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Newtonian adiabatics unified
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Newtonian adiabatics is the consistent truncation of the adiabatic approximation to second order in small
velocities. To be complete, it must unify two hitherto disjoint intellectual streams in the study of adiabatic
motion. The newer stream focuses on Berry’s induced vector potential, or geometric magnetism, and Provost
and Vallée’s induced scalar potential, reflecting geometry in Hilbert space. The older stream focuses on Inglis’
induced inertia, influencing the geometry of adiabatic-parameter space. Starting with the Hamiltonian of the
newer stream, unification is simple: A naive or primitive inertia, whose inverse appears in two terms of that
Hamiltonian, is replaced by the convention-independent sum of primitive and induced inertia tensors.
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[. INTRODUCTION—NEWTONIAN “TOY MODELS” tent description of the relative motion between a current-loop

) ) ) ) . magnet and an electric charge. Thus we have a demonstra-
The dynamics of electrically charged particles interactingjgp, by example that, in cases where there is more than one

through the electromagnetic field has a natural expansion igcaje for measuring velocities, a second-order truncation in
the velocities of the particles. An all-order expansion in V€-yelocity might not be enough to give a consistent descrip-

locities is at best asymptotic in character, because already gbn. This does not contradict the main points of the present

third order in velocity one has radiative processes implyingyaper, that accounting of terms up to second order is at least
dissipation of the purely particle energies, and hence a Norkecessary for consistent truncation, and that there is a sys-
closed system. Nevertheless, at second order in velocity thefgmatic way to obtain the unique form of this truncation.

is a consistent truncation of the dynamics involving only the ¢ picture seems quite similar for the case of the adia-

particle degrees of freedom. The electric interactions amongtic approximation, giving an effective action for slow de-

particles are given by static Coulomb potentials, while theyees of freedom after “integrating out” fast degrees of free-
magnetic interactions are given by a less familiar form, thejom |n the same sense as for electrodynamics, stopping the
Darwin Lagrangiari1]. . ) _adiabatic expansion at second order gives a consistent trun-
This truncated theory is naturally described as Newtoniaation. Of course, as the terms in the expansion are obtained
electrodynamics, involving as it does kinetic energies quapy perturbation in the velocity, one is entitled to the position
dratic in velocities, and interactions among particles whichat even an internally consistent truncation is logically un-
are instantaneous, so that there is no place for retardation Ristified, because the perturbation expansion has no finite
radiation. In modern parlance, such a theory might be Ca”e‘étopping point. However, the beauty and simplicity of the
a “toy model,” because important features of the full dynam+yncation are so appealing that its internal consistency
ics still need to be included. Nevertheles_s, literally for cen-geems a more than adequate reason to consider it separately.
turies Newtonian theory was a cornucopia of powerful deewtonian dynamics, including Newtonian electrodynamics,
velopmen'ts in physics, .and_ even today is th? basis fof)rovides an alluring indicator of the potential value in such
presentations of mechanics in introductory physics coursesy, approach. The main point of the present paper is to pro-
Thus, this is a toy with great value and useful applications. I\ige 'a complete second-order truncation, because different
is true that for accelerating charged particles, there alwayg,orks in the literature omit one or another part. Let us begin
will be some radiation. Even for electrically neutral objectsby enumerating those partall having geometric interpreta-

interacting through gravity, there also is inevitable, if U”Ob'tions) which go beyond the original Born-Oppenheimer ap-
servably small, radiation. Still, the Newtonian apprOXimatiO”proximation[z].

for gravitational systems has proven an enormously rich

framework, eminently justifying its continued use even

though we know it is incomplet@ot only omitting radiation Il. GEOMETRIES OF NEWTONIAN ADIABATICS
but also other relativistic effects such as the Einstein contri-
bution to the precession of the perihelion of Merguiy the
Darwin Lagrangian, among all terms second order in ratio

Geometry intertwined with dynamics is a pervasive theme
in modern physics: General relativity identifies gravity with

" L L The geometry of spacetime. Electrodynamics and other gauge
of velocities to the speed of light is a contribution fourth theories, as seen in the context of quantum mechanics, are

Ohrde.r in .v:alocity, C]?min% ”Om. ItheAveIobcity—de(pj)ebndeCn?e Ofrelated to the differential geometry of a map between points
the nertial mass of each particle. As observed by Colemag), spacetime and directions in an abstract space. In this ap-

and Van VlecK 1], this contribution is essential for a consis- proach, a vector potential is seen as a connection character-

izing how the map rotates under infinitesimal motions in
spacetime, and the corresponding field strength is simply the
*Email address: goldhab@insti.physics.sunysb.edu curvature of that connection. A second theme receiving con-
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tinually increasing recognition is the importance of approxi-motion is slow enough to make the adiabatic approximation
mation schemes based on averaging over fast degrees afcurate, but not so large that the effects of adiabatically
freedom to obtain the dynamics for any remaining slow deinduced forces are negligible. Secondly, the large inertia may
grees of freedom. In the context of nonrelativistic physicsbe primitive, i.e., associated with explicit degrees of freedom
this usually is described as an adiabatic approximation, whilgn the full action, or induced, i.e., a consequence of the

in the context of relativistic quantum field theory, the moreye|ocity-dependent coupling associated with the adiabatic
common label would be by the result, called an effective,ariation of parameters.

actions quadratic in time derivatives of the fields, and thusy the latter type has been known for decades. Nevertheless,
are examples of the Newtonian truncation in the sense usefle simplicity, universality, and especially the geometry as-

here, even though of course they are fully relativistic. sociated with induced inertia seem yet to be accorded the
A striking connection between the themes of geometryyige recognition they deserve.
and adiabatics is Berry's discovef§] that adiabatic varia- To compute induced inertia, we need to consider system-

tion of parameters in a Hamiltonian induces effective Vectoratically contributions to the energy through second order in
potentials appearing in the kinetic momenta conjugate tQne velocity of slow coordinates, i.e., beyond what is needed
such parameters or cooro!lnates. Becaus_e the structure of_ thSt the scalar potentigkeroth order in velocityor the vector
parameter space determines the effective vector pOte”t'ab%tential (first order in velocity, though locally ambiguous
and resulting effective magnetic fields, Berry describes thgecause of gauge freedpniet us examine a little more
phenomenon as “geometric magnetism.” From the perspegarefully the orders in small parameters of the relevant geo-
tive of the previous paragraph, it also would be reasonable tgetric contributions to the Hamiltonian. Berf$] consid-
use the term “inducedgaugé geometry,” as any gauge in- ered the limit|V|T fixed, T—, where T is the time for
teraction may be interpreted geometrically. completion of a cycle in parameter space. However, one may
There is still another kind of geometry found by Provostgisg takeT fixed and finite, so that the area enclosed by the
and Vallée[4] shortly before Berry's work: In addition to the cyclic orbit becomes small in the limit of small velocity. In
vector potential, there is a scalar potential, which also exthat case, assuming that the fast varialigesh as a large but
presses a geometric structure, slowly precessing spjrare of macroscopic or classical mag-
® =12Q, g;i/2 (1) nitude,. it is stra_lighftforward to shpw t_hat thguantum sca!ar
= potential contribution to the action 42T, that of the in-
where in the Hamiltonian for the slow variables the kineticduced Berry flux is<V?T?, and the quadratic contribution to
term isK=P;Q;;P;/2. The “metric” g; measures the infini- be discussed below isV2T. Thus for fixedT the inertial
tesimal distancein Hilbert space between instantaneous term and the Berry term are comparable, and clearly both
fast-variable eigenstates corresponding to an infinitesimahould be included in a consistent scheme. Clearly if the fast
change in the values of the adiabatic parameters. As gyjch, variables are quantum in scale, then all three terms should be
of course is intrinsically positive, as is the inverse inertiataken into account.
factor Q;; which multiplies it, so thatb itself always is posi- Second-order terms in velocity have the same form as
tive. A classical interpretation of this potential was given byconventional kinetic energies, so that if the slow variables
Aharonov and Sterfi5] for the case of a particle with spin specify coordinates of a massive particle, there already is
and magnetic moment passing through a region in which theuch a term present. If there is no such primitive quadratic
magnetic field varies slowly in direction, allowing applica- term, but one wishes to identify the slow parameters as col-
tion of the adiabatic approximation. The scalar potentiallective variables, then it is essential to obtain from the adia-
comes from mean-square oscillation of a component of théatic evolution itself precisely such a kinetic term. Even if
spin perpendicular to the magnetic field direction. The reasothere were a primitive contribution, one should expect it to
that in the original discussidr] this term vanishes with is  be supplemented by an induced contribution.
that the spin is assumed to be aligned along the magnetic Berry[6] discussed the systematic expansion of the total
field as well as quantum mechanics can allow, so that thehase associated with an arbitrarily slow cyclic motion in
mean-square perpendicular components of the spin are prpowers of the velocity. He observed that, unlike the case of
portional to#, and would disappear in the classical limit. An ordinary time-independent perturbation theory for a finite
amusing technical point is that in this example, the secondystem, the adiabatic expansion is an asymptotic series,
factor7 in Eq. (1) is compensated by a large magnetic quan+ather than a Taylor series with a finite radius of conver-
tum number to give a nonvanishing classical spin. gence: There is an exponentially small probability of nona-
The existence of these beautiful if exotic geometricaldiabatic jumps, and this implies an essential singularity at
structures raises the question of whether adiabaticity genereero velocity. Nevertheless, for sufficiently small velocity,
cally induces or perhaps modifies more conventional geomthe first few terms of the series can give an accurate descrip-
etry, namely that of the space of slow parameters. This spad®n of the evolution. These considerations imply that for a
is analogous to the space of possible locations of a particleself-contained dynamics, one at least should go to second
in which geodesic paths are the trajectories followed if noorder in the expansion, so as to determine completely the
explicit forces are acting. In other words, the metric is giveninertia tensor of the slow degrees of freedom: The inertia is a
by the inertia tensor for the slow parameters. There are tw@rerequisite for obtaining observable consequences from the
key aspects of this inertia. First, it must be large, so thavector and scalar potentials.
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I1l. INDUCED INERTIA, THE FINAL PIECE IN Let us rewrite the expression one more time, as
NEWTONIAN ADIABATICS o
AE,=Z;VV'/2, (10
Consider the general problem specified by a time- o
dependent Hamiltonian, where this implies
H(®)[) = i (d[y)/db). 2 T;=2Re 2 n|P|m(m[Pjn)/(Ey-E,). (1)
m,m#n
If the rate of change fa is slow(and its eigenvalues do not ) ) o
changg, then in the vicinity of any time, we may write The inertia tensof;; plays the role of a metric in the space
of coordinatesX', as the principle of least action implies that
l(t)) = U]y (1)), (3 in the absence of explicit forces the motion follows a geode-

sic path as determined k% Of course, if there were also a
primitive quadratic term in the velocities, then it would be
the sum of the primitive and the induced contributions to the
inertia which would constitute the metric. Equatici) rep-
resents the key result. It implies, as asserted earlier, that for
H' =H(ty) +V - P, (4)  motion of an instantaneous ground state, the inertia tensor or
spatial metric receives an intrinsically positive contribution.
Near a crossing point of two instantaneous energy levels,
(m|P;|n) = = iA{m| ai|n), (5  Where of course the adiabatic approximation must fail, the
_ } Berry vector potential diverges as the inverse first power of
with n#m, andV'=4X', the(slow) velocity of motion inthe  distance from the crossing, while the scalar potential di-

where one has by definitiod(t;)=1, andUTHU is time-
independent. This gives a familiar time-independent pertur
bation theory problem to determing’(ty)). The equivalent
“perturbed” Hamiltonian is

where the matrix elements of the operatBrsare defined by

space of parameteis. verges as the inverse second poWBr Because of the extra
To first order inV, the wave function is given by energy denominator, the inertia tensor diverges as the inverse
i, _ third power(slowing the response to applied forges
|lto)) = i (1)) = [n) + 2 ar| ), ©®) All these effects combine to protect the ground state from
with againm+n, and too close an approach to any such crossing, giving a self-
enforcement of the adiabatic approximation. On the other
am=V - (M[P|n)/(E, - Epy). () hand, for the higher of two states near a level crossing, the

This means that the instantaneous eigenfunction to first ord&ector andzscalar potentials continue to give positive or re-
in V is not simply the eigenfunction of the instantaneousPulSive 147 effects, but the induced contribution to the in-
Hamiltonian. What we want to know is the shift in energy to €ia NOW is negative, by itself generating what with repul-
second order itv implied by this shift in the wave function. SIVe forces becomes an acceleration towards the level
We have arrived at the crucial juncture in the Ca|cu|ation_crossmg,_and there_fore.a.possmlllty of breakdown rather than
Although ¢ is not an eigenstate df, it is H which appears presr?rvakt)lon o(;_admbatlc[ty. hanical. whether th
in the Schrédinger equation, and therefore the desired energy | N€ @bove discussion is quantum-mechanical, whether the

must be computed from the expectation V. t , ow variables are collective or are thosg of .massive. “el-
P P Al (1)) ementary” particles. When adiabatic motion is associated

AE, =2 |am Em-Ey), (8)  Wwith classical collective variables, for example degrees of
freedom characterizing a soliton configuration of classical
which evidently is positive ifin) is the ground state with fields, then there is a well-known procedure for computing
respect to the fast variables. Using the definitioragf one  the kinetic energy in terms of the classical action for the
may rewrite the energy shift in a suggestive form, fields and identifying this kinetic energy as a quadratic form
in the time derivatives of the collective coordinaf&$ This
AE, = % KmlV - P/ (B~ Ey). ©) gives a nice continuity between quantum and classical treat-
ments of such phenomena. In both regimes, of course, the
This should look very familiar, as it differs only in sign from inertia is intrinsically positive if the associated structure for
the well-known expression for the second-order energy shifzero velocity is stable.
in conventional time-independent perturbation theory. Just as An illustration of the quantum procedure for the case of
the negative sign in the latter case may be understood asallective coordinates is the Inglis cranking model, intro-
consequence of level repulsion by mixing potentials, so theluced to describe the low-lying rotational bands in deformed
positive sign here makes excellent physical sense: If onauclei[9]. The general formul&ll) was evaluated for slow
“wobbles” the slow parameters for a system in its instantarotation of the symmetry axis of a spheroidal harmonic-
neous ground state with respect to fast variables, that wolsscillator potential containing a Fermi gas of nucleons, with
bling can only raise the energy. It might be interesting tothe result that the moment of inertia takes its rigid-body
study the relationship between the different behaviors fovalue. Later work on the collective model of nuclei intro-
time-independent perturbation theory and adiabatic perturbatuced an attractive pairing force between nucleons, yielding
tion theory of the shifts in neighboring energy levéispul-  substantially lower and more phenomenologically acceptable
sive or attractive and the behaviors of the corresponding values of this inertid10]. A systematic algebraic formulation
series(convergent or divergeht of the Inglis cranking model was described by Lipkin, de
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Shalit, and Talm{11], who obtained a refinement taking ac- inertia, they did not use it also to modify the Provost-Vallée
count of the “center-of-mass” correction—the orientation ofscalar potential, as is advocated in the next section of the
the nuclear deformation axis is redundant with the full set oforesent paper.
coordinates of all the individual nucleons. This of course A simple application of induced inertia comes from the
becomes irrelevant if the slowly varying coordinate is assoalmost trivial problem of the free motion of a hydrogen
ciated with an elementary particle of large mass. atom. By Galilean invariance, the kinetic energyKis (M

A case of the latter sort was treated by Littlejohn and+m)V?/2, where the two masses are those of the proton and
Weigert (LW) [12], who pursued further the considerations the electron, respectively. In the adiabatic formulation, the
of Aharonov and Sterii5] on a neutral particle with spin  first term is primitive, and the second must be induced by the
(and parallel magnetic momgnhoving through a region in  motion of the center of the Coulomb potential influencing the
which a strong magnetic field varies slowly both in magni-electron. According to the general formutkd), this gives
tude and direction. LW found a term in the energy propor-
tional to the square of the momentum, in addition to the — M&; = 2/i?Re >, (= idy(n)|m}(m| = idxiln}/(Ey— Ep),
usual kinetic energy of the massive particle. Thus the kinetic (14)
energy is changed, though only slightly, from the case with-
out the variable field. Let us use E(L1) to obtain the LW Where X; is the proton coordinate. Because of translation
result. In terms of the particle coordinates, the operator wénvariance, we may substitute for the gradient with respect to

need is the proton coordinate the negative gradient with respect to
the electron coordinate. Consequently, with a little rearrange-
SH=(V - V)é .S, (12) ment the relation may be expressed in the form
~ = 2 i ] -
whereV is the particle velocityB is a unit vector in the gj = (2m'h )2 (X [m)(mix' | (Eq, ~ Ep). (15

direction of the magnetic fiel®8, andS is the particle spin.
Substituting into the formul&9), for a state labeled by spin
projectionm onto the direction oB, we obtain

This is nothing but the well-known Thomas-Reiche-Kuhn
energy-weighted sum rule for electric dipole transitions, the
ancestor of a host of sum rules extending all the way to
- high-energy physics in the the analysis of phenomena such
AE(m) =[(V - V)B](1/gB) as deep inelastic lepton scattering. The TRK sum rule is eas-

x[|(m=-1SJm)> - |(m+1/SJm)|?], (13) ily derived by elementary commutation relations of the po-

sition coordinate operator with the Hamiltonian and the mo-

where the bracket has the valé#idm/2, and -gBmis the  mentum. For an atom wit# electrons, the left-hand side of
interaction energy of the spin with the magnetic field. Thisthe sum rule would be multiplied b¥, so that it counts the
expression is identical to that obtained by LW, except for thenumber of constituents of the atom contributing to photoex-
sign. In their analysis, the sign of the extra term is negativecitation [14].
for positivem. That apparent discrepancy has a trivial expla- The analysis presented above indeed rounds out the pic-
nation: Their expansion uses momentum rather than velocityure of induced geometry associated with adiabatic interac-
and because the mass appears in the denominator when kiens, adding to gauge geometry and Hilbert space geometry
netic energy is expressed in terms of momentum, an increagke even more venerable geometry of ordinary coordinate
in effective mass becomes a negative contribution to the erspace. In general, all these geometrical effects may appear in
ergy expressed in terms of momentum. They, like Berry inany system. They all do in the LW case, but even models of
his discussion of asymptotic expansions in powers of theollective nuclear rotation include examples with a nonzero
velocity [6], do not discuss explicitly the significance of the projection of the nuclear angular momentum onto the defor-
sign of the quadratic energy term. Therefore, we may conmation axis, and hence a Berry vector potenti@here is
sider the argument here as explaining in terms of basic prinalso a scalar potential, but it is independent of the slow vari-
ciples a sign which was an issue of no special concern imbles, and therefore at best could be observed in transitions
their work. between instantaneous fast-variable eigensjatemmally,

For Inglis, of course, the sign was crucial, as a net negathe calculation ofZ appears to be higher order in the slow
tive moment of inertia yields an instability against increasevelocity than the(linear) construction of the Berry vector
of angular momentum, and is physically unacceptable apotential. However, as the effect of that potential on motion
well as clearly unrelated to experiment. Thus he obtained thef the slow particles requires understanding of the kinetic
correct sign because he knew what it should be, and tacitlgnergy for its manifestation, the second-order terms surely
reversed the sign of the standard, negative, stationary-statge necessary for a self-contained description of the geom-
second-order perturbation energy. The arbitrariness wastry of adiabatic phenomena.
noted and corrected afterwards, in a manner outlined by Having acknowledged this principle, we still should note
Goeppert-Mayef13]. Actually the result mentioned earlier a quantitative aspect which is so important that it is tanta-
of a rigid-body value for the inertia only was worked out mount to a qualitative distinction: Unless the entire inertia
explicitly in [13]. This discussion makes clear that the “newtensor is generated adiabatically, the adiabatic modification
term” of LW represents an independent discovery of inducef the metric may be unobservably small, being clearly of
inertia, nearly 40 years after it was introduced by Inglis.higher order in its effects than the Berry vector potential. For
Perhaps because they did not identify this effect as induceexample, in the LW case, if the spinning particle has approxi-
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mately a Dirac gyromagnetic ratio, then the induced shift intential also comes from gradients of the path-depentdent
the metric will be The effect of including induced inertia should be obvious
. at this point: One rewrites Eq17) as
8TIT=0O(2m(VB)?|B|), (16) ~ L~
where herdB| is measured in units of an Aharonov-Bohm Hert=Ve.o+ (P~ Ag)iQy(P = Ag) /2 + 776, Qy/2,
quantum of flux. This quantity inevitably is much smaller (18

than unity for any reasonable setup. That may well be theaying exchanged the primitive and convention-dependient
reason why its existence was overlooked for so long beforf? L= . ~ =4
LW. An open question is whether there exist systems where> the complete quantitf, hence replacin by Q=7"".

' Thus the Newtonian adiabatic Hamiltonian is determined

the primitive and the induced contrlbutlon_s to the inertia areby the ordinary geometrgboth primitive and inducedbf the
comparable, so that both must be taken into account for an .
pace of slow parameters, as well as by the induced or geo-

accurate description of the motion. A promising place to look®

for such comparable contributions might be the motion ofmetrlc vector and scalar potentials, all in a coherent and con-

quasiparticle excitations in a strongly correlated medium.S'Stent pattern.

Whatever the general answer to the question may be, the
induction in adiabatic processes of all conceivably relevant

. . . - V. OUTLOOK
types of geometryincluding ordinary spatial geomejnap-
pears inescapable. While it is worth recording the complete Newtonian adia-
batic “package,” the really interesting question is whether
IV. FULL NEWTONIAN ADIABATIC HAMILTONIAN this package could provide any new insights into physical

. . systems, and thus be something more than a mere catalogue
Let us conclude with a comprehensive scheme for COMgr The pest prospect for such a development may be in
putapon of gdlabatlc quantum dynamlcs'through second _Orénalysis of strongly correlated systems, their ground states,
der in velocity. To weave together the discussion here withy 4 sjmple excitations. Here is an analogy: In classical elec-
previously identified elements, one begins with the cOmpUy,4ynamics, the hydrogen atom would be unstable against
tation of the induced inertia, and uses the tofalZ,imve  collapse, but quantum effects stabilize its ground state. This
+Tinducea 10 COMpute the inverse inert@=7"1. An interest- makes the Newtonian approximation quite accurate for the
ing point here is that in some cases there may be ambiguitground-state structure.
about what is primitive and what is induced inertfar ex- Similarly, perhaps the exponentially suppressed jumps in
ample, one might choose to redefine fast variables as describdiabatic dynamics would simply disappear if one were us-
ing, instead of motion with respect to a fixed frame, rathering the adiabatic approximation to describe a stable structure,
motion with respect to slow variablesut the sum should be such as a many-body ground state, or a state built on that
unambiguous. In terms of adiabatic perturbations, this stateground state with some fixed number of quasiparticles, each
ment seems quite natural: The primitive inertia is simply ancarrying a conserved charge. Again, the evident stability of
explicit (diagona) second-order perturbation of the zero- these configurations suggests that the Newtonian description
velocity Hamiltonian, while the induced inertia comes from may become accurate, once one treats the adiabatic param-
iterating a first-order off-diagonal perturbation. By changingeters as quantum variables. In particular, for such an enter-
choices of basis, one may shuffle contributions to theprise in the case of the fractional quantum Hall effect, where
second-order diagonal part between primitive and induced.with interactions neglected there is no inertia, induced inertia
The total adiabatic Hamiltonian in the context of the clearly becomes essential to the description.
newer(induced-potentialstream of adiabatics was presented
by Berry[15],
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