PHYSICAL REVIEW A 71, 062303(2005

Distillation of local purity from quantum states
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Recently Horodeckét al. [Phys. Rev. Lett.90, 100402(2003] introduced an important quantum informa-
tion processing paradigm, in which two parties sharing many copies of the same bipartite quantum state distill
local pure states by means of local unitary operations assisted by a ongweayay) completely dephasing
channel. Local pure states are a valuable resource from a thermodynamical point of view, since they allow
thermal energy to be converted into work by local quantum heat engines. We give a simple information-
theoretical characterization of the one-way distillable local purity, which turns out to be closely related to a
previously known operational measure of classical correlations, the one-way distillable common randomness.
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[. INTRODUCTION much analogous to entanglement distillation: given a noisy
resource one wishes to remove impurities from it. There is a

One of the primary tasks of quantum information theory,,.o| anqd distributed version of this problem. In the local

is to explore the operational reductions between i”formatiogcenario which we cafiurity concentratiopAlice is given a
processing resources such as shared entanglement or QUgllgye sup;ply of states” and her task is to extract pure qubit
tum phannels, including both noisy gnd nmseless varietiegaies using only unitary operations. The maximal asymptotic
For Instance, entanglement dl_stlllat_|cﬁﬂl]_|nvolves rans- ~ rate at which this can be done is given by the difference
forming a large number of noisy bipartite quantum state§,qyeen the size of the systef (in qubity and its von
p"®, shared between two distant parties Alice and Bob, int\;amann entropya]. In the distributed scenariolecal pu-
pure ebitgd*)=1/y2(|0)|0)+|1)[1)) at the best possible con- rity distillation—Alice and Bob share a supply of bipartite
version rate. This conversion task is naturally defined WithinstatespAB and they wish to distill local pure states using
the LOCC (local operations and classical communicalion ¢ 0CC (closedlocal operations and classical communica-
paradigm: Alice and Bob are allowed no costto (i) locally  tjon) [8], a modification of the LOCC paradigm that disal-
add pure state ancillas to their quantum systéinisperform  |ows unrestricted consumption of local pure states. Horo-
local unitary operations, andi) communicate classically. In - geckiet al. [3] had previously obtained some bounds on this
a slight refinement of this paradigm, one could assign a COgroblem, both for the one-way and two-way CLOCC cases.
for one-way classical communication, leading to trade-offs |, this paper we investigate the two scenarios in detail.
between the amount of entanglement distilled and the classiyyr main result pertains to the distributed case; we give an
cal communication investe@]. The communication theorist jnformation-theoretical expression for the optimal one-way
still feels at home with this modification: after all, classical jstillable local purity. This quantity turns out to be related to
communication is a valuable bipartite resource and shoulg previously known operational measure of classical correla-
not be taken for granted. It is only recently that attention hagjgns the one-way distillable common randomndsd. Sec-
been given tdocal resources, in particular local pure statestjon || is devoted to establishing the notation. Section Il
(3. treats the local scenario, reproducing the resultf9dfin a
Local pure states can be seen as valuable fraheemo-  somewhat more rigorous coding-theoretical language. The
dynamical perspective. Although we use the language Ofyyo-party distributed scenario is considered in Sec. IV and
quantum states, the phenomenon is essentially classical. Lagyr main result is proved. Section V discusses how to embed
dauer[4] was the first to observe that work was required top ity distillation and the CLOCC paradigm in the existing
erase a bit of information—i.e., to reset a system from arormalism for quantum Shannon theory, and concludes with

unknown state to a knowfpure state. Conversely, a supply gpen questions. Appendix A collects a number of auxiliary
of pure states can be used as “fuel” to increase the amount giequalities used throughout the paper.

useful work extractable from a system at non-zero tempera-

ture[5,6]. This is achieved by reversibly transferring entropy Il. NOTATION AND DEFINITIONS
from the system to the pure states, thereby “cooling” the
system[7]. Recall the notion of arensembleof quantum state€

Having an appreciation for the value of pure states, it is:(p(x),pE)XE;(: the quantum syster is in the statq)f with
natural to ask about the different ways in which they can beprobability p(x). The ensembl€ is equivalently represented
produced. In3,8] the idea of manipulating and concentrat- by a classical-quantunsystem[10] XB in the state
ing “purity” already existing in a diluted form, rather than
performing work to create it, was introduced. This is very P B= ) p() )X @ p, (1)

XeX
whereHy has a preferred orthonormal bafie},. 1. X plays
*Electronic address: devetak@usc.edu the dual role of an auxiliary quantum system in the state
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I. DEVETAK

=,.p(X)|x){x| and of a random variable with distributignand
cardinality |X|:=|&]. For a multiparty state such a&®, the
reduced density operatq® is defined by T p*B. Con-
versely, we callp*B an extensiorof pB. A pure extension is
conventionally called gurification

The ensembl€ may come about by performing a POVM

A=(Ayy ZA,=I, on theA part of a bipartite state”B, in
which casen(x)=Tr(Ag?) and pB=p(x) Tra[(A%® IB)pAB].

Equivalently, A may be thought of as a quantum ma

A Ha— Hy, sendingp”B to p*B. A classical mapf: X —)
may similarly be viewed as a quantum ofté{yx— Hy,

f(p) = 2 (KpllfFOXFIY,

xeX

where’Hy has a preferred orthonormal bagg)}, . y.
Define the von Neumann entropy of a quantum spaltg

H(p)=-Tr(p log p), where log is the base 2 logarithm. We
write H(A),=H(d*), omitting the subscript when the refer-
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® - @Hp in a tensor power statp®". An (n,e) purity
concentration codeconsists of a unitary operatiod : Hn
—Ha ®Ha such that, fora™e=U(p®"),

lo? = [0)0vll, < e. 2

Therate of the code is defined big=(1/n)log dAp, where
dAp is shorthand for dim—[Ap. A rateR is said to beachiev-
ableif for all €, 5> 0 and sufficiently large there exists an

P (n,e) code with rateR- 8. The purity «(p) (also referred to

as “information” in[3]) is defined as the supremum over all
achievable rateR.

The following theorem, previously proven [i], gives an
information-theoretical expression fat

Theorem 1 The purity of the state” of the d, dimen-
sional quantum system is

k(p") =10g ds — H(A),.

Proof. We start by proving the “converse”™—i.e. the

ence state is clear from the context. The Shannon entropirection of the theorem. Consider a genefale) purity
-2,p(x)log p(x) of the random variablX is thus equal to the ¢oncentration protocol. Obviously,

von Neumann entropH(X) of the systemX. Define the
conditional entropy

H(AB) =H(B) - H(AB),
(quantum mutual information
I(A;B)=H(A) + H(B) - H(AB),
and conditional mutual information
I(A;BIX) = 1(A;BX) = 1(A; X).

For a sequence,, ... X, of classical indices; we use the
shorthand notation", and p,n:= ®ipy. For an integei de-

fine[u]={1,... u}
The trace norm of an operator is defined as

ol = Trolo,

log dAp =nlogd, - log dAg.
The second term is bounded as
log dAg = H(Ay) = H(AA) —H(A) =nH(A) —H(A))
1
= nH(A) - o ne log da. 3
The second inequality follows from the subadditivity of von

Neumann entropyA4), and the third inequality is Fannes’
inequality (A3) applied to(2). Hence,

1
R= a0 log dApi logds—H(A) + 6,

where without loss of generality§=1/en+elog d,.
To prove the “direct coding theoren{the = direction),

which for @ Hermitian amounts to the sum of the absoluteconsider the typical projectd¢d 1] I} s commuting withp®"

values of the eigenvalues af We say that two statgsand
w are e close if

lo= ol < e.

We loosely refer to an isometriy: Hy— Hg® Hc as a
unitary operation under the assumption thahay be written
as a composite systeBC. For a POVMA =(A,), acting on
a composite systeriB we say that it igank 1 on Aif, for all
X, A is of the form

ALB= ) (" @ 1B,

Throughout the pape0)* will denote a standard pure state

on the systenA.

Ill. LOCAL SCENARIO: PURITY CONCENTRATION

We begin by formally defining a purity concentration

code. Alice has copies of a statgp” defined on a syster
of dimensiond,. In other words, Alice has a-partite quan-
tum systemA"=A,,... A, with Hilbert space Han=Ha,

with the property that, for ak, 5> 0 and sufficiently large,
Trp®'I} 5= 1 -,

while TrHEﬁsn[H(p)+5]. The coding theorem now fol-
lows from lemma 1 below. O

Lemma 1 Let Il be a projector with Til=d; andp a
state that commutes withll, both defined on a
d;d,-dimensional Hilbert spac&i,. If Tr pII=1-¢, then
there exists a unitan): Hpo— Hg® Hc, with dimHg=d,
and dimHc=d,, such that

[UpU™ - (ITpIN)® ® |0)(0]|, < e.
Proof. Let {[i)}i (4,0, b€ @ basis foA such that

dy

A= [iXi[A
i=1

Viewing A as a composite systerBC, with basis {|i)
® |IMicray]j+1era, defineU to satisfy U[iyA=[i)®|0)° for all
i e[d;]. The lemma follows from

062303-2



DISTILLATION OF LOCAL PURITY FROM QUANTUM STATES PHYSICAL REVIEW A71, 062303(2005

TTpIT - pf < e. AC(p*®) = k. (p"®) = k(p") = K(p®).

L This quantity(or, rather, its bidirectional versidmas intro-
duced in[12] and advertised as a measure of classical corre-
lations in the stat@”®.

Example 1 Assume that Alice and Bob are given a bit of
common randomness, which is represented by the state
We now consider the bipartite scenario where Alice and
Bob share many copies of a some stat&. Their task is to DPB = l(|o><o|A® 10)(OB+ | (1A ® [1)(1[®)
distill local pure qubit states by means of protocols involving 2 '

only closed local operations and classical communication. . )
More precisely, Alice and Bob may perform local unitary Alice sends her system to Bob through the dephasing chan-

operations and are allowed unlimited use of a completel;ﬁel' which leaves it intact. Bob performs the controlled uni-
dephasing channel in both directions. A dephasing channel &Y

IV. BIPARTITE SCENARIO: LOCAL PURITY
DISTILLATION

giVen by the maﬂD:Hx—)Hx, UAB: |0><O|A ® 1+ |1><1|A ® VB,
Plp) = 2 X{Xlplx)NH, whereV|1)=|0), leaving theB system in the statf9)®. This
X givesk_ =A° =1.
where {|x)} is an orthonormal basis fof{y. The term Our main result is contained in the following theorem.

“closed” refers to Alice and Bob not being given free access Theorem 2The local one-way purity of a staé'® de-
to local pure state ancillas; this is the main difference befined on a system of dimensiai) X dg is given by

tween CLOCC and the more familiar LOCC relevant for

entanglement distillation[1]. A catalytic variation of k. (p"%) = logda + log dg — H(A), — H(B),, + D_(p"®),
CLOCC, which we denote by CLOCCallows Alice and  ith

Bob to borrow local pure state ancillas, but they have to

return them at the end of the protocol. Similarly define the ABy _ e L (1), ABy@N

1-CLOCC and 1-CLOCCparadigms with the bidirectional D_(p )‘r!m HDH((P )"
communication replaced by a one-way dephasing channel

from Alice to Bob. In[3] yet another paradigm, NLOCC and

(noisy local operations and classical communicatiavas

used, which allows both parties unlimited access to maxi- DY (p"B) = max1(X; B) xai)(p)- 5

mally mixed local states. This additional resource will prove A

to be useless for our purposes. The maximization is over all rank-1 POVMA : Hx— Hy.
Our main focus will be on the 1-CLOC(aradigm as it Corollary 1:

turns out to be amenable to information theoretical charac-

terization. We proceed to formally define a local purity dis- A® (p"B) =D_(p"B).

tillation code. Alice and Bob shame copies of the statp”?, ), AR & . :
embodied in the shared quantum sys#&tB", and Alice also The quantityD™ (p"™) first appeared ii13], where it was

has access to some guantum sys@mwf dimensiondc, ini- proposed, on heuristic grounds, as a measure of classical

) N ) H H AB “ 5 ” H
tially in a pure statd0)°. An (n, e) (catalytic) one-way local correl/?Bnons in the statey™. Its “regularized” version
purity distillation codeconsists of D_.(p"™") [12] was given operational meaning [it0] where

i) a unitary operatior x: Han® He— Ha & Hy 0N Al- it was shown to be equal to tlemne-way distillable common
icegs) side y op A TEATE G A X randomnesg1-DCR) of p”B. The 1-DCR is the maximum

(i) a dephasing chann@!: Hy—Hy from Alice to Bob conversion rate fromp”® into bits of common randomness,
(iii) a unitary operationU )7({ n®);{ o He @H on, achievable with 1-LOCCin excesof the classical commu-
Bob's side BB XTI T TRy nication invested.

In [10], the additivity ofD(_lf was shown for a separable
such that, for stated”® and arbitraryp”®,
"% = (Ug o P Un)((p"%)°" @ [0)(0[),
DY(p"® ® 0*%) = DD (p"%) + DT (079). (6)
[|o”%Be — |0)(0|" @ |0)(0[B]; < e. (4)  Therefore, adding local maximally mixed statas’®

— - ; (1) —
The rate of the code is defined byR=(1/n)(logda s =(dadg) " 17, for which D_—»("AB)‘O does not affect the
—log dg). Thecatalyst rateis (1/n)log de. A rateR is said to 1-DCR or the classical deficit. Moreover, for separable states

be achievableif for all €, 5> 0 and sufficiently large there p"® the classical deficit is efficiently computable, as

exists an(n, €) code with rateR—- 8. Theone-way local purity D_(p"®) = D(l)(pAB)

«_(p"B) is defined as the supremum over all achievable rates - - '

R. From [10] we know additivity to hold for the case of pure
A quantity of particular interest is thelassical deficit states $)”B, and it is easily seen thés]
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A (¢"B) =E(¢®) := H(A) 4,

where E is the unique measure of entanglement for pure

states. Additivity also holds for Bell-diagonal stafds,15.
The general question of the additivity Dﬂ) is known to be

equivalent to several other open additivity problems in quan-

tum information theory16-1§, including that of the Holevo
capacity of quantum channels.

PHYSICAL REVIEW A 71, 062303(2005
log ng = H(By) = H(B,By) — H(B,) =H(XB") - H(By)
1
= H(X) + H(B"X) - " nelogd, = H(Ay)

1
+H(B"X) - <~ nelogd, = nH(A) + H(B"|X)

-né.

In proving theorem 2, we shall need two lemmas. The first

is from [19].

Lemma 2 Consider a classical-quantum systefB" in
the state(p*B)®", wherep*® is given by Eq.(1). For anye,
6> 0 and sufficiently large, there exist

(i) a setS in A" with

PHX" & S} < €,

(i) a bijection  f:[u]X[\]—S,
< 2NHX)-1(X;B)+4] and,u)\ < 2n[H(X)+5]'

(i) a collection of POVM's (Y"),_; [each Y!
:(Ygf)m is a POVM,, such that

)

where N

Om,l. (8)

The above lemma says that a highly probable Setf se-
guencesx" can be covered by disjoint setsS;, | € [A], of
size u in such a way that, given the indéxthe identity of a
particular sequence i, may be reliably inferred from a
measurement oB".

The following technical lemma is a corollary of the mea-
surement compression theor¢2®], and is proved in Appen-
dix B.

Lemma 3 Given the systerA"B" in the statg(p”®)®" and
a rank-1 POVMA:Hp—Hy, for any €, 6>0 and suffi-
ciently largen, there exists

(i) a decompositioA"=A;A, such that

|
Trpr(mJ)Yﬁn) =1-¢

H(Al) = Ne,
(i) a POVM T\:HAn—>HK which is rank 1 omA, and

log|K| < n[H(A) + §], (9)
I(K;B”)wz n[I(X;B)p—e], (10)
where
pB=(A & 1)(p"®), (11)
oFB"= (A ® 1)(p*®)*". (12)

Proof of theorem 2First, let us prove the converse. Con-
sider a generaln,e) purity distillation protocol. We know
that

log dApo —logdc=n(logd, + logdg) - log ng.

Assume, w.l.0.g.5=1/en+elog(d,dg). The entropic quan-

tities below refer to the overall quantum state at a stage of

the protocol which is implicit from the subsystems involved.
For instance, the systeBf' exists only befordJg is applied.

The second inequality is subadditivityA4), the third is
Fannes' inequalitfA3) and (4), the fourth follows from the
fact that dephasing cannot decrease entrid@il, and the
fifth follows along the lines of Eq(3). Hence,

R

1
H(Iog dApo -logdc) < logda+logdg — H(A) —H(B)

1
+EI(X;B”)+ d.

The idea behind the direct coding theorem is that there are
two potential sources of purity. The first comprises the lo-
cally concentrable purity for the two parties, from Sec. I
and is responsible for th&(p”)+«(pB) term. The second
comes from the classical correlations present in the system
and gives rise to th®_ (p"®) term. Roughly speaking, Alice
sends her part of the classical correlations through the
dephasing channel; Bob then takes advantage of the redun-
dancy, as in example 1, to distill purity.

We start by considering a special case. Assume that the
systemA can be divided into subsystems=A;A, such that
H(A;) < 7 and thatA is rank 1 onA,. We show that we can
achieve a rate arbitrarily close to

logda +logdg — 7= H(X), - H(B), + 1(X;B),,

with p given by Eq.(11). Consider a sufficiently large and
the induced decompositioA"=ATAJ. The purity distillation
protocol comprises of the following steps.

(i) First, Alice applies the protocol from theorem 1Ag,
yielding a subsystem,, of sizen[log da -7~ 4] qubits, in a
statee close to|0)"».

(iil) The measuremem®™ may be implemented by bor-
rowing nlogdy qubit ancillas(in some fixed statéO)Xn),
performing some unitary operatidd on the systemAZX",
and completely dephasing the systeth in a fixed basis
{Ix"}. Here we let Alice perform this measurement
coherently—i.e., by omitting the dephasing stéghe channel
P will later do this for ug. SinceA®" is rank 1 onA), this
results in a state of the form

E VﬂM|Xn>X”| ¢x”>Ag| ¢x”> Rn,

where R" is the “reference system” that purifies the initial
state ofA}. She then performs the controlled unitary

> e @ Ve

xn !

whereV,a|in)=|0), leavingAjJ in the statg0)"2,
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(iii) Were Alice to perform the von Neumann measure- log da + logdg — 7— H(X) — H(B) + 1(X;B) - 35,

ment onX", the resulting state of the systexiB" would be ) . L .
while the classical communication rate required was

(PBn= p(xn)|xn><xn|X” ® pB:_ ntlog(ul) < H(X)+ 8 bits per copy.

n . To prove the general statement of the theorem we shall
o _ _rely on lemma 3 and “double blocking.” Let’ be suffi-
Choose the seb, bijection f and collection of POVM's  cjently large for lemma 3 to apply with respect to thatimal
(YD), as in lemma 2. Defindl’ =S sx"Mx"* ®I%. By A achievingD”(p"®) in (5). We shall apply the special-case
(7) and the FrO,Of of lemma 1,hther?< Is & unitary operationprotocol described above to the block systam=A;A, and
(acting on Alice’s systemnon?yt at takes(p*®)*" to a state || measuremeri, obtaining a rate of

2e close to]0)0* ® ’M-B" with dy,=(u\) tdyn and

X

1 1 on
g'MLB" = 2 p(m,|)|m><m|M ® ||><||L ® p?(m,l)' logda + log dg vy H(K) -H(B) + I’]'I(K,B )-35-e.
m,|

. o ) . By lemma 3 and5), this is bounded from below by
The p(m,l) is some probability distribution associated with a

composite random variabML. Alice performs said unitary. log ds + log dg — H(A) — H(B) + DY (p"®) — 45 - 2e.

(iv) Alice sends theML system through the dephasing . _ . .
. ) MLE" i The classical communication rate required for this protocol
channel, leavingMLB" in a stated which is 2 close to ;g H(A) +26.

rMLB"
o . Finally, a third layer of blocking allows us to repIaDé_{)

(v) For eachl one can define a unitap®™, a coherent by D_., and we are done. O
version of the measuremeM, which upon measurement |t is not hard to see that the above protocol may be boot-
“outcome” m performs the transformatiom)™— |[0). Ex-  strapped to make the catalyst rate arbitrarily small. More-
plicitly, van"" is w..o.g. of the formEm,m/lm’><m|M®Yﬁr:m. over, if k(p®)>0, a catalyst is not needed at &ee also
Choosing Yom=(Y")2 and the remainingY,, to satisfy [15)).
unitarity leavesw, with the desired property. Defining

O_B':M :\NIBHM(pr(:n,I) @ |my(m™), V. DISCUSSION

m
The question of counting local resources in standard
guantum-information-theoretical tasks, such as entanglement
(Olom(0) =1 -e. distillation, was recently raised by Bennf2e]. In particular,
it is desirable to extend the theory msource inequalities
By (A2), [2] to include the manipulation of local resources. Recall the

y " notation from[10] in which [c—c], [q—q] and[qq] stand
mEJ p(m.1) o~ [0X0|

the measurement success criteri{@nhof lemma 2 becomes

<2\e. (13)  for a bit of classical communication, a qubit of quantum
1 communication, and ebit of entanglement, respectively.
Bob applies the controlled unitary There it was implicit that local pure ancillas could be added
for free, which makes a classical channel and a dephasing
WHB™ — > I @ VVFHM' quantum channel operationally equivalent. To define a
I “closed” version of this formalism, one must identify
N _ [c—c] with a dephasing qubit channel and introduce a new
which, by (13), maps6'™-®" to a state whos#/ partis /e resource, a local pure qubit sta@ w.l.0.g. in Bob’s posses-
close to|O)M. Since MLB" is 2¢ close to_e"V'LBn, upon appli-  sion. This resource may be written as eitfigt or [c], as
cation of W its M part becomeg2e+2ye) close to|O)M, by  there is little distinction between classical and quantum for
the triangle inequalityfAl). strictly local resources. The main result of our paper may be
(vi) By the gentle operator lemni{aee Appendix A per-  written succinctly as
forming W perturbs theB system very little, leaving it in a

state(e+18e) close to(pB)®". Bob applies the protocol from {agh +H(A) [c — c] = r.(p*)al,
theorem 1 toB", yielding a subsystenB, of size n(dg  where {qq} represents the noisy static resoure??, and
—H(B)-6) qubits, in a staté2e+8¢)-close to|0)5r. «_(p"®) is given by theorem 2. Regarding entanglement dis-
In summary, the protocol consumes a catalyshtifgdy tillation, closer inspection of the optimal one-way protocol
qubits, while returning a system of size from [23] reveals thati) only a negligible rate of pure state
ancillas need be consumed arid) moreover, the locally
n[log da, = 7= 8] + nlog da, + nlog dx — log(uA) + log concentratable purity(p”)+«(pP) is available without af-
+n[dg - H(B) - 4] fecting the entanglement distillation rate.

o Whether the above holds for general quantum-Shannon-
qubits, in a state which {&e+(2+18)\e] close to pure. This theoretic problems remains to be investigated.
corresponds to a purity distillation rate of at least We conclude with a list of open problems.
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(i) It would be interesting to find the optimal trade-off  For two statep andw defined on al-dimensional Hilbert
between the local purity distilled and the one-way classicabpace, Fannes’ inequalif28] reads
communication(dephasinyginvested. In particular, does the

1
problem reduce to the 1-DCR trade-off curve frqi0]? |H(p) - H(o)| < = +logd||p - a|;. (A3)
Also, one could consider purity distillation assited by quan- e
tum communicatiorj24]. An important property of von Neumann entropysigbaddi-

(il) We have seen that purity distillation and common ran-tivity
domness distillation are intimately related. Is there a non-

trivial trade-off between the two, or is it always optimal to H(B) = H(AB) ~H(A). (A4)
(linearly) interpolate between the known purity distillation

and common randomness distillation protocols? One could APPENDIX B: PROOF OF LEMMA 3

also consider the simultaneous distillation of purity and other By the proof of the measurement compression theorem
resources, such as entanglemege[12]). [20], for any €, >0 and sufficiently largen there is an

(|||) Clearly, one would like a formula for the tWO'Way ensemble of rank-1 Sub_POVM($)S,7\(S):HAn_,HK)S and a
distillable local purity. Solving this problem in the sense of ¢|agsical magy: Hs® Hy — Hyn Such that

the present paper appears to be difficult; R&b] gives a . < (9 . n[H(A)+ 4]
formula involving maximizations over a class of states which ((j')HE‘SAk = H,_whtere the 'ndf.)k rangtes ,?\5[2 h th],t
is, alas, rather hard to characterize. A more tractable questiozilpl_[< I;H&)g]mjeg or iogg'img with(p™)™" suc a
is whether the relationship established between distillabld M 11 =2 and Tip")*"I=1-¢,

purity and distillable common randomness carries over to the !

two-way scenario. (B2 - B, < e, (B1)

where
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The proof of lemma 1 and Fannes’ inequaliy3) implies

APPENDIX A: MISCELLANEOUS INEQUALITIES the existence of a decompositiéi=A;A; such that
For statep, o, and g, the triangle inequality holds: H(A) < é +nelogd,,
lp = @lly + o= ofly = lp - ol (A1)

while A® is now viewed as a rank-1 POVM ok, such that

(B1) still holds for A®.
o= &)X Plll1 < 2V1 —{|p|p). (A2) Define €’ =3/ne+2elog(dyds). Then

The gentle operator lemnj&7] says that a POVM element nl(X;B), < I(X";B"), - ne’ < I(KS;B")o —ne’ =1(S,B")q
that _succeeds on a state with high probability does not dis- +1(K;B"9)q - ne’ = 1(K;B"S), - ne'.
turb it much.
Lemma 4 For a statep and operator &A<I, if The first inequality is a triple application of Fannes’ inequal-
Tr(pA)=1-\, then ity, and the second is by the data processing inequéditg,
— = — e.g.,[21]). The last line is by locality: the state d@" is
llp = VApVA[ly = vBX. independent of which measuremeki® gets applied toA".
The same holds ip is only a subnormalized density opera- Thus there exists a particularsuch that(10) is satisfied for
tor. O A=A, O

The following bound 26] relates trace distance and fidelity:
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