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Recently Horodeckiet al. fPhys. Rev. Lett.90, 100402s2003dg introduced an important quantum informa-
tion processing paradigm, in which two parties sharing many copies of the same bipartite quantum state distill
local pure states by means of local unitary operations assisted by a one-waystwo-wayd completely dephasing
channel. Local pure states are a valuable resource from a thermodynamical point of view, since they allow
thermal energy to be converted into work by local quantum heat engines. We give a simple information-
theoretical characterization of the one-way distillable local purity, which turns out to be closely related to a
previously known operational measure of classical correlations, the one-way distillable common randomness.
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I. INTRODUCTION

One of the primary tasks of quantum information theory
is to explore the operational reductions between information
processing resources such as shared entanglement or quan-
tum channels, including both noisy and noiseless varieties.
For instance, entanglement distillationf1g involves trans-
forming a large number of noisy bipartite quantum states
rAB, shared between two distant parties Alice and Bob, into
pure ebitsuF+l=1/Î2su0lu0l+ u1lu1ld at the best possible con-
version rate. This conversion task is naturally defined within
the LOCC slocal operations and classical communicationd
paradigm: Alice and Bob are allowedat no costto sid locally
add pure state ancillas to their quantum systems,sii d perform
local unitary operations, andsiii d communicate classically. In
a slight refinement of this paradigm, one could assign a cost
for one-way classical communication, leading to trade-offs
between the amount of entanglement distilled and the classi-
cal communication investedf2g. The communication theorist
still feels at home with this modification: after all, classical
communication is a valuable bipartite resource and should
not be taken for granted. It is only recently that attention has
been given tolocal resources, in particular local pure states
f3g.

Local pure states can be seen as valuable from athermo-
dynamical perspective. Although we use the language of
quantum states, the phenomenon is essentially classical. Lan-
dauerf4g was the first to observe that work was required to
erase a bit of information—i.e., to reset a system from an
unknown state to a knownspured state. Conversely, a supply
of pure states can be used as “fuel” to increase the amount of
useful work extractable from a system at non-zero tempera-
ture f5,6g. This is achieved by reversibly transferring entropy
from the system to the pure states, thereby “cooling” the
systemf7g.

Having an appreciation for the value of pure states, it is
natural to ask about the different ways in which they can be
produced. Inf3,8g the idea of manipulating and concentrat-
ing “purity” already existing in a diluted form, rather than
performing work to create it, was introduced. This is very

much analogous to entanglement distillation: given a noisy
resource one wishes to remove impurities from it. There is a
local and distributed version of this problem. In the local
scenario, which we callpurity concentration, Alice is given a
large supply of statesrA and her task is to extract pure qubit
states using only unitary operations. The maximal asymptotic
rate at which this can be done is given by the difference
between the size of the systemA sin qubitsd and its von
Neumann entropyf9g. In the distributed scenario—local pu-
rity distillation—Alice and Bob share a supply of bipartite
statesrAB and they wish to distill local pure states using
CLOCC sclosed local operations and classical communica-
tiond f8g, a modification of the LOCC paradigm that disal-
lows unrestricted consumption of local pure states. Horo-
deckiet al. f3g had previously obtained some bounds on this
problem, both for the one-way and two-way CLOCC cases.

In this paper we investigate the two scenarios in detail.
Our main result pertains to the distributed case; we give an
information-theoretical expression for the optimal one-way
distillable local purity. This quantity turns out to be related to
a previously known operational measure of classical correla-
tions, the one-way distillable common randomnessf10g. Sec-
tion II is devoted to establishing the notation. Section III
treats the local scenario, reproducing the results off9g in a
somewhat more rigorous coding-theoretical language. The
two-party distributed scenario is considered in Sec. IV and
our main result is proved. Section V discusses how to embed
purity distillation and the CLOCC paradigm in the existing
formalism for quantum Shannon theory, and concludes with
open questions. Appendix A collects a number of auxiliary
inequalities used throughout the paper.

II. NOTATION AND DEFINITIONS

Recall the notion of anensembleof quantum statesE
=spsxd ,rx

BdxPX: the quantum systemB is in the staterx
B with

probability psxd. The ensembleE is equivalently represented
by a classical-quantumsystemf10g XB in the state

rXB = o
xPX

psxduxlkxuX ^ rx
B, s1d

whereHX has a preferred orthonormal basishuxljxPX. X plays
the dual role of an auxiliary quantum system in the state*Electronic address: devetak@usc.edu
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oxpsxduxlkxu and of a random variable with distributionp and
cardinality uXuª uXu. For a multiparty state such asrXB, the
reduced density operatorrB is defined by TrX rXB. Con-
versely, we callrXB an extensionof rB. A pure extension is
conventionally called apurification.

The ensembleE may come about by performing a POVM
L=sLxdx, oLx= I, on theA part of a bipartite staterAB, in
which casepsxd=TrsLxr

Ad andrx
B=psxd−1TrAfsLx

A
^ IBdrABg.

Equivalently, L may be thought of as a quantum map
L :HA→HX, sendingrAB to rXB. A classical mapf :X→Y
may similarly be viewed as a quantum onef :HX→HY,

fsrd = o
xPX

kxuruxlufsxdlkfsxduY,

whereHY has a preferred orthonormal basishuyljyPY.
Define the von Neumann entropy of a quantum stater by

Hsrd=−Trsr log rd, where log is the base 2 logarithm. We
write HsAds=HssAd, omitting the subscript when the refer-
ence state is clear from the context. The Shannon entropy
−oxpsxdlog psxd of the random variableX is thus equal to the
von Neumann entropyHsXd of the systemX. Define the
conditional entropy

HsAuBd = HsBd − HsABd,

squantumd mutual information

IsA;Bd = HsAd + HsBd − HsABd,

and conditional mutual information

IsA;BuXd = IsA;BXd − IsA;Xd.

For a sequencex1, . . . ,xn of classical indicesxi we use the
shorthand notationxn, andrxnª^ irxi

. For an integerm de-
fine fmg=h1, . . . ,mj.

The trace norm of an operator is defined as

ivi1 = TrÎv†v,

which for v Hermitian amounts to the sum of the absolute
values of the eigenvalues ofv. We say that two statesr and
v aree close if

ir − vi1 ø e.

We loosely refer to an isometryU :HA→HB ^ HC as a
unitary operation under the assumption thatA may be written
as a composite systemBC. For a POVML=sLxdx acting on
a composite systemAB we say that it isrank 1 on Aif, for all
x, Lx is of the form

Lx
AB = ufxlkfxuA ^ IB.

Throughout the paper,u0lA will denote a standard pure state
on the systemA.

III. LOCAL SCENARIO: PURITY CONCENTRATION

We begin by formally defining a purity concentration
code. Alice hasn copies of a staterA defined on a systemA
of dimensiondA. In other words, Alice has an-partite quan-
tum systemAn=A1, . . . ,An with Hilbert spaceHAn=HA1

^ ¯ ^ HAn
in a tensor power stater^n. An sn,ed purity

concentration codeconsists of a unitary operationU :HAn

→HAp
^ HAg

such that, forsApAg=Usr^nd,

isAp − u0lk0uApi1 ø e. s2d

The rate of the code is defined byR=s1/ndlog dAp
, where

dAp
is shorthand for dimHAp

. A rate R is said to beachiev-
able if for all e, d.0 and sufficiently largen there exists an
sn,ed code with rateR−d. The purity ksrd salso referred to
as “information” inf3gd is defined as the supremum over all
achievable ratesR.

The following theorem, previously proven inf9g, gives an
information-theoretical expression fork.

Theorem 1. The purity of the staterA of the dA dimen-
sional quantum systemA is

ksrAd = log dA − HsAdr.

Proof. We start by proving the “converse”—i.e. theø
direction of the theorem. Consider a generalsn,ed purity
concentration protocol. Obviously,

log dAp
= n log dA − log dAg

.

The second term is bounded as

log dAg
ù HsAgd ù HsApAgd − HsApd = nHsAd − HsApd

ù nHsAd −
1

e
− ne log dA. s3d

The second inequality follows from the subadditivity of von
Neumann entropysA4d, and the third inequality is Fannes’
inequality sA3d applied tos2d. Hence,

R=
1

n
log dAp

ø log dA − HsAd + d,

where without loss of generalitydù1/en+e log dA.
To prove the “direct coding theorem”sthe ù directiond,

consider the typical projectorf11g Pr,d
n commuting withr^n

with the property that, for alle, d.0 and sufficiently largen,

Trr^nPr,d
n ù 1 − e,

while Tr Pr,d
n ønfHsrd+dg. The coding theorem now fol-

lows from lemma 1 below. h
Lemma 1. Let P be a projector with TrP=d1 and r a

state that commutes withP, both defined on a
d1d2-dimensional Hilbert spaceHA. If Tr rPù1−e, then
there exists a unitaryU :HA→HB ^ HC, with dimHB=d1
and dimHC=d2, such that

iUrU† − sPrPdB
^ u0lk0uCi1 ø e.

Proof. Let huiljiPfd1d2g be a basis forA such that

PA = o
i=1

d1

uilki uA.

Viewing A as a composite systemBC, with basis huil
^ u jljiPfd1g,j+1Pfd2g, defineU to satisfyUuilA= uilBu0lC for all
i P fd1g. The lemma follows from
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iPrP − ri ø e.

h

IV. BIPARTITE SCENARIO: LOCAL PURITY
DISTILLATION

We now consider the bipartite scenario where Alice and
Bob share many copies of a some staterAB. Their task is to
distill local pure qubit states by means of protocols involving
only closed local operations and classical communication.
More precisely, Alice and Bob may perform local unitary
operations and are allowed unlimited use of a completely
dephasing channel in both directions. A dephasing channel is
given by the mapP :HX→HX,

Psrd = o
x

uxlkxuruxlkxu,

where huxlj is an orthonormal basis forHX. The term
“closed” refers to Alice and Bob not being given free access
to local pure state ancillas; this is the main difference be-
tween CLOCC and the more familiar LOCC relevant for
entanglement distillationf1g. A catalytic variation of
CLOCC, which we denote by CLOCC8, allows Alice and
Bob to borrow local pure state ancillas, but they have to
return them at the end of the protocol. Similarly define the
1-CLOCC and 1-CLOCC8 paradigms with the bidirectional
communication replaced by a one-way dephasing channel
from Alice to Bob. In f3g yet another paradigm, NLOCC
snoisy local operations and classical communicationd was
used, which allows both parties unlimited access to maxi-
mally mixed local states. This additional resource will prove
to be useless for our purposes.

Our main focus will be on the 1-CLOCC8 paradigm as it
turns out to be amenable to information theoretical charac-
terization. We proceed to formally define a local purity dis-
tillation code. Alice and Bob sharen copies of the staterAB,
embodied in the shared quantum systemAnBn, and Alice also
has access to some quantum systemC of dimensiondC, ini-
tially in a pure stateu0lC. An sn,ed (catalytic) one-way local
purity distillation codeconsists of

sid a unitary operationUA:HAn ^ HC→HAp
^ HX on Al-

ice’s side,
sii d a dephasing channelP :HX→HX from Alice to Bob,
siii d a unitary operationUB:HBn ^ HX→HBp

^ HBg
on

Bob’s side,
such that, for

sApBpBg = sUB + P + UAdssrABd^n
^ u0lk0uCd,

isApBp − u0lk0uAp ^ u0lk0uBpi1 ø e. s4d

The rate of the code is defined byR=s1/ndslog dApBp
−log dCd. Thecatalyst rateis s1/ndlog dC. A rateR is said to
beachievableif for all e, d.0 and sufficiently largen there
exists ansn,ed code with rateR−d. Theone-way local purity
k→srABd is defined as the supremum over all achievable rates
R.

A quantity of particular interest is theclassical deficit

D→
c srABd = k→srABd − ksrAd − ksrBd.

This quantitysor, rather, its bidirectional versiond was intro-
duced inf12g and advertised as a measure of classical corre-
lations in the staterAB.

Example 1. Assume that Alice and Bob are given a bit of
common randomness, which is represented by the state

F̄AB =
1

2
su0lk0uA ^ u0lk0uB + u1lk1uA ^ u1lk1uBd.

Alice sends her system to Bob through the dephasing chan-
nel, which leaves it intact. Bob performs the controlled uni-
tary

UAB = u0lk0uA ^ I + u1lk1uA ^ VB,

whereVu1l= u0l, leaving theB system in the stateu0lB. This
givesk→=D→

c =1.
Our main result is contained in the following theorem.
Theorem 2. The local one-way purity of a staterAB de-

fined on a system of dimensiondA3dB is given by

k→srABd = log dA + log dB − HsAdr − HsBdr + D→srABd,

with

D→srABd = lim
n→`

1

n
D→

s1d
„srABd^n

…

and

D→
s1dsrABd = max

L
IsX;BdsL^ Idsrd. s5d

The maximization is over all rank-1 POVM’sL :HA→HX.
Corollary 1:

D→
c srABd = D→srABd.

The quantityD→
s1dsrABd first appeared inf13g, where it was

proposed, on heuristic grounds, as a measure of classical
correlations in the staterAB. Its “regularized” version
D→srABd f12g was given operational meaning inf10g where
it was shown to be equal to theone-way distillable common
randomnesss1-DCRd of rAB. The 1-DCR is the maximum
conversion rate fromrAB into bits of common randomness,
achievable with 1-LOCC,in excessof the classical commu-
nication invested.

In f10g, the additivity ofD→
s1d was shown for a separable

statesAB and arbitraryrAB,

D→
s1dsrAB

^ sABd = D→
s1dsrABd + D→

s1dssABd. s6d

Therefore, adding local maximally mixed statessAB

=sdAdBd−1IA ^ IB, for which D→
s1dssABd=0 does not affect the

1-DCR or the classical deficit. Moreover, for separable states
rAB the classical deficit is efficiently computable, as

D→srABd = D→
s1dsrABd.

From f10g we know additivity to hold for the case of pure
statesuflAB, and it is easily seen thatf3g
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D→
c sfABd = EsfABd ª HsAdf,

where E is the unique measure of entanglement for pure
states. Additivity also holds for Bell-diagonal statesf14,15g.
The general question of the additivity ofD→

s1d is known to be
equivalent to several other open additivity problems in quan-
tum information theoryf16–18g, including that of the Holevo
capacity of quantum channels.

In proving theorem 2, we shall need two lemmas. The first
is from f19g.

Lemma 2. Consider a classical-quantum systemXnBn in
the statesrXBd^n, whererXB is given by Eq.s1d. For anye,
d.0 and sufficiently largen, there exist

sid a setS in Xn with

PrhXn ¹ Sj ø e, s7d

sii d a bijection f : fmg3 flg→S, where l
ø2nfHsXd−IsX;Bd+dg andmlø2nfHsXd+dg,

siii d a collection of POVM’s sYslddlPflg feach Ysld

=sYm
slddm is a POVMg, such that

Trr fsm,ld
B Ym

sld ù 1 − e, ∀ m,l . s8d

The above lemma says that a highly probable setS of se-
quencesxn can be covered byl disjoint setsSl, l P flg, of
sizem in such a way that, given the indexl, the identity of a
particular sequence inSl may be reliably inferred from a
measurement onBn.

The following technical lemma is a corollary of the mea-
surement compression theoremf20g, and is proved in Appen-
dix B.

Lemma 3. Given the systemAnBn in the statesrABd^n and
a rank-1 POVML :HA→HX, for any e, d.0 and suffi-
ciently largen, there exists

sid a decompositionAn=A1A2 such that

HsA1d ø ne,

sii d a POVM L̃ :HAn→HK which is rank 1 onA2 and

loguKu ø nfHsAd + dg, s9d

IsK;Bndv ù nfIsX;Bdr − eg, s10d

where

rXB = sL ^ IdsrABd, s11d

vKBn
= sL̃ ^ IdsrABd^n. s12d

Proof of theorem 2. First, let us prove the converse. Con-
sider a generalsn,ed purity distillation protocol. We know
that

log dApBp
− log dC = nslog dA + log dBd − log dBg

.

Assume, w.l.o.g.,dù1/en+e logsdAdBd. The entropic quan-
tities below refer to the overall quantum state at a stage of
the protocol which is implicit from the subsystems involved.
For instance, the systemBn exists only beforeUB is applied.

log dBg
ù HsBgd ù HsBpBgd − HsBpd = HsXBnd − HsBpd

ù HsXd + HsBnuXd −
1

e
− ne log dA ù HsAgd

+ HsBnuXd −
1

e
− ne log dA ù nHsAd + HsBnuXd

− nd.

The second inequality is subadditivitysA4d, the third is
Fannes’ inequalitysA3d and s4d, the fourth follows from the
fact that dephasing cannot decrease entropyf21g, and the
fifth follows along the lines of Eq.s3d. Hence,

R=
1

n
slog dApBp

− log dCd ø log dA + log dB − HsAd − HsBd

+
1

n
IsX;Bnd + d.

The idea behind the direct coding theorem is that there are
two potential sources of purity. The first comprises the lo-
cally concentrable purity for the two parties, from Sec. III
and is responsible for theksrAd+ksrBd term. The second
comes from the classical correlations present in the system
and gives rise to theD→srABd term. Roughly speaking, Alice
sends her part of the classical correlations through the
dephasing channel; Bob then takes advantage of the redun-
dancy, as in example 1, to distill purity.

We start by considering a special case. Assume that the
systemA can be divided into subsystemsA=A1A2 such that
HsA1døt and thatL is rank 1 onA2. We show that we can
achieve a rate arbitrarily close to

log dA + log dB − t − HsXdr − HsBdr + IsX;Bdr,

with r given by Eq.s11d. Consider a sufficiently largen and
the induced decompositionAn=A1

nA2
n. The purity distillation

protocol comprises of the following steps.
sid First, Alice applies the protocol from theorem 1 toA1

n,
yielding a subsystemA1p of sizenflog dA1

−t−dg qubits, in a
statee close tou0lA1p.

sii d The measurementL^n may be implemented by bor-
rowing n log dX qubit ancillassin some fixed stateu0lXn

d,
performing some unitary operationU on the systemA2

nXn,
and completely dephasing the systemXn in a fixed basis
huxnlj. Here we let Alice perform this measurement
coherently—i.e., by omitting the dephasing stepsthe channel
P will later do this for usd. SinceL^n is rank 1 onA2

n, this
results in a state of the form

o
xn

ÎpsxnduxnlXn
ucxnlA2

n
ufxnlRn

,

where Rn is the “reference system” that purifies the initial
state ofA2

n. She then performs the controlled unitary

o
xn

uxnlkxnuX
n

^ Vxn
A2

n

,

whereVxnucxnl= u0l, leavingA2
n in the stateu0lA2

n
.
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siii d Were Alice to perform the von Neumann measure-
ment onXn, the resulting state of the systemXnBn would be

srXBd^n = o
xn

psxnduxnlkxnuX
n

^ rxn
Bn

.

Choose the setS, bijection f and collection of POVM’s
sYslddl as in lemma 2. DefineP8=oxnPSuxnlkxnuX

n
^ IBn

. By
s7d and the proof of lemma 1, there is a unitary operation
sacting on Alice’s system onlyd that takessrXBd^n to a state

2e close tou0lk0uX8 ^ u8MLBn
with dX8=smld−1dXn and

u8MLBn
= o

m,l
psm,ldumlkmuM ^ ullkl uL ^ r fsm,ld

Bn
.

Thepsm, ld is some probability distribution associated with a
composite random variableML. Alice performs said unitary.

sivd Alice sends theML system through the dephasing
channel, leavingMLBn in a stateuMLBn

which is 2e close to
u8MLBn

.

svd For eachl one can define a unitaryWl
BnM, a coherent

version of the measurementYsld, which upon measurement
“outcome” m performs the transformationumlM ° u0lM. Ex-

plicitly, Wl
BnM is w.l.o.g. of the formom,m8um8lkmuM ^ Ym8m

Bn
.

ChoosingY0m=sYm
sldd1/2 and the remainingYm8m to satisfy

unitarity leavesWl with the desired property. Defining

sml
BnM = Wl

BnMsr fsm,ld
Bn

^ umlkmuMd,

the measurement success criterions8d of lemma 2 becomes

k0usml
M u0l ù 1 − e.

By sA2d,

Io
m,l

psm,ldsml
M − u0lk0uMI

1

ø 2Îe. s13d

Bob applies the controlled unitary

WLBnM = o
l

ullkl uL ^ Wl
BnM ,

which, by s13d, mapsu8MLBn
to a state whoseM part is 2Îe

close tou0lM. SinceuMLBn
is 2e close tou8MLBn

, upon appli-
cation ofW its M part becomess2e+2Îed close tou0lM, by
the triangle inequalitysA1d.

svid By the gentle operator lemmassee Appendix Ad, per-
forming W perturbs theB system very little, leaving it in a
statese+Î8ed close tosrBd^n. Bob applies the protocol from
theorem 1 toBn, yielding a subsystemBp of size nsdB

−HsBd−dd qubits, in a states2e+Î8ed-close tou0lBp.
In summary, the protocol consumes a catalyst ofn log dX

qubits, while returning a system of size

nflog dA1
− t − dg + n log dA2

+ n log dX − logsmld + log m

+ nfdB − HsBd − dg

qubits, in a state which isf7e+s2+Î8dÎeg close to pure. This
corresponds to a purity distillation rate of at least

log dA + log dB − t − HsXd − HsBd + IsX;Bd − 3d,

while the classical communication rate required was
n−1 logsmldøHsXd+d bits per copy.

To prove the general statement of the theorem we shall
rely on lemma 3 and “double blocking.” Letn8 be suffi-
ciently large for lemma 3 to apply with respect to theoptimal
L achievingD→

s1dsrABd in s5d. We shall apply the special-case

protocol described above to the block systemAn8=A1A2 and

block measurementL̃, obtaining a rate of

log dA + log dB −
1

n8
HsKd − HsBd +

1

n8
IsK;Bnd − 3d − e.

By lemma 3 ands5d, this is bounded from below by

log dA + log dB − HsAd − HsBd + D→
s1dsrABd − 4d − 2e.

The classical communication rate required for this protocol
is HsAd+2d.

Finally, a third layer of blocking allows us to replaceD→
s1d

by D→, and we are done. h
It is not hard to see that the above protocol may be boot-

strapped to make the catalyst rate arbitrarily small. More-
over, if ksrAd.0, a catalyst is not needed at allssee also
f15gd.

V. DISCUSSION

The question of counting local resources in standard
quantum-information-theoretical tasks, such as entanglement
distillation, was recently raised by Bennettf22g. In particular,
it is desirable to extend the theory ofresource inequalities
f2g to include the manipulation of local resources. Recall the
notation fromf10g in which fc→cg, fq→qg and fqqg stand
for a bit of classical communication, a qubit of quantum
communication, and ebit of entanglement, respectively.
There it was implicit that local pure ancillas could be added
for free, which makes a classical channel and a dephasing
quantum channel operationally equivalent. To define a
“closed” version of this formalism, one must identify
fc→cg with a dephasing qubit channel and introduce a new
resource, a local pure qubit stateu0l w.l.o.g. in Bob’s posses-
sion. This resource may be written as eitherfqg or fcg, as
there is little distinction between classical and quantum for
strictly local resources. The main result of our paper may be
written succinctly as

hqqj + HsAdrfc → cg ù k→srABdfqg,

where hqqj represents the noisy static resourcerAB, and
k→srABd is given by theorem 2. Regarding entanglement dis-
tillation, closer inspection of the optimal one-way protocol
from f23g reveals thatsid only a negligible rate of pure state
ancillas need be consumed and,sii d moreover, the locally
concentratable purityksrAd+ksrBd is available without af-
fecting the entanglement distillation rate.

Whether the above holds for general quantum-Shannon-
theoretic problems remains to be investigated.

We conclude with a list of open problems.

DISTILLATION OF LOCAL PURITY FROM QUANTUM STATES PHYSICAL REVIEW A71, 062303s2005d

062303-5



sid It would be interesting to find the optimal trade-off
between the local purity distilled and the one-way classical
communicationsdephasingd invested. In particular, does the
problem reduce to the 1-DCR trade-off curve fromf10g?
Also, one could consider purity distillation assited by quan-
tum communicationf24g.

sii d We have seen that purity distillation and common ran-
domness distillation are intimately related. Is there a non-
trivial trade-off between the two, or is it always optimal to
slinearlyd interpolate between the known purity distillation
and common randomness distillation protocols? One could
also consider the simultaneous distillation of purity and other
resources, such as entanglementsseef12gd.

siii d Clearly, one would like a formula for the two-way
distillable local purity. Solving this problem in the sense of
the present paper appears to be difficult; Ref.f15g gives a
formula involving maximizations over a class of states which
is, alas, rather hard to characterize. A more tractable question
is whether the relationship established between distillable
purity and distillable common randomness carries over to the
two-way scenario.
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APPENDIX A: MISCELLANEOUS INEQUALITIES

For statesr, v, ands, the triangle inequality holds:

ir − vi1 + iv − si1 ù ir − si1. sA1d

The following boundf26g relates trace distance and fidelity:

ir − uflkfui1 ø 2Î1 − kfurufl. sA2d

The gentle operator lemmaf27g says that a POVM element
that succeeds on a state with high probability does not dis-
turb it much.

Lemma 4. For a stater and operator 0øLø I, if
TrsrLdù1−l, then

ir − ÎLrÎLi1 ø Î8l.

The same holds ifr is only a subnormalized density opera-
tor. h

For two statesr andv defined on ad-dimensional Hilbert
space, Fannes’ inequalityf28g reads

uHsrd − Hssdu ø
1

e
+ log dir − vi1. sA3d

An important property of von Neumann entropy issubaddi-
tivity

HsBd ù HsABd − HsAd. sA4d

APPENDIX B: PROOF OF LEMMA 3

By the proof of the measurement compression theorem
f20g, for any e, d.0 and sufficiently largen there is an
ensemble of rank-1 sub-POVM’ssps,L̃

ssd :HAn→HKds and a
classical mapg:HS^ HK→HXn such that

sid okL̃k
ssdøP, where the indexk ranges overf2nfHsAd+dgg,

and P is a projector commuting withsrAd^n such that
Tr Pø2nfHsAd+dg and TrsrAd^nPù1−e,

sii d

isrXBd^n − sXnBn
i1 ø e, sB1d

where

sXnBn
= sg ^ IBn

dVSKBn
,

VSKBn
= o

s

pssduslksuS ^ fsLssd
^ IBn

dsrABd^ng,

for some probability distributionpssd.
Each sub-POVML̃ssd may be augmented by no more than

2nfHsAd+dg rank-1 elements to satisfy equality

o
k

L̃k
ssd = P.

The proof of lemma 1 and Fannes’ inequalitysA3d implies
the existence of a decompositionAn=A1A2 such that

HsA1d ø
1

e
+ ne log dA,

while L̃ssd is now viewed as a rank-1 POVM onA2 such that

sB1d still holds for L̃ssd.
Definee8=3/ne+2e logsdXdBd. Then

nIsX;Bdr ø IsXn;Bnds − ne8 ø IsKS;BndV − ne8 = IsS;BndV

+ IsK;BnuSdV − ne8 = IsK;BnuSdV − ne8.

The first inequality is a triple application of Fannes’ inequal-
ity, and the second is by the data processing inequalityssee,
e.g., f21gd. The last line is by locality: the state ofBn is

independent of which measurementL̃ssd gets applied toAn.
Thus there exists a particulars such thats10d is satisfied for

L̃=L̃ssd. h
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