially one-dimensional confinemjgti] and subject  basis of coherent stat¢32,33,
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A~ ' (a) (b)
|Z> = e_‘2|2/22 ’—,_I|n> = |Q + |P> (9) - P\ unperturbed - - - - Pr
n VN ‘\\ forced
Under the Hamiltoniari8), the coherent states behave some- X X,
how like classical particles in phase space, because their cen- ? <b>
ter, given by(Q) and(P), follows a classical trajectory, while A
the width of these wave packets, given by the uncertainty of Z=X+iP Z=Xptil

Q and P, remains fixed. phase space rotating frame
More precisely, for an initial coherent state0))=|z,), , ,
. FIG. 1. Trajectories on phase space of a coherent wave packet

the solution to the Schrddingerl;(tq)uati(ﬁ”q[/:H(t)z,/f is given subject to a single forced harmonic oscillatoH=wa'a
also by a coherent stafé(t))=€*"|z(t)), whose phase and ,f sin(2t)(a+a"). In (a) we plot the usual phase-space trajectories,

position satisfy (ay=(X+iP)/+2, without forcing(dashed and with F=0.1 (solid),
for two initial conditions(empty circleg. In (b) we plot the same,
d_Z: —iwz+ i;f(t) (103 but on a rotating frame of referenc@)=(e'“{(X, +iP,))/\2.
dt \rfzh '
T P
T=Im| dr—=¢€“f(7z(7
d¢ 1 ¢( f |
=== ——f()(z+2). 100 o N2k
dt  2v2a @+2) (10b)

1 T 71 .
- w(71=79)
The first equation has a solution, zﬁzlmfo dTlJO dre® ™ 2(n)f(r). (14)

iw i o As a simple application, in Fig. 1 we show the phase-
z(t)=¢e" {ZO+EI dré f(T)]’ (1D space trajectories obtained by forcing two coherent states
0 with a sinusoidal forcel(t) «sin(2wt), wherew is the fre-
that results from composing a displacement with a rotation ofluency of the Harmonic oscillator. Even though looking at
angular speed. Using the rotating phase-space coordinatesFig. 1(@) the orbits of different initial conditions also seem
z:=€“z=:Q,+iP,, we get rid of the motion due to the un- Vvery different, on the rotating frame of reference the en-
forced harmonic oscillators and find closed ared\ is always the samgFig. 1(b)]. In other words,
the phasep is insensitive to the initial motional state of the
system and it is thus robust. This property is of crucial im-
portance when we seek applications to real systems that can-
not be cooled to the zero-phonon limit, but which thanks to
dp  dz_ dp, do, dA Eq. (13) will pick up the same phase regardless of the tem

=1 -—pP =2—, 12b perature.
ot Mt T @ w2 (120

d B —
d—ztf — i ()02, (12a

The last equation means indeed that the growth of the phase C. Phase of two ions

¢ i§ proportional to the areA spanned by the coherent state e will now apply the results from Sec. Il B to a pair of
as it moves through the phase space. The phase is not onlyns |n this case there are two normal modes: the center of
geometric in this sense, but also in the extended definition %assxcz(x1+x2)/2, which oscillates with frequenay,, and
geometric phase given in R¢B4]. Applying the formulas in - yhe siretch modes.=x,—x,, which oscillates with frequency
the previous reference one finds that if the total phag#tis w. If the ions are stored in the same harmonic trap
and the dynamical phase is always twice the geometric ong;_ k(xk)=%mw2xﬁ, these frequencies are found to be incom-

bd(t)=—2(1), so that in the enah(t) =—g4(1). mensuratew.=w and ws=wy3. If we store the ions in two

" dIn th|sdworktr\:ve _art'e mtel,\retstted '? ;[E'S ph?_ST and on mag";)gnicrotraps(or in a more complicated potentiathe value of
it depend on the internal state of the particles govemned by, " 've "t ined from,3 down tow.

the oscillator. We want, however, neither to influence the =\ " it o similar state-dependent force on both ions,

motional state of the particles, nor to entangle internal an%r instance by means of an off-resonance laser that induces

r_no_tlonal degrees .Of freedom. For this reason we set a Mg, A gtark shift on one of the internal state of the ions, the
limit on the duration of the force and impose that after aHamiItonian(B) will look as follows:

fixed timeT the coherent wave packet is restored to its origi-

nal state, H= ﬁwala + ﬁwsalas - F(t)oix, = F(t)o5X,
T
f dr e“"(7) =0. (13) = hwala+ho@las+ F(t) (05— o})d - F(t)(of + Ué)%
0 v
. . y . . o
gr?;;%thls condition we derive a simple formula for the total X (ag+ aD —F(t)(o%- 011)2 %(as+ al), (15)
' v

062309-3



GARCIA-RIPOLL, ZOLLER, AND CIRAC PHYSICAL REVIEW A71, 062309(2005

whered is the equilibrium distance between the iomg,  signed “by hand.” In this section we review this work in the
=h/mw,, are the characteristic length scales of the oscilladight of our formalism and rephrase it as an optimal control
tors, ando? is an operator that takes value +1 or =1 depend{problem. This allows us to consider more general forces, and
ing on whether the ion is on internal statel) or |-1). to find, for instance, a design of a gate that involves the
Since the modes are now decoupled, we can apply thehortest time, and the weakest and smoothest varying forces.
formulas of Sec. Il B almost directly. We first obtain a pair of o
commensurability relations on the force, A. Kicking forces

We will consider two ions in a one-dimensional harmonic

T
f dr&“cF(7) =0, (16) trap, interacting with a laser beam on resonance. The Hamil-
0 tonian modeling this system can be written lds Hy+H;
whereHy=fwa.a. +hoalas describes the normal modes of

which are just a generalization of E@L3). Next we obtain the ions and
the total phase, which up to local and global contributions is

Qf(t . :
T T H = L[O'J{e'f‘kxl +ose™e+ H.c] (21
p=0105| dr | dnG(m - n)F(m)F(r), (17) 2
0 0
whereG(t) =[(1/wy)sin(wdt]) = (1/wgsin(wdt|) ]/ 2mii. :%[o)l(e—iﬁkxla-i_l_ ogzge—mkxzag]_ (22)
The goal in Sec. Il will be to tune the forces so that Eq. 2

(16) is satisfied and the phase becomgsmoioy/4, the This term describes processes in which the internal state of

required value for a two-quplt quantu_m phadg. We \.N'” an ion is changed and, as a consequence of the absorption
then show two optimal solutions to this problem, which US€, 4 emission of photons, the atom gains momentmThe
either pulsed or continous forces. Rabi frequency()(t) is a function of the intensity of the

lasers that induce these internal transitions, and looking for

D. Phase for any number of ions the simplest setup we assume that it is the same for both
The case oN>2 ions exhibits a richer structure, due to 10NS. _ o
the fact that the phase depends on all pair prod of In Ref.[28] we explained how to use the Hamiltoni&

the polarizations of the atoms. If we apply the formula fort0 kick the ions. The process consists of applying very fast
the phase of one harmonic oscillatti4) to each of the laser pulses, in which the Rabi frequeriayt) and the dura-

modes in the effective Hamiltonian for the chaif), we tion of the pulsest satisfy [ (r)dr= and &t <27/ w. Let
obtain a total phase us study the evolution of the ions under a single laser pulse.
Since the pulse is much shorter than a period of the trap, we

b= E alolfT JT drydr,F(1)Gii (7, - T)F (7)), (18) can neglect the influence &f,. We then use the formula
- i“] 1 (AN PR ATANCE§ j ’
ij 0J0

ot
Texplif d%ﬁ&} =cog6) +isin(d)na, (293

with a Hermitian kernel 0

M. M ; o . Sl .
(1) = kMK _. where T is the time-ordering operatofji||=1 is a unitary
Gi(® Ek mekﬁsm(wk|t|), (19 vector and we impose that a/2 pulse is produced?s
o =[8'Q(n)/2=m/2. Under these conditions the unitary evolu-
plus a generalization of Eq{16) tion is described by
T ; Z o0
2 f dTeiwkTa’kMikFi(T) = O, O k. (20) Ukick = Oéaéelﬁk(Xlgl 2 2)' (24)
i 0

If at times {t;,t5,...,ty} we send groups of
In Sec. IV we will show how Eq(18) can be related to an {2n;,2n,,...,2ny } very short laser pulses with alternating
effective Ising interaction,H=3;J;0%c?, whose precise momenta, -k +k, ..., the total operation can be written as
shape can be engineered and which can produce interesting=I1, exgd n, X izik(x,0% +x,0%)], and can be thought of as
entangled states. Remarkably, the interaction is always paifnduced by the effective force

wise due to the harmonic model with which we are working. N

p
Fi(t) = >, 2n, X fiko?S(t - t,). (25)
IIl. FAST PHASE GATE FOR TWO IONS =1

A very important application of the techniques studied sowhen the number of pulses is odd, similar considerations
far is to design a two-qubit quantum gate that is robusican be done, but now a total spin fligjo% has to be included
enough to be included in a scalable ion-trap quantum comby hand at the end of the process.
puter. This task has been pursued in a previous Wa&
using a slightly more complicated method, in which the force
was achieved by kicking the ion with/2 laser pulses, and The parametrization of E@25) is a means to simplify the
the distribution and number of these pulses had to be deproblem of finding the optimal forces that produce the phase

B. Phase gate based on kicks
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a) to compensate for small deviations from the value of the

T, phasen/4 for different Lamb-Dicke parameters.

5 The second protocol performs the gate in an arbitrarily

Z short timeT. For shortening the time we now require six

4 groups of pulses, distributed according (tg/n,t,)={(-2,

t4 _71)1(31_72)1(_21_73)1(2173)1(_3172)1(2171)}! where the

times r, 7, and r3 are found numerically by solving the

transcendental equatiorf®6), with the constraint that the

T

gl < % 102\\ B D whole process takes a tinie=27;. As Fig. 2 shows, the
N, 10° e RSN - number of pulsed\N=14n, increases with decreasing time as
0] o— NpocT‘3’2. This is just a consequence of a more general result
10' ) % that is shown later.
T U 100 107
™v2r v2n

] ) C. Phase gate based on continuous forces
FIG. 2. (a) Trajectory in phase space of the center-of-mass state

of the ions(Q,, Py) during the two-qubit gatésolid line), connect- The use ofr/2 pulses to introduce momentum in the ions

ing a possible initial statévlack filled circlg to its final statelgrey has some mconve_nlences. First of all, each .Of the pulses has
filled circle), for the protocol designed in Sec. 1l B. P& shows to be_ perfect, and induce a complete popu_lat!on transfer from

how the laser pulsears distribute in time for this scheme. Below ON€ internal state to the other one. If this is not the case,

we plot (c) the number of pairs of pulses, atid maximum dis-  Systematic errors on each of the pulses can lead to an expo-
p|acement in phase space required to produce a phase gate usmgntial decrease of the f|de||ty Furthermore, as we increase
this scheme. the gating speed, the pulses may become too long to be con-
sidered as instantaneous kicks, and the previous formalism
fails.

What we have found, and what is also one of the main
results of this paper, is that the phase gate may be produced
Np also by applying continuous forces. The search for this forces
> ne@erk=0. (26) is then no more difficult than solving an eigenvalue equation,
I=1 where one may add restrictions such as smoothness of the

_ o _ force, and minimal total work.
If these equations are satisfied, the accumulated phase will be | et us take the real vector spat&([0,T]) of space of

square integrable real forces in th@, T] interval, with the

b= i si(octim)  SinN(wgtim) 2ﬁk2n|nm:7_r/4 usual scalar productf,g)=/if(t)g(t)dt. From this Hilbert

Ll e s m ' space, we choose a subspateof functions which are or-
27) thogonal to the modeg®crt,

T T
where t,,=|t,t,,| is the time between th&h and themth f dr €“cF(7) :f dr €“sF(7) =0. (28)
kicks. 0 0

In Ref. [28] we have found two possible solutions for within 7, the phase and the smoothness of the gate are given
these equations. The first protocol that we proposed, peby ¢[F]=(F,GF) and §F]:=(F,—(d?/d?)F), respectively.
forms the phase gate in a tine=1.08/v, using about four e will prove that the optimali.e., smoothestforce that

pulses, while the secs)zr}g protocol allows for an arbitrarilyproduces a phase gate= /4, is simply proportional td= ,,
short gating timeT ~N_“*/v at the expense of using more whereF, is the eigenstate,

pulses or kicks.

The method for the first protocol is illustrated in Figéa)2 d? _
and 2b), where we plot the phase space trajectories followed B “@F# =GFu, (29)
by the center-of-mass mode. This sequence consists basically . )
on four groups of pulses given bin/n,t)={(y,-7),(1,  With largest eigenvalugu|. If rather than measuring the op-
—1),(=1.75),(~y,7)}. The numbemn tells us how many timality with SF] we use just the normN[F]:= ||F||,

pulses are sent within each group. The parametery0 —(F.F), then the eigenvalue problem is simpler,

gate(1). Using the previous notation, the conditions for re-
storing the motional state of the ions become

N

=cog6)<1.0 is a real number that describes how much the uF,=GF,. (30)
kicking lasers are tilted with respect to the axis of the trap. It K’ a
is always possible to find a solution to E6) with = Let us prove this useful result. We have to work with four

=0.5384)(27/v) > r,>0. The results for the performance functionals, which are th§F] and ¢[F] defined above plus

of the gate are summarized in FiggcRand Zd): for realis-  two more, which measure the displacements originated by
tic values of the Lamb-Dicke paramefet] we only need to the force:D, JF]=[jdr €“"F(7). By choosing the space of
apply the sequence of pulses one or two times to implemeneal periodic functions which are orthogonal to the Fourier
a phase gate. A minor tilting angle will be, however, requiredmodesée “er™ we ensure that everything is well defined and
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4 10
(a)
i | '; , FIG. 3. (a) Optimal forcing for a gating time
RIS 10 Tv=2.1(solid), 1.5 (dashed] and 0.9(dash-do,
g |lﬂ|1 wherew=27 X v is the frequency of the ion trap.
0 (b) Intensity of the force vs duration of the gate
10 (solid) and visual aid T»)~%2 (dashedl All mag-
. nitudes have been adimensionalized following
107 the text.
10° 10" 10° 10"

also that the constrainB@.,[F]=0 are satisfied. This leaves modesNy, can in principle be any number above 3, because
us with the problem of finding a force which minimizg4-], = some degrees of freedom are lost when satisfying the con-
while satisfying the last constraigi{F]= /4. There exists, straint(16). However, the numerical experiments show that
however, a much easier dual problem which is formulated a#deedNy,=4 provides very good solutions. As an example,
finding the maximum of{F] subject to the quadratic con- in Fig. 3@ we show three possible forces for a duration of
straint §F]=1. Using the theory of Lagrange multipliers, the gateTw/27=2.1, 1.5, and 0.9. We have computed other

this amounts to finding the maximum of solutions for a wider range of gate speeds. In Figp) 3ve
plot the mean intensitlf|| = f|f(t)|dt vs the total timeT, and
L[F]=¢[F]- w(SF]-1), (31)  demonstrate the la 2/ obtained above.

An interesting question is how much energy we have to
grangian we obtain Eq(29), flom where it follows that 2t 00 € SRR B T T LR B e ven
w|[Fl|5=¢ is the maximal phase to be achieved, and the asdaies: ’ . Y

) i oy ) quickly. Let us assume that we have the optimal force that
sociated eigenstatg,, | 7l (4p)1|[Fll; is the force we were produces a phase gate in timie< 27/ w,. Since the time is
looking for. . very short, we can perform a Taylor expansion of the func-

One might wonder about the need for solving the duakjon g(7) obtaining
problem instead of the original one and whether indeed both

where u is the Lagrange multiplier. Differentiating the La-

problems are equivalent. The answer to the first question is (T (wg— wg) 3
that the resulting generalized eigenvalue equation behaves ¢l = o Jo drd7F(r)F(7) 12mh |71 7l
better. Thanks to the operatord*/dt? being semidefinite

positive, its presence on the left-hand side of the eigenvalue w? - »?

equation(30) can be handled by redefining the scalar prod- 12 '

uct. To answer the second question let us assume-timea

solution of the original problem. We defirfg:= F/SF], a where||F||,=f{d7F(7)| is just a measure of the force applied.
solution which hasSF4]=1 and¢[F4]=m/49F]=: ¢4. Not ~ From here we see that

let us assume that there exists a functipwith §g]=1 and IF|l, = T-32 (34)

a larger phase, ¢[g]=:¢y>¢s. We can define g, !

:=g\7/4¢y, which now hasd[g,]=/4 andSg,]=m/4¢, O, in the case of the kicked ionsl,=T-%/2 the scaling that
< wl4¢4=9F], which contradicts the fact thd& was the the numerical simulations already showed.

optimal solution of the original problem. A similar reasoning

can be done the other way around, thus proving the equiva- D. Adiabatic pushing

lence of both problems.

Even though we have been able to relate the control prob- AS @ final remark, we want to relate the methods pre-
lem to an eigenvalue equatiq@9), there exists no simple sented here with th@ushing gateintroduced in Ref[2].

analytical solution to this problem and we have to resort to! Nat onk propos?g fo trap the ions in separate microtraps,
some simple numerics. However, a very nice feature of th&/ei(X)=3mw?(xi—x)? and to apply a state-dependent
two-ion problem is that, by scaling quantities with respect toforce on two neighboring ions. This force should be switched
the trap strengthw and the wave-packet size=(#/mw)~22, ~ on and off adiabatically with respect to the period of the
we can compute the optimal force independent of the setugf@Ps, 2t/ w, in order to approach the ions to each other and
Using these units and expanding the force in terms of Fourigiater on return them to their equilibrium positions. The adia-

modes, baticity condition ensures that the ions remain at all times in
N the ground state of the effective Hamiltonié), which is
< iommtT_ F(Da now time dependent, because the equilibrium positﬁﬁs
= > Cn€ T he (32) and the equilibrium energl, both depend on the instanta-

m=-Np,

neous value of the forces. After restoring the ions to their
we can express Eq29) as an eigenvalue equation for the original positions, the only effect on the quantum state of the
vector ¢, that is to be solved numerically. The number of ions is a state-dependent phase,
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T The proof is very simple. Let us slice the time interval
<;/>=f EolxV(1), ..., x{(1)]dt. (35 [0,T]into N? subintervals, 6 t;;=ty,< - <tyn1<T.Ina

0 given time interval,| =[t;,t j+1], we will switch on two
The previous analysis is found in Ref®,35,3§. A very forces, and leave all other ions on their own,
important point is that, in order not to excite the ions and
regard the process as truly adiabatic, the forces have to be Fu) =0, telttijl, Ok#i,j.
weak and change very slowly, and no cubic contributions to
the energy should appear. In other words, we should be ablehe active forces;(t) and F;(t) must satisfy several equa-
to describe the change &, using at most quadratic terms, tjons,
EfXO(1)]=EJ[X?(0)]+3mV éXi(O)aX}O). Hence rather than
using the adiabatic theorem we can integrate the problem _
exactly. For a single harmonic oscillator we get 0 =J €M F(ndr, «a=i,j, k=1---N,

|

_ 1 O |
Z(t) — e—lw’[zO + ?f(t) — —,_J dTele_f’(T), (36)
V2 v2Jo @

1
where the adiabatic condition corresponds to neglecting the ~ Ji = tijer— b f| f| dndnFi(m)Gij(m — m)Fj(7). (38)
last term f’(7)/w, and the force only has to satisfiy(T) '

:f(O_):O._Repc_eatmg _the arguments of previous sections, fof; is not difficult to convince oneself that these equations
two ions in neighboring traps the total phase becomes

always have a solution, and that by repeating this procedure
T ol we will get an effective total phasg that resembles the one
¢:f dr————F(n?%0}05. (370 produced by the Ising model during a tirfie O
0 2md We have to make several remarks here. The first one is

Here w,=® and w, now depend slightly on the separation of that since the operator that we want to simulate is symmetric,
< ° di=Jji» and since the diagonal terms only contribute to a

the microtraps, but the same formula applies for the case itiji =i ;
which both ions coexist in the same trap—a situation tha@!oPal phase, the number of intervals can be actually de-

could not be considered with the formalism of previous pa-réased taN(N-1)/2. _

pers. However, more important is the f:{ct that we can use co-
herent control to find optimal forceB, which instead of

IV. QUANTUM CONTROL OF SEVERAL IONS piecewi_se continuous are .the smoothest possible and .have
the optimal norm, while giving rise to the same effective

We will now study one-dimensionallD) setups with  Hamiltonian. This task has been performed numerically for

more than two ions. As we showed before, we can still consome models, and the results will be shown in the following

trol the geometric phases and use them to simulate a varieection.

of spin HamiltoniangSec. IV A). The design of the forces From the point of view of quantum simulation, we would

for these simulations is still a control problem, but a muchlike to be able to model more than just an Ising model, which

more difficult one. For instance, a crucial difference is that inis essentially classical. For instance, one would like to be

setups with more than two ions either addressability or able to introduce transverse magnetic fiel;o or to

spatial modulation of the forces are required. As a possiblgimulate a Heisenberg interactiofo; and in general, a uni-

application of this result we study how to optimally generatetary operation of the forn{2) would be desirable. The an-

entangled states and squeezing. In particular, we show thatver to this problem is once more the stroboscopic evolu-

this can be done for a large number of idiog to 30 in a  tion, or a Trotter expansion of the operat@y,

very short time(Sec. IV B).

U 2{ 1 ei(T/N)t(EijJi‘}‘ai“oj“+2ihia(rf”)}N_ (39)

A. Simulation of spin Hamiltonians a=xy,z

Given any Ising Hamiltonian ) ) )
In this expansion, we decompose the total unitary as a prod-
H,= E Jijoilgjz, J=J e RNXN uct of phase gates, that are originated by forces that depend
ij on o}, af, ando?. In practice, one would switch on a mag-
i - : -
and a timeT, it is possible to design a set of state-dependen etic f|eld i and perform a'phase gate with coefﬁmedﬁs
or atimeT/N, rotate the spins so that, becomesr,, apply

forcesF,(t;J) such that after applying these forces for a time oy
) : ; o ... the phases witld}, etc.
T, the dynamics of the ions simulates this spin Hamiltonian. . U .
This technique is equivalent to the sequences of pulses

In other words, developed in NMR quantum computirf@0] to induce a
T[eifBH(r)dr] = g HIT given unitary by combining the evolution under a fixed in-
teraction Hamiltoniar(i.e., the one that describes the inter-
where7 denotes the time-ordered product adds the true  action of the atomwith external magnetic fields that rotate
Hamiltonian of the iong4). the interacting spins.
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It is also worth noticing that if we switch on the state- 20
dependent forces acting on different ions, and make them g,
oscillate with a single frequend{ around a constant value,
Fi(t)=f; sin(Qt)o?, for a long time, the effective interaction —20t(a)
is a particular spin Hamiltonian, 0 0.5 1
1
()
_ MM [1 + 6 o] (ﬁ) F
H ”Ekf'_J—4M(w§—QZ) fiofof+0 ) (40) 05
In the limit ) — 0, this model corresponds to the one found 0% 0.5 7
in Ref. [18]. As it was shown there, depending on whether “to
the forces operate longitudinally or transversely to the ion
trap, this continuous force will give rise to long-range or 50
short-range interactions. g WWW
0
B. Coherent control and design of entanglers % (b)
The simulation of an Ising interaction is by itself interest- 0 0.5 1
ing, and has important applications such as creation of many- 1 (6]
qubit quantum gates, quantum simulation, and adiabatic F
quantum computing. However, a most straightforward and 0.5
useful application of an Ising Hamiltonian is the generation
of many-body highly entangled states callgchph states 00 0.5 1
[37]. Roughly speaking, let us imagine that we have a set of 0]

N spins, which we represent by points or vertices, and let us _ _

connect these points by lines or edges. The resulting graph F!G- 4. Generation of &),(c) cluster state oN=10 ions and of
can be described by an adjacency matrix which takes valug’l’(d) a GHZ state oN=20 ions, using common forcing for a time
J;=1 only if the spinsi andj are connectedi38]. To each _T_l'll‘f"h(a)'(b) Time O:]ependence of the fo]fceﬂt.)' (C)’f(q) Fidel-
graph we can thus associate a Hamiltonian of the ijn |ty F, wit respect to the target state as a function of time.

=3, :Jiiofo”. It has been shown that after applying this inter- L . .
acti’cj)nJ olve]r a certain time on a transversely polarized staté?OdUIat'on in Fourier modes, we fitd(N-1)/2+N equa-

the outcome is a highly entangled state called a graph statdons Which define a possible entangling procedure. We have
gny g grap solved numerically these equations, both for the GHZ state

I ST oN and for the cluster state. While in the first case we always
|ve) = oNiz® 9(10) + 1= (41) " found exact solutions with a small number of modies., 50
modes for 30 ions the generation of the cluster state was
When the graph has a lattice geometry, these states are algivays approximate with high fidelitfs =99.9%. The error
known as cluster stat¢89], and form the basic ingredient of in this case has its origin in our particular choice of forces.
the one-way quantum compufei0]. However, a particularly In Fig. 4 we show the entangling procedure for a setup
important case without lattice geometry is the GHZ state, with 10 and 20 ions, even though chains of up to 30 ions
imeN ®N have been considered. We measure the fidelity of the process
IGHZ) ~ 0"+ 1), (42) as the overlap between the target state and the one achieved.
which is essentially generated by the interactiy=1 or  If &Jis the difference between the desired interaction and the
H;=(Zi09)% The GHZ state is one of the best studied en-achieved one, the,ﬁ:(l/zN)Ese—iS“ﬁJT% where the sum is
tangled states; it constitutes a canonical example operformed over all possible spin configuratiogs; +1. The
Schrédinger cat state, and it could have important applicatime scales for the generation of the interaction are indepen-
tions in the field of precision frequency measurements, proeent of the size of the system, and for instance we can pro-
viding a 1A/N precision increase fdX entangled ion§9,10,  duce a GHZ state of 20 ions in a tinfe=1.1/w, to be com-

a point already demonstrated experimentally in RET]. pared with the timé&'=3000r/ w required when individually
We have investigated how to implement these highly enaddressing one of the vibrational mod&g&]. The strength of
tangled states using our quantum control techniques. Thehe forces, though, grows moderately with the number of
idea is very simple: we design a matrd¢ for our graph ions, which can be inconvenient. However, thanks to the pe-

state, and look for the time- and state-dependent forces thabdicity of the forcingf(t), if we divide the intensity of the
implement the phase transformation €xigrH;7/4) within  forces by a factor of 2f(t)— f(t)/2, the same gate is pro-

a fixed timeT. For simplicity, even though it is not warranted duced in a longer time & Furthermore, the forces that we
to succeed, we look for forces that have a common timeyresent in this paper are not optimal, and have been found
dependencé;(t) = yif(t)of, || <1. These forces could be with a straightforward Gauss-Newton method. If high fidel-
implemented with an appropriate intensity mask, which deidty is not required, one may find better solutions with fewer
termines the relative amplitudeg, and a global intensity Fourier modegN,, in Eq. (32)], but most important we ex-
modulation, which gives the functiof(t). Expanding this pect significant improvements by the application of better
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nume.rical algo_rithr_ns to sc_earch for the optimal entanglers. Preal= D o) Ser, (45)
Using the Ising interaction we cannot only produce graph s

states, but also squeezed states: states in which the variance

of one spin componemS, has been decreased at the ex-"Where Sgr=lsr sy o, Mo s *1 form a complete

pense of increasing the other variances. As it was shown iRasis for the space of‘2<2" complex matrices. _

Ref. [41], a Hamiltonian of the formH:Jg (single axis The calculqtlon_s that prowde_ us with the _evolutlon of

squeezinyor H:J§_J§ (two-axis squeezingcan be used to (3s,) are detailed in the Appendix . Here we will only sum-

produce squeezing. Both models can be simulated using ofi#arize the main result, which is that the reduced density

tools, either directly, as in the single-axis squeezing, or stromatrix can be written as

boscopically, for theXY interaction. Indeed, the stroboscopic — ke S S it

simulation of the two-axis squeezing resembles the scheme (Zer)(1) = e HAAE5 Y (O) K (46)

of /2 pulses used in Ref42] to effectively switch off the In other words, the spin density matrix has the form

interaction in two-mode Bose-Einstein condensh4s. praft) = € E[Upraa U], 47)

whereU=exp(-i X Jjofa}) is the operation that we want to
V. OPTIMAL CONTROL OF ERRORS perform, andL(p)=Sg, ks, pSs, iS responsible for the

Up to now, we have assumed that the motion of the ions i§l€cay of coherences. .
not disturbed during the time when the controlling forces are N comparison with the previous part of the paper, the
applied. In this section we will show how to take these ef-unperturbed orb|.t3 in phase space,'that is, thg evolutlon with-
fects into account for a realistic model of dissipation. TheOut external forcing, are now not circular orbits, but spirally
main result is that the fidelity of the process can still bedecaylng ones. This fact trz_anslates into new conditions for
computed and that there are two sources of error: one due #icoupling internal and motional degrees of freed@®),
an imperfect control of the ions, which introduces some tem- t _
perature dependence on the fideli§ec. V Q, and another f dfe‘("“k”k)TFj(r) =0, 0O jk, (48)
one due to the dissipation, that can be treated as another
cqnstralnt for the con'grol probIer(Sec. \% B Finally, we “which now depend on the exponential decay matgiven by
W|Il_comment on possible extensions outside the harmonig, dissipation model. This model dependence is also evi-
regime(Sec. V D. dent in the kernel that produces our unitary operatign

which now reads

0

A. The model and an exact solution M'lekai
o . . Gi(1) = 2 2 —Fsin(w 7). (49)
We study the dissipation with a master equation that arises 2Moh
from coupling the phonon modes with a “classical” Bosonic . N
bath in thermal equilibrium, Finally, we would like to remark that the conditions for re-

storing the motional state, as well as the expressions for the
d phase and the kernel, are only slightly modified when we

a4 _1 TS
dt? ~ h[H"p] ¥ % N33y~ dyp ~ pa) + % N consider a local coupling to the environment.

+ 1)(2akpal - alakp - Palak)- (43) B. Quantum control of errors due to dissipation
To understand better the implications of E47), let us
tudy the dynamics of a single ion. In this case the reduced
ensity matrix can be expressed uniquely in terms of the
expectation valuego? and (c*). Furthermore, since the
magnetization is constant, we can compute the Uhlmann fi-
H, = > Algu(ta, + guarlot. (44) delity [46] exactly as a function ofo*). Let us assume that
ki initially the system is in a pure state, and defie’),cy

In order not to obscure the discussion, we will assume that €’ (o), Where the subindex “id” denotes the ideal
each phonon mode interacts with an independent bath. |Ma|ue Obt-ained in absence of errors. The Uhlmann fldellty of
that case, the forces in the rotating frame of reference behe gate is
come/igi(t) =(LN2)F()Mycer . However, it s easy to Flpreaspia) =1+ (o o126 cod56) - 1. (50)
generalize the following analysis to a more realistic model in
which each ion couples independently to the environment, Two types of errors contribute to the decay of the fidelity.
and the operators, anda/ do not represent the phonons, but The first type is made of control errors. These errors contrib-
the displacements of the ions. ute both to the spurious phasé8s) and to an effective
To study the fidelity of a gate we only need to know thedecay due to not restoring the motional state of the jans
matrix elements of the reduced density matrix for the internak= 0 because3(T)#0 and U(T) # 1]. These errors cause a
degrees of freedom. This matrix may be written as a collecsmooth dependence on the temperature to appear, as shown
tion of expectation values, later in Sec. V C.

Here vy, describes the coupling to an external bath aids
the mean number of bosons in that bath and it is related to i
temperature. The Hamiltonian in E@3) is written in the
interaction picture
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T_he seconq type of errors i; du_e to dissipation dur.ing the Flpig:preald) = Trin((HULp(0O Ul 1))
forcing of the ions. Their contribution to the exponential de- .
cay is = (U Tri[Uigp(OUigl| ) - (55)
1\ [t Expanding|¢)=2cs;* - -sy), we obtain
Kdissip™ 7<N + E)f dT‘B(TNZ- (51)
0

F= 2 C;Cr<zs,r>p(t)- (56)

One would be led to think that if dissipation acts on a much

larger scale than the time required to perform our gate wdVhen we neglect dissipation, the previous expectation val-
can neglect it completely. However, a simple argumenti€s can be computed in terms of the final displacemgyits
shows that this is not the case. As we saw before in Se@nd the residual phases as follows:

Il C, the strength of the forces scales roughly Fas T-5.

This scaling allows us to give a worst case estimatg(f Csr Ut poug = TF{H D[B(t)(sc— rk)]pvib(T)}

=Ft and conclude that k

i(stads—riodr) A ~x
Kdissip ™ ')’T_zn T<1llo. (52 X € CCy - (57)

Here D(z)=expza'—z*a) is the displacement operator,

What this means is that slower gates will involve smaller X
(T) is a thermal state,

displacements of the ions, which in turn translates into lesévib
dissipation. On the other hand, a too long application of a N %o o

force also gives more time for the dissipation to operate and puin(T) = ® —— ﬂdzde‘Z holkeT|2 (2],  (58)
the optimal duration should be a compromise between both k=1 kg T

processes. It is thus possible and recommendeptonize  and thus(D(2))=ex —|z%(1/2+kgT/%w)]=exp(C,) so that
the forces Kt) taking not only into account the properties of {he total fidelity becomes

the force(i.e., differentiablity and intensily but alsotrying

to minimize the decay induced by the forceFrom the nu- F=> |CS|2||Cr|Zei(5t5~35—rt§\]r)eck(5k_rk)z_ (59)
merical point of view, this new control problem is only sr

slightly more complicated than the ones we have solved in
Secs. Il and 1V, becausey;ssip is a nonlinear function of the
forces.

D. Errors due to larger displacements

The previous studies can be generalized to arbitrary inter-
actions and trapping potentials. Let us assume a complicated
Hamiltonian,

C. Errors due to an imperfect control: Influence
of temperature
Let us denote byJjy=expX;;J;oio}) the ideal operation )
that we want to perform, and by, the operation with H=> [ﬂ - fi(t)O/iZXi} + V(X ooy Xn),s (60)
errors. In this section, the only source of error that we con- i L2m
sider is an imperfect control, denoted by a perturbation of the - L .
state-dependent force induced on the idfs(t) + oF;(t) Jo? describing the traps and the ion-ion interaction. The evolu-
I it . - oy .
According to the previous analysis, the effect of this pertur-tlon equation for the position of the ions are of the form
bation will be a residual state dependent displacement of the P . aVv
coherent wave packets at the end of the procggd,), X= o PiEm o fi(thof. (61)
1
T
Be=- if dTeiwkTMaz:: > Bo?. (53 Since the operators; are conserved quantities, the previous
0 i N ' equations can be thought of as a simple problem of Newton-
i ian mechanics, even though in practice, bgttand p; are
plus a perturbation of the phase operators. We can thus represent a general solution as
5= 830707, 54 {X(t;0),p(t; o)}, Whergo d(_anotes the values af! opera-
¢ % 719} (54 tors. The phase of the ions is then computed by analyzing the
. ) . _ . evolution of theo] operators. These operators must undergo
which can be interpreted as a change in the effective intery unitary transformatiomr*(t)=U(t)ai+(0)UT(t) in which the

action between ionéSec. IV), dependence on thig?} operators must be of the forfd7]
T T
83 = J f drdr,Gij(7, = 71) U =exg 2 G(t)of + > ¢(tofof| =€ (62)
0J0 i ij
X[Fi(7) 6Fj(mp) + SFi(1)Fj(m2)]. Using the commutation relatidw;’, 07]=-26;07o;, we ob-
We will assume as an initial condition a pure state of thetaln
internal degrees of freedom and a thermal state of the vibra- +ip — 2007425 Ly (DoPo? +
. - ‘(1) = %9+ 2ii4 (V0% 55 (0) 63
tional onesp(0)=|y) | ® pyip(T). The Uhlmann fidelity at ai (1 ey (0) (63
the end of the process is given by Combining this with the Heisenberg equation ts,
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_do . b . forces that produce a phase gate in a given time with the
'ﬁﬁ = 2fi(t)xofo; = 2(9,[ 52 (64)  lowest intensity. Using the same tools and a larger number of
i ions, we can simulate either continuously or stroboscopically
we find, up to global phases, a number of spirs=1/2 Hamiltonians. Furthermore, we are
- also able to create highly entangled states and squeezing, and
_ (A z as prototypical examples we have shown how to obtain a
¢ 2 JO drfi(mx(n)or. (69 GHZ state of 20 ions in a very short tim&=1.1/w. Finally

) ) ] we have studied the sources of error in the application of our
_ From this analysis we see that we must impose two congate, which are an imperfect control, dissipation, and anhar-
ditions on the process. On one hand, the orbits of the iongonic terms in the interaction. The first type of errors could
must be periodic so as to disentangle the internal and Maye ideally corrected and introduce a smooth decay of the
tional degrees of freedom, fidelity with the temperature. The second type of errors in-
Ty TN duces also a decay of the fidelity, but the amount of this error
%(Ti) =%(0),pi(T;0) = pi(0). (66) can be optimized using the tools of quantum control. Both
On the other hand, the phagemust be independent of the dissipation and anharmonicity set upper limits on the speed
initial conditions,{x;(0),p;(0)}. Satisfying both conditions is of the gate. This limit is, however, very weak, since it allows
impossible in general, but if we restrict ourselves to smalitheoretically a gating speed of hundreds of MHz, and it could
displacements and harmonic restoring forced//dx; be overcome by a numerical study of the role of anharmonic
=2,V;;X;, it is possible to integrate E¢61) and recover our terms in the motion of the ions.
expressions for the phaséks). While concluding this paper we became aware of the
If, however, the qubit and higher terms W(x,,...,Xy)  work by P. Staanum, M. Drewsen, and K. MgIni&0] on
become important, we will fail the restoring conditi¢®6), performing quantum gates using continuous laser beams. The
and induce some entanglement between the motion and tha@eas shown in Ref.30] are equivalent to the development
spin of the ions. This is the case of very short gates requiringf a two-qubit gate done in Sec. Il C, with the difference that
large displacements in phase spaféy. 2(d)]. The errors we provide an optimal solution for the problem.
due to the anharmonic terms are of the order

PV Showa

XXX

9% IX; 9% : d J.J.G.-R. thanks J. Pachos, D. Porras, and Shi-Liang Zhu
where a=\#/mw is the length associated to the harmonicfor interesting discussions during the development of this
oscillator, d*=e?/2mwe;maw? is the equilibrium distance be- manuscript. Part of this work was supported by the EU IST
tween two ions, and is a typical displacement. Since a Project RESQ, the EU project TOPQIP, the DE&chwer-
trivial analysis of these errors is not possible, we can onlypunktprogramm Quanteninformationsverarbeifurand the
produce a pessimistic, first-order bound that restricts the elompetenznetzwerk Quanteninformationsverarbeitung der
ror induced by this perturbation on the wave function. FirstBayerischen Staatsregierung. Research at the University of
we will give a worst case prediction for the maximum dis- Innsbruck was supported by the Austrian Science Founda-
placement of the i0NS a§,.< Frmax 2/ 2M, whereF . is the  tion, EU Networks, and the Institute for Quantum Informa-
maximal force applied on the ions. Next we will use thetion.

scaling ¢~ w?T°F . /fim to show that roughly(Xma/ @)

~ ¢l4wT. With this, and first-order perturbation theory, we
compute the error and estimate it as
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APPENDIX: SOLUTION OF THE MASTER EQUATION

a\2 o2 As we mentioned before, the density matrix is character-
Eanh= (—) — (68) ized by the expectation valué&s ). However, it is much
d/ 4T more difficult to work with these expectation values, than

If we want to apply our phase operations to build a quanturrWith

computer, we neeB <104 and there is a limit on the speed

of the gateT>10"%/w, which, nevertheless, gives gating A= D V(1) := D, e2k</3kal-ﬁiak). (A1)
rates of the order of 100 MHz. sr sr

By imposing thatv(0)=1 and thatV(T) is at most a phase,
we will be able to relate the reduced density matriggg(0)

We have developed a unified framework to study the coandp,,(T). It is easy to see that indeed the operat() is
herent control of trapped ions by means of state-dependeiat displacement operator and that E41) is essentially the
forces and robust geometric phases. Our techniques can belution of the nondissipative case, whe3g measures the
used to perform fast two-qubit gates between pairs of ionsseparation in phase space between configurations with inter-
For an adiabatic switching of the forces and for the case ohal statess andr.
pulsed lasers we are able to reproduce the proposals of Refs. The equation for the expectation value of an arbitrary op-
[2,28], and with very little work we can design the optimal eratorA can be written as follows:

VI. CONCLUSIONS
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| .
A=A+ ([HLAD - K(DNa+aT (D)
+ YN(D D atA + DotDA). (A2)

Here, D,A:=[A,a'] and D,tA:=[a,A] are two superopera-
tors which first of all commute[D,,D,r]=0, and second

PHYSICAL REVIEW A71, 062309(2005

Here is where we impose a particular evolution of the

displacements on phase spaggt yiB«+i (0 — k) =0. This
equation has a trivial solution,

t
Bt =i f dr & g (1) - g D] (A5)
0

they are related to the formal derivatives with respect to the

operatorsa and a’. So, for instanceD,f(a,a’)=d,f(a,a")
for any analytical functiorf.
If we substitute Eq(A1) into Eq.(A2), and use

IA - IA -
GA=D — B+ > — Br
‘ k 9Bk : k 9Bk :

=U[Bdal - 380 + Bi-a—3B80], (A3
we will obtain
=TS A ~ 003+ G He)
> (ALB@ = Bra+ 3 (B~ BBOD
+ % YINGA- Beay+ Bidy)
(A4)

=2 n(Ne+ 3)|BdAA),
K

with the new parameterg, := =;g;;(Dr;.

After substituting this value all terms containing Fock opera-
tors are cancelled and we are left with

S =i ipA), (a6)
where the decay is
t
k(1) = 2 N+ 3) f driB(7)[?, (A7)
k 0

and the total phase=X;;J;(ri+s)(r;—s;) is determined by
the matrix

t ]
Jij = ImJ dTlJ d7,0i( 1) Gkj(m2) € W2 (AB)
0 0

Using the symmetry of this matrix, the formula for the phase
can be rewritten ag=2;;J;(rirj—ss;), and the results men-
tioned in Sec. V A quickly follow.
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