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Introduction

Helium and heliumlike ions, being the simplest many-
electron systems, traditionally serve as an important testing
ground for investigations of many-body relativistic and QED
effects. Calculations of QED effects in He-like ions have a
long history. The expression for the Lamb shift complete
through ordersasaZd4 anda2saZd3 was derived in pioneer-
ing studies by Arakif1g and Sucherf2g. Numerous subse-
quent investigations of higher-order QED corrections in two-
electron systemsssee, e.g., the reviewf3g and recent original
studiesf4–6gd were primarily aimed at helium, in which the
experimental accuracy is by far better than in other two-
electron systems. Recent progress in experimental spectros-
copy of highly charged ionsf7–9g opened perspectives for
probing higher-order QED effects in ions along the helium
isoelectronic sequence up to He-like uranium. Investigations
of QED effects in high-Z ions are of particular importance
since they can provide tests of quantum electrodynamics in
the region of a very strong Coulomb field of the nucleus.
Another factor that stimulates these investigations is the pos-
sibility to test the standard model by studying the effects of
parity nonconservationsPNCd f10–13g. Experimental identi-
fication of the PNC effects will require precise knowledge of
the 21S0–2 3P0 interval in He-like ions with nuclear charge
numbers nearZ=64 sgadoliniumd and 90sthoriumd, which
happens to be very small for these values ofZ, thus enhanc-
ing the PNC effects significantly.

Investigations of QED effects in heavy He-like ions differ
significantly from those for the helium atom. First of all, the
nuclear coupling parameteraZ approaches unity and cannot
be regarded as a good expansion parameter as in the case of
helium. But on the other side, the electron-electron interac-
tion in these systems is suppressed by a factor of 1/Z with
respect to the electron-nucleus interaction and, therefore, can
be accounted for by a perturbation expansion in the param-
eter 1/Z.

Until recently, the only QED effects calculated to all or-
ders in aZ were the one-electron self-energy and vacuum-
polarization correctionsf14,15g. So theoretical investigations
of energy levels in heavy He-like ions mostly relied on these
one-electron valuesf16g. For medium-Z ions, hydrogenic

QED effects were corrected for the “screening” by various
semiempirical rules, notably, within Welton’s approximation,
as in Ref.f17g. A more elaborate treatment of QED effects in
He-like ions was presented by Drakef18g. His values for the
QED correction included the complete contribution to order
a2saZd3 derived in Refs.f1,2g and parts of higher-order con-
tributions obtained by employing the all-order results avail-
able for the one-electron QED corrections. The total energy
values of Ref.f18g are complete through ordera2saZd3 and
uncalculated terms start at ordersa2saZd4 anda3saZd2.

Later, Johnson and Sapirsteinf19g applied relativistic
many-body perturbation theorysMBPTd to the treatment of
the electron correlation forn=2 triplet states of He-like ions.
Combined with Drake’s values for the QED and recoil cor-
rections, their results yielded a better agreement with the
experimental data than those of Ref.f18g. While the ap-
proach of Ref.f19g is still incomplete to ordera2saZd4, it
includes terms that were not accounted for in Ref.f18g,
namely, the Breit-Breit interaction and some relativistic cor-
rections to the second-order energy. Later, other evaluations
of the electron-correlation part of the energies of He-like
ions were performed by the relativistic configuration-
interaction sCId method f20g, by the relativistic all-order
MBPT approachf21g, and by the multiconfigurational Dirac-
Fock methodf22g. The studiesf19–21g share the same main
features: their treatment is based on the no-pair Hamiltonian
and the electron correlation is taken into account within the
Breit approximation. The results of these evaluations are in a
very good agreement with each other.

A somewhat different approach was employed in Refs.
f23,24g. While the electron-correlation part was evaluatedsas
in the previous work by the same groupf20gd by the CI
method, the QED part was not taken from Ref.f18g but
evaluated independently, by considering the one-loop QED
corrections in a local screening potential. Due to different
treatments of QED effects, there are certain deviations be-
tween the results of Refs.f23,24g and those of Refs.f19–21g.

In order to obtain reliable predictions for energy levels of
high-Z ions and to improve the theoretical accuracy in the
low- and middle-Z region, it is necessary to take into account
two-electron QED effects without an expansion inaZ. Such
a project has been recently accomplishedsup to ordera2d for
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the two-electron part of the ground-state energy of He-like
ions f25–29g and for the lowest-lying states of Li-like ions
f30–33g. To perform similar QED calculations for excited
states of He-like ions is more difficult. One of the reasons is
that we encounter levels that are quasidegenerate, namely,
2 3P1 and 21P1. To derive formal expressions for QED cor-
rections in case of quasidegenerate states is a serious prob-
lem that was solved first within the two-time Green’s func-
tion sTTGFd methodf34–36g. Different approaches to this
problem have recently been addressed by other authors
f37,38g.

Several QED corrections have been calculated to all or-
ders inaZ for excited states of He-like ions up to now. In our
previous investigationf39g, we evaluated the vacuum-
polarization screening correction for alln=2 states of He-
like ions. The two-photon exchange correction was calcu-
lated for excited states of He-like ions by Mohr and
Sapirsteinf40g s2 3S1 and 23P0,2 statesd, by Andreevet al.
f41,42g s2 1S0,1,2

3P0d andf38g s2 1,3P1d, and by Åsenet al.
f43g s2 1S0,1d. The self-energy screened by a spherically sym-
metric part of the electron-electron interaction was calculated
by Indelicato and Mohrf44g. In this paper we present a rig-
orous evaluation of the self-energy screening correction and
an independent calculation of the two-photon exchange cor-
rection for alln=2 states of He-like ions. This completes the
ab initio treatment of alltwo-electronQED corrections of
order a2 to all orders inaZ and significantly improves the
theoretical accuracy for the energy values, especially in the
high-Z region. Unlike previous calculations, the results ob-
tained are complete through ordera2saZd4; uncalculated
terms enter through three-photon QED effectsfto order
a3saZd2 and higherg and through two-loop one-electron QED
correctionsfa2saZd7 and higherg.

The paper is organized as follows. In the next section we
describe the basic formalism and present general formulas
for the two-electron QED corrections for the case of quaside-
generate levels. In Sec. II, the numerical procedure is briefly
discussed and numerical results are presented for the two-
photon exchange correction and the screened self-energy cor-
rection. The total two-electron QED correction is then com-
piled, analyzed, and compared with the known terms of the
aZ expansion. In the last section, we present a compilation
of all contributions available to the energy levels and com-
pare results of different theoretical evaluations with existing
experimental data. Relativistic unitss"=c=m=1d are used
throughout the paper.

I. FORMAL EXPRESSIONS

A. Basic formalism

In this section we briefly formulate the basic equations of
the TTGF method for quasidegenerate states of a He-like ion.

A detailed description of the method and, particularly, its
implementation for the case of quasidegenerate states can be
found in Refs.f35,36,45g. The derivation will be given for
two particular quasidegenerate statess1s2p1/2d1 and
s1s2p3/2d1 and can immediately be extended to a more gen-
eral case. The unperturbed two-electron wave functions in
the j j coupling are given by

u1 = o
mamv

k jamajvmvuJMl
1
Î2

o
P

s− 1dPuPaPvl, s1d

u2 = o
mamw

k jamajwmwuJMl
1
Î2

o
P

s− 1dPuPaPwl, s2d

wherea,v, andw are taken to represent 1s,2p1/2, and 2p3/2
orbitals, respectively;P is the permutation operator

o
P

s− 1dPuPaPvl = uavl − uval,

and uavl;ualuvl is the product of the one-electron Dirac
wave functions. The transition to the wave functions corre-
sponding to theLS-coupling scheme within the nonrelativis-
tic approximation can be performed by

Su2 3P1l
u2 1P1l

D = RSus1s2p1/2d1l
us1s2p3/2d1l

D , s3d

with

R=
1
Î3
SÎ2 − 1

1 Î2
D . s4d

We mention that this choice of the matrixR implies that the
one-electron 2p1/2 and 2p3/2 wave functions have the same
sign in the nonrelativistic limit.

In order to introduce the two-time Green’s function which
is needed to formulate the method, it is convenient to start
with the standard definition of the four-time two-electron
Green’s function in the external field of the nucleus

Gsx18,x28;x1,x2d = k0uTcsx18dcsx28dc̄sx1dc̄sx2du0l, s5d

where csxd is the electron-positron field operator in the

Heisenberg representation,c̄=c†g0, andT denotes the time-
ordered product operator. This Green’s function is con-
structed by perturbation theory after the transition to the in-
teraction representation where it is given byssee, e.g.,f46gd

Gsx18,x28;x1,x2d =

k0uTcinsx18dcinsx28dc̄insx2dc̄insx1dexpf− i E d4zHintszdgu0l

k0uT expf− i E d4zHintszdgu0l
. s6d
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Here cinsxd is the electron-positron field operator in the in-
teraction representation andHint is the interaction Hamil-
tonian. Expressions6d allows one to constructG by using
Wick’s theorem.

The corresponding Green’s function in the mixed energy-
coordinate representation is defined by

Gsp81
0,x81,p82

0,x82;p1
0,x1,p2

0,x2d

=
1

s2pd4E
−`

`

dx1
0dx2

0dx81
0dx82

0

3expsip81
0x81

0 + ip82
0x82

0 − ip1
0x1

0 − ip2
0x2

0dGsx18,x28;x1,x2d.

s7d

The Feynman rules forGsp81
0,x81,p82

0,x82;p1
0,x1,p2

0,x2d can
be found inf36,45g. We now introduce the Green’s function
gsEd as

gsEddsE − E8d =
p

i
E

−`

`

dp1
0dp2

0dp81
0dp82

0dsE − p1
0 − p2

0d

3 dsE8 − p81
0 − p82

0dP0Gsp81
0,p82

0;p1
0,p2

0dg1
0g2

0P0, s8d

where P0=okukuk
† is the projector on the subspace of the

unperturbed quasidegenerate states under considerationfsee
Eqs. s1d and s2dg. It can easily be shownssee, e.g., Refs.
f36,45gd that the Green’s functiong is the Fourier transform
of the two-time Green’s function projected on the subspace
of the unperturbed quasidegenerate states.

It can be derivedssee Ref.f36g for detailsd that the system
under consideration can be described by a two-dimensional
Schrödinger-like equationsk=1,2d,

Hck = Ekck, ck
†ck8 = dkk8, s9d

where

H = P−1/2KP−1/2, s10d

K =
1

2pi
R

G

dE E gsEd, s11d

P =
1

2pi
R

G

dE gsEd. s12d

G is a contour in the complexE plane that surrounds the
levels under consideration but does not encircle other levels,
and Ek are the exact energies of the states under consider-
ation. It is assumed that the contourG is oriented counter-
clockwise. The operatorH, which is a 232 matrix, is con-
structed by perturbation theory ina. Substituting

gsEd = gs0dsEd + gs1dsEd + gs2dsEd + ¯ , s13d

P = Ps0d + Ps1d + Ps2d + ¯ , s14d

K = Ks0d + Ks1d + Ks2d + ¯ , s15d

where the superscript indicates the order ina, we obtainf35g

Hs0d = Ks0d, s16d

Hs1d = Ks1d −
1

2
Ps1dKs0d −

1

2
Ks0dPs1d, s17d

Hs2d = Ks2d −
1

2
Ps2dKs0d −

1

2
Ks0dPs2d −

1

2
Ps1dKs1d −

1

2
Ks1dPs1d

+
3

8
Ps1dPs1dKs0d +

3

8
Ks0dPs1dPs1d +

1

4
Ps1dKs0dPs1d. s18d

The solvability of Eq.s9d yields the basic equation for the
calculation of the energy levels

detsE − Hd = 0. s19d

As was noticed in Ref.f35g, due to nonzero decay rates of
excited states, the self-adjoint part ofH should be understood
in Eqs.s9d and s19d,

H ; s1/2dsH + H†d. s20d

To zeroth order ina, the Green’s functiongsEd is

gs0dsEd = o
s=1

2 uuslkusu
E − Es

s0d , s21d

where E1
s0d and E2

s0d are the unperturbed energies of the
s1s2p1/2d1 and s1s2p3/2d1 states, respectively, given by the
sum of the one-electron Dirac-Coulomb energies:

E1
s0d = «1s + «2p1/2

, E2
s0d = «1s + «2p3/2

.

Substituting Eq.s21d into the definitions ofK ,P, andH, one
gets

Kik
s0d = Ei

s0ddik, s22d

Pik
s0d = dik, s23d

Hik
s0d = Ei

s0ddik. s24d

Now we introduce a set of notations that will shorten the
following expressions. The shorthand notation will be used
for the summation over the Clebsch-Gordan coefficients in
Eqs.s1d and s2d:

Fiui1i2l ; o
mi1

mi2

k j i1mi1
j i2mi2

uJMlui1i2l, s25d

whereui1i2l is eitheruavl or uawl. It is convenient also to use
the notation for the operator of the electron-electron interac-
tion:

Isvd = e2a1
ma2

nDmnsvd, s26d

wheream=g0gm=s1,ad andDmn denotes the photon propa-
gator. In the Feynman gauge, the propagator of a photon with
the nonzero massm is

Dmnsv,x − yd = gmn

expsiÎv2 − m2 + i0ux − yud
4pux − yu

, s27d

where it is assumed that ImÎv2−m2+ i0.0. For the matrix
elements of the operatorIsvd we will use the shorthand no-
tation
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I ijklsvd = ki j uIsvdukll. s28d

B. One-photon exchange diagram

In order to illustrate how the method works, below we
present the detailed derivation of the correction to the
quasidegenerate energy levelss1s2p1/2d1 and s1s2p3/2d1 due
to the one-photon exchange diagramsFig. 1d. While the cor-
responding evaluation is much less cumbersome than those
for the second-order two-electron corrections, it demon-
strates most essential features that are encountered in these
cases. For simplicity, in the derivation below we will assume
that the unperturbed energy of the initial statei differs from
that of the final statek: Ei

s0dÞEk
s0d sin the case under consid-

eration it corresponds toi Þkd. However, all the final formu-

las can be shown to be valid also for the caseEi
s0d=Ek

s0d.
According to the Feynman rulesf36,45g and the definition

of gsEd, the contribution of the one-photon exchange dia-
gram is

gik
s1dsEd = FiFkS i

2p
D2E

−`

`

dp1
0dp81

0

3o
P

s− 1dP 1

sp81
0 − «Pi1

+ i0dsE − p81
0 − «Pi2

+ i0d

3
IPi1Pi2k1k2

sp81
0 − p1

0d

sp1
0 − «k1

+ i0dsE − p1
0 − «k2

+ i0d
. s29d

Employing the identities

1

sp81
0 − «Pi1

+ i0dsE − p81
0 − «Pi2

+ i0d

=
1

E − Ei
s0dS 1

p81
0 − «Pi1

+ i0
+

1

E − p81
0 − «Pi2

+ i0D ,

s30d

1

sp1
0 − «k1

+ i0dsE − p1
0 − «k2

+ i0d
=

1

E − Ek
s0dS 1

p1
0 − «k1

+ i0

+
1

E − p1
0 − «k2

+ i0D , s31d

we obtain

Kik
s1d = FiFk

1

2pi
R

G

dE
E

sE − Ei
s0ddsE − Ek

s0ddFS i

2p
D2E

−`

`

dp1
0dp81

0o
P

s− 1dPS 1

p81
0 − «Pi1

+ i0
+

1

E − p81
0 − «Pi2

+ i0D
3S 1

p1
0 − «k1

+ i0
+

1

E − p1
0 − «k2

+ i0DIPi1Pi2k1k2
sp81

0 − p1
0dG . s32d

The expression in the square brackets is an analytical func-
tion of E inside the contourG, if the photon massm is chosen
properly ssee Refs.f35,45gd. Carrying out theE integration
by Cauchy’s theorem and taking into account that

S i

2p
DS 1

x + i0
+

1

− x + i0
D = dsxd, s33d

we obtain

Kik
s1d = FiFkH i

2p
E

−`

`

dp1
0o

P

s− 1dP
Ei

s0dIPi1Pi2k1k2
s«Pi1

− p1
0d

Ei
s0d − Ek

s0d S 1

p1
0 − «k1

+ i0
+

1

Ei
s0d − p1

0 − «k2
+ i0D +

i

2p

3E
−`

`

dp81
0o

P

s− 1dP
Ek

s0dIPi1Pi2k1k2
sp81

0 − «k1
d

Ek
s0d − Ei

s0d S 1

p81
0 − «Pi1

+ i0
+

1

Ek
s0d − p81

0 − «Pi2
+ i0DJ . s34d

In the same way we find

FIG. 1. The diagram of the one-photon exchange.
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Pik
s1d = FiFkH i

2p
E

−`

`

dp1
0o

P

s− 1dP
IPi1Pi2k1k2

s«Pi1
− p1

0d

Ei
s0d − Ek

s0d S 1

p1
0 − «k1

+ i0
+

1

Ei
s0d − p1

0 − «k2
+ i0D +

i

2p

3E
−`

`

dp81
0o

P

s− 1dP
IPi1Pi2k1k2

sp81
0 − «k1

d

Ek
s0d − Ei

s0d S 1

p81
0 − «Pi1

+ i0
+

1

Ek
s0d − p81

0 − «Pi2
+ i0DJ . s35d

Substituting Eqs.s34d and s35d into Eq. s17d, we get

Hik
s1d = FiFkH i

4p
E

−`

`

dp1
0o

P

s− 1dPIPi1Pi2k1k2
s«Pi1

− p1
0dS 1

p1
0 − «k1

+ i0
+

1

Ei
s0d − p1

0 − «k2
+ i0D +

i

4p

3E
−`

`

dp81
0o

P

s− 1dPIPi1Pi2k1k2
sp81

0 − «k1
dS 1

p81
0 − «Pi1

+ i0
+

1

Ek
s0d − p81

0 − «Pi2
+ i0DJ . s36d

Introducing the notationsD1=«Pi1
−«k1

andD2=«Pi2
−«k2

, we can rewrite Eq.s36d as follows:

Hik
s1d = FiFk

i

8p
E

−`

`

dvo
P

s− 1dPIPi1Pi2k1k2
svdS 1

v + D1 + i0
+

1

D2 − v + i0
+

1

v + D2 + i0
+

1

D1 − v + i0
+

1

v − D1 + i0

+
1

− D2 − v + i0
+

1

v − D2 + i0
+

1

− D1 − v + i0
D = FiFk

1

4
E

−`

`

dvo
P

s− 1dPIPi1Pi2k1k2
svdfdsv + D1d + dsv − D1d

+ dsv + D2d + dsv − D2dg. s37d

Taking into account thatIszd= Is−zd, we finally obtainf35,47g

Hik
s1d = FiFk

1

2o
P

s− 1dPfIPi1Pi2k1k2
sD1d + IPi1Pi2k1k2

sD2dg.

s38d

C. Two-photon exchange diagrams

The set of two-photon exchange diagrams is shown in
Fig. 2. The first and the second graph are referred to as the
ladder and the crossed diagram, respectively. The derivation
of the general expressions for the two-photon exchange cor-
rection in the case of quasidegenerate levels is rather lengthy.
However, it greatly resembles the corresponding derivation
for the one-photon exchange correction presented above, on
one hand, and that for the two-photon exchange diagram in
case of a single level described in detail in Ref.f48g, on the
other hand. We thus present only the final formulas for the
two-photon exchange contributions to the matrix elements of
the operatorHs2d.

1. The ladder diagram

The contribution of the two-photon ladder diagram is con-
veniently divided into theirreducibleand thereducibleparts.
The reducible contribution is defined as the part in which the

total intermediate energy of the atom equalsE1
s0d or E2

s0d and
the irreducible part is the remainder. The operatorHs2d is
defined by Eq.s18d. The first three terms in the right-hand
side of this equation contribute both to the irreducible and to
the reducible parts. As to the others, it is natural to ascribe
them to the reducible part.

The contribution of the irreducible part ofHik
s2d is defined

as the self-adjoint part of the following matrix:

Hik
lad,ir = fKs2,ird − s1/2dPs2,irdKs0d − s1/2dKs0dPs2,irdgik.

s39d

The result is

Hik
lad,ir = FiFkH1

4
fSiksEi

s0d,0,0d + SiksEi
s0d,0,Dd + SiksEk

s0d,0,0d

+ SiksEk
s0d,− D,0dg +

i

4p
PE

−`

`

dx
1

x
fSiksEi

s0d,0,xd

− SiksEi
s0d,0,x + Dd + SiksEk

s0d,x,0d

− SiksEk
s0d,x − D,0dgJ , s40d

whereD=Ei
s0d−Ek

s0d and the matrix elementsSik are defined
by
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SiksE,x,yd = o
P

s− 1dP i

2p
E

−`

`

dv o
n1n2

En
s0dÞE1

s0d,E2
s0d

IPi1Pi2n1n2
s«Pi1

− v + xdIn1n2k1k2
s«k1

− v + yd

fv − «n1
s1 − i0dgfE − v − «n2

s1 − i0dg
. s41d

The summation here runs over alln1 and n2 for which En
s0d

ÞE1
s0d ,E2

s0d, whereEn
s0d;«n1

+«n2
is the total intermediate en-

ergy of the atom. P in front of the integral in Eq.s40d denotes
that the principal value of the integralsoverxd must be taken.

We note that the part containing the integral overx in Eq.
s40d vanishes identically in case of diagonal matrix elements
si =kd. It also vanishes for single levelsf48g. In case of off-
diagonal matrix elementssi Þkd, the contribution of this part
is of order a2D and it vanishes whensEi

s0d−Ek
s0dd→0. As

shown in Ref.f36g, such terms contribute to the next order of
perturbation theory and can, therefore, be disregarded in the
present consideration. Expressions40d can be simplified
even further by taking into account that

Ei
s0d = Ēs0d + OsDd, Ek

s0d = Ēs0d + OsDd, s42d

whereĒs0d=sEi
s0d+Ek

s0dd /2. We thus writeHik
lad,ir simply as

Hik
lad,ir = FiFkSiksĒs0d,0,0d + Osa2Dd = FiFko

P

s− 1dP i

2p
E

−`

`

dv o
n1n2

En
s0dÞE1

s0d,E2
s0d

IPi1Pi2n1n2
s«Pi1

− vdIn1n2k1k2
s«k1

− vd

fv − «n1
s1 − i0dgfĒs0d − v − «n2

s1 − i0dg
+ Osa2Dd.

s43d

The reducible contribution is induced by the self-adjoint
part of the following operator

Hlad,red= Hlad,red,a + Hlad,red,b, s44d

where

Hlad,red,a = Ks2,redd −
1

2
Ps2,reddKs0d −

1

2
Ks0dPs2,redd s45d

and

Hlad,red,b = −
1

2
Ps1dKs1d −

1

2
Ks1dPs1d +

3

8
Ps1dPs1dKs0d

+
3

8
Ks0dPs1dPs1d +

1

4
Ps1dKs0dPs1d. s46d

The result for the first part reads

Hik
lad,red,a = FiFkH−

1

2
fAiks0d + AiksDd + Biks0d + Biks− Dd

+ Cikg −
1

4
fDiksEi

s0d,0,0d + DiksEi
s0d,0,Dd

+ DiksEk
s0d,0,0d + DiksEk

s0d,− D,0dg

−
i

4p
PE

−`

`

dx
1

x
fDiksEi

s0d,0,xd − DiksEi
s0d,0,x + Dd

+ DiksEk
s0d,x,0d − DiksEk

s0d,x − D,0dgJ , s47d

where

Aiksxd = o
P

s− 1dP i

2p
o
n1n2

En
s0d=E1

s0d,E2
s0d

E
−`

`

dv

3
IPi1Pi2n1n2

sv − «n1
dIn1n2k1k2

s«k1
− «n1

d

sv − «Pi1
+ Ei

s0d − En
s0d − i0dsv − «Pi1

+ x − i0d
,

s48d

Biksxd = o
P

s− 1dP i

2p
o
n1n2

En
s0d=E1

s0d,E2
s0d

E
−`

`

dv

3
IPi1Pi2n1n2

s«Pi1
− «n1

dIn1n2k1k2
sv − «n1

d

sv − «k1
+ Ek

s0d − En
s0d − i0dsv − «k1

+ x − i0d
,

s49d

FIG. 2. The diagrams of the two-photon exchange.
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Cik = o
P

s− 1dP o
n1n2

En
s0d=E1

s0d,E2
s0d

sEi
s0d + Ek

s0d − 2En
s0dd

i

2p
E

−`

`

dv8

3
IPi1Pi2n1n2

sv8 − «n1
d

sv8 − «Pi1
− i0dsv8 − «Pi1

+ Ei
s0d − En

s0d − i0d
i

2p

3E
−`

`

dv
In1n2k1k2

sv − «n1
d

sv − «k1
− i0dsv − «k1

+ Ek
s0d − En

s0d − i0d
,

s50d

DiksE,x,yd = o
P

s− 1dP i

2p
o
n1n2

En
s0d=E1

s0d,E2
s0d

E
−`

`

dv

3
IPi1Pi2n1n2

s«Pi1
− v + xdIn1n2k1k2

s«k1
− v + yd

sv − «n1
− i0dsv + «n2

− E − i0d
.

s51d

The part containing the integral overx in Eq. s47d represents
a contribution of ordera2D. Again, we regard this contribu-
tion as belonging to the next order of perturbation theory and
disregard it in the present investigation.

The second part of the reducible contribution is given by
the matrix element of the operators46d. The result is ob-
tained by taking into account that

Kik
s0d = Ei

s0ddik, Pik
s0d = dik, s52d

Kik
s1d = FiFko

P

s− 1dPH1

2
fIPi1Pi2k1k2

sD1d + IPi1Pi2k1k2
sD2dg

−
sEi

s0d + Ek
s0dd

2

i

2p
E

−`

`

dv IPi1Pi2k1k2
svd

3 F 1

sv + D1 − i0dsv − D2 − i0d

+
1

sv + D2 − i0dsv − D1 − i0dGJ , s53d

and

Pik
s1d = − FiFko

P

s− 1dP i

2p
E

−`

`

dv IPi1Pi2k1k2
svd

3 F 1

sv + D1 − i0dsv − D2 − i0d

+
1

sv + D2 − i0dsv − D1 − i0dG . s54d

The total result for the reducible part can be simplified by
using Eq.s42d and disregarding terms that contribute to the
next order of perturbation theory. One can show that in this
case theA’s,B’s, andC’s in Eq. s47d are canceled com-
pletely by theHlad,red,b term. The result is just

Hik
lad,red= − FiFkDiksĒs0d,0,0d + Osa2Dd

= − FiFko
P

s− 1dP o
n1n2

En
s0d=E1

s0d,E2
s0d

i

2p

3E
−`

`

dv
IPi1Pi2n1n2

s«Pi1
− vdIn1n2k1k2

s«k1
− vd

sv − «n1
− i0dsv + «n2

− Ēs0d − i0d

+ Osa2Dd. s55d

2. The crossed diagram

The contribution of the crossed diagram is induced by the
self-adjoint part of the operator

Hcr = Ks2d − s1/2dPs2dKs0d − s1/2dKs0dPs2d. s56d

The corresponding result reads

Hik
cr = FiFkH1

4
fTiksEi

s0d,0,0d + TiksEi
s0d,0,Dd + TiksEk

s0d,0,0d

+ TiksEk
s0d,− D,0dg +

i

4p
PE

−`

`

dx
1

x
fTiksEi

s0d,0,xd

− TiksEi
s0d,0,x + Dd + TiksEk

s0d,x,0d

− TiksEk
s0d,x − D,0dgJ , s57d

where

TiksE,x,yd = o
P

s− 1dPo
n1n2

i

2p
E

−`

`

dv
IPi1n2n1k2

s«Pi1
− v + xdIn1Pi2k1n2

s«k1
− v + yd

fv − «n1
s1 − i0dgfE − «Pi1

− «k1
− x − y + v − «n2

s1 − i0dg
. s58d

The expressions57d can be simplified in the same way as the previous contributions, with the result

FIG. 3. Self-energy screening and vacuum-polarization screen-
ing diagrams.
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Hik
cr = FiFkTiksĒs0d,0,0d + Osa2Dd = FiFko

P

s− 1dPo
n1n2

i

2p
E

−`

`

dv
IPi1n2n1k2

s«Pi1
− vdIn1Pi2k1n2

s«k1
− vd

fv − «n1
s1 − i0dgfĒs0d − «Pi1

− «k1
+ v − «n2

s1 − i0dg
+ Osa2Dd.

s59d

D. Screened self-energy correction

The set of Feynman diagrams representing the screened self-energy correction is shown in Fig. 3. Formal expressions for
this correction in the case of quasidegenerate states were obtained previously in Ref.f49g by the TTGF method. Here we
present only the final expressions for this correction.

The contribution of the vertex diagrams is given by

Hik
ver = FiFko

P

s− 1dP i

2p
E

−`

`

dv o
n1n2

H In1Pi2n2k2
sD1dIPi1n2n1k1

svd

f«Pi1
− v − «n1

s1 − i0dgf«k1
− v − «n2

s1 − i0dg

+
IPi1n1k1n2

sD2dIPi2n2n1k2
svd

f«Pi2
− v − «n1

s1 − i0dgf«k2
− v − «n2

s1 − i0dgJ + Osa2Dd, s60d

whereD1=«Pi1
−«k1

andD2=«Pi2
−«k2

.
The contribution of the remaining diagrams is conve-

niently separated into the irreducible and reducible parts. The
irreducible contribution is given by

Hik
se,ir= FiFko

P

s− 1dPH o
nÞk1

IPi1Pi2nk2
sD1d

«k1
− «n

knuSs«k1
duk1l

+ o
nÞk2

IPi1Pi2k1nsD2d

«k2
− «n

knuSs«k2
duk2l

+ o
nÞPi1

kPi1uSs«Pi1
dunl

InPi2k1k2
sD1d

«Pi1
− «n

+ o
nÞPi2

kPi2uSs«Pi2
dunl

IPi1nk1k2
sD2d

«Pi2
− «n

J + Osa2Dd,

s61d

whereSs«d is the self-energy operator defined by its matrix
elements,

kauSs«dubl =
i

2p
E

−`

`

dvo
n

kanuIsvdunbl
« − v − «ns1 − i0d

. s62d

The result for the reducible contribution reads

Hik
se,red= FiFk

1

2o
P

s− 1dPhIPi1Pi2k1k2
sD1dfkPi1uS8s«Pi1

duPi1l

+ kk1uS8s«k1
duk1lg + IPi1Pi2k1k2

sD2dfkPi2uS8s«Pi2
duPi2l

+ kk2uS8s«k2
duk2lg + I8Pi1Pi2k1k2

sD1dfkPi1uSs«Pi1
duPi1l

− kk1uSs«k1
duk1lg + I8Pi1Pi2k1k2

sD2dfkPi2uSs«Pi2
duPi2l

− kk2uSs«k2
duk2lgj + Osa2Dd, s63d

whereI8svd;]Isvd /]v andS8svd;]Ssvd /]v.

E. Screened vacuum-polarization correction

The derivation of formal expressions for the screened
vacuum-polarization correction in case of quasidegenerate
states was described in our previous workf39g. For com-
pleteness, we present here the final expressions for this cor-
rection; the corresponding set of Feynman diagrams is
shown in Fig. 3.

The expression for the contribution of the diagram with
the vacuum-polarization loop inserted into the photon propa-
gator can be obtained from the formula for the one-photon
exchanges38d by replacing the operator of the electron-
electron interactionIs«d by the modified interaction

UVP
ph s«,x,yd =

a2

2pi
E

−`

`

dvE dz1dz2
amexpsi u«uux − z1ud

ux − z1u

3
anexpsi u«uuy − z2ud

uy − z2u
TrfamGsv − «/2,z1,z2d

3anGsv + «/2,z2,z1dg, s64d

whereGsv ,x ,yd=oncnsxdcn
†syd / fv−«ns1−i0dg is the Dirac-

Coulomb Green’s function. The corresponding contribution
to Hik

s2d is

Hik
VP,ph= FiFk

1

2o
P

s− 1dPfkPi1Pi2uUVP
ph sD1duk1k2l

+ kPi1Pi2uUVP
ph sD2duk1k2lg, s65d

whereD1=«Pi1
−«k1

andD2=«Pi2
−«k2

.
To the order under consideration, expressions for the re-

maining diagrams can be obtained from the one-photon ex-
change correction by perturbing the wave functions and the
binding energies by an additional vacuum-polarization inter-
action. The result is
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Hik
VP,WF+ Hik

VP,BE= FiFk
1

2o
P

s− 1dPhkdPi1Pi2ufIsD1d + IsD2dguk1k2l + kPi1dPi2ufIsD1d + IsD2dguk1k2l + kPi1Pi2ufIsD1d

+ IsD2dgudk1k2l + kPi1Pi2ufIsD1d + IsD2dguk1dk2l + sd«Pi1
− d«k1

dkPi1Pi2uI8sD1duk1k2l + sd«Pi2
− d«k2

d

3kPi1Pi2uI8sD2duk1k2lj, s66d

where di and dk refer to the first-order corrections to the
corresponding wave function,

udil = o
n

«nÞ«i unlknuUVPuil
«i − «n

, s67d

d«i is the correction to the energy,d«i =ki uUVPuil, and

UVPsxd =
a

2pi
E

−`

`

dvE dy
1

ux − yu
TrfGsv,y,ydg s68d

is the vacuum-polarization potential.
As discussed previously in Ref.f36g, a direct derivation

based on the TTGF method yields a result that differs from
Eq. s66d by terms of ordersa2Dd, which can be disregarded
as long as we are not interested in higher orders of perturba-
tion theoryssee Ref.f36g for a detailed discussiond.

II. NUMERICAL EVALUATION AND RESULTS

An important difference of the present investigation from
the previous studies of QED effects in high-Z ions is that it
involves QED corrections forquasidegenerateconfigura-
tions, namely,s1s2p1/2d1 ands1s2p3/2d1. While the derivation
of basic expressions in this case is more difficult than for a
single state, the final expressions for the diagonal matrix el-
ements turn out to be very similar to those for the single-
level case. We can, therefore, adopt a code developed for
single-level calculations for the diagonal matrix elements of
the operatorH. For an evaluation of the off-diagonal matrix
elements, a generalization of the code is needed.

The numerical procedure employed in the present calcu-
lation of the two-photon exchange correction is based on that
presented in detail in our previous investigations for Li-like
ions f32,50g. Apart from the angular reduction that is per-
formed by using the standard angular-momentum technique,
the evaluation is rather similar to that for Li-like ions. The
calculation was carried out employing the Fermi model for
the nuclear-charge distribution, with the nuclear charge radii
specified in Ref.f32g. The numerical uncertainty of the re-
sults is expected to be 1310−4 eV in all cases except for the
off-diagonal matrix element, for which the uncertainty is
1310−4 eV for Zø50, 2310−4 eV for Zø80, and
4310−4 eV otherwise. As a check of the numerical proce-
dure, we performed the evaluation in two different gauges,
the Feynman and the Coulomb ones. The two-photon ex-
change correctionssfor mixing configurations, individual

matrix elementsd were found to be gauge invariant well
within the uncertainty specified.

The results of our numerical calculation of the two-photon
exchange correction forn=1 and 2 states of He-like ions are
presented in Table I. The values listed represent corrections
to the energy in the case of single levels and contributions to
the matrix elementsHik for the quasidegenerate states. The
energy levels for thes1s2p1/2d1 and s1s2p3/2d1 states are ob-
tained by diagonalizing the 232 matrix H containing all
relevant corrections. In Table I, we present also a comparison
of our numerical values with the results of the previous cal-
culations of this correction for various states of He-like ions
f25,38,40–43g. The comparison indicates that calculations by
different groups are generally in agreement with each other.
However, there exist also certain deviations between differ-
ent calculations, notably with those by Andreevet al.
f41,42g. Regarding the comparison of the present results and
the ones of Ref.f38g for the mixing states, we would like to
stress that, generally speaking, results of different methods
for individual matrix elements could be different, since the
matrix H can differ by a unitary transformation. We observe,
however, that in our case the results for the individual matrix
elements agree with those of Ref.f38g approximately at the
same level as for the single states.

The calculation of the screened self-energy correction for
n=2 states of He-like ions resembles that for Li-like ions
described in our previous workf31g. A more difficult angular
structure of the initial-state wave functions for He-like ions
makes final expressions more lengthy and their numerical
evaluation more time consuming. Significant complications
appear in performing angular integrations in momentum
space for the vertex part with free-electron propagators. To
handle them, we developed a generalization of the angular-
integration procedure described in Ref.f31g to arbitrary
states, using our experience in calculating similar angular
integrals for the two-loop self-energy diagramsf51g. The ac-
tual calculation was carried out employing the spherical-shell
model for the nuclear-charge distribution. Our numerical re-
sults for the screened self-energy correction forn=1 and 2
states of He-like ions are presented in Table II in terms of the
dimensionless functionFsaZd defined as

DE = a2saZd3FsaZd. s69d

The values listed in the table represent corrections to the
energy in case of single levels and contributions to the matrix
elementsHik for the quasidegenerate states.
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TABLE I. The two-photon exchange correction forn=1 and 2 states of He-like ions, in eV. For mixing
configurations,s1s2p1/2d1 and s1s2p3/2d1 stand for the diagonal matrix elements of the operatorH fsee Eqs.
s9d and s10dg, whereas “off-diag.” labels the off-diagonal matrix elements.

Z s1s1sd0 s1s2sd0 s1s2sd1 s1s2p1/2d0 s1s2p1/2d1 s1s2p3/2d1 s1s2p3/2d2 off-diag.

12 −4.4186 −3.1741 −1.2991 −2.0506 −2.7789 −3.5332 −1.9964 −1.0711

14 −4.4645 −3.1952 −1.3024 −2.0741 −2.7899 −3.5413 −2.0000 −1.0686

−3.19541b −1.30240b

16 −4.5173 −3.2196 −1.3062 −2.1015 −2.8027 −3.5507 −2.0041 −1.0658

18 −4.5770 −3.2473 −1.3106 −2.1328 −2.8173 −3.5613 −2.0088 −1.0626

−3.24753b −1.31057b −2.8168e −3.5603e −1.0618e

20 −4.6435 −3.2784 −1.3154 −2.1682 −2.8337 −3.5733 −2.0141 −1.0589

−4.6447a

28 −4.9784 −3.4378 −1.3405 −2.3532 −2.9182 −3.6340 −2.0405 −1.0406

30 −5.0795 −3.4868 −1.3483 −2.4111 −2.9443 −3.6525 −2.0484 −1.0350

−5.0812a −3.48716b −1.34827b −2.41112d −2.9439e −3.6506e −2.04834d −1.0350e

−3.473c −1.348c

−1.34833d

32 −5.1877 −3.5396 −1.3566 −2.4741 −2.9725 −3.6724 −2.0568 −1.0291

40 −5.6924 −3.7919 −1.3961 −2.7817 −3.1072 −3.7658 −2.0956 −1.0015

−5.6945b −1.39621d −2.78172d −3.1082e −3.7641e −2.09545b −1.0008e

47 −6.2332 −4.0719 −1.4395 −3.1351 −3.2575 −3.8668 −2.1358 −0.9724

50 −6.4951 −4.2110 −1.4609 −3.3148 −3.3323 −3.9159 −2.1548 −0.9586

−6.4975a −1.46120d −3.31489d −3.333e −3.915e −2.15465d −0.955e

54 −6.8742 −4.4162 −1.4923 −3.5848 −3.4429 −3.9871 −2.1816 −0.9387

60 −7.5114 −4.7714 −1.5459 −4.0642 −3.6348 −4.1066 −2.2251 −0.9064

−7.5142a −4.77215b −1.54587b −4.068c −3.635e −4.105e −2.22510d −0.893e

−4.781c −1.542c −4.06446d

−1.54558d

66 −8.2393 −5.1924 −1.6082 −4.6505 −3.8632 −4.2426 −2.2724 −0.8708

−5.194c −1.605c −4.670c

70 −8.7812 −5.5159 −1.6552 −5.1131 −4.0394 −4.3430 −2.3060 −0.8453

−8.7847a −5.515c −1.648c −5.117c −4.038e −4.339e −2.30573d −0.801e

−1.65478d −5.11403d

74 −9.3739 −5.8794 −1.7073 −5.6441 −4.2381 −4.4517 −2.3412 −0.8184

79 −10.1957 −6.3996 −1.7803 −6.4220 −4.5238 −4.5999 −2.3877 −0.7826

80 −10.3719 −6.5135 −1.7961 −6.5950 −4.5866 −4.6312 −2.3974 −0.7752

−10.375a −6.504c −1.789c −6.598c −4.585e −4.628e −2.39806d −0.771e

−1.79562d −6.59593d

82 −10.7375 −6.7524 −1.8289 −6.9607 −4.7185 −4.6957 −2.4170 −0.7601

83 −10.9271 −6.8776 −1.8460 −7.1540 −4.7877 −4.7288 −2.4270 −0.7524

90 −12.3979 −7.8792 −1.9790 −8.7331 −5.3458 −4.9780 −2.5005 −0.6957

−12.403a

92 −12.8714 −8.2122 −2.0221 −9.2701 −5.5329 −5.0550 −2.5228 −0.6787

−8.21306b −2.02199b −9.274c −5.531e −5.053e −2.52228d −0.683d

−8.184c −2.018c −9.27598d

−2.02034d

100 −15.0772 −9.8239 −2.2223 −11.9330 −6.4484 −5.3900 −2.6191 −0.6058

−15.0805a

aBlundell et al. f25g.
bÅsenet al. f43g.
cAndreevet al. f41,42g.

dMohr and Sapirsteinf40g.
eAndreevet al. f38g.
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In case of the ground state of He-like ions, the self-energy
correction was evaluated previously by Perssonet al. f27g,
by usf29g, and by Sunnergrenf52g. In the present work, we
recalculated this correction using the present code and found
an excellent agreement with our previous results and with
those by Sunnergren. A small deviation of the present result
for Z=90 from the old one is due to a more recent value for
the nuclear charge radius used in this work.

We note that the values presented in Table II forn=2
states of He-like ions can also be used for determining the
screened self-energy correction due to the interaction of the
valence electron and thes1sd2 shell in Li-like ions. Indeed,
by using elementary angular-summation rules, we obtain

s2jv + 1dDEv
Li = o

J

s2J + 1dDEv,J
He, s70d

whereDEv
Li denotes the screened self-energy correction in a

Li-like ion due to the interaction of the electron in the statev
and thes1sd2 shell,DEv,J

He is the screened self-energy correc-
tion in a He-like ion for thes1s vdJ configurationsin the case
of mixing configurations, a diagonal matrix element should
be takend, and jv is the total angular momentum of thev
electron. By employing the identitys70d, we check that our
numerical results for He-like ions are in a very good agree-
ment with our previous calculations for Li-like ionsf31g.

Our calculations of the screened self-energy and two-
photon exchange corrections, combined with the results for
the screened vacuum-polarization from Ref.f39g swith the
off-diagonal matrix elements corrected in this paper; see be-
lowd, complete the evaluation of the QED correction to first
order in 1/Z and to all orders inaZ for n=2 states of He-like
ions. As is known, theaZ expansion of two-electron QED
effects starts witha2saZd3. The two-photon exchange correc-
tion contains also contributions of previous orders inaZ that

can be derived from the Breit equation. We separate the
“pure” QED part of the two-photon exchange contribution
sDE2ph

QEDd as

DE2ph= a2fa0 + saZd2a2g + DE2ph
QED, s71d

whereDE2ph is the total two-photon exchange correction and
DE2ph

QED contributes to ordera2saZd3 and higher. In order to
extract numerical values forDE2ph

QED from our results for
DE2ph without losses in accuracy, accurate values for the
coefficientsa0 anda2 are needed. We calculate them by fit-
ting our results for the two-photon exchange correction ob-
tained within many-body perturbation theory. A large number
of fitting points and inclusion of fraction values for the
nuclear charge numbersup to Z=0.1d allowed us to achieve
better accuracy than in previous calculations of similar coef-
ficientsse.g., Refs.f18,53,54gd. The numerical results for the
coefficientsa0 and a2 for all states under consideration are
tabulated in the second and in the third columns of Table III,
respectively.

In Table IV we collect all two-electron QED contributions
for n=1 and 2 states of He-like ions. The screened self-
energy and two-photon exchange corrections are calculated
in the present work; in the table they are labeled as “Scr.SE”
and “2-ph.exch.,” respectively. The screened vacuum-
polarization correction was first evaluated in our previous
investigationf39g. In the present work, we correct an error
made in Ref.f39g for the off-diagonal matrix element and
extend our calculation to the region 10,Z,20. Numerical
values for the screened vacuum-polarization correction are
listed in Table IV under the entry “Scr.VP.”

Our results for the two-electron QED correction calcu-
lated to all orders inaZ can be compared with the results
obtained within theaZ expansion, which readsf1,2g

TABLE II. Screened self-energy correction forn=1 and 2 states of He-like ions, in units ofFsaZd. In case of mixing configurations,
contributions to the matrix elementsHik are given; labeling is as in Table I.

Z s1s1sd0 s1s2sd0 s1s2sd1 s1s2p1/2d0 s1s2p1/2d1 s1s2p3/2d1 s1s2p3/2d2 off-diag.

12 −2.2139s8d −0.4841s5d −0.3031s5d −0.0917s6d −0.0691s6d −0.0556s7d −0.1350s7d 0.0533s2d
14 −2.0543s6d −0.4519s4d −0.2821s4d −0.0845s5d −0.0646s5d −0.0537s6d −0.1266s6d 0.0490s1d
16 −1.9217s3d −0.4248s3d −0.2646s3d −0.0783s4d −0.0605s4d −0.0517s4d −0.1197s4d 0.04559s5d
18 −1.8097s3d −0.4021s3d −0.2496s3d −0.0733s2d −0.0571s2d −0.0501s2d −0.1137s2d 0.04266s3d
20 −1.7137s3d −0.3828s3d −0.2368s3d −0.0693s1d −0.0544s1d −0.0488s2d −0.1086s2d 0.04013s3d
30 −1.3888s2d −0.3194s2d −0.1930s2d −0.0581s1d −0.0470s1d −0.0452s2d −0.0913s2d 0.03146s2d
40 −1.2112s1d −0.2879s1d −0.1685s1d −0.05588s7d −0.04542s7d −0.0442s1d −0.0817s1d 0.02639s2d
50 −1.1134s1d −0.2746s1d −0.1547s1d −0.05963s8d −0.04784s8d −0.0449s1d −0.0761s1d 0.02312s2d
60 −1.0679s1d −0.2744s1d −0.1478s1d −0.06871s6d −0.05371s6d −0.0465s1d −0.0729s1d 0.02087s1d
70 −1.06281s5d −0.28559s5d −0.14670s5d −0.08394s5d −0.06349s5d −0.04896s7d −0.07136s7d 0.019257s8d
80 −1.09510s3d −0.30916s3d −0.15096s3d −0.10779s2d −0.07864s2d −0.05197s7d −0.07091s7d 0.018047s6d
83 −1.11237s2d −0.31903s2d −0.15336s2d −0.11728s2d −0.08463s2d −0.05294s7d −0.07094s7d 0.017741s5d
90 −1.16760s2d −0.34804s2d −0.16122s2d −0.14526s1d −0.10222s1d −0.05530s7d −0.07130s7d 0.017104s3d
92 −1.18776s2d −0.35814s2d −0.16413s2d −0.15515s1d −0.10841s1d −0.05600s7d −0.07148s7d 0.016939s3d

100 −1.29293s2d −0.40917s2d −0.17942s2d −0.20688s3d −0.14073s3d −0.05881s7d −0.07250s7d 0.016343s3d
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DE2el
QED = a2saZd3fa31ln aZ + a30 + saZdG2el

hosaZdg,

s72d

where the functionG2el
hosaZd is the higher-order remainder

that is not known analytically at present. We obtain numeri-
cal values for the coefficientsa31 anda30 by using formulas
from Ref. f1g and numerical results for the two-electron Be-
the logarithmsf55g and for the 1/Z-expansion coefficients of
expectation values of various operatorsf18,56g. The only
coefficient whose numerical value was not available in the
literature was the anomalous magnetic moment correction
for the off-diagonal matrix element. This is the first-order
1/Z-expansion term of the matrix element of the operator
a /psH-3+H-5d fsee Eqs.s27d and s28d of Ref. f56gg. The
result of our calculation of this correctionsdenoted in Ref.
f18g asDEanomd for the off-diagonal term in theLS coupling
reads

DEanom
LS soff diagd = a2saZd30.010 110. s73d

Numerical values for the coefficientsa31 anda30 for all states
under consideration are listed in the third and in the fourth
columns of Table III, respectively.

In Fig. 4, we plot our numerical results together with the
contribution of the first two terms of theaZ expansion
sdashed lined. In addition, we also plot the two-electron QED
contribution, as evaluated by Drakef18g sdotted lined. It was
obtained according Eqs.s2d–s9d of Ref. f18g, keeping the
contribution of first order in 1/Z only. fWe note that Eq.s8d
of Ref. f18g contains a misprint; its right-hand side should be
multiplied by Z.g Expressions obtained in this way are exact
to the leading ordera2saZd3. They also contain some higher-
order contributions, due to all-order results for the one-
electron QED correction employed for the evaluation of the
EL,1 term fEq. s2d of Ref. f18gg. We observe a good agree-
ment of our results with the previously known contributions
and conclude that Drake’s values fall much closer to our
all-order results than the pureaZ-expansion contribution.

For mixing statess1s2p1/2d1 and s1s2p3/2d1, Fig. 4 pre-
sents a comparison for individual diagonal and off-diagonal
matrix elements. It should be mentioned that, generally
speaking, comparison of different methods should be per-
formed for the physical energies obtained after the diagonal-

ization of the total matrix and not for the individual matrix
elements, since matrices with the same eigenvalues can dif-
fer by a unitary transformation. We see from Fig. 4, however,
that our results are in a good agreement with the
aZ-expansion contributions also for the individual matrix el-
ements.

An agreement found with the leading term of theaZ ex-
pansion offers us a possibility to obtain the next-to-leading
contribution, which is not known analytically at present, and
in this way to extend the results of our calculations to lower
values of Z. We thus isolate the higher-order remainder
G2el

hosaZd fsee Eq.s72dg from our numerical data and fit it to
the form

G2el
hosaZd = a41ln aZ + a40 + saZds¯d. s74d

Fitted values for the coefficientsa41 anda40 are presented in
the last two columns of Table III. It should be stressed that
these coefficients were obtained in thej j -coupling scheme
with the wave functions defined in case of mixing states by
Eqs.s1d and s2d.

There is a way to test the self-consistency of the numeri-
cal results for individual matrix elements, and to check each
two-electron QED contribution separately. We note that, in
the LS coupling, the only contribution to the off-diagonal
matrix element to ordera2saZd3 is that of the anomalous
magnetic moment correctionDEanom, Eq.s73d. Therefore, for
the two-photon exchange and screened vacuum-polarization
corrections, the off-diagonal matrix element in theLS cou-
pling is zero. In this case, the following identity is valid in
the jj-coupling schemefto the ordera2saZd3g

Î2fDEs1s2p1/2d1
− DEs1s2p3/2d1

g = − DEoff diag
j j , s75d

whereDEi stand for the corresponding matrix elements. For
the screened self-energy correction, the off-diagonal matrix
element in theLS coupling sDEoff diag

LS d is nonzero and the
corresponding identity reads

Î2fDEs1s2p1/2d1
− DEs1s2p3/2d1

g + DEoff diag
j j = 3DEoff diag

LS .

s76d

Fulfillment of these identities for individual two-electron
QED contributions is checked in Table V. For the screened

TABLE III. Coefficients of theaZ expansion of the second-order two-electron contribution to the energy
levels of He-like ions. In case of mixing configurations, contributions to the matrix elementsHik are given;
labeling is as in Table I.

saZd0 saZd2 saZd3ln aZ saZd3 saZd4ln aZ saZd4

s1s1sd0 −0.157662 −0.6302 1.3191 1.6588 0.75s15d −2.41s40d
s1s2sd0 −0.114509 −0.2807 0.2755 0.3255 0.11s2d −0.81s5d
s1s2sd1 −0.047409 −0.0428 0.1795 0.1911 0.056s11d −0.40s3d
s1s2p1/2d0 −0.072999 −0.3035 0.0730 0.1063 0 −0.64s2d
s1s2p1/2d1 −0.101008 −0.1444 0.0465 0.0578 0 −0.22s1d
s1s2p3/2d1 −0.129018 −0.1075 0.0201 0.0058 0 −0.10

s1s2p3/2d2 −0.072999 −0.0473 0.0730 0.0595 0.01s1d −0.14s2d
off-diag. −0.039611 0.0319 −0.0374 −0.0432 −0.01s1d 0.08s4d
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TABLE IV. Two-electron QED correction forn=1 and 2 states of He-like ions, in eV.

Z State Scr.SE Scr.VP 2-ph.exch. Total Z State Scr.SE Scr.VP 2-ph.exch. Total

12 s1sd2 −0.0405 0.0021 0.0031s1d −0.0353s1d 60 s1sd2 −2.4392s2d 0.3800s1d 0.0662s1d −1.9930s2d
s1s2sd0 −0.0088 0.0004 0.0004s1d −0.0080s1d s1s2sd0 −0.6267s2d 0.0923 −0.1914s1d −0.7258s2d
s1s2sd1 −0.0055 0.0003 −0.0001s1d −0.0053s1d s1s2sd1 −0.3377s2d 0.0484 −0.0327s1d −0.3219s2d

s1s2p1/2d0 −0.0017 0.0001 −0.0008s1d −0.0024s1d s1s2p1/2d0 −0.1569s1d 0.0311 −0.4945s1d −0.6203s1d
s1s2p1/2d1 −0.0013 0.0001 −0.0002s1d −0.0014s1d s1s2p1/2d1 −0.1227s1d 0.0190 −0.1330s1d −0.2367s1d
s1s2p3/2d1 −0.0010 0.0000 0.0000s1d −0.0010s1d s1s2p3/2d1 −0.1063s2d 0.0046 −0.0349s1d −0.1366s2d
s1s2p3/2d2 −0.0025 0.0001 −0.0001s1d −0.0024s1d s1s2p3/2d2 −0.1666s2d 0.0159 0.0081s1d −0.1426s2d

off-diag. 0.0010 −0.0001 0.0001s1d 0.0010s1d off-diag. 0.0477 −0.0092 0.0053s2d 0.0437s2d
14 s1sd2 −0.0596 0.0034 0.0046s1d −0.0516s1d 70 s1sd2 −3.8548s1d 0.7130s2d −0.0164s1d −3.1581s2d

s1s2sd0 −0.0131 0.0007 0.0005s1d −0.0119s1d s1s2sd0 −1.0358s1d 0.1819 −0.4071s1d −1.2610s2d
s1s2sd1 −0.0082 0.0005 −0.0002s1d −0.0079s1d s1s2sd1 −0.5321s1d 0.0892 −0.0615s1d −0.5043s2d

s1s2p1/2d0 −0.0025 0.0002 −0.0015s1d −0.0037s1d s1s2p1/2d0 −0.3044s1d 0.0667 −0.9717s1d −1.2094s2d
s1s2p1/2d1 −0.0019 0.0001 −0.0004s1d −0.0021s1d s1s2p1/2d1 −0.2303s1d 0.0409 −0.2656s1d −0.4550s2d
s1s2p3/2d1 −0.0016 0.0001 0.0000s1d −0.0015s1d s1s2p3/2d1 −0.1776s2d 0.0075 −0.0688s1d −0.2388s2d
s1s2p3/2d2 −0.0037 0.0002 −0.0001s1d −0.0036s1d s1s2p3/2d2 −0.2588s2d 0.0266 0.0164s1d −0.2158s2d

off-diag. 0.0014 −0.0001 0.0002s1d 0.0015s1d off-diag. 0.0698 −0.0158 0.0063s2d 0.0603s2d
16 s1sd2 −0.0832 0.0051 0.0066s1d −0.0715s1d 80 s1sd2 −5.9289s1d 1.2980s2d −0.2374s1d −4.8682s3d

s1s2sd0 −0.0184 0.0011 0.0005s1d −0.0168s1d s1s2sd0 −1.6738s1d 0.3520s1d −0.7946s1d −2.1164s2d
s1s2sd1 −0.0115 0.0007 −0.0003s1d −0.0110s1d s1s2sd1 −0.8173s1d 0.1615s1d −0.1093s1d −0.7652s2d

s1s2p1/2d0 −0.0034 0.0003 −0.0025s1d −0.0056s1d s1s2p1/2d0 −0.5836s1d 0.1429 −1.7938s1d −2.2345s1d
s1s2p1/2d1 −0.0026 0.0002 −0.0006s1d −0.0030s1d s1s2p1/2d1 −0.4258s1d 0.0879 −0.4988s1d −0.8367s1d
s1s2p3/2d1 −0.0022 0.0001 0.0000s1d −0.0022s1d s1s2p3/2d1 −0.2814s3d 0.0120 −0.1232s1d −0.3926s3d
s1s2p3/2d2 −0.0052 0.0003 −0.0002s1d −0.0051s1d s1s2p3/2d2 −0.3839s3d 0.0428 0.0279s1d −0.3132s3d

off-diag. 0.0020 −0.0002 0.0003s1d 0.0021s1d off-diag. 0.0977 −0.0260 0.0072s2d 0.0789s2d
18 s1sd2 −0.1116 0.0072 0.0091s1d −0.0953s1d 83 s1sd2 −6.7256s1d 1.5500s7d −0.3460s1d −5.5216s7d

s1s2sd0 −0.0248 0.0015 0.0004s1d −0.0228s1d s1s2sd0 −1.9289s1d 0.4286s2d −0.9599s1d −2.4602s2d
s1s2sd1 −0.0154 0.0010 −0.0004s1d −0.0148s1d s1s2sd1 −0.9273s1d 0.1927s2d −0.1289s1d −0.8635s2d

s1s2p1/2d0 −0.0045 0.0004 −0.0039s1d −0.0080s1d s1s2p1/2d0 −0.7091s1d 0.1799s1d −2.1377s1d −2.6669s1d
s1s2p1/2d1 −0.0035 0.0003 −0.0010s1d −0.0042s1d s1s2p1/2d1 −0.5117s1d 0.1109s1d −0.5977s1d −0.9985s1d
s1s2p3/2d1 −0.0031 0.0001 −0.0001s1d −0.0031s1d s1s2p3/2d1 −0.3201s4d 0.0136 −0.1446s1d −0.4511s4d
s1s2p3/2d2 −0.0070 0.0004 −0.0002s1d −0.0068s1d s1s2p3/2d2 −0.4289s4d 0.0489 0.0318s1d −0.3482s4d

off-diag. 0.0026 −0.0002 0.0004s1d 0.0028s1d off-diag. 0.1073 −0.0299 0.0074s4d 0.0848s4d
20 s1sd2 −0.1450 0.0099 0.0119s1d −0.1231s1d 90 s1sd2 −9.0006s1d 2.338s1d −0.7109s1d −7.373s1d

s1s2sd0 −0.0324 0.0021 0.0003s1d −0.0300s1d s1s2sd0 −2.6829s1d 0.6810s2d −1.4689s1d −3.4708s3d
s1s2sd1 −0.0200 0.0014 −0.0006s1d −0.0192s1d s1s2sd1 −1.2428s1d 0.2921s2d −0.1869s1d −1.1376s2d

s1s2p1/2d0 −0.0059 0.0006 −0.0059s1d −0.0111s1d s1s2p1/2d0 −1.1197 0.3112s2d −3.1842s1d −3.9928s2d
s1s2p1/2d1 −0.0046 0.0004 −0.0015s1d −0.0057s1d s1s2p1/2d1 −0.7879 0.1929s1d −0.9024s1d −1.4974s1d
s1s2p3/2d1 −0.0041 0.0001 −0.0002s1d −0.0042s1d s1s2p3/2d1 −0.4263s5d 0.0176 −0.2051s1d −0.6138s5d
s1s2p3/2d2 −0.0092 0.0006 −0.0003s1d −0.0089s1d s1s2p3/2d2 −0.5496s5d 0.0663 0.0413s1d −0.4420s5d

off-diag. 0.0034 −0.0003 0.0005s1d 0.0036s1d off-diag. 0.1318 −0.0410 0.0082s4d 0.0991s4d
30 s1sd2 −0.3965 0.0348 0.0325s1d −0.3292s1d 92 s1sd2 −9.7800s1d 2.630s2d −0.8520s1d −8.002s2d

s1s2sd0 −0.0912 0.0076 −0.0048s1d −0.0884s1d s1s2sd0 −2.9489s1d 0.7770s4d −1.6540s1d −3.8259s4d
s1s2sd1 −0.0551 0.0048 −0.0024s1d −0.0527s1d s1s2sd1 −1.3514s1d 0.3287s2d −0.2074s1d −1.2301s3d

s1s2p1/2d0 −0.0166 0.0022 −0.0289s1d −0.0433s1d s1s2p1/2d0 −1.2775 0.3647s2d −3.5612s1d −4.4740s3d
s1s2p1/2d1 −0.0134 0.0013 −0.0074s1d −0.0195s1d s1s2p1/2d1 −0.8927 0.2262s2d −1.0133s1d −1.6798s2d
s1s2p3/2d1 −0.0129 0.0005 −0.0016s1d −0.0140s1d s1s2p3/2d1 −0.4611s5d 0.0188 −0.2254s1d −0.6677s5d
s1s2p3/2d2 −0.0261 0.0019 −0.0003s1d −0.0245s1d s1s2p3/2d2 −0.5886s5d 0.0721 0.0440s1d −0.4725s5d

off-diag. 0.0090 −0.0010 0.0013s1d 0.0093s1d off-diag. 0.1395 −0.0448 0.0084s4d 0.1031s4d
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self-energy and vacuum-polarization correction, the fulfill-
ment is obvious from the table. For the two-photon exchange
correction, the difference between the right- and left-hand
sides is very close to 3saZd4eV in all cases listed and, there-
fore, should be ascribed to higher-order contributions, for
which the identity is not valid anymore.

III. ENERGIES OF n=1 AND n=2 STATES OF He-LIKE
IONS

In this section we collect all contributions available to the
ionization energies ofn=1 and 2 states of He-like ions. In-
dividual corrections for selected ions are listed in Table VI. A
description of contributions presented there is given below.

Dirac energy. DEDirac is the Dirac value for the ionization
energy of the valence electron including the finite-nuclear-
size effect. The energy levels were calculated employing the
two-parameter Fermi model for the nuclear-charge distribu-
tion. Parameters of the Fermi model were expressed in terms
of the root-mean-squaresrmsd radius ssee, e.g., Ref.f57gd.
The actual values of rms radii as well as their uncertainties
were taken from a recent tabulationf58g. In a few cases ofZ
with no experimental data available we employed values for
the rms radii obtained by the approximate formula from Ref.
f59g and ascribed an uncertainty of 1% to them. For each
value of Z, the nuclear parameters for the isotope with the
largest abundanceswith the longest lifetimed were chosen.
The uncertainty of the nuclear-size effect was evaluated by
adding quadratically two errors, one obtained by varying the
rms radius within its error bars and the other obtained by
changing the model of the nuclear-charge distributionsthe
Fermi and the homogeneously-charged-sphere model were
employedd. Numerical values of fundamental constants used
in the calculation weref60g a−1=137.035 999 11s46d and
hcR̀ =13.605 692 3s12deV.

Electron-electron interaction correction. DEint incorpo-
rates corrections that can be derived from the Breit equation.
It consists of three parts,

DEint = DE1ph+ DE2ph
Breit + DEù3ph

Breit , s77d

which correspond to the one-, two-, and three- and more
photon exchange, respectively. In the notations of Sec. I, the
one-photon exchange correction is written asf35,47g

DE1ph=
1

2o
P

s− 1dPfIPi1Pi2k1k2
sD1d + IPi1Pi2k1k2

sD2dg,

s78d

whereD1=«Pi1
−«k1

andD2=«Pi2
−«k2

. Its numerical evalua-
tion was carried out employing the Fermi model for the
nuclear-charge distribution; accurate numerical results for
this correction can be found in Ref.f39g. In this paper we
recalculated this correction using new values of the nuclear
radii f58g. Its uncertainty was estimated in the same way as
in the case of the Dirac energy.DE2ph

Breit represents the two-
photon exchange correction within thea2saZd2 approxima-
tion and is given by the first two terms in Eq.s71d, with the
coefficientsa0 anda2 listed in Table III. The contribution due
to the exchange by three and more photons was evaluated by
summing terms of the 1/Z expansion, with the corresponding
coefficients taken from Refs.f53,54g for the nonrelativistic
energy and from Ref.f18g for the Breit-Pauli correction.

One-electron QED correction. DE1el
QED is the sum of the

one-loop and two-loop one-electron QED corrections. The
one-loop self-energy correction for 1s,2s, and 2p1/2 states
and Zù26 sincluding the nuclear-size effectd was tabulated
in Ref. f61g by using the method developed by Mohr and
co-workersf14,62,63g. For lower values ofZ and for the
2p3/2 state, we used a combination of our own calculation
and an interpolation of the point-nucleus results from Ref.

TABLE IV. sContinued.d

Z State Scr.SE Scr.VP 2-ph.exch. Total Z State Scr.SE Scr.VP 2-ph.exch. Total

40 s1sd2 −0.8197 0.0887 0.0589s1d −0.6721s1d 100 s1sd2 −13.6716s1d 4.248s4d −1.6551s1d −11.079s4d
s1s2sd0 −0.1948 0.0199 −0.0252s1d −0.2002s1d s1s2sd0 −4.3266s1d 1.3404s8d −2.6409s1d −5.6271s8d
s1s2sd1 −0.1141 0.0118 −0.0068s1d −0.1091s1d s1s2sd1 −1.8972s1d 0.5366s5d −0.3124s1d −1.6730s5d

s1s2p1/2d0 −0.0378 0.0060 −0.0916s1d −0.1234s1d s1s2p1/2d0 −2.1876s3d 0.7067s5d −5.5484s1d −7.0293s6d
s1s2p1/2d1 −0.0307 0.0036 −0.0239s1d −0.0510s1d s1s2p1/2d1 −1.4881s3d 0.4408s5d −1.6074s1d −2.6547s6d
s1s2p3/2d1 −0.0299 0.0012 −0.0058s1d −0.0345s1d s1s2p3/2d1 −0.6219s7d 0.0234 −0.3211s1d −0.9195s7d
s1s2p3/2d2 −0.0553 0.0044 0.0005s1d −0.0503s1d s1s2p3/2d2 −0.7666s7d 0.1009s1d 0.0529s1d −0.6128s7d

off-diag. 0.0179 −0.0025 0.0025s1d 0.0179s1d off-diag. 0.1728 −0.0630 0.0104s4d 0.1202s4d
50 s1sd2 −1.4717s1d 0.1920 0.0781s1d −1.2016s1d

s1s2sd0 −0.3630s1d 0.0446 −0.0783s1d −0.3966s1d
s1s2sd1 −0.2044s1d 0.0250 −0.0159s1d −0.1953s1d

s1s2p1/2d0 −0.0788s1d 0.0141 −0.2289s1d −0.2936s1d
s1s2p1/2d1 −0.0632s1d 0.0086 −0.0606s1d −0.1152s1d
s1s2p3/2d1 −0.0593s1d 0.0025 −0.0156s1d −0.0725s1d
s1s2p3/2d2 −0.1006s1d 0.0088 0.0031s1d −0.0887s1d

off-diag. 0.0306 −0.0050 0.0039s1d 0.0294s1d
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f64g. The Uehling part of the one-loop vacuum-polarization
correction was calculated in this work for the Fermi nuclear
model. The Wichmann-Kroll part of the vacuum-polarization

correction was tabulated forZù30 in Ref. f65g. For lower
values ofZ, it was calculated in this work by employing the

FIG. 4. Comparison of our all-order numerical results for the second-order two-electron QED correctionssquare dots, solid lined with
values for this correction within theaZ expansionfthe contribution of ordera2saZd3, dashed lineg and with the related QED contribution by
Drake f18g sdotted lined, in units of a2saZd3.

TABLE V. Right-hand sidesRHSd and left-hand sidesLHSd of Eq. s76d sfor the screened self-energy
correctiond and those of Eq.s75d sfor the screened vacuum-polarization and two-photon exchange correc-
tionsd, in eV. The comparison is valid to the leading order inaZ only. The last column demonstrates that the
differencesRHS−LHSd for the two-photon exchange correction arises predominantly from effects to order
a2saZd4.

Z Scr.SE Scr.VP 2-ph.exch.

LHS RHS LHS RHS LHS RHS sRHS−LHSd / saZd4

12 0.0006 0.0006 0.0001 0.0001 −0.0003 −0.0001 3

14 0.0010 0.0009 0.0001 0.0001 −0.0005 −0.0002 3

16 0.0014 0.0013 0.0002 0.0002 −0.0008 −0.0003 3.0

18 0.0020 0.0019 0.0002 0.0002 −0.0012 −0.0004 3.0

20 0.0027 0.0026 0.0003 0.0003 −0.0018 −0.0005 3.0

30 0.0083 0.0087 0.0012 0.0010 −0.0083 −0.0013 3.0

40 0.0167 0.0205 0.0035 0.0025 −0.0256 −0.0025 3.18
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TABLE VI. Individual contributions to the ionization energies of He-like ionsswith the opposite signd, in eV. For mixing configurations,
contributions to the matrix elements are listed.

Z State DEDirac DEint DE1el
QED DE2el

QED DEho
QED DErec Total

12 s1sd2 −1962.9888s1d 200.8973 0.2801 −0.0353s1d 0.0008 0.0412 −1761.8047s2d
s1s2sd0 −490.9832 72.9751 0.0371 −0.0080s1d 0.0005 0.0096 −417.9689s1d
s1s2sd1 −490.9832 60.2485 0.0371 −0.0053s1d 0.0001 0.0099 −430.6929s1d
s1s2p1/2d0 −490.9834 72.1736 −0.0010 −0.0024s1d 0.0002 0.0037 −418.8092s1d
s1s2p1/2d1 −490.9834 74.9742 −0.0010 −0.0014s1d 0.0002 0.0075 −416.0038s1d
s1s2p3/2d1 −490.0399 77.7699 0.0012 −0.0010s1d 0.0001 0.0113 −412.2584s1d
s1s2p3/2d2 −490.0399 71.7742 0.0012 −0.0024s1d 0.0003 0.0036 −418.2630s1d
off-diag. 0 4.1676 0 0.0010s1d −0.0001 0.0054 4.1739s1d

14 s1sd2 −2673.7079s2d 235.5743 0.4778 −0.0516s1d 0.0008 0.0487 −2437.6579s2d
s1s2sd0 −668.8651 85.8199 0.0637 −0.0119s1d 0.0006 0.0115 −582.9812s1d
s1s2sd1 −668.8651 70.5889 0.0637 −0.0079s1d 0.0002 0.0118 −598.2084s1d
s1s2p1/2d0 −668.8654 84.7684 −0.0017 −0.0037s1d 0.0002s1d 0.0044 −584.0978s1d
s1s2p1/2d1 −668.8654 88.0659 −0.0017 −0.0021s1d 0.0002 0.0090 −580.7942s1d
s1s2p3/2d1 −667.1144 91.3603 0.0022 −0.0015s1d 0.0001 0.0135 −575.7398s1d
s1s2p3/2d2 −667.1144 84.1211 0.0022 −0.0036s1d 0.0004 0.0043 −582.9900s1d
off-diag. 0 5.0013 0 0.0015s1d −0.0002 0.0065 5.0091s1d

16 s1sd2 −3495.0044s3d 270.4822 0.7562 −0.0715s1d 0.0009 0.0563 −3223.7804s3d
s1s2sd0 −874.5000 98.7466 0.1014 −0.0168s1d 0.0007 0.0134 −775.6548s1d
s1s2sd1 −874.5000 80.9665 0.1014 −0.0110s1d 0.0002 0.0137 −793.4292s1d
s1s2p1/2d0 −874.5006 97.4677 −0.0028 −0.0056s1d 0.0003s2d 0.0051 −777.0360s2d
s1s2p1/2d1 −874.5006 101.2216 −0.0028 −0.0030s1d 0.0003 0.0105 −773.2742s1d
s1s2p3/2d1 −871.5075 104.9765 0.0038 −0.0022s1d 0.0001 0.0158 −766.5134s1d
s1s2p3/2d2 −871.5075 96.4856 0.0038 −0.0051s1d 0.0005 0.0051 −775.0176s1d
off-diag. 0 5.8246 0 0.0021s1d −0.0002 0.0076 5.8341s1d

18 s1sd2 −4427.4154s3d 305.6560 1.1310s1d −0.0953s1d 0.0009 0.0575 −4120.6653s4d
s1s2sd0 −1108.0563 111.7675 0.1525 −0.0228s1d 0.0007s1d 0.0138 −996.1446s2d
s1s2sd1 −1108.0563 91.3873 0.1525 −0.0148s1d 0.0003 0.0141 −1016.5170s1d
s1s2p1/2d0 −1108.0575 110.2884 −0.0043 −0.0080s1d 0.0003s3d 0.0053 −997.7758s3d
s1s2p1/2d1 −1108.0575 114.4514 −0.0043 −0.0042s1d 0.0003 0.0108 −993.6035s1d
s1s2p3/2d1 −1103.2520 118.6220 0.0062 −0.0031s1d 0.0001 0.0162 −984.6106s1d
s1s2p3/2d2 −1103.2520 108.8712 0.0062 −0.0068s1d 0.0005 0.0052 −994.3757s1d
off-diag. 0 6.6353 0 0.0028s1d −0.0002 0.0078 6.6456s1d

20 s1sd2 −5471.5561s4d 341.1315 1.6179s2d −0.1231s1d 0.0008 0.0715 −5128.8573s5d
s1s2sd0 −1369.7266s1d 124.8955 0.2195s1d −0.0300s1d 0.0008s1d 0.0172 −1244.6236s2d
s1s2sd1 −1369.7266s1d 101.8571 0.2195s1d −0.0192s1d 0.0003 0.0175 −1267.6514s2d
s1s2p1/2d0 −1369.7284s1d 123.2478 −0.0063 −0.0111s1d 0.0004s4d 0.0066 −1246.4911s4d
s1s2p1/2d1 −1369.7284s1d 127.7657 −0.0063 −0.0057s1d 0.0003s1d 0.0135 −1241.9609s2d
s1s2p3/2d1 −1362.3854s1d 132.3004 0.0097 −0.0042s1d 0.0001 0.0203 −1230.0591s1d
s1s2p3/2d2 −1362.3854s1d 121.2809 0.0097 −0.0089s1d 0.0006 0.0065 −1241.0966s1d
off-diag. 0 7.4312 0 0.0036s1d −0.0003 0.0097 7.4442s1d

30 s1sd2 −12395.3524s11d 524.3343 6.3051s15d −0.3292s1d −0.0002 0.1036 −11864.9387s19d
s1s2sd0 −3108.3051s2d 192.6165 0.8826s14d −0.0884s1d 0.0010s4d 0.0254 −2914.8681s15d
s1s2sd1 −3108.3051s2d 155.1569 0.8826s14d −0.0527s1d 0.0005 0.0257 −2952.2921s14d
s1s2p1/2d0 −3108.3194s2d 190.7532 −0.0229s3d −0.0433s1d 0.0006s15d 0.0099 −2917.6219s15d
s1s2p1/2d1 −3108.3194s2d 195.9800 −0.0229s3d −0.0195s1d 0.0006s5d 0.0199 −2912.3614s7d
s1s2p3/2d1 −3070.5058s2d 201.3173 0.0546s3d −0.0140s1d 0.0001 0.0295 −2869.1183s4d
s1s2p3/2d2 −3070.5058s2d 183.7940 0.0546s3d −0.0245s1d 0.0012 0.0096 −2886.6710s4d
off-diag. 0 11.1222 0 0.0093s1d −0.0006 0.0140 11.1450s1d
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TABLE VI. sContinued.d

Z State DEDirac DEint DE1el
QED DE2el

QED DEho
QED DErec Total

40 s1sd2 −22253.1584s20d 720.9167 16.3146s49d −0.6721s1d −0.0030s12d 0.1354 −21516.4668s55d
s1s2sd0 −5593.9687s4d 265.1795 2.3647s68d −0.2002s1d 0.0007s5d 0.0334 −5326.5905s68d
s1s2sd1 −5593.9687s4d 210.6535 2.3647s68d −0.1091s1d 0.0008 0.0338 −5381.0250s68d
s1s2p1/2d0 −5594.0371s4d 264.5842 −0.0397s16d −0.1234s1d 0.0008s37d 0.0134 −5329.6018s40d
s1s2p1/2d1 −5594.0371s4d 268.0222 −0.0397s16d −0.0510s1d 0.0007s12d 0.0260 −5326.0789s21d
s1s2p3/2d1 −5471.5706s4d 271.7375 0.1925s16d −0.0345s1d 0.0001 0.0378 −5199.6372s16d
s1s2p3/2d2 −5471.5706s4d 247.3426 0.1925s16d −0.0503s1d 0.0018 0.0125 −5224.0715s16d
off-diag. 0 14.1717 0 0.0179s1d −0.0010s1d 0.0178 14.2065s1d

50 s1sd2 −35226.6126s39d 936.5561 33.9605s80d −1.2016s1d −0.0077s50d 0.1659 −34257.139s10d
s1s2sd0 −8884.1001s8d 344.7874 5.118s22d −0.3966s1d −0.0001 0.0412 −8534.551s22d
s1s2sd1 −8884.1001s8d 269.3107 5.118s22d −0.1953s1d 0.0011s1d 0.0415 −8609.825s22d
s1s2p1/2d0 −8884.3682s7d 347.6604 −0.0064s49d −0.2936s1d 0.0009s77d 0.0170 −8536.9898s91d
s1s2p1/2d1 −8884.3682s7d 345.6502 −0.0064s49d −0.1152s1d 0.0009s26d 0.0315 −8538.8072s56d
s1s2p3/2d1 −8575.5142s7d 344.0792 0.5228s49d −0.0725s1d −0.0002s2d 0.0447 −8230.9403s49d
s1s2p3/2d2 −8575.5142s7d 312.2765 0.5228s49d −0.0887s1d 0.0025s1d 0.0152 −8262.7860s49d
off-diag. 0 16.3734 0 0.0294s1d −0.0015s3d 0.0206 16.4220s3d

60 s1sd2 −51577.900s12d 1178.1906s3d 61.917s21d −1.9930s2d −0.014s15d 0.2152 −50339.584s28d
s1s2sd0 −13062.0774s19d 434.2619 9.742s52d −0.7258s2d −0.0014s24d 0.0537 −12618.747s52d
s1s2sd1 −13062.0774s19d 332.3353 9.742s52d −0.3219s2d 0.0015s3d 0.0541 −12720.266s52d
s1s2p1/2d0 −13062.9669s11d 443.7640 0.202s12d −0.6203s1d 0.001s14d 0.0227 −12619.597s19d
s1s2p1/2d1 −13062.9669s11d 431.1433 0.202s12d −0.2367s1d 0.0010s46d 0.0400 −12631.817s13d
s1s2p3/2d1 −12395.4634s10d 418.8976 1.199s12d −0.1366s2d −0.0005s9d 0.0546 −11975.449s12d
s1s2p3/2d2 −12395.4634s10d 378.9464 1.199s12d −0.1426s2d 0.0034s1d 0.0193 −12015.438s12d
off-diag. 0 17.5341 0 0.0437s2d −0.0021s5d 0.0246 17.6002s6d

70 s1sd2 −71678.288s49d 1454.7183s14d 103.454s51d −3.1581s2d −0.023s36d 0.2612 −70123.037s79d
s1s2sd0 −18247.2685s78d 537.4109s3d 17.07s10d −1.2610s2d −0.0033s84d 0.0658 −17693.98s10d
s1s2sd1 −18247.2685s78d 401.3107s2d 17.07s10d −0.5043s2d 0.0019s5d 0.0662 −17829.32s10d
s1s2p1/2d0 −18250.1829s16d 558.0870s1d 0.844s27d −1.2094s2d 0.001s25d 0.0283 −17692.432s36d
s1s2p1/2d1 −18250.1829s16d 527.6353 0.844s27d −0.4550s2d 0.0011s74d 0.0469 −17722.111s28d
s1s2p3/2d1 −16948.0262s15d 496.7903 2.443s27d −0.2388s2d −0.0010s24d 0.0608 −16448.972s27d
s1s2p3/2d2 −16948.0262s15d 447.7120 2.443s27d −0.2158s2d 0.0043s1d 0.0225 −16498.060s27d
off-diag. 0 17.4749 0 0.0603s2d −0.0030s9d 0.0266 17.5589s9d

80 s1sd2 −96061.23s11d 1778.3471s31d 162.76s12d −4.8682s3d −0.035s78d 0.3326 −94124.69s18d
s1s2sd0 −24612.835s18d 659.7046s9d 28.31s16d −2.1164s2d −0.006s21d 0.0853 −23926.85s16d
s1s2sd1 −24612.835s18d 478.4429s4d 28.31s16d −0.7652s2d 0.0023s9d 0.0858 −24106.75s16d
s1s2p1/2d0 −24621.4113s26d 698.2095s2d 2.411s52d −2.2345s1d 0.001s41d 0.0369 −23922.987s66d
s1s2p1/2d1 −24621.4113s26d 639.7158s1d 2.411s52d −0.8367s1d 0.001s11d 0.0570 −23980.063s53d
s1s2p3/2d1 −22253.6744s19d 578.4001 4.557s52d −0.3926s3d −0.0017s52d 0.0686 −21671.044s52d
s1s2p3/2d2 −22253.6744s19d 518.9618s1d 4.557s52d −0.3132s3d 0.0054s1d 0.0267 −21730.437s52d
off-diag. 0 16.0289 0 0.0789s2d −0.0040s15d 0.0289 16.133s2d

83 s1sd2 −104318.39s16d 1887.0407s45d 184.80s15d −5.5216s7d −0.038s96d 0.3620 −102251.76s24d
s1s2sd0 −26788.017s27d 701.2559s13d 32.69s18d −2.4602s2d −0.007s27d 0.0938 −26056.44s18d
s1s2sd1 −26788.017s27d 503.6149s6d 32.69s18d −0.8635s2d 0.0025s10d 0.0943 −26252.48s18d
s1s2p1/2d0 −26799.9148s34d 746.8798s4d 3.183s62d −2.6669s1d 0.001s47d 0.0404 −26052.477s79d
s1s2p1/2d1 −26799.9148s34d 677.3539s2d 3.183s62d −0.9985s1d 0.001s12d 0.0611 −26120.315s64d
s1s2p3/2d1 −23995.8088s21d 603.7087 5.416s62d −0.4511s4d −0.0020s63d 0.0715 −23387.066s63d
s1s2p3/2d2 −23995.8088s21d 540.8844s1d 5.416s62d −0.3482s4d 0.0057 0.0283 −23449.823s63d
off-diag. 0 15.3020s1d 0 0.0848s4d −0.0043s17d 0.0297 15.412s2d
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asymptotic-expansion formulas for the Wichmann-Kroll po-
tential f66g.

The two-loop one-electron QED correction is calculated
to all orders inaZ only for the 1s state up to nowssee Ref.
f51g and references thereind. For excited states, one has to
rely on theaZ expansion, which readsssee the reviewf67g,
references therein, and more recent studiesf68–70gd

DE1el,2lo
QED =

a2

p2

saZd4

n3 hB40 + saZdB50 + saZd2fL3B63 + L2B62

+ L B61 + G2lo
ho saZdgj, s79d

whereL=lnfsaZd−2g, G2lo
ho saZd=B60+saZds¯d is the higher-

order remainder, and the coefficientsBij are

B40 = F2p2ln 2 −
49

108
p2 −

6131

1296
− 3zs3dGdl0 + F1

2
p2ln 2

−
1

12
p2 −

197

144
−

3

4
zs3dG 1

ks2l + 1d
, s80d

B50 = − 21.5561s31ddl0, s81d

B63 = −
8

27
dl0, s82d

B62snsd =
16

9
S71

60
− lns2nd +

1

4n2 −
1

n
+ csnd + CD , s83d

B62snpd =
4

27

n2 − 1

n2 , s84d

B61s1sd = 50.344 005, s85d

B61s2sd = 42.447 669, s86d

B60s1sd = − 61.6s9d, s87d

B60s2sd = − 53.2s8d, s88d

wherez is the Riemann zeta function,c is the logarithmic
derivative of the gamma function, andC=0.577 215 66… is
the Euler constant. Great care should be taken employing the
aZ expansion for the estimation of the total correction for
middle- and high-Z ions, due to a very slow convergence of
this expansion. In addition, it was found latelyf71g that the
numerical all-order results do not agree well with the ana-
lytical calculations to ordera2saZd6. A possible reason for
this disagreementf72g can be the incompleteness of the ana-
lytical resultss85d and s86d for the B61 coefficient.

In order to extrapolate the all-order numerical results of
Ref. f51g to the regionZ=12–39 for the 1s state and to

TABLE VI. sContinued.d

Z State DEDirac DEint DE1el
QED DE2el

QED DEho
QED DErec Total

90 s1sd2 −125498.8s2.1d 2166.546s61d 245.28s27d −7.3734s10d −0.05s16d 0.4338 −123094.1s2.1d
s1s2sd0 −32414.63s39d 809.386s19d 45.19s21d −3.4708s3d −0.009s45d 0.1168 −31563.44s45d
s1s2sd1 −32414.63s39d 566.9253s84d 45.19s21d −1.1376s2d 0.0029s14d 0.1174 −31803.55s44d
s1s2p1/2d0 −32440.630s43d 875.9251s68d 5.824s93d −3.9928s2d 0.002s66d 0.0496 −31562.83s12d
s1s2p1/2d1 −32440.630s43d 774.5637s43d 5.824s93d −1.4974s1d 0.001s16d 0.0707 −31661.67s10d
s1s2p3/2d1 −28337.2423s25d 664.4054s1d 7.930s93d −0.6138s5d −0.0026s97d 0.0759 −27665.450s94d
s1s2p3/2d2 −28337.2423s25d 593.1309s17d 7.930s93d −0.4420s5d 0.0066 0.0314 −27736.588s93d
off-diag. 0 13.0484s12d 0 0.0991s4d −0.0052s23d 0.0305 13.170s3d

92 s1sd2 −132081.59s52d 2253.940s15d 265.16s33d −8.0020s20d −0.05s18d 0.4600 −129570.30s64d
s1s2sd0 −34177.81s10d 843.6097s49d 49.44s22d −3.8259s4d −0.009s51d 0.1260 −33288.51s24d
s1s2sd1 −34177.81s10d 586.3566s21d 49.44s22d −1.2301s3d 0.0030s16d 0.1266 −33543.15s24d
s1s2p1/2d0 −34211.077s12d 917.4978s17d 6.86s10d −4.4740s3d 0.002s73d 0.0531 −33291.14s13d
s1s2p1/2d1 −34211.077s12d 805.1940s11d 6.86s10d −1.6798s2d 0.001s17d 0.0743 −33400.63s11d
s1s2p3/2d1 −29649.8353s26d 682.1945 8.80s10d −0.6677s5d −0.003s11d 0.0774 −28959.44s10d
s1s2p3/2d2 −29649.8353s26d 608.3559s4d 8.80s10d −0.4725s5d 0.0068 0.0324 −29033.12s10d
off-diag. 0 12.2590s2d 0 0.1031s4d −0.0054s25d 0.0308 12.383s3d

100 s1sd2 −161165.5s6.1d 2646.56s18d 358.30s63d −11.0787s40d −0.06s30d 0.6180 −158171.1s6.1d
s1s2sd0 −42048.7s1.3d 999.862s63d 70.19s20d −5.6271s8d −0.012s86d 0.1895 −40984.1s1.3d
s1s2sd1 −42048.7s1.3d 671.724s25d 70.19s20d −1.6730s5d 0.0035s23d 0.1902 −41308.3s1.3d
s1s2p1/2d0 −42127.25s19d 1111.129s25d 12.82s16d −7.0293s6d 0.00s11d 0.0759 −41010.25s27d
s1s2p1/2d1 −42127.25s19d 944.380s16d 12.82s16d −2.6547s6d 0.001s21d 0.0984 −41172.61s25d
s1s2p3/2d1 −35228.5701s31d 755.4923s2d 13.05s16d −0.9195s7d −0.004s16d 0.0866 −34460.87s16d
s1s2p3/2d2 −35228.5701s31d 670.7582s42d 13.05s16d −0.6128s7d 0.0079s2d 0.0382 −34545.33s16d
off-diag. 0 8.4030s29d 0 0.1202s4d −0.0066s34d 0.0328 8.550s5d
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estimate the two-loop correction for excited states, we sepa-
rate the 1s higher-order remainderG2lo

ho saZd from the numeri-
cal data of Ref.f51g. We observe that this function is
smoothly behaving and can be reasonably approximated by a
polynomial. We thus employ a linearsparabolicd fit to the
function G2lo

ho saZd in order to extrapolate the higher-order
contribution to the regionZ=12–39. For the 2s state, we
employ the same values for the higher-order contribution and
ascribe an uncertainty of 50% to them. Forp states, no ana-
lytical calculations for theB61 coefficient exist up to now. We
thus separate from the 1s numerical results of Ref.f51g the
function

G̃2lo
ho saZd = L B61 + G2lo

ho saZd, s89d

divide it by a factor of 8, and take the result as the uncer-
tainty for the higher-order contribution forp states.

Two-electron QED correction. DE2el
QED is evaluated in Sec.

II; the data are taken from Table IV.
Higher-order QED correction. DEho

QED represents the con-

tribution of QED effects of relative order 1/Z2 and higher.
This correction was evaluated by formulas presented in Ref.
f18g suppressing terms that contribute to orders 1/Z0 and
1/Z. Its uncertainty was obtained by taking the relative de-
viation of the QED contribution to order 1/Z calculated ac-
cording to Ref.f18g from the results of its exact evaluation
presented in this work.sThe corresponding comparison is
presented in Fig. 4.d

Relativistic recoil correction. DErec consists of the one-
electron and the two-electron part. The one-electron relativ-
istic recoil correction was evaluated to all orders inaZ in a
series of papersf73–75g. In our compilation, we employed
the finite-nucleus results of Ref.f75g for the 1s state, the
point-nucleus results of Ref.f73g for the 2s and 2p1/2 states,
and those of Ref.f74g for the 2p3/2 state. The two-electron
recoil contribution is given by the sum of the mass-
polarization correction and the electron-electron interaction
correction to the one-electron nuclear recoil. The nonrelativ-
istic part of the mass-polarization correction was evaluated
by summing the terms of the 1/Z expansion of the matrix

FIG. 5. Comparison of different evaluations for the total ionization energy ofn=1 and 2 states of He-like ions. Plotted is the difference
between the results obtained by us and by other authors, normalized by the factora2saZd4. Error bars refer to the estimation of the
uncertainty of the present evaluation, open diamonds denote the results by Drakef18g, filled circles stand for those by Planteet al. f21g, and
filled triangles indicate the values by Cheng and Chenf24g.
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TABLE VII. Total ionization energiessin eVd for n=1 and 2 states of He-like ions. “rms” denotes the root-mean-square radii expressed
in fermis.

Z rms 11S0 2 1S0 2 3S1 2 3P0 2 3P1 2 1P1 2 3P2

12 3.057 1761.8047s2d 417.9689s1d 430.6929s1d 418.8092s1d 418.7059s1d 409.5564s1d 418.2630s1d
13 3.061 2085.9768s2d 497.0265s1d 510.9969s1d 498.0060s1d 497.8514s1d 487.6854s1d 497.2157s1d
14 3.122 2437.6579s2d 582.9812s1d 598.2084s1d 584.0978s1d 583.8775s1d 572.6565s1d 582.9900s1d
15 3.189 2816.9085s2d 675.8517s1d 692.3466s1d 677.1019s2d 676.8003s1d 664.4775s1d 675.5897s1d
16 3.261 3223.7804s3d 775.6548s1d 793.4292s1d 777.0360s2d 776.6365s1d 763.1512s1d 775.0176s1d
17 3.365 3658.3434s3d 882.4120s1d 901.4786s1d 883.9202s2d 883.4062s1d 868.6849s1d 881.2783s1d
18 3.427 4120.6653s4d 996.1446s2d 1016.5170s1d 997.7758s3d 997.1309s1d 981.0832s1d 994.3757s1d
19 3.435 4610.8069s4d 1116.8727s2d 1138.5652s1d 1118.6243s3d 1117.8333s1d 1100.3453s1d 1114.3132s1d
20 3.476 5128.8573s5d 1244.6236s2d 1267.6514s2d 1246.4911s4d 1245.5404s1d 1226.4796s1d 1241.0966s1d
21 3.544 5674.9031s6d 1379.4241s3d 1403.8034s2d 1381.4022s5d 1380.2811s2d 1359.4907s1d 1374.7311s1d
22 3.591 6249.0219s6d 1521.2994s3d 1547.0473s3d 1523.3841s6d 1522.0846s2d 1499.3778s1d 1515.2211s1d
23 3.599 6851.3102s7d 1670.2795s4d 1697.4140s3d 1672.4661s6d 1670.9838s2d 1646.1449s2d 1662.5724s2d
24 3.642 7481.8620s8d 1826.3945s5d 1854.9344s4d 1828.6785s7d 1827.0129s3d 1799.7936s2d 1816.7905s2d
25 3.706 8140.7864s10d 1989.6781s6d 2019.6432s5d 1992.0540s8d 1990.2087s3d 1960.3291s2d 1977.8821s2d
26 3.737 8828.1870s11d 2160.1631s7d 2191.5744s6d 2162.6260s10d 2160.6084s4d 2127.7523s2d 2145.8531s2d
27 3.788 9544.1823s13d 2337.8867s8d 2370.7659s8d 2340.4308s11d 2338.2524s4d 2302.0690s3d 2320.7105s3d
28 3.775 10288.8852s14d 2522.8845s10d 2557.2545s10d 2525.5048s12d 2523.1804s5d 2483.2799s3d 2502.4606s3d
29 3.882 11062.4302s16d 2715.1990s12d 2751.0835s12d 2717.8887s14d 2715.4373s5d 2671.3953s4d 2691.1121s4d
30 3.929 11864.9387s19d 2914.8681s15d 2952.2921s14d 2917.6219s15d 2915.0647s6d 2866.4149s4d 2886.6710s4d
31 3.997 12696.5562s21d 3121.9374s17d 3160.9270s17d 3124.7482s17d 3122.1101s7d 3068.3490s5d 3089.1463s5d
32 4.074 13557.4194s24d 3336.4505s21d 3377.0326s20d 3339.3120s19d 3336.6198s8d 3277.2019s6d 3298.5455s6d
33 4.097 14447.6769s28d 3558.4534s24d 3600.6563s24d 3561.3595s21d 3558.6417s9d 3492.9789s6d 3514.8766s7d
34 4.140 15367.4898s31d 3787.9975s29d 3831.8504s28d 3790.9403s23d 3788.2282s10d 3715.6915s7d 3738.1493s8d
35 4.163 16317.0094s35d 4025.1299s33d 4070.6632s33d 4028.1039s25d 4025.4296s12d 3945.3434s9d 3968.3713s9d
36 4.188 17296.4192s40d 4269.9083s39d 4317.1536s39d 4272.9048s28d 4270.3027s13d 4181.9487s10d 4205.5535s10d
37 4.203 18305.8817s45d 4522.3843s45d 4571.3745s45d 4525.3963s31d 4522.9017s15d 4425.5121s11d 4449.7042s11d
38 4.220 19345.5859s50d 4782.6171s52d 4833.3863s52d 4785.6366s34d 4783.2864s17d 4676.0460s13d 4700.8341s13d
39 4.242 20415.7149s57d 5050.6650s60d 5103.2485s59d 5053.6844s37d 5051.5165s19d 4933.5584s15d 4958.9530s15d
40 4.270 21516.4668s55d 5326.5905s68d 5381.0250s68d 5329.6018s40d 5327.6554s20d 5198.0607s16d 5224.0715s16d
41 4.324 22648.0433s59d 5610.4577s77d 5666.7813s77d 5613.4528s44d 5611.7688s23d 5469.5645s18d 5496.2009s18d
42 4.409 23810.6519s62d 5902.3330s88d 5960.5850s88d 5905.3043s48d 5903.9244s25d 5748.0809s21d 5775.3522s21d
43 4.424 25004.531s17d 6202.287s10d 6262.509s10d 6205.2246s52d 6204.1909s28d 6033.6183s23d 6061.5361s23d
44 4.482 26229.8923s70d 6510.391s11d 6572.624s11d 6513.2865s57d 6512.6435s31d 6326.1923s26d 6354.7655s26d
45 4.494 27486.9801s75d 6826.721s13d 6891.009s13d 6829.5636s61d 6829.3559s34d 6625.8120s29d 6655.0515s29d
46 4.532 28776.0318s80d 7151.352s14d 7217.740s14d 7154.1338s67d 7154.4080s38d 6932.4920s32d 6962.4073s33d
47 4.544 30097.3149s85d 7484.366s16d 7552.902s16d 7487.0766s72d 7487.8800s42d 7246.2434s36d 7276.8451s36d
48 4.614 31451.0582s89d 7825.845s18d 7896.575s18d 7828.4762s78d 7829.8583s46d 7567.0825s40d 7598.3791s40d
49 4.617 32837.5878s96d 8175.878s20d 8248.854s20d 8178.4171s85d 8180.4275s51d 7895.0177s44d 7927.0210s45d
50 4.654 34257.139s10d 8534.551s22d 8609.825s22d 8536.9898s91d 8539.6807s56d 8230.0668s49d 8262.7860s49d
51 4.680 35710.024s11d 8901.957s24d 8979.582s24d 8904.2853s99d 8907.7097s61d 8572.2406s54d 8605.6870s54d
52 4.743 37196.518s12d 9278.192s26d 9358.224s26d 9280.402s11d 9284.6152s67d 8921.5582s60d 8955.7400s60d
53 4.750 38716.992s14d 9663.360s29d 9745.856s29d 9665.436s11d 9670.4938s73d 9278.0268s66d 9312.9573s66d
54 4.787 40271.720s16d 10057.560s32d 10142.578s32d 10059.495s12d 10065.4548s80d 9641.6688s72d 9677.3565s72d
55 4.804 41861.071s17d 10460.901s35d 10548.505s35d 10462.682s13d 10469.6042s87d 10012.4951s79d 10048.9515s79d
56 4.839 43485.362s19d 10873.493s38d 10963.744s38d 10875.111s14d 10883.0566s94d 10390.5244s87d 10427.7591s87d
57 4.855 45144.991s22d 11295.453s41d 11388.417s41d 11296.895s15d 11305.927s10d 10775.7699s95d 10813.7946s95d
58 4.877 46840.302s23d 11726.898s44d 11822.643s44d 11728.154s16d 11738.338s11d 11168.249s10d 11207.075s10d
59 4.892 48571.707s27d 12167.954s48d 12266.550s48d 12169.012s18d 12180.415s12d 11567.980s11d 11607.617s11d
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elementkp1·p2l taken from Ref.f18g. The known relativistic
part of this correction of ordersaZd4m/M f76g was also in-
cluded. The electron-electron interaction correction to the
one-electron nuclear recoil was taken into account in the
nonrelativistic limit. It was estimated ass−m/MdDE2el,
whereDE2el is the total two-electron correction.

In the last column of Table VI we present the total values
for the ionization energies, which are given by the sum of all

corrections mentioned so far. For lead, thorium, and ura-
nium, the total values include also the nuclear-polarization
correctionf77,78g. Analyzing the main sources of uncertain-
ties listed in the table, we conclude that in the low-Z region
the main error comes from the two-electron QED correc-
tions, namely, from the two-photon exchange contribution. In
the high-Z region, the main sources of uncertainty are the
one-electron two-loop QED correctionsmostly, the two-loop

TABLE VII. sContinued.d

Z rms 11S0 2 1S0 2 3S1 2 3P0 2 3P1 2 1P1 2 3P2

60 4.912 50339.584s28d 12618.747s52d 12720.266s52d 12619.597s19d 12632.289s13d 11974.978s12d 12015.438s12d
61 4.962 52144.29s13d 13079.400s59d 13183.918s59d 13080.042s20d 13094.094s14d 12389.262s13d 12430.556s13d
62 5.084 53986.108s37d 13550.033s60d 13657.626s60d 13550.485s22d 13565.972s15d 12810.851s15d 12852.989s15d
63 5.113 55865.914s39d 14030.847s65d 14141.597s65d 14031.071s23d 14048.068s17d 13239.759s16d 13282.754s16d
64 5.162 57783.891s41d 14521.952s69d 14635.942s69d 14521.948s25d 14540.534s18d 13676.008s17d 13719.872s17d
65 5.060 59741.10s58d 15023.59s11d 15140.91s11d 15023.273s27d 15043.530s20d 14119.615s18d 14164.359s18d
66 5.221 61736.549s50d 15535.696s79d 15656.424s79d 15535.201s28d 15557.211s21d 14570.602s20d 14616.238s20d
67 5.202 63772.42s15d 16058.688s87d 16182.923s87d 16057.906s30d 16081.757s22d 15028.985s22d 15075.526s21d
68 5.251 65848.240s61d 16592.584s90d 16720.420s89d 16591.557s32d 16617.337s24d 15494.787s23d 15542.245s23d
69 5.226 67965.248s67d 17137.671s95d 17269.208s95d 17136.339s34d 17164.142s26d 15968.028s25d 16016.416s25d
70 5.312 70123.037s79d 17693.98s10d 17829.32s10d 17692.432s36d 17722.353s28d 16448.730s27d 16498.060s27d
71 5.370 72322.90s22d 18261.82s11d 18401.06s11d 18260.034s39d 18292.173s30d 16936.911s29d 16987.197s29d
72 5.342 74565.930s87d 18841.45s11d 18984.72s11d 18839.356s41d 18873.816s32d 17432.596s31d 17483.851s31d
73 5.351 76852.016s97d 19432.98s12d 19580.38s12d 19430.601s44d 19467.488s34d 17935.805s33d 17988.042s33d
74 5.367 79181.93s10d 20036.63s13d 20188.28s12d 20033.992s47d 20073.415s36d 18446.562s35d 18499.795s35d
75 5.339 81556.90s17d 20652.72s13d 20808.75s13d 20649.763s49d 20691.838s39d 18964.890s38d 19019.133s38d
76 5.413 83976.20s12d 21281.25s14d 21441.77s14d 21278.140s52d 21322.983s41d 19490.813s40d 19546.080s40d
77 5.402 86442.5s1.3d 21922.77s26d 22087.93s26d 21919.390s58d 21967.125s47d 20024.353s43d 20080.658s43d
78 5.428 88955.17s15d 22577.32s15d 22747.25s15d 22573.763s59d 22624.515s47d 20565.536s46d 20622.894s46d
79 5.436 91515.81s17d 23245.29s16d 23420.13s16d 23241.535s63d 23295.437s50d 21114.387s49d 21172.811s49d
80 5.463 94124.69s18d 23926.85s16d 24106.75s16d 23922.987s66d 23980.176s53d 21670.931s52d 21730.437s52d
81 5.476 96783.19s20d 24622.39s17d 24807.51s17d 24618.420s70d 24679.038s57d 22235.193s56d 22295.796s55d
82 5.501 99491.84s21d 25332.14s18d 25522.63s18d 25328.141s74d 25392.336s60d 22807.201s59d 22868.917s59d
83 5.521 102251.76s24d 26056.44s18d 26252.48s18d 26052.477s79d 26120.401s64d 23386.979s63d 23449.823s63d
84 5.526 105064.30s39d 26795.70s20d 26997.45s19d 26791.774s83d 26863.588s68d 23974.556s67d 24038.543s66d
85 5.539 107930.0s1.4d 27550.16s32d 27757.81s32d 27546.382s91d 27622.252s76d 24569.961s71d 24635.107s70d
86 5.655 110847.35s55d 28319.72s22d 28533.44s22d 28316.637s93d 28396.733s76d 25173.224s75d 25239.546s75d
87 5.658 113823.03s52d 29105.74s22d 29325.74s22d 29103.011s98d 29187.516s81d 25784.368s79d 25851.881s79d
88 5.684 116854.73s97d 29908.00s27d 30134.49s27d 29905.87s10d 29994.968s87d 26403.426s84d 26472.146s84d
89 5.670 119945.7s2.2d 30727.28s45d 30960.47s45d 30725.67s12d 30819.564s99d 27030.427s89d 27100.369s88d
90 5.710 123094.1s2.1d 31563.44s45d 31803.55s44d 31562.83s12d 31661.71s10d 27665.406s94d 27736.588s93d
91 5.700 126304.8s2.6d 32417.56s53d 32664.84s53d 32417.87s13d 32521.97s11d 28308.383s99d 28380.820s99d
92 5.851 129570.30s64d 33288.51s24d 33543.15s24d 33291.14s13d 33400.67s11d 28959.41s10d 29033.12s10d
93 5.744 132911.0s3.2d 34180.26s64d 34442.59s64d 34183.55s15d 34298.74s13d 29618.49s11d 29693.49s11d
94 5.864 136305.1s2.4d 35088.99s50d 35359.21s50d 35095.18s15d 35216.27s13d 30285.68s12d 30361.98s12d
95 5.905 139769.54s75d 36018.13s25d 36296.53s25d 36026.93s15d 36154.18s12d 30961.00s12d 31038.63s12d
96 5.815 143310.9s4.2d 36969.20s86d 37256.14s85d 36979.57s19d 37113.26s17d 31644.49s13d 31723.45s13d
97 5.815 146916.9s4.6d 37940.11s94d 38235.86s94d 37953.43s21d 38093.82s19d 32336.19s14d 32416.50s14d
98 5.843 150592.6s5.1d 38932.1s1.0d 39237.0s1.0d 38949.28s23d 39096.68s20d 33036.12s14d 33117.81s14d
99 5.850 154343.9s5.6d 39946.7s1.2d 40261.0s1.1d 39967.97s25d 40122.69s23d 33744.33s15d 33827.41s15d

100 5.857 158171.1s6.1d 40984.1s1.3d 41308.3s1.3d 41010.25s27d 41172.62s25d 34460.86s16d 34545.33s16d
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TABLE VIII. Comparison of theoretical and experimental transition energies. Units are cm−1 or eV as
noted.

Z This work Planteet al. f21g Chenet al. f20g Johnsonet al. f19g Experiment Reference

2 3P0–2 3S1 transition, in cm−1 unless specified

12 95848s1d 95847 95848 95848 95851s7d f80g
14 113809s2d 113809 113809 113809 113807s4d f81g

113815s4d f82g
15 122956s2d 122955 122955 122953s9d f81g
16 132220s2d 132219 132219 132219 132214s7d f83g

132198s10d f82g
18 151158s3d 151155 151156 151155 151164s4d f84g

151204s9d f85g
26 233484s10d 233469 233471 232558s550d f86g
36 356891s39d 356822 356828 356823 357400s260d f87g
92 252.01s27d eV 252.79 252.77 260.0s7.9d f88g

2 3P2–2 3S1 transition, in cm−1

12 100253s1d 100252 100253 100252 100263s6d f80g
14 122744s1d 122743 122743 122743 122743s3d f81g

122746s3d f82g
15 135154s1d 135151 135151 135150s5d f81g
16 148499s1d 148496 148497 148496 148498s4d f83g

148493s5d f82g
18 178581s2d 178576 178578 178576 178589s5d f84g

178591s31d f85g
20 214179s2d 214170 214174 214170 214225s45d f89g
22 256696s3d 256683 256688 256683 256746s46d f90g
26 368767s6d 368742 368752 368742 368976s125d f86g
28 441942s9d 441908 441920 441907 441950s80d f91g
36 900116s33d 900009 900044 900008 900010s240d f87g

2 3P1–2 3S1 transition, in cm−1

12 96682s1d 96680 96681 96683s6d f80g
13 106026s1d 106025 106023s7d f80g

2 3P1–2 1S0 transition, in cm−1

14 7229s2d 7231 7230.5s2d f92g
2 3P0–2 3P1 transition, in eV unless specified

12 834s1d cm−1 833 833 833.133s15d f93g
28 2.324s1d 2.323 2.325 2.33s15d f94g
47 0.803s8d 0.801 0.789 0.79s4d f95g
64 18.586s31d 18.571 18.548 18.57s19d f96g

1 1S0–2 1P1 transition, in eV

16 2460.629 2460.628 2460.649s9d f97g
18 3139.582 3139.580 3139.553s38d f98g
19 3510.462s1d 3510.459 3510.58s12d f99g
21 4315.412s1d 4315.409 4315.54s15d f99g
22 4749.644s1d 4749.639 4749.74s17d f99g
23 5205.165s1d 5205.154 5205.27s21d f99g

5205.10s14d f100g
24 5682.068s1d 5682.061 5682.32s40d f99g
26 6700.435s1d 6700.423 6700.73s20d f99g

6700.90s25d f101g
32 10280.218s3d 10280.185 10280.70s22d f102g
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self-energy correctiond and the experimental values for the
rms nuclear radii.

In Table VII, the total ionization energies ofn=1 and 2
states of He-like ions withZ=12–100 are listed. We start our
compilation withZ=12 since this is the point where the ad-
ditional terms accounted for in our calculationf,a2saZd4g
become comparable with omitted higher-order effects
f,a3saZd2g.

In Fig. 5, our results are compared with the theoretical
values obtained previously in calculations of different types
f18,21,24g. Since our evaluation is the first one complete to
the ordera2saZd4, it is interesting to analyze the difference
between various calculations in units ofa2saZd4. First of all,
we note a significant deviation of our values from the recent
results by Cheng and Chenf24g, which arises from an in-
complete treatment of QED corrections employed in that
work. The authors evaluate the QED correction to all orders
in aZ at the one-loop level, employing a symmetric model
potential in order to account for the electron-electron inter-
action. This approximation works reasonably well in the
high-Z region, but for ions with 22øZø36 sas presented in
the paperd, the accuracy of this approximation turns out to be
lower than that of Drake’s approach based on the exactaZ
expansionf18g. We mention that a previous investigation by
these authorsf20g employed the QED correction as evalu-
ated by Drake. Its results agree well with those by Planteet
al. f21g and thus are in a better agreement with our numerical
values.

For the1S0 and 23P0,1 states, we observe also a distinct
deviation of our ionization energies from the results by
Drake f18g. A similar deviation was reported previously in
the literaturef19–21g, where it was attributed to corrections
of order a2saZd4 to the electron-electron interaction that
were not accounted for by Drake’s unified method but can be
sto a certain extentd included by methods based on the no-
pair QED Hamiltonianf79g. Irregularities of theZ depen-

dence of the plotted difference, which can be observed forS
states in the medium- and high-Z region, are explained by
more recent values for the rms nuclear radii employed in the
present calculation.

As can be seen from Fig. 5, the best agreement is found
with the calculation by Planteet al. f21g. It is to be noted that
the results by Johnson and Sapirsteinf19g and by Chenet al.
f20g obtained by different methods but on the same level of
sophistication are in a very good agreement with the ones by
Plante and co-workers. Whereas all these results are incom-
plete to ordera2saZd4, we conclude that the remaining con-
tribution of this order is rather small for alln=2 states,
which explains the good agreement of these results with the
experimental data. Only for the 11S1 state do we observe a
significant additional contribution of about 0.5a2saZd4. We
mention, however, that despite the good agreement observed
for then=2 states, the results by Planteet al.are well outside
the estimated error bars of the present theoretical values for
most middle- and high-Z ions.

In Table VIII, we list transition energies for which experi-
mental results are available. Comparison is made with the
MBPT calculation by Johnson and Sapirsteinf19g, with the
CI calculations by Chenet al. f20g, and with the all-order
many-body treatment by Planteet al. f21g. These studies are,
according to our analysis, the most complete ones among the
previous calculations. We recall that in all these investiga-
tions QED corrections were taken as evaluated by Drake
f18g. The difference between them, therefore, is related only
to the part arising from the no-pair Hamiltonian, often re-
ferred to as the “structure” part.

We observe a generally good agreement of theoretical
predictions with experimental data. Despite the significant
amount of available experimental information, the experi-
mental uncertainty in the region ofZ under consideration is
generally larger than the difference between the calculations
analyzed in Table VIII. Among few exceptions are the recent
high-precision measurements of the 23P1–2 1S0 transition

TABLE VIII. sContinued.d

Z This work Planteet al. f21g Chenet al. f20g Johnsonet al. f19g Experiment Reference

36 13114.470s4d 13114.411 13115.31s30d f103g
13114.68s36d f104g

54 30630.051s17d 30629.667 30629.1s3.5d f105g
92 100610.89s65d 100613.924 100626s35d f106g

1 1S0–2 3P1, in eV

18 3123.534 3123.532 3123.522s36d f98g
23 5180.326s1d 5180.327 5180.22s17d f100g
26 6667.579s1d 6667.564 6667.50s25d f101g
32 10220.800s3d 10220.759 10221.80s35d f102g
36 13026.117s4d 13026.044 13026.8s3d f103g
54 30206.265s18d 30205.852 30209.6s3.5d f105g
92 96169.63s65d 96172.427 96171s52d f106g

1 1S0–2 3P2, in eV

23 5188.738s1d 5188.730 5189.12s21d f100g
1 1S0–2 3S1, in eV

23 5153.896s1d 5153.889 5153.82s14d f100g
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energy in siliconsZ=14d f92g and the 23P0–2 3P1 transition
energy in magnesiumsZ=12d f93g, whose accuracy is much
higher than that of the theoretical predictions. However, at
these relatively low values ofZ, our treatment is basically
equivalent to the previous studies, and the difference be-
tween the calculations cannot be effectively probed in com-
parison with these measurements. WhenZ increases, devia-
tion of our values from the results of the previous studies
becomes more prominent, but the experimental uncertainty is
much lower for higherZ. A compromise is found to be argon
sZ=18d, where the experimental determination of the
2 3P0,2–2 3S1 transition energies by Kuklaet al. f84g demon-
strated a 2s deviation from the previous theoretical results.
Our calculation brings the theoretical and experimental re-
sults into agreement for the 23P0–2 3S1 transition and re-
duces the discrepancy for the 23P2–2 3S1 transition to 0.5s.

An important feature of He-like ions is that they provide a
possibility to study the effects of parity nonconservation
f10,11g. The 21S0–2 3P0 transition in the He-like Eu ionsZ
=63d is presently considered as the best candidate for future
experimentsf13g. The effect is enhanced by the fact that the
2 1S0 and 23P0 levels cross each other in the vicinity ofZ
=63. Another crossing point of the levels occurs aroundZ
=90. The energy difference for ions near this crossing point
can be, in principle, reduced even further by choosing the
appropriate isotopef12g. In Table IX we list the results of
different theoretical evaluations for the 23P0–2 1S0 energy
difference in ions near the crossing points. A significant dis-
crepancy is observed between different theoretical evalua-
tions, which is due to the smallness of the energy difference
for these ions. We mention a significant deviation of our
values from the recent results by Andreevet al. f42g. In that
work, the authors performed anab initio calculation of the
two-photon exchange correction, whose numerical values
agree well with those obtained in this paper. However, evalu-

ating the total transition energy, the authors used an estima-
tion for the screened self-energy correctionsthat was not
calculated at that momentd, which is the main source of the
disagreement observed.

SUMMARY

In this investigation we performedab initio QED calcu-
lations of the screened self-energy correction and the two-
photon exchange correction forn=1 and 2 states of He-like
ions with Zù12. This evaluation completes the rigorous
treatment of alltwo-electronQED corrections of ordera2 to
all orders inaZ and significantly improves the theoretical
accuracy for the energy values, especially in the high-Z re-
gion. Unlike previous calculations, the results obtained are
complete through ordera2saZd4; uncalculated terms enter
through three-photon-exchange QED effectsf,a3saZd2 and
higherg and through higher-order one-electron two-loop QED
correctionsf,a2saZd7 and higherg.
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