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In spite of many results in quantum information theory, the complex nature of compound systems is far from
clear. In general the information is a mixture of local and nonld¢t@hantum?” information. It is important
from both pragmatic and theoretical points of view to know the relationships between the two components. To
make this point more clear, we develop and investigate the quantum-information processing paradigm in which
parties sharing a multipartite state distdkal information. The amount of information which is lost because
the parties must use a classical communication channel idefieit This scheme can be viewed esmple-
mentaryto the notion of distilling entanglement. After reviewing the paradigm in detail, we show that the
upper bound for the deficit is given by the relative entropy distance to so-called pseudoclassically correlated
states; the lower bound is the relative entropy of entanglement. This implies, in particulamyhantangled
state is informationally nonlocati.e., has nonzero deficit. We also apply the paradigm to defining the ther-
modynamical cost of erasing entanglement. We show the cost is bounded from below by relative entropy of
entanglement. We demonstrate the existence of several other nonlocal phenomena which can be found using
the paradigm of local information. For example, we prove the existence of a form of nonlocality without
entanglement and with distinguishability. We analyze the deficit for several classes of multipartite pure states
and obtain that in contrast to the GHZ state, the Aharonov state is extremely nonlocal. We also show that there
do not exist states for which the deficit is strictly equal to the whole informational cofienind local
information. We discuss the relation of the paradigm with measures of classical correlations introduced earlier.
It is also proved that in the one-way scenario, the deficit is additive for Bell diagonal states. We then discuss
complementary features of information in distributed quantum systems. Finally we discuss the physical and
theoretical meaning of the results and pose many open questions.
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I. INTRODUCTION standing it. Part of the difficulty is that measures of a quan-

“Quantum information” is emerging as a primitive notion tity are not enough to understand the quantity—one needs to
in physics following an essential extension of classical Shunderstand entanglement in relation to something else. You
annon information theonf1] into the quantum domain. cannot understand entanglement in relation to entanglement.
Quantum information cannot be defined precisely, but it jsin the above context, basic questions arl(a.éz:Does.gn-
necessary to understand the role of this mysterious and “uri@nglément exhaust all aspects of quantum information®
speakable” informatior{2] in newly discovered quantum Ar€ there resources other than entanglement in the distant
phenomena such as teleportati@ or cryptography{4,5]. laboratory para@gm?@u) Does quantum information in-
These phenomena suggest that quantum states repres¥flve @ nonlocality which goes beyond Bells theorem?
quantum information—reality we process in the laboratory, 1h€ above questions have been recently considered

but which cannot be described as a sequence of classicet0—2d- In particular, a new quantum-information process-

symbols on a Turing tapi,7]. Recently the no-deleting and N9 paradigm has been introduced, where we proposed the

no-cloning theorems have been connected with the principlé€2 Of attributing cost to local resources such as pure local
of conservation of quantum informatidi]. Like physical dubits [14,19. Instead of asking how much entanglement
quantities such as energy, quantum information has differerfi@n be distilled from a state shared between two parties, one
forms and one of them is entanglement—an exotic resourcg2n sk how many local pure qubliscan be drawn from it.
extraordinarily sensitive to the environment. One finds a losd NS gives a quantitycalled localizable informatioh which
of entanglement in the transition from a pure entangled statE®" then be used to get insight into the double nature of
to a noisy entangled state, yet remarkably this process can !antum information. Namely, it was shown that local infor-
partially reversed within the distant laboratories paradigmmation can be thought of as being complementary to en-
Namely from a large number of noisy bipartite states shareé@nglement16], thereby allowing one, in particular, to un-
between two distant parties one can distill a number of enderstand entanglement in relationlto
tanglement bitge-bits) at the optimal conversion rate using At first glance, the idea of considering local pure states to
local operations and classical communicati¢n®CC) [9]. be a resource may seem curious. In traditional entanglement
Despite a plethora of measures which can be used ttheory, one thinks of local pure states as being a free re-
quantify entanglement, we are still far from properly under-source. Each party can use as many pure-state ancillas as
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desired. Furthermore, one can obtain pure states from @ssential results within the paradigm of distillation of local
mixed state simply by performing a measurement on thenformation. In particular we provide a lower bound for the
state. Note, however, that the second law of thermodynamiagdeficit: it is bounded from below by the relative entropy of
tells us that purity is indeed a resource. One can never deentanglemen{28,29. We also find that the closed LOCC
crease the entropy of a closed system; entropy only infCLOCC) paradigm allows one to define the thermodynami-
creases. The reason a measurement appears to produce peaiecost of erasure of entanglement. The cost is also bounded
states is that we ignore the fact that the measuring apparatfi®m below by the relative entropy of entanglement. We also
must have initially been set in some pure state, and after thanalyze the deficit for multiparty pure states such as the Aha-
measurement, the apparatus will be in a mixture of all theonov state[30], Greenberger-Horne-Zeiling€GHZ) state
different measurement outcomes. In other words, in a close[81], andW state. We obtain that, according to the deficit, the
system which includes the state, the measurement apparatésharonov state exhibits the greatest quantum correlations,
and the observer, the total number of pure qubits can nevevhile the GHZ state, the least. We show that in the finite
increase. We must therefore be careful how we define theegime(i.e., where Alice and Bob deal with a single copy of
allowable class of operations in order to account for all purea statg, any entangled state isformationally nonlocali.e.,
states which might be introduced by various parties from thét has nonzero deficit. Moreover, we provide states which
outside. We will discuss such a useful class, calttmbed exhibit informational nonlocality even though they are sepa-
operations which can properly be used to account for purerable and have an eigenbasis of distinguishable states—call it
states. nonlocality without entanglement but with distinguishability
By considering pure states as a resource, one is immedien the level of ensembles, it has its counterpaftlid]). We
ately connecting quantum-information theory with thermo-also provide many other interesting results, including the im-
dynamics. In fact, it was the early foundational work on re-possibility of catalysis with local pure states and the nonex-
versible computation[21] where the entropic cost of jstence of states whose entire informational contents is non-
computation was considerg¢@?2]. The relationship between |gcalizable.
information and physical tasks such as performing work also  The paper is organized as follows. In Sec. Il an opera-
has a long history beginning with Szilaf@3]. In fact, as  jonal meaning of information is briefly recalled in terms of
shown in[15,24 the information function is exactly equal 10 ransition rates and basic laws of thermodynamics. In Sec.
Lhe number of pure qubits one can extract from a state Whilg, ‘6 jyea of information as a resource in the distant labo-
aving many copies of the state. We will therefore talk of .\ 5aradigm is presented. Here the central notion of the
extractinginformation Ifrom a state. One can think of this as resent formalism—i.e., thguantum-information defigitis
extracting pure states from more mixed states. From Szilard': L X ) .
we also know that the informatiohis closely related to the def!n_ed. In _Sec. v the_ various aspects of the mformatlon
deficit and its dual notiorlocalizable informationare dis-

amount of workW one can extract from a single heat bath : ) S
(see[25] for a rigorous derivation Thus we sometimes talk cussed and an interpretation of the deficit in the context of
of extracting work, or information, or purity from states. quantum nonlocality is provided. Section V presents the defi-

These connections will be discussed in Sec. Il where wéit as the entropy production needed to reach the set of
review the basic concepts. pseudoclassically correlated states. The concept is then gen-
The rough essence of the approach is that if separate@falized to an arbitrary set, including a set of separable states,
individuals extract local pure statése., information froma  and the cost of erasure of entanglement is defined. Section
shared state, using only local operations and classical con¥l provides upper and lower bounds for the deficit in terms
munication, then they will in general be able to extract lesf the relative entropy distance and an upper bound for the
information than if they were together. If the amount of in- entanglement erasure cost.
formation they can extract when they are together from a We next turn to exploring new phenomena which can be
stateg is I(¢) and the optimal26] amount they can extract discovered using our methods. In Sec. VII, the main impli-
when separated i5(¢), then the differencécalled thedefi-  cations of the results of previous section are provided includ-
cit) A(e)=I1(0)-1,(¢) feels some nonclassical correlations ing the key conclusion that any entangled staténferma-
in the statep. tionally nonlocalin a well-defined, natural sense. We also
Note that the quantit is not an entanglement measure, prove the existence of separable states which have a locally
at least in the regime of finite copies of a statdt feels not  distinguishable eigenbasis, yet contain nonlocalizable infor-
only entanglement, but also so-callednlocality without en-  mation. Section VIII is devoted to a generalization to a mul-
tanglemen{10]. We say that it quantifiethe quantumness of tipartite case. Some of these results were briefly noted in
correlationsrather than entanglemeffirst attempts to for- [14]. Here the information deficit is calculated and the
mally quantify such features for quantum states are due tasymptotic behavior is analyzed for special examples of pure
[11] and for ensembles if10]). The state which has nonzero multipartite states: the GHZ stat®/ state, and Aharonov
deficit we will call “informationally nonlocal.” The term state. We find that the Aharonov state can be considered to be
nonlocalitymeans here that distant parties can do worse thathe most nonlocal. Section IX contains an exhaustive analy-
parties that are together, despite the fact that they can consis of Bell states. In Sec. X we prove th{as opposed to pure
municate classically10]. Thus it is a different notion than nondistillable entanglement—i.e., the bound entanglement
the nonlocality understood as a violation of local realiss@  phenomenonpure unlocalizable information does not exist.
have discussed the relations[7]). Section XI includes an analysis of the proportions of quan-
In this work we review some of the results[df4—-17,24  tum and classical correlations in quantum states, addressing
and provide more detail. We then give a number of newthe question, can the first component exceed the second? In
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Sec. Xl zero-way and one-way subclasses of informational g
deficit are presented. It is shown that in the asymptotic re- :
gime, the one-way deficit is nonzero for separafg&sen-

tangled states, stressing that quantum correlations are more
than quantum entanglement. Section XllI discusses the rela

tion of our measure to other measures of the quantumness ¢
correlations; i.e.pne-way and two-way quantum discdsl
discussed. Section XIV contains discussion of the result in

the context of classical correlations measure introduced by
other authors including the Henderson-Vedral measure. A
discussion of complementarity between information quanti-

ties in distributed quantum systems is provided in Sec. XV.

The paper closes with a general discussion of the results an

a list of open questions in Sec. XVI.

II. INFORMATION: AN OPERATIONAL MEANING

Before turning to the case of parties who are in distant
laboratories, it will prove worthwhile to discuss the notion of
information from a more general perspective. Although we
often talk about information as an abstract concept, here we
use it as a term of art which refers to a specific function

I(¢) =log, d-S(@), 1

where S(g)=-tro log ¢ is the von Neumann entropy af
acting on a Hilbert space of dimensiah We will usually
work with qubits, in which case log=N is an integer. As we
will see in the next section, the information function has an
operational meaning: it is the number of pure qubits one can FIG. 1. Drawing work from a single heat bath using knowledge
draw from many copies of the state. about the position of the moleculthe Szilard engine In the first

Let us now shortly discuss the information functidn in stage the molecule is known to be on the right-hand side. Next, a
the context of the more common Shannon picture. In thé)istqn is inserted, and the molecule push.e.s it out, thus performing
latter approach a source produces a large amount of inform&J bits of work. After this stage, the position of the molecule is
tion if it has large entropy. Thus information can be associ-"known. and we cannot use it to perform more work.
ated with entropy. This is because the receiver is being in-
formed only if he is “surprised.” In such an approach thehaving the molecules push out a pisttsee Fig. 1 High
information has a subjective meaning: something which igntropy of the gas implies ignorance of the molecule posi-
known by the sender, but is not known by the receiver. Thdions and an inability to draw work from the system. In gen-
receiver treats the message as the information, if she did nétal from a single heat bath of temperatireny use of a
know it. However, one can also consider an objective pic-System in state, one can draw amount of worlcf. [32])
ture; a system represents information if it is in a pure state W= KT 3)
(zero entropy. We knowwhat state it is in. The state is itself :
the information. The process does not violate the second law because the

We obtain a picture where two kinds of information are information is depleted as entropy from the heat bath accu-
dual. Shannon’s entropy represents the informationeae mulates in the engine, and one cannot run a perpetual mobil.
get to knowabout the system, while the information of Eq. Thus a quantum system in a nonmaximally mixed state can
(1) represents the information o@owsabout the system. be thought of as a type of fuel or resource. In fact, originally,
Together they add up to a constant, which characterizes theur motivation for considering the function 1 4] was to

system only(not its particular staje understand entanglement in a thermodynamical context. We
thus interchangeably speak of wo or information
(tota) =log d = S(p) +1(p). @ w1 P

Note that the “objective” picture is more natural in the
context of thermodynamics. There, a heat bath is highly en-
tropic, and we are ignorant of exactly what state it is in. On
the other hand, it is known that using pure states, one can In[15,24 it was shown that the functionhas operational
draw work from a single heat bath using a Szilard heat enmeaning in the asymptotic regime of many identical copies.
gine [23]. The pure state represents information needed tdt gives the number of pure states that one can obtain from a
order the energy of the heat bath. Knowing which side of astate ¢ under a certain class of operations we call noisy
box the molecules of gas are in allows one to draw work byoperationgNQO’s): operations that consist @f) unitary trans-

A. Information and transition rates
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formations(ii) partial trace andiii) adding ancillas in maxi- and backwards, and that it gives uniqueness of information
mally mixed state. The motivation for considering such ain the context of NO’s. For the rest of this paper we will not
class is that if we want to measure puritye., information,  treat additional mixed states as a free resource. Thus let us
as a resource to be counted, then we should restrict the claggw discuss the meaning of information in the context of a
of operations so as not to allow pure states being added fajlass that is compatible with the class of operations which
free. For example, if our class of operations allowed the crege will use in the case of distributed systems further in this
ation of pure states out of nothing, it would be impossible toyaper. Namely, we can considelosed operation$CO’s).
measure how much informatioipurity) could be extracted They are arbitrary compositions of the following two basic

from a state, because an infinite amount could always bgnerations:(i) unitary transformations anéii) dephasingo
crgated. Thus, f_or examp'e' we only aI'Iow addmg maxmally_}z_ppp_ whereX;P;=I, andP; are projectors not necessar-
mixed states with maximal entropy, since with these alone-rIy olf rlanll< one t :

pure states cannot be created. -
Having defined the class of operations one can show that We call the class closed, though it is not actually fully

it is the unique functiorfup to constanisthat is not increas- plosed. Information can_not goin, but can go otia dephas-
ing under the class of NO's. One then shows thateter- ing). The name closed is motivated by the fact that the num-

mines the optimal rate of transitions between states undéier ©f dubits is the same, and the qubits cannot be exchanged
NO's. Let us now discuss two special cases. between the system of interest and environment. The only

First, givenn copies of state> one can obtaiml(¢) qu-  allowed contact with the environment is decoherence caused

bits in a pure state. This is done essentially by quantum datdy operation(ii). As with NO operations, the CO class is
compression[33] (cf. [34,35)). In data compression, one Motivated by wanting to quantify purityi.e., information
keeps the signal and discards the qubits which are in the pugnd entropy. Namely, just as in thermodynamics, if we want
state. Here we do the opposite. We discard the “signal,” treafl® consider entropy, then we must isolate our system. Thus
ing it as noise, and keep instead the redundar(mh are the class does not allow one to b”ng n pure states for free
in pure state Thus we obtain pure states. This is essentially@nd thus allows us to count the amount of purity which is
like cooling[36]. The protocol does not require using noisy contained in a given system. In the next section we will

ancillas(e.g., maximally mixed statis introduce this “closed” paradigm to the distant laboratory
A second protoc0| of interest is that one can tm{N Scenario, by use of which we will define the quantum deficit.
-S(p)] pure qubits and produgecopies ofo. The protocol, Now, let us ask about drawing pure qubits out of a given

described in[24], takes pure states and dilutes them usingState by the present class of operations. The operations do
ancillas in the maximally mixed stateoise. The existence NOt change the size of the system, so that when we start, e.g.,
of such dual protocols is similar to entanglement concentraVith many copies of the state, we cannot end up with a

tion and dilution37]. And similarly as in 38,39, this can be smaller system in almost a pure state. However, this is not a

used to prove that there is a unique function that does nd?i9 Problem. Imagine for a while that in addition we can
increase under the NO class of operations. apply a partial tracéwhich is not allowed in CO’ Then the

Note that fork pure qubits, the informatiohis equal to  Process of drawing pure qubits can be divided into two
K. For the maximally mixed state=0. As mentioned) is  St2gesi(1) some CO operations aiming to concentrate the

monotonically decreasing under partial trace and adding arRUre Part into some number of qubits a(@l partial trace of

cillas in the maximally mixed state. It is of course constanttN€ remaining qubits.

under unitary operations. The property that makes it a unique S"c€ we do not allow for partial trace, one can simply
measure of information in the asymptotic regime is Stop before tracing out. The obtained state will have a form

asymptotic continuitysee[39—41) which means that if two of (approximate product of qubits in a pure state and thg rest
states are close to each other, then so is their informatiorfdf the system—some garbage. Thus the process of dividing a
per qubit. It is important to remember thiis not expan- SYStém into & pure part and garbage we can treat as extrac-
sible; i.e., if we embed the state into larger Hilbert spacelion pure qubits. .

then it changeébecause the number of qubits increasghe Now, let us ask how many pure qubits can be drawn from
reason is obvious even within the classical framework: if2 State by closed operations in the above sense? Actually, the
there are two possible states of the system, knowledge of tH¥0cess of drawing qubits by NO's did not use maximally
state represents less information than knowledge of the staf@ixed states. It was just a unitary operation, plus partial
in the case of, say, three possible configurations. It is iff@c€: Thus we can apply this operatiemitaries are allowed
contrast with entanglement theory where a pure state dft CO'S) and get agairi qubits per input states. Thus also
Schmidt rank 2 means always the same thing, independentl&‘/'th'”,the closed plcture information has the same inter-
of how large the system is. Also the entropy of the state?'€tation of a maximal amount of pure qubits that can be
depends only on nonzero eigenvalues: e.g., the entropy of @tained from a state per input copy by closed operations.

pure state is zero, independently of how large the system is.

However, in the present case, the Hilbert space and its di- || RESTRICTING THE CLASS OF OPERATIONS
mension are important elements in our considerations. IN THE DISTANT LABORATORY PARADIGM:

B. Information in the context of “closed operations” CLOCC AND THE INFORMATION DEFICIT

In the previous section we argued that the information In the preceding section, we discussed the notion of infor-
function gives transition rates from the mixed state to puremation from the perspective of being able to reversibly distill
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pure states from a given state Now, one can ask about how {Qn le] [911 0 } -
Oin= out= . 5

things change when the allowable class of operations one can 0
perform is somehow restricted. This is a rather general ques- Qa1 @22 Q22
tion, but since here we are interested in understanding ert is understood thag;, is at the sender’s site, whilg, is at
tanglement and nonlocality, we will examine the restrictedthe receiver’s site. The operatidin) accounts for both local
class of operations which occurs when various parties holdheasurements and sending the results down a classical chan-
some joint state, but are in distant laboratories. One thenel. It can be disassembled into two paf@:local dephas-
imagines that Alice and Bob wish to distill as many locally ing (at, say, the sender sjtand (b) sending a qubit intact
pure states as possible—i.e., product pure states such ébrough a noiseless quantum chanrtelthe receiver. Thus
|0®Ma), ®|0¥™8)g. The amount of local information which is suppose that Alice and Bob share a stafjg= 0 arg, and
distillable we calll,. Alice decided to send subsysteA’ to Bob, down the

In the ordinary approach to the distant laboratories paradephasing channel. The following action will have the same
digm, one imagines that two parti¢alice and Bob are in  effect. Alice dephases locally the subsystafn
distant laboratories and can only perform local operations ) ,
and classical communicatiofLOCC). However, as we oane— 2 Pl @ laplaaePl ® las. (6)
noted, this class of operations is not suitable to deal with the i
guestions of concentration of information to local form. ThatThe state is now of the form
is because under LOCC, one does not count the information
that. gets added to the systems through anciII'as, measuring QZL,‘;,,B: > piPiA" ® Q;NB. (7)
devices, etc. We thus have to state the paradigm more pre- [

cisely. Since we are interestedlotal information we must gus partA” is classically correlated with the rest of the

stem(it is stronger than to say that the state is separable
ith respect toA”: A’B). Now Alice sends systerA” to Bob
rough an ideal channel. Thus the final state differs from the

treat it as a resource, assuming it cannot be created, but on
manipulated. Once we have a compound state, the task is
localize the information by using classical channel betweel?h

Alice and Bob. state 055 ONly in that systemA” is at the Bob site. It

The new paradigm was introduced in Rff4] where one . )
essentially looks at a closed system as one does in thermé®!lows that operation 1 can be replaced by the following
two operations:(iia) local dephasing andiib) sending a

dynamics when calculating changes in entropy. One imag
ines that Alice and Bob are in some closed box, which doe§°MPpletely dephased subsystem. ,
not allow them to import additional quantum states, except Note that operationé) and(iib) are reversible. Only op-

for ones which we specifically keep track of and account for€ration (iia) can, in general, be irreversible. Actually it is

In defining a class of operations, the crucial point is that'reversible if only itchangeghe ;tate—i.e., in all nontrivia_l
here, unlike in usual LOCGlocal operations and classical ¢25€S: Note also that the operations do not change the dimen-
communicatioh schemes, one must explicitly account for all Sion of the total Hilbert space or, equivalently, the number of

entropy transferred to measuring devices or ancillas. So ifubits of the total system, even though the particular qubits

defining the class of allowable operations one must ensure®n be reallocated; for example, at the end all qubits can be

that no information loss is being hidden when operations ar@t AliC€’s site.

being carried out. Moreover, the operations should be gen- L€t us finally note that it may happen that after the pro-
tocol, one of the parties will be left without any system at alll,

eral enough to represent faithfully the ultimate possibilities . 4 .
of Alice and Bob to concentrate information. In other words, S €verything has been sent to the other parties. Itis only the
total number of particles which is conserved.

we would not like to introduce any limitation apart from two
basic ones(i) there is a classical channel between Alice and _ _ _
Bob and(ii) local information is a resourc&annot be in- Comparison with other classes of operations

creasefl . _ For the purpose of the present paper, we will use solely
We consider a stat@,g acting on Hilbert spacé{,s  CLOCC operations. Yet we have also found it useful to use
=Ha®Hg. Let us first define the elementary allowable ele-another class of operations; thus, we will describe the other
ments of closed LOCC operations. class and compare it with CLOCC.
Definition 1 By CLOCC operations on bipartite system of | et us first present the othdlikely equivalent class of
Nag qubits we mean all operations that can be composed operations, called noisy LOCGNLOCC). The relation be-
of (i) local unitary transformations andi) sending sub- tween NLOCC and CLOCC will be similar to the relations
systems down a completely decoheriigphasingchannel.  petween NO and CO: the elementary operations will be the
The latter channel is of the form same as in CLOCC, plus tracing out local systems and add-
ing maximally mixed ancillas.
Definition 2 By NLOCC operations on bipartite system
Qin = Qout= 2 PiePi, @ of nag qubits we mean all operations that can be composed
' out of (i) local unitary transformationsji) sending the sub-
system down the completely decoherifdgphasing chan-
whereP; are one-dimensional projectors. For a qubit systemnel, (iii) adding ancilla in the maximally mixed state, and
it acts as (iv) discarding the local subsystem.
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As in CLOCC we can decomposg) into (iia) and(iib). A= inf [Son) +Sep)]-S0ap), (12)
CLOCC operations are more basic than NLOCC. Namely, AecCLOCC

the latter can be treated as CLOCC with an additional re-

source: an unlimited supply of maximally mixed stateswhereg,z=A(0ap).

(which have zero informational cont¢nindeed, similarly as It is important to note that both quantities are functions
in Sec. Il B one can argue that the operation of the locahot only of a state but also the dimension of the Hilbert
partial trace is not essential. space. This is because CLOCC operations are defined for a
fixed Hilbert space. Thdj depends on the dimension of the
IV. LOCALIZABLE INFORMATION HiIb(_ar_t space isl even more obvious, bepause the latter is
AND INEORMATION DEEICIT explicitly written in the formula. However, in the formula for

the deficit as written in Eq(11), the dimension does not
In this section we define the central quantitye informa-  appear explicitly, so it could happen that there is no depen-
tion deficit To this end we will first introduce the notion of dence on dimension. Actually, it is rather important that
localizable information. To be more precise, we will first dealdoes not actually depend on dimension; i.e., when one lo-
with the single-copy case and define basic quantities on thisally increases Hilbert space by, e.g., adding a qubit in a pure
level. Then we will discuss the asymptotic regime, whichstate,A should not change. This is because, as we will see
will require regularization of the quantities. later, the deficit will be interpreted as a measure of the quan-
Definition 3 The localizable informatioh(gag) Of a state  tumness of correlations, which should not change upon add-
0 ON Hilbert spaceC®® C% is the maximal amount of ing local ancilla. We will discuss this issue later in more
local information that can be obtained by CLOCC opera-detail. In particular in Sec. X we will show that regulariza-
tions. More formally, tion of the deficitdoes not changapon adding local ancilla
in a pure state.
li(eas) = sup [l(ep) +1(ep)], €)
AeCLOCC

A. Interpretation of the quantum deficit:
where @ g=A(@ap), | is the information functionl(gy) Measure of “informational nonlocality”
=Ny —S(0y); Na=logd,, Ng=logdg are the number of qu- o .
bits of subsystems of the output state. When one of the num- A honzero deficit means that Alice and Bob are not able to
bers of qubits is zerénull subsystemwe apply the conven- localize all the information contained within the state. This,

tion that information is zero. however, means that part of the information is necessarily
Alternatively, we have the formula destroyed in the process of localizing by use of classical
communication. This part of information cannot survive trav-
li(eae) =N- inf [S(ep) +Sep)], (9)  eling classical channels. It implies that it must be somehow
eCLOCC

quantum. In addition, this part of information must come
from correlations, since information that is not in correla-
tions is already local and need not be localized. We could say

that ‘T"" particles are with one parfj.e., the output d|men-_ that the quantum deficit quantifies quantum correlations.
sion is equal to 5o that the subsystem of the other party 'SHowever, we will see that in the regime of single copies, the

null, then we apply the convention that the entropy of S.UCh uantum deficit can bénd often i$ nonzero for separable
subsystem is zero. Further states on the system with o

bevst I il call null-subsvst tat ates, which can be generated by local quantum actions and
su ItSYS em an[ vrehW| C?h |:[1u“t-su b?y.s elm sla.efs. tion” solely classical communication. It is not clear then if we can
IS important here, that "o obtain local informalion” o pere apout quantum correlations—can quantum correla-

does not mean as usual getting some outcomes of local Mefons be created by only classical communication between

surements. Ra_ther It means to apply such an operation, aﬁ?ﬁe parties? However, the quantum deficit being nonzero in-
which mformanon, as a function of states of subsystems, W'"dicates that there is something quantum in correlations of the
be maximal. Thus_, we only dgal Wllskta_te changeand cal- state. One can say that these afassical correlations of
culate some functiofinformation function on the states. quantumproperties. We will then propose to interpret the

Actually it is not localizable information which will be quantum deficit as the amount of “quantumness of correla-

the most impartant quantity. Rfather, the central quantity is Fions.” Whether it represents also quantum correlations when
closely connected one, which we call thguantum- regularized is still open

information deficit(in short quantum defigit It is defined as Let us now discuss the issue in the context of a notion of
a difference between the information that can be localized b¥1onlocality considered by10]. The authors exhibited en-

gggfens of CLOCC operations and total information of thesembles of product states which are fully distinguishable if

L . globally accessed, but cannot be perfectly distinguished by

H'IlIDD ef|n|t|oneé(1:dTA heg;;"’?”t“_m degcm(gAB) of & stateag on distant parties that can communicate only via classical chan-

libert spac ® IS given by nels. Then they called this effectonlocality without en-
_ _ tanglementThe reason for using term “nonlocality” was the

A(enp) =1(2ap) — 1i(0aB)- (10 following: one can do better if the system is accessible as a

Using the definition of localizable informatiolp, we get  whole, rather than when it is accessible by local operations
an alternative formula for the quantum deficit: and classical communication.

whereN is the total number of qubits. Again, if it happens
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In our case, the situation is similar: Alice and Bob can doin terms typical for quantum information theory, where of
better in distilling local information if they have two sub- central importance are manipulations over resources. Even
systems at the same place rather than shared in distant labmore, our present formulation will be analogous to the
ratories. Thus, we have a similar kind of nonlocality, and thescheme which is a basis for entanglement theory: entangle-
guantum deficit is a measure of such nonlocality, which wement distillation. We will use the interpretation of the infor-
can call “informational,” as it concerns the difference in ac-mation function as the amount of pure qubits one can draw
cess to informational contents. Thus, any state with a nonfrom a state in the limit of many copies.

zero deficit will be called informationally nonlocébr non- Instead of singlets our precious resource will be a pure
local, when the context is obvious local qubit. The aim of Alice and Bob is, given many copies
of statepag to distill the maximal amount of local pure qu-
B. Classical information deficit of quantum states bits by means of CLOCC operatiofia entanglement theory,

It is important to investigate not only the “quantumness”We had LOCC operations; however, here we need CLOCC;

of compound quantum states, but also the relationships b@therwise, one could add for free states, and the maximal
tween their “classical’ and “quantum” parts. To this end con-distillable amount of pure local qubits would be infinite
sider the quantity, c—the information that is local from the ©One way of doing that is the following: Alice and Bob take

very beginning—i.e., stategag, apply the CLOCC protocol that optimizes the for-
mula for localizable information—i.e., they obtain sta@tg,
lLo=N=S(pa) — Sps). (12 which has maximal local informatiol, andI;. They apply

such a protocol to every copy of the state they share. As a
result they obtain many copies of statg;. Now, Alice in

Ber laboratory, can apply a protocol of drawing pure qubits
out of her statep,”", obtainingl, pure qubits. The same
does Bob. Finally, they possedg+I; pure local qubits

is the difference between local information and the informa-Which is equal just to localizable information, and actually it

tion that can be obtained by CLOCGe., by localizable is the best they can do, when acting first on single copies
information: ' using communication, and only locally performing collective

actions on many copies.
A=l =10 (13 Alice and Bob could do better when they act collectively
rom the very beginning. In this way we get that the optimal

f ThltsF]teIIst lis rE)OW mulctl_moredlg_ftqrmaltlon caint_be ob_tal?he mount of local pure qubits that can be distilled by CLOCC
rom the state by exploiting additional correlations in the ;o equal to regularization of localizable information:
state pag. Since these correlations are exploitable using a

classical channel, this quantity tells us something about clas- on
ical correlations. We will refer t as theclassical defici % _ jim 1)
sical correlations. We will refer td. as theclassical deficit I = lim ——=. (14)
Also, as we will see later, the quantity can be used in the n
context of the quantifying of classical correlatioftisough it

We will call it local information. It represents how much
information each party can extract if only local operations
are performed. We can now define an analogous quantity t
the quantum deficit, on a “lower” level.

Definition 5 The classical deficitl6] of a quantum state

is not immediate; sep42]). Similarly we can define the regularized quantum and classi-
cal deficits
C. Restricting resources: Zero-way and one-way subclasses
Additional measures of the quantumness of correlations AP = ”mA(P®") A= IimA°(p®n) (15)
which arise when one restricts the communications between N oon T, on

Alice and Bob are as follows.

One can define the one-wdglice to Bob) deficit (A™)  Thys we conclude that regularizations of our quantities have
and one-wayBob to Alice) information deficit(A™) by re-  gperational meaning connected to the amount of pure local
stricting the classical communication to only be in one direc—qubits which can be distilled out of a large number of copies
tion. Furthermore, one has also a zero-way defis®. The  of the input state by means of different resour¢gkobal
namezero wayis perhaps confusing. It refers to the situation gperations, CLOCC, local operations_et us emphasize
where no communication is allowed between Alice and Bobhere that when Alice and Bob are given a single copy of
until after they have completely dephaséar performed state, they usually cannot distill pure qubits. When they are
measurements ptheir systems. After they have done this, given many copies, the ultimate amount of distillable pure
they may then communicate in order to exploit théhat are  qubits is described by regularizéd Thus the nonregularized
now) purely classical correlations in order to localize thequantity does not represent the amount of pure qubits that
information. These restricted deficits correspond to locallycan be drawn either from single copy or from many copies.
accessible informatioly”, I, andI?. However, since in the definition df there is an information
function that has operational asymptotic meaning, then
also has some asymptotic interpretationrepresenting the
amount of pure local qubits that can be drawn when at the

In this section we will argue that the idea of localization stage of communication, Alice and Bob operate on single
of information, though at a first glance exotic, can be recastopies, and only after that stage operates collectively.

D. Asymptotic regime: Distillation of local information
as a dual picture to entanglement distillation
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In entanglement theory, there is a similar situation with We shall now see that by taking as an example the Bell
entanglement of formation and entanglement cost. The firsitate
is not the ultimate cost of producing a state out of singlets,
though it already contains “some asymptotics” by ) = i_(|00> - |11)). (16)
definition—the von Neumann entropy, which is the \2
asymptotic cost of producing pure states out of singlets. Th

ultimate cost of producing states out of singlets is the regu . . ;
b g 9 g content, as given by Ed1), is I=2. We will now see that

larization of entanglement of formation. . - :
9 I,=1. Clearly, without communicating, neither party can

Finally, one can also consider the amount of local infor- ; . . .
mation that can be distilled by means of one-way classica‘ijraw any information from the state, since locally, the state is

communication. It is equal to the regularized one-way quan_maximally mixed. It turns out that the best protocol is for

tum deficitA—. In a similar vein we can consider regulariza- Alice to send her qubit down the dephasing channel. After

tions of other quantities based on restricted resources, sut,srli‘e has done this, Bob will hold the classically correlated

as A., A% A%, etc. Again, all those regularizations have state

operational meaning.

ft is a two-qubit state of zero entropy, so its informational

1

pcc= 5(|00><00| +[11)(11)) (17
E. Additional local resources from which one can extract 1 bit of information by perform-

One of the basic features of the paradigm is that addingng a CNOT gate to extract one pure stg@®. We thus have
local ancillas is not for free. The reason is that, otherwise, althat A=1. One can actually view this process in terms of
the quantities would become trivial. However, there are twomneasurements and classical communication, as long as we
kinds of local resources that still can be taken into accountkeep track of the measuring device. Alice performs a mea-

First of all, we can allow adding for free local ancillas in surement on the state to find out if she hg@)eor [1). She
a maximally mixed state. Thus given a statg; we can ask, then tells Bob the result. Bob now holds a known state, with-
what about the quantities of interest for the statgg  out having to perform any measurement. Alice, on the other
®1/d? Note here that this would mean thidt does not hand, had to perform a measurement to learn her state. The
change if we use the NLOCC class instead of CLOCC. Ininformational cost of the measurement is 1 bit since a mea-
deed, as have already mentioned, the only difference besuring apparatus is initially in a pure state and must have two
tween two classes for the problem of distillation of local possible outcomes. After the measurement, the measuring
information may appear when adding local maximal noisedevice needs to be reset. The classical state-correlated state
could help. In general, upon adding such local noise, localpce, if held between two parties, has=0. That the process
izable information could only go up. However, it is more is optimal for the singlet state is obvious, as this is actually
likely that it will not change. In fact, Devetak has shof@®]  the only thing which Alice and Bob can do given a single
that the one-way deficit does not change upon adding nois€opy. However, it is highly nontrivial to show that the regu-
We were not able to show the same in the case of two-wajarization of al; is still the same. The optimality of this
communication, though we believe it is also the case. protocol also in many copy case was showrji6]. It also

The second possibility isorrowing local pure qubits. follows from the general theorem we give in this paper,
This would be the most welcome, as it would mean that thevhich connects the deficit with the relative entropy distance
deficit does not depend on the dimension of the Hilbert spactom some set of states.
as discussed in the introduction of Sec. IV. We actually show In general, it is not hard to see that for an arbitrary pure
that it is the case for the regularized deficit in Sec. X. For thestate, the same protocol can be used with Alice first perform-
one-way case it is shown also in the asymptotic regime iring local compression on her state. For any pure $iaig,

[20]. the two-wayA is given by[14,15
There is a more general possibility: borrowing local an- _
cilla in any mixed state. However, in the asymptotic limit, Allg) = Stral ¥ <ud))

this is actually equivalent to borrowing noise and pure qu-Thus, for pure bipartite states, the quantum deficit is equal to
bits, as in that regime any state can be reversibly composeshtanglement. It is quite interesting that we have obtained
out of noise and pure qubif45,24. entanglement byestroyingentanglement.

F. An example: Pure states V. DEFICIT AS THE PRODUCTION OF ENTROPY
NECESSARY TO REACH PSEUDOCLASSICALLY

As we have mentioned, in our definition of quantum cor- CORRELATED STATES

relations, we do not speak about entanglement at all. We do

not work in the established paradigm of the optimal rate of In this section we will show that the quantum deficit can
transformation to or from maximally entangled stafés]. be interpreted as the amount of entropy one has to produce in
We consider distillation of pure product states. Thus, it waghe process of transforming a given state into a so-called
perhaps surprising to findL4] that for pure states, this defi- pseudoclassically correlated stdte4]. This expression of
nition of the quantumness of correlations is just equal to theleficit makes it possible to define the entropy production
unique asymptotic entanglement for pure st§8%43. connected with a given subset of states. For example, we can
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then speak about the entropy production needed to reach the B. Formula for the quantum deficit in terms
set of separable states. In this way our paradigm provides a of pseudoclassically correlated states
consistent definition of ththermodynamical cost of erasure Any protocol of attaining the information deficit looks as

of entanglementwhile the original deficit can be called the ¢y ows: Alice chooses a subsystem of her system, dephases
thermodynamical cost of erasing quantum correlations it and then sends it to Bob. Bob then chooses a subsystem
from his systemwhich now includes his original system and
A. Important classes of states the system sent by AligeHe dephases his chosen part and
Isends it to Alice. They can send the states using an ideal

Let us first define sets of states which are important fo
our analysis. Notice that in place of a simple dichotomy be_channel, as the sent subsystems are already dephased. Thus

tween separale and cntanled s, one can hiave a. 5795 e1e 0l ealocatng subsyste, noting more
whole hierarchy of levels of quantumne§45]. Already ! inue su P 9 y '

Werner recognized44] that within entangled states there When they d_eC|de tq stqp, the final stegpls anq the .Ob'
might be ones that do not violate Bell's inequaliti&s. tained local information is equal thl—S(ps)—S(pg) while
[46,47). One may also go in eonversairection and within ~ the initial total information wa$=N-S(p,g). Thus the defi-
separable states find a subclass which is most classical afi obtained in a particular protocd? is Ap=S(p)+S(pg)
wider classes which are still somehow classical, though ir Spap)- Alice and Bob wish this quantity to be minimal.

some sense to a lesser deg(eke [11]). Suppose then that they preformed an optimal protocol, for
First, let us consider a set if states which we choose to calvhich indeed this value is minimal. _
properly classically correlatear, shortly, classically corre- ~ There are two casesi) one of subsystems is nufall
lated. These are states of the form particles with the other parryor (ii) both parties have sub-
systems that are not null. Note that in the second case the

o=, pi 4] @ i)}l (18)  system must be in a product state. Suppose it is not. Then,
i Alice and Bob can dephase the state in the eigenbasis of
states of local subsystems. This will not change local entro-
where{Ji)} and{[j)} are local bases. Thus any such state ispjes, but will transform the state into a classically correlated
the classical joint probability distribution naturally embed- one. Then Alice can send her part to Bob, so that the infor-
ded into a quantum state. Note that the set of classicallynation contents of the total state will be unchanged. How-
correlated states is invariant under local unitary operationsever, if only the state was nonproduct, the total information
The states are diagonal in a special product basis, which camas greater than the sum of local information. This means

be called thebiproduct basis that the protocol was not optimal, so that we have contradic-
Now let us define the set of states of our central interestton.
We will call them pseudoclassically correlated statesid Thus we conclude that the optimal protocol ends up with

denote them byPC. These are the states that canreeers-  eijther product state or state of a system, which one of the
ibly transformed into classically correlated ones by CLOCC subsystems is nullall particles either with Bob or with Al-
“Reversibly” means that no entropy is produced during theice). Even more, when a state is a product, one of the sub-
protocol. This implies that no dephasing is needed in transsystems can be sent to the other party, so that the whole
formations: Alice and Bob use only unitaries and sendingsystem is with one party. This is compatible with the philoso-
subsystems such that dephasing does not change the togy of “localizing” of information.

state. Thus they can send only such subsysté¢mghich are However, it turns out that we can divide the total process
in the following state with the resR: pyxr=Sipili)x)i|® pl.  of localizing of information into two stages:

The states that can be in such a way transformed into clas- (i) Irreversible stage: transforming input stage into
sical ones can be also described as the set of states whigbme pseudoclassically correlated arie

Alice and Bob can create under the allowed class of opera- (ii) Reversible stage: localizing information of the state
tions (CLOCC) out of classical states. The eigenbasis ofp’.

these states was called amplementable product basff?’B)  In the first stage Alice and Bob try to produce the least en-
in [15], since it is the eigenbasis that Alice and Bob are ablgropy. The amount of information that they are able to local-

to dephase in. ize is determined by this stage. In second stage, the entropy
Let us note that one can have an intermediate ctass;  is not produced, and the information is constant.
way classically correlatedtates, which are of the form We have the following proposition.
s Proposition 1 The quantum deficit is of the form
= il ® ;. (19 , ,
o= mliMlee A=inf[S(p") - Sp)], (20

These are states which can be produced out of classicallyhere the infimum is taken over all CLOCC protocols that
correlated states by one-way reversible CLOCC. They argansform initial statep into pseudoclassically correlated
diagonal in basis which is of the forﬁ1)|zp(k')>} where{|¢//<k')>} statep’.

are bases themselves. Proof. The proof actually reduces to noting that
The above sets afgroper subsets of separable states, andpseudoclassically correlated states can be reversibly created
all the inclusions between them are proper too. from states with one null system. Simply, by definition
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we will show that it is bounded from below by the relative
entropy of entanglement. Since the set of separable states is a
superset of pseudoclassically correlated states, we have

Agep<A, (21

so that the cost of erasing all quantum correlations is no
smaller than the cost of erasing entanglement. For the sake of
further proofs, let us put here a formal definition &f;,

Definition & The thermodynamical cost of erasing en-
tanglementAg,is given by

Asedp) =Inf[S(p") - Slp)], (22)

states

where the infimum runs over all CLOCC protoc@bswhich

FIG. 2 CLOCC prOtO(.:O' of concentration of information to lo- transform initial state into a separable output stapé
cal form is a series of actions aiming to reach the set of pseudoclas-

sically correlated states. The solid lines denote reversible actions:
sending dephased qubits or local unitary transformations. The dot- VI. RELATIONS BETWEEN THE DEFICIT
ted lines denote dephasings. The goal is to make the total entropy AND RELATIVE ENTROPY DISTANCE

increaseAS=AS,;+AS;+- -+ minimal. Then the deficit is given by . ) .
A=AS, because once the state is pseudoclassically correlated, its N this section we will present the proof of the theorem
full information content can be localized. relating the deficit to the relative entropy distance obtained in

[15].
: . Theorem 1 The information deficit is bounded from
pseudoclassically correlated states can be reversibly pro; . :
duced out of classically correlated states. The latter, in tumabove by the relative entropy distance from the set of
can be reversibly produced out of one.—subsyster’,n stateg).S eudoclassically correlated states:
Thus, consider an optimal protocol for drawing local infor- A(opp) = inf S(@aglo) = EZ’C, (23)
mation. As we have argued, it can end up with a one- oePC
subsystem state. Out of the state we can reversibly create
classically correlated state which is a special case o
pseudoclassically correlated states. Conversely, suppose thatProposition 2 Localizable information and the deficit sat-
we have a protocol that ends up with a pseudoclassicallySfy the following bounds:
correlated state. Then one can reversibly transform it into a
one-subsystem state. O li(e)=N- inf H(g,B), (24)
Thus the quantum deficit is equal tainimum entropy BeIPB
production during the process of making the state be
pseudoclassically correlated by CLOCC operations. In other A(e) =< inf H(e,B)-S0), (25)
words, to draw an optimal amount of local information from 5elPB
a given state, one should try to make it a pseudoclassicallyhere H(p,5) denotes the entropy of diagonal entries of
correlated state in the most gentle way—i.e., producing thetate in basiss,
least possible amount of entropy. Once the state is

ereS(g|o)=tro log o—tre log o.
Let us first prove the proposition.

pseudoclassically correlated, the further process of the local- H(p,B) = - > p; log p;, (26)
ization of entropy is trivial. The first stage is illustrated in [
Fig. 2.

with p;=(ilp|s), with ; € B.
Proof. We will exhibit a simple protocol to achieve a rea-

C. Defining the cost of erasing entanglement sonable(and perhaps optimaamount of local information.

The above formulation of the deficit allows one to gener-Namely, Alice and Bob choose some implementable bAsis
alize the idea of the thermodynamical cost to other situa2nd dephase a state in such a basis. They can do this, as, by
tions. Namely, instead of the set of pseudoclassically corredefinition, an IPB is a basis in which Alice and Bob can
lated states one can take any other set and ask the sari@phase by use of CLOCC. The final state has entropy
guestion: how much entropy must be produced, while reach- " —
ing this set by use of CLOCC. Thus our concept of localizing Sp)=H(p.B). @7
information allows us to ascribe thermodynamical costs toAlice and Bob can now choose the basis that will produce
other tasks than localizing information. With any chosen sethe smallest possible entrop¥(p,B). In this way we obtain
we can associate a suitable defisif,, An important appli-  the following bound forA:
cation of this concept is to take a set of separable states.

Then the associated defidi,, has an interpretation of the A= Biq‘;BH(PvB) - Sp). (28)
thermodynamical cost of erasing entanglemést such it is °
a good candidate for an entanglement measure. In this pap&his ends the proof of proposition. O
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Let us now express this bound in terms of the relative Ef’= inf S(p|o) (33
entropy distance. This is done by the following lemma. oes
Lemma 1Given a statep, decreases no more than the entropy increases under local
H(e,B) = inf S(p|o) + (o), (29)  dephasing—that is,
oeSp
Er(p) ~ EX(A(p)) = S(A(p)) — Slp), (34)

whereH(g,B) is the Shannon entropy of the probability dis- ) .
tribution of the outcomes whep is measured in a given ~ WhereA is local dephasing.

basisB and Sy is the set of all states with eigenba#is Proof. Note first that local dephasing can be represented
Proof We have as a mixture of local unitaries:
inf S(e|o) +S(0) Alp) =2 pUp @ IgpU," ® I, (35)
oeSp
= inf [-tr(g log,0)] Indeed, consider any set of projectc{rBj}'i. The suitable
oS unitaries are given by
=-tr(gglog, @) +tr(05 109, 0) k
+ inf [~ tr(egzlog, )] U(sy, ... S0 =2 sP;, (36)
oeSp =1
=S(pp) + inf S(ezlo) =H(p,B). (300 wheres;=+1 are chosen at random. Thps are equal, but
7eSp this is irrelevant for our purpose.
Herepy is the stateo dephased in the bask In the second Now, let us rewrite the inequalit§34) as follows:
equality, we have used the fact that (gtog,o) ES(p) + S(p) = S(A(p)) + EXA(p)). (37)

=tr(ozlog,0), becauser is diagonal in the basi$. In the

fourth equality, we have used tha belongs to the se§; so  Thus we have to prove that the functiép) =E>(p) +S(p) is

that infaeSBS(QB|a):O and also thaS(gz)=H(e,B). This  nondecreasing under dephasing. This is a somehow parallel

ends the proof of the lemma. OO0  result to the result of48] where it was proved that the above
Now combining the lemma with the proposition we obtain function does not decrease undgtoba) mixing. The proof

the above theorem. We have not been able to prove equalitig directly inspired by{49].

and in Sec. VI C we discuss the origin of the difficulties. We have

A. Deficit, cost of erasure of entanglement,
and relative entropy of entanglement

f(A(p)) = inf — trA(p)log o = inf >, pitrp; log o
oeS ogeS j

= > pinf trp;log o=, p; inf trp log o,
i i

oe$S ge$sS

In the previous section we have reproduced the result of
[15] which provided an upper bound for the deficit in terms
of the relative entropy distance from pseudoclassically cor- = > piinf trplog o= f(p), (38
related states. In this section we will prove a new result, i o=S
providing alower bound for the deficiin terms of an en-
tanglement measure—the relative entropy of entanglement

Theorem 2For any bipartite statg the quantum deficit is
bounded from below by the relative entropy of entangle-
ment:

where p;=UL®IgpU, '@ 1y and ¢;=U}"®IgoU, @ 5. The
inequality comes from the properties of the infimum; the last
but one equality comes from the fact that the Sé& invari-
ant under product unitary operations. This ends the proof of
the lemma. O
A(p) = E,(p). (31 Proof of theprem 3The basi_c ingredient of the proof is
o the monotonicity of the functiorf(p)=E,(p)+S(p) under
To prove the above theorem it is enough to show thaic| occ. (In entanglement theory important functions are the
Aseg—the cost of erasing entanglement—is lower boundegynes that cannot increase under a suitable class of operations,
by E,, which is the contents of the next theorem. Indeed, by, hile here we need a function that does detreaseunder
definition of Asepand by the proposition 1 the deficit is no oy class of operations. This once more shows that our ap-
smaller thamsep, o _ proach is in a sense dual to the usual entanglement theory.
Theorem 3 For any bipartite statg the cost of erasing g we have already discussed, any CLOCC operation can be
entanglement is bounded from below by the relative emmpldecomposed into basic ond: local unitary transformation,
of entanglement: (i) local dephasing, andii) noiseless sending of dephased
Asedp) = Erp). (32) q_ubits. Of course the local unitary opera_tion does_ not change
either the entropy oE,, so that the functiorf remains con-
To prove this theorem we will need the following lemma. stant. The lemma we have just proved tells us that local
Lemma 2 Consider any subs&of states, invariant under dephasing can only increase the functfolconsider now the
product unitary transformations. Then the relative entropylast component—sending dephased qubits. Clearly the en-
distance from this se; given by tropy again does not change during such operations. It re-
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mains to show thatE, does not change under sending basis that is compatible with the blocks. Another way of
dephased qubits. Consider the statgg with one dephased viewing it is to say that what was sent from Alice to Bob or
qubitB’ on Bob’s site. Consider the closest separable state teice versa will remain classical—that is, diagonal in a fixed
the statergg . Since the relative entropy of entanglement isdistinguished basis. The main open question is now the fol-
in particular monotone under dephasings, we can choose thigwing: Is it enough for Alice and Bob to follow this restric-
state to have the qubB’ dephased too. Consider then the tion, or should they violate this rule to draw more informa-
statepaag, WhereA’ qubit is theB’ qubit after being sent by tion?
Bob. We now apply the procedure of sending quito the We can formulate this fundamental problem in a more
stateoagy and obtain a new separable statgyg. By con-  tractable way if we look through the proof of theorem 3 and
struction we haveS(pagp | oase) =S(pans|oans). ThusE,  find where the proof fails if instead of separable states one
could only go down. However, we can repeat the reasoninggkes pseudoclassically correlated states. Almost the entire
with the qubit sent in the converse direction and concludeproof can be carried forward without alteration, apart from
that E, does not change. one small item: the invariance oEZ’C under sending

In this way we have shown that the functidncannot —dephased qubit€, was invariant mainly because we could
decrease under CLOCC operations. This means that for arghoose the closest separable state to be also dephased on that

protocol that brings the initial stageto a final separable state qubit. This is because the set of separable states is closed
p’ we have under local dephasings. However, the set of pseudoclassi-

cally correlated states is not. It does not rule out the possi-
f(p’) = f(p). (39) bility that indeed the closest pseudoclassically correlated
However, the target state is separable; hence, itEha®. state has the qubit dephased. However, we were not able to
We obtain prove it or disprove. We will formulate here the problem in a
formal way.
S(p’) = S(p) = E(p), (40 Problem Consider a bipartite state that can be written in

which tells us that in any protocol that ends up with a sepazhe following form:

i i — 1 2
rable state, the increase of entropy is no smaller than the PAB= P10+ P2Pag: (43)

relative entropy of entanglement. This ends the proofl] 1 ) )
wherep,g and p,g are orthogonal on subsystefy i.e., the

reduced statep, have disjoint support. Can the closest
pseudoclassically correlated state in the relative entropy dis-
tance be written in this form?

In [19] semidefinite programming techniques were used
to obtain lower bounds on the regularized deficit. The fol-
lowing general bound was obtained:

B. Connection with bounds obtained
via semidefinite programming

D. Deficit and relative entropy distance for one-way
and zero-way scenarios

A%(p) = sud- 10g; Nad|0']) = S(e) — S(elo)],  (41) Finally let us note that the needed results can be obtained
7 easily for one-way and zero-way scenarios. The problem
wherel . denotes the greatest eigenvalue &nid the par-  with the two-way scenario is that Alice and Bob could draw
tial transposition of the matrix. The value of the bound hasmore information than they obtain by measuring in an opti-
been calculated for Werner states and isotropic states. thal IPB basis. The source of the difficulty was that in a
turned out that for those states it is exactly equal to the regumany rounds protocol, Alice and Bob could make dephasings
larized relative entropy of entanglement. This is compatiblethat would not commute with dephasings they made in a
with theorem 3. It is interesting, what is the general relationprevious step. In the case of the one-way scenario there is no
of the bound(41) with regularizedk, . such danger, as there is only one round. The zero-way situ-
ation is simplest. The only thing Alice and Bob can do is to
dephase the subsystems in some bases, and the only problem
is to find the optimal basi¢so that they will produce the
We have proved that the deficit satisfies the inequality gmallest amount of entropyThe versions of lemma 1 in the
EC=A=E. (42) one-way and zero-way cases can be proved in the same way.
' ' Thus in those cases the deficits are equal to the relative en-
Yet we have not been able to prove that EZ’C. Let us tropy distance to the two sets of states—classically correlated
discuss the main obstacles which we encountered. The questates and one-way classically correlated stét6s
tion is actually as follows: Can there be a better protocol than
dephasing in an optimal IPB basis? The latter protocol has
some fundamental features. Namely, in the series of subse-
quent local dephasings, each dephasing is compatible with We can define a set of pseudoclassically correlated states
the previous one in the sense that they commute with eachlso in the case of multipartite states. Then one can formulate
other. In other words, each dephasing is in some sense ult& version of theorem 1 in the latter case. Since the arguments
mate: it divides the total Hilbert space into blocks, so that allwe have used did not depend on the number of parties, theo-
subsequent dephasings are performed within blocks and inrem 1 is then true also in the multipartite case. Similarly

C. Discussion of the problem of “noncommuting choice”

E. Multipartite states
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theorems 2 and 3 also hold in the multipartite case. we would have armoperationalinterpretation for the relative
entropy of entanglement for pure states.
VII. BASIC IMPLICATIONS OF THE THEOREM Note here that in general the deficit is not a monotone
(INFORMATIONAL NONLOCALITY) under LOCC and even under CLOCC. In contrdstis a
The theorems from the previous section allow us to obtairmonotone under CLOCC.
the following results for both bipartite as well as multipartite (V) From the above reasoning and theorem 3 it follows
states. that thethermodynamical cost of erasure of entanglement of

(i) A is no smaller than distillable entanglemdhy: pure states is equal to their entangleméeft [14,15).

A=Ep. (44) A. Nonlocality without entanglement
Indeed, the latter is bounded from above by the relative en- and with distinguishability
tropy of entanglemenrts0].
(i) Moreover, theorem 3 implies that the quantum deficit
is no smaller than coherent information:

One form of nonlocality we are familiar with is entangle-
ment. Another form of nonlocality was introduced [ib0]:
the so-calledhonlocality without entanglementhere, it was

A(p) = S(py) - Sp), (45) shown that there are ensembles of states, which, although

product, cannot be distinguished from each other under

whereX=A,B,C, ... . or LOCC with certainty. Ensembles of product states can have a
I(p) < N-Spy). (46)  form of nonlocality. Other ensembles were exhibited which

o _ . o were distinguishable, but distinguishing was thermodynami-
This is because it was proved that in the bipartite ¢a4¢  caly irreversible. This can be thought of asnlocality with-
the relative entropy of entanglement is bounded from below,yt entanglement but with distinguishabiliyil those results
by coherent informatior—S. For multipartite states, one \yere done for ensembles.
gets it by noting that the multipartite relative entropy of en-  Here we report a similar kind of nonlocality for states.
tanglement is no smaller than the one versus some bipartiQamely, we will exhibit states which are separable and

cut. Then one applies the mentioned bipartite result. which can be created out of ensembles of distinguishable

_ (iii) Any entangled state is informationally nonlocge.,  states but which contain unlocalizable information such that

it has a nonzero deficit: A+ 0 (at least for single copigsin fact, one can find such
A(@entangled > O- (47) states which have an eigenbasis where each eigenket is per-

fectly distinguishable.
This follows from the fact that when a state is entangled, An example is the state given by

then it has a nonzero relative entropy of entanglement.

Note, however, that there exiseéparablestates which are _1 1 1
informationally nonlocal: p= 4|00><00| " 4|1l><11| * 2|l/j Xyl (50)
A(@separabid > 0, (48) It is a separable state, which can be seen either by construc-

for some separable states. We will now discuss an exam |téon_o_r becausg_it has a _positiye partial tran.spose which is a
b PSufficient condition for dimension @2. Its eigenketg00),

of such a state and relate it to so-called “nonlocality without _ Lo
entanglement.” Whether such an effect survives in thell.l>’ |'£|? are c;egrlg _pe;fectl;(/j(Ellstlngwshat_)let#nder LOtCtC_,
asymptotic limit of many copies is unclear. since Alice and Bob just need to measure in the computation

(iv) Theorem 3 allows for easy proof that for pure bipar- basis and compare results to know which of the three basis

tite states the deficit is equal to entanglement. Indeed, fromates they have. anetheless, It cIearIy has nonlocalizable
the theorem we have that the deficit is no greater than ejpformatmn. To localize all the information, one would need

- o dephase it in the basj80), |11), |, but this cannot be
tanglement. On the other hand, a simple protocol of depha done under CLOCC, since one cannot dephase using a pro-

ing Alice’s state in the eigenbasis of the state of her sub: _
sygstem and sending it gto Bob gives the amount opector on|¢7). The proof follows from theorem 2—we know

information 2 logd—S(p,). Thus the deficit is also no greater that the optimal protocol is for Alice to dephase her side in

than the entropy of the subsystem. However, the latter issome basis and then send the state to Bob. Indeed, for two

equal to the relative entropy of entangleméhts is a reflec- qubits, all implementable product bases are one-way imple-

. i NWU) (1)
tion of the fact that in the asymptotic regime there is onlyMentable; i.e., they are of the forffi)|y, )} where{[j )}
one measure of entanglement for pure sfatésr multipar- '€ bases themselves. Thus for the one-copy case, which we

tite pure states there does not exist a unique entanglemefpnsider here, the optimal protocol is a one-way protocol.
measure. We have the following open questiBor multi- Since the state is symmetric, then it does not matter which

partite pure states, is the deficit equal to the relative entropyV@ (from Alice to Bob or vice versa o
of entanglementThat is, A direct calculation shows that the optimal basi$0is 1)

, at one of the sites. This yield§=3/41log3-1, while
E (z//)ﬁA(gb) (49) I=1/2,giving a value ofA=0.1887. There are thus separable
' ' states which exhibit nonlocality in that all the information
If so, the deficit would be an entanglement measure for altannot be localized even though all the basis elements of the
pure states. And since the deficit is an operational quantitystate are perfectly distinguishable.
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VIII. INFORMATIONAL NONLOCALITY rectly from inequality(46) and it holds in the asymptotic
OF MULTIPARTITE STATES regime of many copies.

The approach considered here turns out to be quite valu- B. Example of a non-Schmidt decomposable state:
able in the case of multipartite states. One of the reasons for The W state of three qubits
this is that one cannot only quantify the quantumness of
correlations along various splittings, as is commonly done,
but one can also look at the total amount of localizable in- 1
formation that a given state possesses if all parties cooperate. |wasc= T§(|100> +/010 +|001).
In other words, in addition to the variougector measures "
defined for a particular splitting of the state—e.g.and we ask the question of how much localizable informa-
AB|CD—one also has acalar measuravhich is defined for tion I, can be extracted under one-way CLOCC by using it as
the state as a whole. One can calculati®r various bipartite  a shared state. Since each party only has one qubit, we can
splittings by grouping parties together, or one can calcWlate use theorem 2 to calculate it. This is because if each party
for the entire state. In fact, one can consider all possibl@nly holds a single qubit, the optimal protocol will only need
groupings, such asB|CD|EF, etc. This allows one to ex- one-way communication and will be equivalent to having
plore multipartite correlations in more detail and also allowsone-party measure, and then tell her results to the other par-
one to ascribe a single quantity to a particular state in ordeties who will then hold a pure state between them.
to rank various states in terms of their total quantum corre- Let Alice measure her part of the state in bg$s} and

A more complicated example is th&V'state”[52]

lations. send the result to Bob and Charlie. After the measurement,
By considering a family of states for a number of parties, ,
N, one can calculate the information deficit per party | asc — Casc= E pile)el ® opc (54)
I

A(pn) /N, and we find that it goes to zero for the generalized

GHZ and to 1 for the Aharonov state, B\nges to infinity.  Then Alice obtains the ensemb{pi,m)}_ Bob and Charlie

Of th(_a states we conS|d(_ar, we shall thus fm_d that the GHZptain the ensemblp;, 05} Ok are of course pure states.
state is the least informationally nonlocal, while the so-calleds ,r, and Charlie know which of the statggl,} they have
Aharonov state is the most informationally nonlocal. because they have obtained information about the result of
the measurement by Alice. Therefore, the total amount of
information that can be extracted frofk,)agc locally by

A. Schmidt decomposable states L
such a protocol is given by

The information deficit for théN-party GHZ state,

1(@a) + P1hi(@80) + P2li(50). (55)
lnenn =[111... D +]222... 2+ --- +|NNN...N),
51) whereg,=2;pile){e| so that
l(ea) =1 -H({pi}) (56)

where we depart slightly from convention by taking the di- _

mension of each party state to also scale NkeThis state is and where(since gy are pure
thus more entangled than if one were to give each party a iy i

qubit, and we do so in order to fairly compare our results (s =2 ~Slew), (57)
with other entangled states. The deficit for the GHZ waswith o} being the reduced density matrix gf.. So for an
calculated in[14] where it was found to beA(¥nguz) arbitrary von Neumann measurement, we have that fov\the
=logN. Essentially, once one party makes a measuremenstate,l, is given by
all the other parties can learn which state they have without

performing a measurement, and thys(N-21)log N, while : i 1+[x?
. L i ' | =3-H({p}) - 2 pSe; :3—H<—)
the total state is of dimensioNN, and hence =N log N. (W) (tpid) 21: PiSiee) 3
Therefore, -
_ 1+[x? (1 V-3x*+2x?+1

,le A(nen/N=0. (52 ——3 H\Z* 2+ 2
This is in keeping with the notion that the GHZ state is rather 2= (1 . V4|x|* - 3)x|*
fragile, since if only one of the qubits becomes dephased, the 3 2 4-2x2 )’

entire state becomes classical. _ _ .
One can generalize this to any multipartite state whichvhere the measurement is performed in the bésig given

can be written in a Schmidt basis; i.e., by
N ley) =x0) +y|1),
e = 2 1T [dnid- (53 X X
ioon=l ey =y'|0) = X'[1).

In that case, one find& (N9 =S(pa) Wherep, is any of the  One can check that for von Neumann measurements, the
subsystem entropieghey are all equal This follows di- largest amount of local information extractable is 1.450 26. It
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share a singlet. One of the parties can convert her pair into

1.45} log N-1 bits of information, while the other can get Ibg
Thekth party can get logN—-log k. The amount of localizable
I information is thereford,=log NN/N!. This is optimal by
1.44} theorem 2 for single copies. We thus have tA&ti,) /N

=log N!/N which goes to 1 in the limit oN— . Compared

to the GHZ state of equivalent dimension, the Aharonov state
1.43} has far more unlocalizable information. Related behavior has
been found independentf$3,54. One might wonder if one
can make the localizable information strictly zero, as is the
case for entanglement with bound entangled states. We will
x soon show that this is not the case.

FIG. 3. Plot ofl versusx? for measurement in bas{?) for the D. General pure three-qubit states
W state. The optimal basis for maximizitgis for Alice to dephase
(or measurewith x?°=1/3 or 2/3. Thebasis|*) (x*=1/2) is not
optimal.

In Sec. VIII A, we considered the localizable information
of Schmidt decomposable states, and in Sec. VIII B, we con-
sidered the W state, an example of a non-Schmidt-

. . . . . decomposable state.
is achieved for measurements in the bdigs}, where either Let us here consider the general three quhite state,

x?=1/3 orx=2/3 (see Fig. 3 Contrary to naive expecta- which can be written in the forf55,56
tions, dephasing in the computational basis is the worst

choice. Also the basig~) (x=1) is not optimal. It is inter- |)asc=a/000) + b|010 + ¢|100) + d|00D) + €]111),

esting that optimal bases are not incidental. Rather these are (60)
those bases for which the probabilities of a transition j@tp

|1) states are the same as the probabilities of getting thos&here onlya need be complex, while the rest of the coeffi-
states by Alice measuring th¥ state in basi¢0), |1). Inthe  cients are real. Of course we hafed”+b”+c?+d*+e”=1.
regime of single copies, this protocol is optimal by theorem We again can use theorem 2 to obtain the amount of lo-
2; therefore, for tha state,l,=1.450 26. This is less than calizable information. Let us suppose that Alitk) mea-
the amount of localizable information for the correspondingsures in the basis
GHZ state| gz =(1/12)(]000 +|111)); thus, we would ar-

e =Xx|0) +y|1),
gue that theW state exhibits more nonlocal correlations. [ex) =x(0) +y|1
le) =y'|0) - x'|1), (61)

. ] and sends the measurement outcome to @)kand Charlie
We next consider the so-called Aharonov “diamond” (©).

C. Aharonov state and quasiunlocalizable information

state. It is essentially given by antisymmetriziny Depending on the measurement outcome, Bob and Char-
N-dimensional states. For three parties, the unnormalizegs share the state
state is

1 * * * * *

|fap) =012 = |021) + |120 - |102) + [201) - [210) ey = =((Xa+y ©)|00) + X'd|01) + X b[10) +y €[11))
v
(58) P
or

and in general it is

1
la) == X € Na - ay), (59

VN! permutations

1
|4be,) = ﬁ((ya— xc)|00) +yd|01) + yb|10) - x€[11)),

corresponding to the outconje) or |e,) at Alice, where
where € js the permutation symbdlLevi-Civita den-
sity). p=|(Xa+y o)l +|x%d*+ [x|°b? + |y|*€?

It has the property that if one party measures their state i
any basis and tells their result to the rest of the parties, th
will then still hold another Aharonov state of dimensibh
-1. Since this is a pure state of dimensibf, the total

i the probability thate,;) is obtained by Alice.
&Y For such a protocol, the localizable information amounts

amount of information id =N log N. On the other hand, un- I} =sud3 —H(p) - pStry| ¢el>(¢el|)

der the protocol where the parties take turns measuring, it is Xy

easy to see that after each measurement, the other parties will — (1= p)S(tra| e X )] (62)
2 2!/

still be left with a locally maximally mixed state. However,
the maximally mixed state will reside in a dimension lower where we maximize over andy to obtain the highest local-
thanN. Finally, there will be two parties left, and they will izable information. This is an optimal protocol, and thus we
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{/0)=2(0) +bl1), [2) =bl0) - L)},
let the global state be projected, respectively, to

At this stage, the whole state is essentially on Bob's side.
This is because we allow dephasing as one of our allowed
operations. Consequently, the locally extractable information
after this set of operations is the von Neumann entropy of

PPigy ® o+ (1 -p)P;yy, ® 01,

where p is the probability of Alice obtaining the sta@).
The optimization yields the value

A=1+H(py+po) — S0sm, (65

wherep; andp, are the two highest coefficients of the Bell
FIG. 4. Plot of the function|¥ [Eq. (62)] for the three-qubit ~mixture Qg
state in Eq.(60) for the case whera=e=0, b=0.1, in the(c,r) If we consider only von Neumann measuremeénihout
plane. Herex=r, y=y1-r? andr>0. The value of localizable addition of ancilla and if Alice and Bob are not allowed to
information |, for a givenc is the supremum of” for that value  make any communication before they perform their measure-
of c. ments, then the zero-way information defiaft for the Bell
mixtures(63) is given by

obtainl,. Let us denote the quantity in square bracketg*as

Let us now choose an exemplary one-parameter subclass 1+H(Pma.,
from the class in Eq(60): where
a=e=0,b=0.1.

1
. . . . . = —(1+|maxtyy, oy taaf]),
For this class, we plot the localizable informatignusing Prmax 2( Imaodta, oz )

real values of andy. Takingx=r>0 andy=y1-r? I}V is ) o
plotted (in Fig. 4) as a function of andc. For a givenc  With i =tr(0;® 010gy). Note however that in this case, we

(which then fixes the statethe value ofl, can be read from @reé unable to show whether one can do better by positive-
the figure. operator-valued measur8OVM’s) or whether more copies

are useful.
Consider, however, the isotropit d state
IX. BELL MIXTURES
. . . |
The state of Eq(50) is a particular example of a mixture Ciso= N Pmaw + (L =N (66)
of Bell states: d

.1 in dod, where ¢ is the maximally entangled state in
|¢*) = T§(|00> +[11)), d®d which is invariant undet) ® U” for any unitaryU. The
v one-way information deficit~ (as well asA?) is given by

4= (0D £[10)), 3=z (a2 og 14224
V2 d d
Here, for completeness, we calculatefor all states of 1-A 1-A
this for so-called Bell-diagonal states. Up to local unitaries, *(d- DT Iong ~log, d+ S(gisd), (67)
this includes all & 2 states with local density matrices that
are maximally mixed. optimization could way classical DueWhere
to theorem 2, we only need consider optimizing are over
projection measurementwithout adding any ancilla locally S(0iso) = - ()\ + 1- k)log()x + ﬂ)
at one of the parties—say, Alice. Consider therefore the d d
mixture 2 _ 1(1 N 1- o6
O8m= P1Py+ + P2Py-+ PaPy + PaPy- (63) d? Jlog d? (68)
of the four Bell states in ® 2. For the isotropic state, it is possible to prove, along the same
After an arbitrary projection-valuedPV) measurement on lines as for Bell mixtures, that POVM’s as well as more than
Alice’s side, projecting in the basis one copy cannot help.
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A. Asymptotic regime local information from any classical state besides the maxi-

For two qubits we easily evaluated the deficit, becaus&"@lly mixed one. We can see that we are able to find such a
one-way and two-way deficits are equal in this case and b ocal operation that transforms every state which agrees with

cause Alice’s first measurement leaves no room for othef® assumptions of lemma 3 into a state from which we can

measurements. So the only thing she should do is to commdlraw local information. g
nicate the results to Bob, and communication from Bob is _N€re is an open question whether there exist states for
not needed. In other words, the set of pseudoclassically cotVhich localizable information is entirely equal kacal infor-
related states is equal to the one-way classically correlate@@tion content, but which nevertheless are not product. In
states of the forn19). Thus it was enough to evaluate only such a case, one would not b(_a able to draw information from
the one-way deficit. However, if we turn to regularization, cOrrelations at all. The classical deficii; would be zero,
this equivalence is no longer valid. This is because, to cal€Ven though the state would be nonproduct. It is rather un-
culate regularization, one needs to evaluate the deficit fofK€ly that such states exist, yet we have not been able to
many copies. Thus the dimension of the system is high, ang°!Ve this question.

there is room for many rounds. We are not able to regularize We now prove a relgted theorem which follows from.the
the two-way deficit. above lemma and which will be useful for the following

Concerning the one-way deficit, one can argue that it iS€Ction- Namely, we show that using pure states as a resource
additive for Bell diagonal states. Moreover, borrowing qubitscannot help when distilling local information. One can think
does not helfiit has been independently shown that, in gen_of such a process astalysiswhere one uses pure states to
eral, in the one-way case, borrowing pure local qubits doe8roduce more pure states from some shared state.

not help[20]). We will provide the arguments in Sec. XIV A. Theorem 4Local pure ancillas do not help in the process
of distilling local information.

Proof. Assume that catalysis can help in drawing local
X. PURELY NONLOCALIZABLE INFORMATION information. Consider a staie, which is not the maximally
DOES NOT EXIST mixed state, and the optimal protocol of distilling local in-

. ) _formation P;, which does not use ancillas. Consider also
One important aspect of entanglement theory is the €XISanother protocolP,, in which we distill information from

tence of bound entangled states. These are states which &§me of the copies of state. Using P, and then using the
entangled in that they require entanglement to create, yet Nggsijled pure states to do catalytic distillation on the rest of
entanglement can be drawn from them. In Sec. VIII C Wey,o copies. Notice that we can do this, because we know
saw that in the multipartite case, there were states for whicl4 1, |lemma 3 that we can distill local information and thus
the amount of localizable information per party was small a4 pure states from it. If catalysis is helpful, that means that
the number of parties increases. One can "’_‘Sk whether there|Sjng p, we are able to obtain more local information than in
a strict analogy to bound entanglement: are there stai§ge previous protocol. Protocsl, does not use ancillas and

which have positive, but whichl,=0. It turns out that the g petter tharP,, which is optimal. This leads to the required
answer is no; the only state which hias0 is the maximally .5 tradiction.

mixed state. Here we prove this in the following lemma for —\ve showed that catalysis is useless for a state with non-
the case of two parties. The generalization to many parties izerg gistillable information. It could help only in the case of
straightforward. _ __states with pure unlocalizable information, but we know

Lemma 3From any state other than the maximally mixed 5y, |emma 3 that such states do not exist. This ends the
state we can d.raw local mformgmoncj proof.

Przoof. Consider a stat@ ~C® C such thatg # Ommi Remark We know that to do catalytic distillation we need
=1/d% then, there exists an observable for which the mean,,re ancillas. One can notice that states which we want to
value in statep has a different value tha@ym;, Every non- ,sq in protocolP, to do catalysis are not exactly pure. But
local observable can be decomposed into local operators, §fese states come from distillation, so they are equal in the
we can always find such an observable of the févaB for limit of many copies td0)®™ (r is the rate of distillation of
which local information andh is the amount of copigsThis fact

| assures us that in the asymptotic regime of many copies we
Tr(A® B)g # Tr(A® B)?. (69)  are able to do catalysis.
Then XI. CAN CORRELATIONS BE MORE QUANTUM THAN
CLASSICAL?

1
Tr(A® B)o # —TrATrB, 70 . . . L
(AeBle d? (70 The total amount of correlations contained in a bipartite

state is given by the mutual information

S oA £ S émj- (71) 1= S(pa) + Spe) — Spas)- (72)
ij ij

One can easily see that our quantities for dividing corre-
Notice that distribution of probability fop in Eq. (71) is  lations into ones which behave quantunilyf) and classi-
classical. We know that we can obtain a nonzero amount ofally (A.) satisfy
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In=A+A.. (73 For the maximally correlated states, the relative entropy
of entanglementfrom PPT statesis known to be additive.
In other words, the total amount of correlatidigsven byly)  |ts value is also explicitly known for all such states in
can be divided into classical and quantum compongié  ded. Via additivity, this would exactly be equal to its

Now one can ask whether the total correlatidgscan be  asymptotic relative entropy of entanglemefitom PPT
divided arbitrarily. Certainly for pure states this is not the states. Precisely, for any state of the form

case. For pure states, correlations which behave quantumly
cannot exceed/2. For pure stategy, we showed that\ Ome= > ayii )(jj|,
=S(pa), and thus it is always the case thEt))=I,,/2. For ij
pure states, the quantumness of correlations can never ex pqye
ceed the classicalness of correlations.
Now one can ask, can it be that one has states for which Eneen = Erpen = > a; log, a; = SO0 -
I

A(opp) > 1127 (74) _ _ _ -,
) _ It is easy to check that the relatidii6) is satisfied by any

If so, one could think of these states as haveupersatu- Omein d®d.

rated quantum correlations, in that for a given amount of * Thys we have not found states for which the inequality
mutual informationiy, they have a greater proportion of cor- wouid be violated for the regularized relative entropy of en-
relations which behave quantumly. In this sense, one cagnglement. It remains an open question whether the trade-
think of such states as being more nonlocal than maximallyff petween noise and entanglement represented by inequal-
entangled states. ity (75) is universally true or whether there exist states for

One way of approach to the above problem is to workyhich there is more quantum than classical correlations.
with the relative entropy of entanglement. We know that both

the relative entropy of entangleme(ti,), with the distance
taken from separable states, and the von Neumann entropy  Xll. ZERO-WAY AND ONE-WAY SUBCLASSES
(Syp) are not greater than lggl for do®d states. Conse-
quently, one hag, +S,g=2 log, d. Can we have the follow-
ing stronger inequality:

We now turn to additional measures of the quantumness
of correlations which arise when one restricts the communi-
cations between Alice and Bob. In Secs. IX and VIII such

? restrictions were useful for evaluations of perhaps more basic
2E, + Syg=2log, d. (75) two-way quantities. However, they are more than just for

L ) ease of calculation—we shall also see that the restricted mea-
This is tight for maximally entangled states. Because the,res allow one to explore other aspects of nonlocality. Ad-
deficit is no smaller than the relative entropy of entangle-iisnajly, there appear to be strong connections between the
ment, it follows that if the inequality is violated, then for yeficit and distillation of randomness from shared states. For
some states inequalit74) is true, and we would have this example, it has just been shown [i20] that the one-way

curious phenomenon. On the other side, when the inequalityaficit is equal to the mutual information minus the one-way

is satisfied for all states, we would obtain a nice trade-offy;ijable randomnesgs9)].

between entanglement and noise. _ As before, the optimal protocols by which the correspond-
In a recent work, Weet al.[57] calculated(for two-qubit g |ocal informations are obtained amounts to producing

stateg the maximal possible relative entropy of entanglement. |5 ssical-like” states of least entropy by the respective op-

E. (as well as other entanglement meashrfes a given  grations, As mentioned in Sec. VB the theorems proved
amount of mixednesgquantified by the von Neumann en- yhere apply equally well in these restricted scenarios with
tropy). Note that the inequality75) would generically hold ¢ itable modification.

for two-qubit states if it is satisfied by these optimal values. |, any protocol of concentrating information to local

Indeed examining the curves of the above paper, one findg .., he parties can stop at states of the form
that for any two-qubit state the inequality is satisfied. ’

One can also find that for Werner states and maximally DY pi D] @ [l (77)
correlated states, the inequality is satisfied too for the regu- ij

larized relative entropy of entanglement. To see this, th
asymptotic relative entropy of entangleméEﬁppn) [with

distance taken from states with positive partial transpos
(PPT)] is known for Werner state@nixture of projectors on
symmetric and antisymmetric spag@sd® d [58]. One may

check that the relation ors= > piliXi| ® o;. (78)
2Egppn + Sap =< 2 log, d. (76) |

(?—|owever, for the two-way scenario, we have argued that one
can stop already at pseudoclassically correlated states. When
Bne-way protocols are allowed, it is sufficient for the parties
to stop at states of the form

Finally, for zero-way protocols, one has to achieve classi-
is satisfied for all Werner states in arbitrary dimensionscal stateg77). Consider, for example, the zero-way protocol
However, note here that the relative entropy of entanglemerfor a stateg g by which IP is attained. Without any classical
(from PPT statesis not additive for Werner states. communication(just by dephasing via an environmgnAl-
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ice and Bob change the staggg into a classical-like state I [ I
0ag [Of the form given in Eq(77)], so thatS(g,)+S(ep) is
minimized, wherep, andog are the local density matrices of
0,g Note that the parties must concentrate information using|
classical communication. But this is only after they have
performed all their dephasings. The situation is therefore like
in a Bell-type experiment.

Let us now show thaA? is an independently useful can-
didate for quantum correlations and can capture interesting -
aspects of nonlocality. The states that contain no quantun ol
correlations would be then the ones with=0. Consider, for PPN - T
example, the states with eigenbagisthout normalization - s

|0)A|0)g,|0)al D)g. [DA(|O) +[1)g, [ D) a0) = [1))g,  (79)

where|0) and|1) are the eigenvectors of the Pauli matwix & e FREEE 1 |
Such states are the ones used in the Bennett-Brassard 1984
(BB84) quantum cryptography protoc#]. This set of or- FIG. 5. Zero-way deficit is plotted versus mutual information

thogonal states is distinguishable locally. But inist distin-  for 100 000 random two-qubit states. The upper line standsfor
guishable by zero-way communication. Bob must wait for=1y. The lower line denotes isotropic states of Eg6). Two re-
Alice’s measurement resultin the o, basig to decide gimes are evident: in the first regime, there are states for which the
whether to perform a measurement in thebasis or in the deficit is almost equal to mutual information. In the second region,
o, basis. Therefore a mixture of the states in &), where  the deficit tends to half the mutual information.

the mixing probabilities are all different from each otliso

that the spectrum of the resulting state is nondegenerate With respect to the pure states considered in Sec. IV F, it
would have nonvanishing®. This is because an arbitrary is easy to see that is also equal ta\~. This is also true for
dephasing by Bob on such a mixture, before obtaining Al-single copies of single-qubit states, due to theorem 2.

ice’s result, would result in no information being extracted
from the state(by Bob). Consequently there would be an
information deficit when trying to extract information lo-
cally, because globally of course all the information is ex- In this subsection we consider the expression for the one-
tractable from such a state. All the information is also ex-way deficit. In the case when only one-way communication

tractable by one-way or two-way communication. This is iniS allowed between the parties, the only thing that Alice and
contrast to states which have an eigenbasis Bob can do is that Alice dephases her part in some basis and

then sends her part to Bob. Dephasing transforms the state as

A. Expression for one-wayA

|O>A|O>81 |O>A| 1>Bi |1>A‘O>Bi |1>A|l>B7

for which all the information is extractable from the state
locally, by measurement by both the parties in thebasis,
without any communication. where{P;=|iXi|} forms a set of orthogonal one-dimensional

We therefore see that the quantum behavior of correlaprojectors on the Hilbert space of Alice’s part @fg and p;
tions could result from the distinctly quantum but “local” are probabilities of the corresponding outcomes which Alice
property of nonorthogonality. Here we call nonorthogonalitywould obtain if she performed measurements with the same
a local property, as it does natpriori require a tensor prod- P;’s rather than dephasing, whiley is the state that Bob
uct structure to manifest itself. It is this nonorthogonality thatwould obtain conditionally on measurement outcofije
manifests itself in a more complex form in the examples ofThus
LOCC-indistinguishable  orthogonal  product bases
[10,60,61. More generally, it may be the reason for any case pi=tr(easPi ® 1),
of LOCC indistinguishability of orthogonal statE82—66.

An interesting issue is the relation betweshand mutual 1
information. In Sec. XI we have asked a question whether 0p=—tra(P; ® 10asP; ® 1). (80)
there exist states for which would be more than half of the Pi
mutual information. The same question can be asked in the The process of sending does not change the form of the
case of one-way and zero-way deficits. Panko/gB| has  state, so that the entropy of the final state at Bob is
performed numerical simulations to evalua® versus mu-
tual information. The results are presented in Fig. 5. Surpris- S(oas) = Slen) + 2 piS(ER),
ingly, there are states for which the deficit is almost equal to i
the mutual information. Thus the measurement destroys al-
most all correlations. The quantum correlations do not implywhere ¢,==p;|i)i| is the reduced density matrix of the
classical correlationésee[67] in this context. part of 5. So finallyl,” takes the form

Ong— eAB=Z Pi ® 10agP;i ® | =E piliXi| ® o,
I I
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I =Nag— inf(S(e;o +> pis<e‘B>> b=l (D),
{P} i
and correspondingly =12 12),
A7 =inf(Sien + X pSiey)) ~Slews: (8D W= (). (83

) Consider now any bipartite @3 stategyoway that is diago-
Just as we showed thatwas equal to the relative entropy nal in the above basis, but has a nondegenerate spectrum. It
distance to pseudoclassically correlated states, one can alg0relatively easy to provide a two-way protocol that distin-
write A~ andA® as the minimqm relative entropy distanc_e to guishes vectord83) without destroying them(see [16]).
the set of state§— and S? which can be created re\{erS|ny Hence A~ vanishes. Evidentlyoyoway iS N0t of the form
under the one-way and zero-way classes of operations. §§:l| #){ | ® o; with orthogonalg, since there are no three
eigenvectors among E¢BJ) that have the same component
on Alice’s side. So botlA™ and discord are strictly positive
for this state. Thus Maxwell's demon which communicates
Let us now compare the deficit with other measures of thén both directions is more powerful than a demon who can
quantumness of correlations, in particular the quantum disonly communicate in one direction.
cord[11,17. The latter is defined, formally, as the difference  Another simple example is to take states which have zero
of two classically equivalent expressions for the mutual in-optimized discord or one-way deficit,
formation, applied to quantum systerttaken to be a mea- o i S
suring apparatus and systerit was defined with respect to p-= 2 PlDAlA® pp, o= 2 PiPA ® [1e(ile
a measurement ,, (either a projective one or a POVM per- ! J
formed on the apparatus. One then defines thdiscord (84)

d(A(|B) with respect to this measurement that results Withbut in different directions of communication. Then take them
probabilitiesp; in joint statesg = (|yn)(¥i)) @ o7 The dis- g30h 10 be on orthogonal Hilbert spaces and mix. Such a
cord is defined as state will haveA =0 since both parties can just project onto
_ the two orthogonal Hilbert spaces to determine whether they
S(Av(B) =H({p}) + 2 PiS(@) - S(eas)- (82) hold p_, or p_ and then the appropriate party can send her
state down the channel. On the other hand, one-way commu-
The relationship betweeA(A,|B) and A~ (defined on nication will be sufficient to completely localize one of the
single copies was recently shown if68] where it was states but not always both.
shown that the discord also has the interpretation of the ex-
traction of work by a demon, if one minimize&A ,,|B) XIV. RELATION WITH MEASURES
over all possible measurememtg,. Care, however, must be OF CLASSICAL CORRELATION
taken, since with the definition of discord there is no cost In this section we shall ana|yze the relation of the classi-
associated with pure states which are used in a POVMa| deficit[16] to already known measures of classical cor-
Therefore, we note here that the relationship between thgsjations. It happens that both zero-way and one-way deficits
discord andA™ only applies if one optimizes the discord have their “counterparts” in such measures. There is no
over von Neumann measurements and disallows POVM's. known analog, however, for the two-way deficit.

Finally, let us provide two explicit examples of cases |et us recall that the quantum deficit was defined as
where two-way communication is more powerful than one-

XIll. RELATIONSHIP WITH OTHER MEASURES
OF THE QUANTUMNESS OF CORRELATIONS

way communication. For example, one has the strict inequal- A=1-1,.
ity AH?Ai:'anM_EPVmeaS‘S(AMJ B). One can think of it as describing how much better Alice and
To this aim consider the basis related to the sausage statggp can do under CO’s if they are given a quantum channel
of [10] which has been analyzed jt6]: instead of the classical channel. Because it feels the differ-
A B ence between the quantum and classical channels, it tells us
h=10+1)|2), about the quantumness of correlations. Likewise, the classi-
cal deficit is given by
¥=10-1) [2), A=l -1 0.
;= 0) 0+1), It tells us how much better two parties can do at localizing

information if, instead of having no access to a channel—i.e.,
closed local operations—they have access to a classical

$a=[0) [0-1), channel. Because the added resource is a classical channel, it
shows how much better the parties can do by exploiting a
¥5=11+2 (0}, classical channel.
One can verify thatA, and A add up to the quantum
Ws=]1-2) |0), mutual informationl \(@ag) =S(@a) + S(@a) ~S(@ar)- Thus
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Ag=ly—-A. Henderson-Vedral measure. It is interesting thgt without
L regularization, although it seems to be an important charac-
More explicitly we havecf. Eq. (11)] teristic of classical correlations, does not meet a basic re-

A - + — inf "4 . (85 quirement for being a measure of classical correlations: it is
cll@ap) = Sea) *+ Si5) CLOCC[S(QA) Sl (89 not monotonous under local operatiddg]. Thus regulariza-

tion plays here a role of monotonization. There is an inter-

i.e., Ay is the optimal decrease of local entropies by mean%sting question: what happens with the two-way classical

of cLoce. deficit after regularization?
A. One-way measures B. Additivity of the one-way quantum and
Corresponding to the measure of quantumness of correla- classical deficits for Bell diagonal states
tion under one-way classical communicatidrom Alice to Here we will prove the fact mentioned in Sec. IX A: that
Bob) (A™), given by Eq.(81), we could have the following  the one-way deficits are additive and that borrowing pure
formula for classical correlation: qubits does not help for Bell diagonal states. First of all in

_ , i [69] it was shown that a measure of classical correlations
Ao (Qap) = SFLJF{{S(QA) ~Slewt+ {S(QB) B E p‘S(QIB)H Cyy is additive for Bell diagonal states. Let us recall
' ' the argument, as it will be useful for making a connection
= sufd 8S(A) + 5S(B[A)]. (86)  with the classical deficit. For a Bell diagonal stateconsider
Pi a related channel A [i.e., such a channel that
Note that the supremum is taken over all local dephasings ofl ® A)(|#)*(¢*|)=¢]. The maximum output Holevo function
Alice’s side. Although we optimize over projection measure-over all input ensembles, denoted RY(A), is, for general
ments, one can effectively include POVM's by including all channels, no smaller tha®y,,. They are equal if the density
the required ancillas from the start. Remarkably, it has beematrix of ensemble attaining’ is equal tog,. In the case of
shown[20] that POVM's need not be considered when oneBell diagonal states, we hayg,=1/2, and it turns out that

goes to to the limit of many copies. the optimal ensemble for corresponding channels consists of
In Eq. (86), we have distinguished two terms. The secondtwo orthogonal states and hence gives rise to the same ma-
term trix. King [70] has shown thaj’ is additive for channels
. coming from the Bell diagonal states. From this and from the
5S(B|A) = S(0g) - E piS(ep) fact that, in generaly” = C,,, one gets that for Bell diagonal
I

statesCy,, for many copies is also equal tg' for many
shows the decrease of Bob’s entropy after Alice’s measurecopies of corresponding channels. This proves @gtmust

ment. The first one be additive. o _ N
Now, let us make a connection with the classical deficit.
5S(A) =S(en) - S(ep) As discussed if42), if x* is attained on such an ensemble

denotes the cost of this process on Alice’s side and is nont-hat its density matrix is equal ig,, then by looking at the

positive. It is zero only if Alice measures in the eigenbasis Ofensemble maximizing, one can tell something about mea-
her local density matrixo .. surements that attai€,,. Namely, when the ensemble is

The expression foA is very similar to the measure of orthogonal, then one attairS,,y by measurements in the

. L igenbasis oba. Now, it is obvious from Eq(86) and the
ﬂ%?smal correlation introduced by Henderson and Vedraﬁiscussion thereafter that in the latter c&3g, is actually

equalto the classical deficit, as they differ from one another
Cuo=SU _ SoL)). 87 only by entropy production during Alice’s measurement,
i Pf(S(QB) ; p'S(QB)) (®7) which vanishes, if it is done in the eigenbasis. Sitgg is

. , additive, then for many copies it is again attained by mea-
Originally the supremum was taken over by POVM's, but asgrements in the orthogonal basis that is an eigenbasis of

mentioned we take the state acting already on a suitablgice's subsystem. Thus the classical deficit for many copies

larger Hilbert space, unless stated otherwise explicitly. _ is also not less tha@,,, and it by Eq.(86) cannot be greater.
The difference between the Henderson-Vedral classical Th,s for Bell diagonal states the deficit is equalQg,

correlation measure and the one given in Bf) is that the 514 it js additive. Moreover, since the measurement was a
former does not include Alice’s entropic coS8(A) of per-  \on Neumann one, the deficit is attained without using
forming dephasing. Hence, in general, POVM's. This means that additional pure ancillas do not
help.

So far we have talked about the classical deficit. Now,
In the asymptotic limit of many copies, one has equalitysince the quantum and classical deficits add up to mutual
[20]. Actually in [20] it was shown that the regularized one- information which is additive, it follows that the quantum
way classical deficit is equal to another operational measuregeficit is additive too. Also, since borrowing local qubits
of classical correlationdistillable common randomnegs- does not increase the classical deficit, it cannot decrease the
troduced in59]. The latter is in turn equal to the regularized quantum deficit.

R
Ay = Any.
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C. Zero-way measures measurements simultaneously. In other words, one cannot

Let us now consider measures of classical correlation@ccess global and local properties of the systeee also

under no classical communicatiak®,. Again, this is taken to il r:n tlh's con:]ex)t. , | ¢
mean that the parties are not allowed to communicate before 1N€ latter phenomenon is not merely a consequence o
making measurements, but can do so afterward in order t5ON’'S complementarity. Indeed, if the only allowable states
concentrate on the classical records. The information deficfef COMPOsite systems were the classically correlated states

under no classical communicatiof?, is given by p=> Pij|&>|fj><a|<fj|, (89)
A®=S(oap) ~ S(Ehp), ’

where S(o,p) is the von Neumann entropy of the optimal
final stateg,g (which is classical likeand was obtained by
local complete measurements, without classical communic
tion. We then obtain

then maximal information about the total system would be
available through measurements on subsystems. Global mea-
surements would not access any further knowledge about the
%’roperties of the system. On the other hand, Bohr comple-
mentarity would still hold, in the sense that one cannot ac-

0 _ _ 1y = _ / cess all properties of the system in one measurement.
Aa=Sea) + Ses) ~ Sepe) = 1S(0a) ~ Slea)) +1S(0s) Thus we see that the local-nonlocal complementadi6}
- S(ep)}t +{Slen) + Slep) - S(oap)t is a consequence of two distinct phenomemancommuta-
_ / tivity andthe existence of entanglement (or quantum corre-
= SA) + 55B) +lu(p"). lations) So not only is there noncommutativity, but there is
We have three terms here: the last one too much of it, so that it affects also relations between local
, , , , and nonlocal informational contents.
Im(p") = S(en) + Sleg) - S(ens) In distributed systems one usually imposes constraints by

is the classical mutual information of the final state, whileallowing operations that can be done solely by classical com-
the first two 8S(A)=S(0a) - S(e,) and 8S(B)=S(gg)—S(op) munlganon and local operatlons_. It turn_s out that in such_a
denote, respectively, the local entropic costs of the process ttuation there also arises an interesting complementarity.
the respective sides. We therefore have a trade-off similar thamely, in[16] we considered two tasks: localizing informa-
that in the one-way case. And again there was defined #on (which we have presented in this papend sending
classical correlation measuf@9] which consists only of the guantum informatior(e.g., teleportation performed simul-

last term of our quantity taneously. It was shown that for a fixed proto@lthe rates
0 of those two tasks obey the relation
C’=su ", 88
sw(e’) 9 1P, +QUP.p) = 1), (90

where ¢’ is obtained out ofo by local complete measure- wherel,(P,p) is the amount of information localized by the
ments. Again the original definition @° involved POVM's,  protocol P and Q(P, p) is the amount of qubits transmitted
but as we have suitably increased our Hilbert space from thpy the protocol.

very beginning, we need not do so. For example, for the singlet state, the total informational
content is equal to the total correlation content and amount to

XV. COMPLEMENTARITY EEATURES OF INFORMATION tW(_) bits. The rl_ght_-hand side of the meqtfallty is e_qual to 1.
IN DISTRIBUTED QUANTUM SYSTEMS This number 2 in light of the above complementarity we can

interpret as follows: 2 is equal not to 1 plus 1 but it is equal

Bohr was the first who recognized a fundamental featuréo 1 or 1. One can either draw 1 bit of local information
of quantum formalism: complementarity between incom-(classical correlationsor teleport 1 qubitquantum correla-
patible observables. Complementarity was not explicitly retions); however, we cannot access both bits.
lated to entanglement, now regarded as an important One can see that this phenomenon is connected with the
guantum-information resource. Namely, Bohr’'s complemen-above-mentioned Bohr complementarity for distributed sys-
tarity concerned mutually exclusive quantum phenomena asems: for the task of teleportation, Alice makes a Bell mea-
sociated with asingle system and observed under different surement on her part of the singlet and unknown state to be
experimental arrangements. sent, while to localize information, she measures only the

Let us comment on complementarity in the case of comhalf of the singlets. Interestingly, as far as those two exclu-
posite systems and Bohr complementarity. Roughly speaksive measurements are concerned, the “local versus nonlo-
ing, the latter says that one cannot access the properties o&l” complementarity occurs within Alice’s laboratory, while
the systems necessary to describe it by one measuremeitt.results in complementarity between tasks that refer to
The rule is formulated for single-quantum systems and is docal-nonlocal properties of systems belonging to Alice and
consequence of noncommutativity. Bob.

On the other hand, we know that one can also divide the The above inequality suggests an interesting problem: to
properties of the system into local and nonlocal ones, anfind the trade-off curves for performances of teleportation
they are complementary with each other {d®]. For ex- and localizing information of a given state. In particular, an
ample, one can perform measurement in Bell basis or ifnteresting question is whether there exist states for which if
standard product basis. However, one cannot perform thosge teleport the amount of qubits equal to distillable entangle-
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ment, one not only would not localize any information, but  (iv) Is the deficit for multiparty pure states equal to the
would need to spend some additional pure stétes[17] in relative entropy of entanglemenEdr bipartite states it was

this context. proved that the deficit is equal to entanglement. For the mul-
tiparty case it is also true for Schmidt decomposable states. It
XVI. DISCUSSION AND OPEN QUESTIONS is an open problem whether it is true in general. The same

. r . _question can be asked for the regularized deficit. Is it equal to
In conclusion we have developed a quantum mformat'onregularizedEr for multipartite pure states?

processing paradigm which involves local information as a (v) Is the two-way classical deficit a legitimate measure of

natural resource in the context class of CLOCC operations,asgical correlations?The classical deficit definitely is an
We have presented proof that the central quantity of the pargs o riant quantity describing some aspects of classical cor-
digm, the quantum-information deficit, is bounded from rg|ations. However, there is a question whether it can be used
above by the relative entropy distance from the set oky guantify them. To this end, it should not increase under
pseudoclassically correlated states. We showed how the parggeal operationg 13]. For the one-way case, the classical
digm allows one to define the thermodynamical cost of eradeficit is not monotonous under local operations as shown in
sure of entanglement: entropy production necessary to maKa2]. Yet it turns out that after regularization, the monotonic-
the states separable by CLOCC operations. We proved thit is regained 20], because the regularized one-way classi-
the cost is no smaller than the relative entropy of entangleeal deficit is equal to the one-way distillable common ran-
ment. Since the cost is no greater than the deficit, we havdomness of59]. Can the two-way classical deficit be also
obtained that the deficit is no smaller than the relative enmonotonous after regularization? This is connected to the
tropy of entanglement. This in turn implies thetvery en-  next question.
tangled stateexhibits informational nonlocality. (vi) Is the classical two-way deficit equal to the two-way
We have also found that the paradigm offers a newdistillable common randomness [59]?
method of analysis of correlations of multipartite states. The (vii) Is the relative entropy of entanglement the thermody-
most nonlocal state from this point of viefwe call it infor-  namical cost of erasure of entanglemeM® have shown
mationally nonlocal would be the one for which one has to that the cost is bounded from below by the relative entropy
produce the largest entropy while converting it into classicabf entanglement. If there is equality, the relative entropy of
states. It turned out that according to such a criterion, thentanglement would acquire operational status: it would be
Aharonov state is much more nonlocal than the GHZ oneinterpreted as the thermodynamical costes@sure of en-
The nonlocality that can be probed by our methods is ondéanglement
that is not caught by Bell’s inequalities, since we have found (viii) What is the relation between the deficit and mutual
that also separable states can exhibit a nonzero deficitmformation?We have shown that if a trade-off inequality for
Rather, it has much in common with nonlocality without en-E, Eq. (75), would be violated, then the quantum deficit
tanglement, which was found for ensembles of sthl€.  would be more than the classical deficit for some states. We
Thus our nonlocality is not identical to entanglement. As ahave also touched on this question by analysis of the zero-
matter of fact, it is a broader notion. way deficit versus mutual information. Preliminary results
The information deficit has then some peculiar propertiessuggest that there is a very interesting phenomenon while
Since it is not an entanglement measure, it can increase ugoing from quantum to classical states via local measure-
der local operations. It is not unreasonable: Local operationsents: for some states before measurement there are large
may destroy a local property and make it impossible to carncorrelations quantified by mutual information, while after
out some action by separated parties, while when the partieseasurement, the remaining amount of information is equal
meet, the action may still be achievable. This curious behavalmost exclusively to the initial local information. This
ior of quantum states may be attributed to the fact that evemeans that for some states, even an optimal measurement
for separable states, when they are mixtures of nonorthoganay destroy most of the information contained in correla-
nal states, we cannot ascribe to the subsystems local propdiens. The question can be recast in the following way: how
ties (this may have some connection with the Kochen-small can the classical deficit be versus mutual information?

Specker theorejn In [67] the measure of classical correlatiof@8) closely
The paradigm developed in this paper opens many imporrelated to the zero-way deficit was compared with mutual
tant questions. Here are some of them. information. The authors showed that when this measure is

(i) Are “noncommuting-choice protocols” better in local- smaller thane, then mutual information is smaller than
izing information?This is the major problem in the paradigm epoly(d) whered is a dimension of the Hilbert space. They
of localizing information by CLOCC operations. were, however, unable to improve the factor to be of order of

(i) Is the quantum deficit equal to the relative entropylogd. This means that most probably there is place for a
distance to pseudoclassically correlated statd$fs ques- dramatic divergence between the two measures of correla-
tion would be answered positively, if the noncommuting-tions. Since the deficit can be only smaller from the measure
choice protocols do not help. of Eq. (88), the effect can be even stronger. All that suggests

(iii) Is the regularized deficit still nonzero for all en- that there may be a large gap between the classical and quan-
tangled statesFor the regularized deficit we have a lower tum.
bound given by the regularized relative entropy distance. (ix) A fundamental open problem, or rather program, is to
However, we do not know if for any entangled state the latteranalyze complementarity between drawing local information
is nonzero. and distilling singlets initiated ih16]. In the latter paper, the
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two tasks—drawing local information and teleporting the optimal number found ifi72]. Understanding in greater
qubits—were treated as complementary ones. One obtairdetail why these two methods give the same answer might be
trade-offs if one wants to perform those tasks simulta-an interested avenue of further research. It is also interesting
neously. An open question is whether distilling singlets carnto compare how one divides the total correlations into quan-
lead to a negative amount of local information gained—i.e.tum and classical ones. For example, in the case of the sin-
whether in the process of distillation we have to use up locaglet, the authors of72] interpret the two bits of mutual in-
pure qubits rather than we gain th¢i¥]. Moreover, one can formation as requiring one bit of noise to destroy the
define the following quantity: the maximal amount of pure entanglement and one bit of noise required to destroy the
qubits one can draw by CLOCC from a given stfl®].  secret correlations. Ifi16] we interpreted the two bits in
Note that here we do not speak about local qubits. Thus, fotrerms of one use of a quantum chanoelone bit of local
example, the singlet is already pure and needs no action. Dugformation.
to reversibility in entanglement transformations for pure bi- In the case of destroying correlations due to entangle-
partite state§37], the question is in fact reduced to the prob- ment, our method uses classical communication in an essen-
lem of drawing simultaneously singlets and local pure qubitstial way; therefore, on the surface, it appears to naturally
(x) An interesting question arises in the context{@2].  encode the notion of entanglement whose definition relies on
There the authors probe correlations by applying random lothe class of LOCC. For pure states the author§7@] also
cal unitaries to transform the state to product or separablebtain entanglement, as in this case communication is not
form, using the smallest number of unitaries. This methocheeded to reach the set of separable states. It is interesting
allows one to define not only quantum correlations but alsahen to compare what both approaches would produce as far
total correlations in terms of entropy production while reach-as the entropic cost of erasing entanglement is concerned.
ing some set of states. It differs from our approach in that thédne could expect that our method will show less cost in the
authors do not use classical communication in an essentighse of erasing entanglement.
way (it cannot help. Therefore a natural application of their  Finally we strongly believe that the present, paradigm
method is to probe total correlations. This allows them toanalyzed and developed here will be helpful as a rigorous
give a fresh, operational meaning to the quantum mutualool in searching for a border or rather a way of coexistence
information—it is the entropy production needed to bring abetween quantumness and classicality in physical states. It
quantum state into product form. Our method could be apmay also enrich our understanding of quantum-information
plied in a similar way—one tries to bring a state into productprocessing and its relation to other branches of physics like
form using CLOCC but without the classical communicationthermodynamics and statistics.
(i.e., CLO. Then one finds that the entropy productioe.,
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