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Newtonian adiabatics is the consistent truncation of the adiabatic approximation to second order in small
velocities. To be complete, it must unify two hitherto disjoint intellectual streams in the study of adiabatic
motion. The newer stream focuses on Berry’s induced vector potential, or geometric magnetism, and Provost
and Vallée’s induced scalar potential, reflecting geometry in Hilbert space. The older stream focuses on Inglis’
induced inertia, influencing the geometry of adiabatic-parameter space. Starting with the Hamiltonian of the
newer stream, unification is simple: A naive or primitive inertia, whose inverse appears in two terms of that
Hamiltonian, is replaced by the convention-independent sum of primitive and induced inertia tensors.
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I. INTRODUCTION—NEWTONIAN “TOY MODELS”

The dynamics of electrically charged particles interacting
through the electromagnetic field has a natural expansion in
the velocities of the particles. An all-order expansion in ve-
locities is at best asymptotic in character, because already at
third order in velocity one has radiative processes implying
dissipation of the purely particle energies, and hence a non-
closed system. Nevertheless, at second order in velocity there
is a consistent truncation of the dynamics involving only the
particle degrees of freedom. The electric interactions among
particles are given by static Coulomb potentials, while the
magnetic interactions are given by a less familiar form, the
Darwin Lagrangianf1g.

This truncated theory is naturally described as Newtonian
electrodynamics, involving as it does kinetic energies qua-
dratic in velocities, and interactions among particles which
are instantaneous, so that there is no place for retardation or
radiation. In modern parlance, such a theory might be called
a “toy model,” because important features of the full dynam-
ics still need to be included. Nevertheless, literally for cen-
turies Newtonian theory was a cornucopia of powerful de-
velopments in physics, and even today is the basis for
presentations of mechanics in introductory physics courses.
Thus, this is a toy with great value and useful applications. It
is true that for accelerating charged particles, there always
will be some radiation. Even for electrically neutral objects
interacting through gravity, there also is inevitable, if unob-
servably small, radiation. Still, the Newtonian approximation
for gravitational systems has proven an enormously rich
framework, eminently justifying its continued use even
though we know it is incompletesnot only omitting radiation
but also other relativistic effects such as the Einstein contri-
bution to the precession of the perihelion of Mercuryd. In the
Darwin Lagrangian, among all terms second order in ratios
of velocities to the speed of lightc is a contribution fourth
order in velocity, coming from the velocity-dependence of
the inertial mass of each particle. As observed by Coleman
and Van Vleckf1g, this contribution is essential for a consis-

tent description of the relative motion between a current-loop
magnet and an electric charge. Thus we have a demonstra-
tion by example that, in cases where there is more than one
scale for measuring velocities, a second-order truncation in
velocity might not be enough to give a consistent descrip-
tion. This does not contradict the main points of the present
paper, that accounting of terms up to second order is at least
necessary for consistent truncation, and that there is a sys-
tematic way to obtain the unique form of this truncation.

The picture seems quite similar for the case of the adia-
batic approximation, giving an effective action for slow de-
grees of freedom after “integrating out” fast degrees of free-
dom. In the same sense as for electrodynamics, stopping the
adiabatic expansion at second order gives a consistent trun-
cation. Of course, as the terms in the expansion are obtained
by perturbation in the velocity, one is entitled to the position
that even an internally consistent truncation is logically un-
justified, because the perturbation expansion has no finite
stopping point. However, the beauty and simplicity of the
truncation are so appealing that its internal consistency
seems a more than adequate reason to consider it separately.
Newtonian dynamics, including Newtonian electrodynamics,
provides an alluring indicator of the potential value in such
an approach. The main point of the present paper is to pro-
vide a complete second-order truncation, because different
works in the literature omit one or another part. Let us begin
by enumerating those partssall having geometric interpreta-
tionsd which go beyond the original Born-Oppenheimer ap-
proximationf2g.

II. GEOMETRIES OF NEWTONIAN ADIABATICS

Geometry intertwined with dynamics is a pervasive theme
in modern physics: General relativity identifies gravity with
the geometry of spacetime. Electrodynamics and other gauge
theories, as seen in the context of quantum mechanics, are
related to the differential geometry of a map between points
in spacetime and directions in an abstract space. In this ap-
proach, a vector potential is seen as a connection character-
izing how the map rotates under infinitesimal motions in
spacetime, and the corresponding field strength is simply the
curvature of that connection. A second theme receiving con-*Email address: goldhab@insti.physics.sunysb.edu
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tinually increasing recognition is the importance of approxi-
mation schemes based on averaging over fast degrees of
freedom to obtain the dynamics for any remaining slow de-
grees of freedom. In the context of nonrelativistic physics,
this usually is described as an adiabatic approximation, while
in the context of relativistic quantum field theory, the more
common label would be by the result, called an effective
field theory. Note that effective field theories generally have
actions quadratic in time derivatives of the fields, and thus
are examples of the Newtonian truncation in the sense used
here, even though of course they are fully relativistic.

A striking connection between the themes of geometry
and adiabatics is Berry’s discoveryf3g that adiabatic varia-
tion of parameters in a Hamiltonian induces effective vector
potentials appearing in the kinetic momenta conjugate to
such parameters or coordinates. Because the structure of the
parameter space determines the effective vector potentials
and resulting effective magnetic fields, Berry describes the
phenomenon as “geometric magnetism.” From the perspec-
tive of the previous paragraph, it also would be reasonable to
use the term “inducedsgauged geometry,” as any gauge in-
teraction may be interpreted geometrically.

There is still another kind of geometry found by Provost
and Valléef4g shortly before Berry’s work: In addition to the
vector potential, there is a scalar potential, which also ex-
presses a geometric structure,

F = "2Qijgij /2, s1d

where in the Hamiltonian for the slow variables the kinetic
term is K=PiQij Pj /2. The “metric” gij measures the infini-
tesimal distancesin Hilbert spaced between instantaneous
fast-variable eigenstates corresponding to an infinitesimal
change in the values of the adiabatic parameters. As such,gij
of course is intrinsically positive, as is the inverse inertia
factorQij which multiplies it, so thatF itself always is posi-
tive. A classical interpretation of this potential was given by
Aharonov and Sternf5g for the case of a particle with spin
and magnetic moment passing through a region in which the
magnetic field varies slowly in direction, allowing applica-
tion of the adiabatic approximation. The scalar potential
comes from mean-square oscillation of a component of the
spin perpendicular to the magnetic field direction. The reason
that in the original discussionf4g this term vanishes with" is
that the spin is assumed to be aligned along the magnetic
field as well as quantum mechanics can allow, so that the
mean-square perpendicular components of the spin are pro-
portional to", and would disappear in the classical limit. An
amusing technical point is that in this example, the second
factor" in Eq. s1d is compensated by a large magnetic quan-
tum number to give a nonvanishing classical spin.

The existence of these beautiful if exotic geometrical
structures raises the question of whether adiabaticity generi-
cally induces or perhaps modifies more conventional geom-
etry, namely that of the space of slow parameters. This space
is analogous to the space of possible locations of a particle,
in which geodesic paths are the trajectories followed if no
explicit forces are acting. In other words, the metric is given
by the inertia tensor for the slow parameters. There are two
key aspects of this inertia. First, it must be large, so that

motion is slow enough to make the adiabatic approximation
accurate, but not so large that the effects of adiabatically
induced forces are negligible. Secondly, the large inertia may
be primitive, i.e., associated with explicit degrees of freedom
in the full action, or induced, i.e., a consequence of the
velocity-dependent coupling associated with the adiabatic
variation of parameters.

It will be seen a little later that at least one prominent case
of the latter type has been known for decades. Nevertheless,
the simplicity, universality, and especially the geometry as-
sociated with induced inertia seem yet to be accorded the
wide recognition they deserve.

To compute induced inertia, we need to consider system-
atically contributions to the energy through second order in
the velocity of slow coordinates, i.e., beyond what is needed
for the scalar potentialszeroth order in velocityd or the vector
potential sfirst order in velocity, though locally ambiguous
because of gauge freedomd. Let us examine a little more
carefully the orders in small parameters of the relevant geo-
metric contributions to the Hamiltonian. Berryf6g consid-
ered the limit uV uT fixed, T→`, where T is the time for
completion of a cycle in parameter space. However, one may
also takeT fixed and finite, so that the area enclosed by the
cyclic orbit becomes small in the limit of small velocity. In
that case, assuming that the fast variablesssuch as a large but
slowly precessing spind are of macroscopic or classical mag-
nitude, it is straightforward to show that thesquantumd scalar
potential contribution to the action is~"2T, that of the in-
duced Berry flux is~V2T2, and the quadratic contribution to
be discussed below is~V2T. Thus for fixedT the inertial
term and the Berry term are comparable, and clearly both
should be included in a consistent scheme. Clearly if the fast
variables are quantum in scale, then all three terms should be
taken into account.

Second-order terms in velocity have the same form as
conventional kinetic energies, so that if the slow variables
specify coordinates of a massive particle, there already is
such a term present. If there is no such primitive quadratic
term, but one wishes to identify the slow parameters as col-
lective variables, then it is essential to obtain from the adia-
batic evolution itself precisely such a kinetic term. Even if
there were a primitive contribution, one should expect it to
be supplemented by an induced contribution.

Berry f6g discussed the systematic expansion of the total
phase associated with an arbitrarily slow cyclic motion in
powers of the velocity. He observed that, unlike the case of
ordinary time-independent perturbation theory for a finite
system, the adiabatic expansion is an asymptotic series,
rather than a Taylor series with a finite radius of conver-
gence: There is an exponentially small probability of nona-
diabatic jumps, and this implies an essential singularity at
zero velocity. Nevertheless, for sufficiently small velocity,
the first few terms of the series can give an accurate descrip-
tion of the evolution. These considerations imply that for a
self-contained dynamics, one at least should go to second
order in the expansion, so as to determine completely the
inertia tensor of the slow degrees of freedom: The inertia is a
prerequisite for obtaining observable consequences from the
vector and scalar potentials.
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III. INDUCED INERTIA, THE FINAL PIECE IN
NEWTONIAN ADIABATICS

Consider the general problem specified by a time-
dependent Hamiltonian,

Hstducl = i"sducl/dtd. s2d

If the rate of change forH is slowsand its eigenvalues do not
changed, then in the vicinity of any timet0 we may write

ucstdl = Ustduc8stdl, s3d

where one has by definitionUst0d=1, andU†HU is time-
independent. This gives a familiar time-independent pertur-
bation theory problem to determineuc8st0dl. The equivalent
“perturbed” Hamiltonian is

H8 = Hst0d + V ·P, s4d

where the matrix elements of the operatorsPi are defined by

kmuPiunl = − i"kmu]Xiunl, s5d

with nÞm, andVi =]tX
i, thesslowd velocity of motion in the

space of parametersXi.
To first order inV, the wave function is given by

ucst0dl = uc8stodl = unl + o amuml, s6d

with againmÞn, and

am = V · kmuPunl/sEn − Emd. s7d

This means that the instantaneous eigenfunction to first order
in V is not simply the eigenfunction of the instantaneous
Hamiltonian. What we want to know is the shift in energy to
second order inV implied by this shift in the wave function.
We have arrived at the crucial juncture in the calculation.
Although c is not an eigenstate ofH, it is H which appears
in the Schrödinger equation, and therefore the desired energy
must be computed from the expectation valuekcuHst0ducl,

DEn = o uamu2sEm − End, s8d

which evidently is positive ifunl is the ground state with
respect to the fast variables. Using the definition ofam, one
may rewrite the energy shift in a suggestive form,

DEn = o
m

zkmuV ·Punlz2/sEm − End. s9d

This should look very familiar, as it differs only in sign from
the well-known expression for the second-order energy shift
in conventional time-independent perturbation theory. Just as
the negative sign in the latter case may be understood as a
consequence of level repulsion by mixing potentials, so the
positive sign here makes excellent physical sense: If one
“wobbles” the slow parameters for a system in its instanta-
neous ground state with respect to fast variables, that wob-
bling can only raise the energy. It might be interesting to
study the relationship between the different behaviors for
time-independent perturbation theory and adiabatic perturba-
tion theory of the shifts in neighboring energy levelssrepul-
sive or attractived and the behaviors of the corresponding
seriessconvergent or divergentd.

Let us rewrite the expression one more time, as

DEn = Ii jV
iVj/2, s10d

where this implies

Ii j = 2 Re o
m,mÞn

nuPiumkmuPjunl/sEm − End. s11d

The inertia tensorIi j plays the role of a metric in the space
of coordinatesXi, as the principle of least action implies that
in the absence of explicit forces the motion follows a geode-
sic path as determined byI. Of course, if there were also a
primitive quadratic term in the velocities, then it would be
the sum of the primitive and the induced contributions to the
inertia which would constitute the metric. Equations11d rep-
resents the key result. It implies, as asserted earlier, that for
motion of an instantaneous ground state, the inertia tensor or
spatial metric receives an intrinsically positive contribution.
Near a crossing point of two instantaneous energy levels,
where of course the adiabatic approximation must fail, the
Berry vector potential diverges as the inverse first power of
distance from the crossing, while the scalar potential di-
verges as the inverse second powerf7g. Because of the extra
energy denominator, the inertia tensor diverges as the inverse
third powersslowing the response to applied forcesd.

All these effects combine to protect the ground state from
too close an approach to any such crossing, giving a self-
enforcement of the adiabatic approximation. On the other
hand, for the higher of two states near a level crossing, the
vector and scalar potentials continue to give positive or re-
pulsive 1/r2 effects, but the induced contribution to the in-
ertia now is negative, by itself generating what with repul-
sive forces becomes an acceleration towards the level
crossing, and therefore a possibility of breakdown rather than
preservation of adiabaticity.

The above discussion is quantum-mechanical, whether the
slow variables are collective or are those of massive “el-
ementary” particles. When adiabatic motion is associated
with classical collective variables, for example degrees of
freedom characterizing a soliton configuration of classical
fields, then there is a well-known procedure for computing
the kinetic energy in terms of the classical action for the
fields and identifying this kinetic energy as a quadratic form
in the time derivatives of the collective coordinatesf8g. This
gives a nice continuity between quantum and classical treat-
ments of such phenomena. In both regimes, of course, the
inertia is intrinsically positive if the associated structure for
zero velocity is stable.

An illustration of the quantum procedure for the case of
collective coordinates is the Inglis cranking model, intro-
duced to describe the low-lying rotational bands in deformed
nuclei f9g. The general formulas11d was evaluated for slow
rotation of the symmetry axis of a spheroidal harmonic-
oscillator potential containing a Fermi gas of nucleons, with
the result that the moment of inertia takes its rigid-body
value. Later work on the collective model of nuclei intro-
duced an attractive pairing force between nucleons, yielding
substantially lower and more phenomenologically acceptable
values of this inertiaf10g. A systematic algebraic formulation
of the Inglis cranking model was described by Lipkin, de
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Shalit, and Talmif11g, who obtained a refinement taking ac-
count of the “center-of-mass” correction—the orientation of
the nuclear deformation axis is redundant with the full set of
coordinates of all the individual nucleons. This of course
becomes irrelevant if the slowly varying coordinate is asso-
ciated with an elementary particle of large mass.

A case of the latter sort was treated by Littlejohn and
Weigert sLWd f12g, who pursued further the considerations
of Aharonov and Sternf5g on a neutral particle with spin
sand parallel magnetic momentd moving through a region in
which a strong magnetic field varies slowly both in magni-
tude and direction. LW found a term in the energy propor-
tional to the square of the momentum, in addition to the
usual kinetic energy of the massive particle. Thus the kinetic
energy is changed, though only slightly, from the case with-
out the variable field. Let us use Eq.s11d to obtain the LW
result. In terms of the particle coordinates, the operator we
need is

dH = sV · = dB̂ ·S, s12d

where V is the particle velocity,B̂ is a unit vector in the
direction of the magnetic fieldB, andS is the particle spin.
Substituting into the formulas9d, for a state labeled by spin
projectionm onto the direction ofB, we obtain

DEsmd = fsV · = dB̂g2s1/gBd

3fzkm− 1uSxumlz2 − zkm+ 1uSxumlz2g, s13d

where the bracket has the value"2m/2, and −gBm is the
interaction energy of the spin with the magnetic field. This
expression is identical to that obtained by LW, except for the
sign. In their analysis, the sign of the extra term is negative
for positivem. That apparent discrepancy has a trivial expla-
nation: Their expansion uses momentum rather than velocity,
and because the mass appears in the denominator when ki-
netic energy is expressed in terms of momentum, an increase
in effective mass becomes a negative contribution to the en-
ergy expressed in terms of momentum. They, like Berry in
his discussion of asymptotic expansions in powers of the
velocity f6g, do not discuss explicitly the significance of the
sign of the quadratic energy term. Therefore, we may con-
sider the argument here as explaining in terms of basic prin-
ciples a sign which was an issue of no special concern in
their work.

For Inglis, of course, the sign was crucial, as a net nega-
tive moment of inertia yields an instability against increase
of angular momentum, and is physically unacceptable as
well as clearly unrelated to experiment. Thus he obtained the
correct sign because he knew what it should be, and tacitly
reversed the sign of the standard, negative, stationary-state
second-order perturbation energy. The arbitrariness was
noted and corrected afterwards, in a manner outlined by
Goeppert-Mayerf13g. Actually the result mentioned earlier
of a rigid-body value for the inertia only was worked out
explicitly in f13g. This discussion makes clear that the “new
term” of LW represents an independent discovery of induced
inertia, nearly 40 years after it was introduced by Inglis.
Perhaps because they did not identify this effect as induced

inertia, they did not use it also to modify the Provost-Vallée
scalar potential, as is advocated in the next section of the
present paper.

A simple application of induced inertia comes from the
almost trivial problem of the free motion of a hydrogen
atom. By Galilean invariance, the kinetic energy isK=sM
+mdV2/2, where the two masses are those of the proton and
the electron, respectively. In the adiabatic formulation, the
first term is primitive, and the second must be induced by the
motion of the center of the Coulomb potential influencing the
electron. According to the general formulas11d, this gives

mdi j = 2"2Reo k− i]Xisndumlkmu − i]Xjunl/sEm − End,

s14d

where Xi is the proton coordinate. Because of translation
invariance, we may substitute for the gradient with respect to
the proton coordinate the negative gradient with respect to
the electron coordinate. Consequently, with a little rearrange-
ment the relation may be expressed in the form

di j = s2m/"2d o knuxiumlkmuxjunlsEm − End. s15d

This is nothing but the well-known Thomas-Reiche-Kuhn
energy-weighted sum rule for electric dipole transitions, the
ancestor of a host of sum rules extending all the way to
high-energy physics in the the analysis of phenomena such
as deep inelastic lepton scattering. The TRK sum rule is eas-
ily derived by elementary commutation relations of the po-
sition coordinate operator with the Hamiltonian and the mo-
mentum. For an atom withZ electrons, the left-hand side of
the sum rule would be multiplied byZ, so that it counts the
number of constituents of the atom contributing to photoex-
citation f14g.

The analysis presented above indeed rounds out the pic-
ture of induced geometry associated with adiabatic interac-
tions, adding to gauge geometry and Hilbert space geometry
the even more venerable geometry of ordinary coordinate
space. In general, all these geometrical effects may appear in
any system. They all do in the LW case, but even models of
collective nuclear rotation include examples with a nonzero
projection of the nuclear angular momentum onto the defor-
mation axis, and hence a Berry vector potential.sThere is
also a scalar potential, but it is independent of the slow vari-
ables, and therefore at best could be observed in transitions
between instantaneous fast-variable eigenstates.d Formally,
the calculation ofI appears to be higher order in the slow
velocity than theslineard construction of the Berry vector
potential. However, as the effect of that potential on motion
of the slow particles requires understanding of the kinetic
energy for its manifestation, the second-order terms surely
are necessary for a self-contained description of the geom-
etry of adiabatic phenomena.

Having acknowledged this principle, we still should note
a quantitative aspect which is so important that it is tanta-
mount to a qualitative distinction: Unless the entire inertia
tensor is generated adiabatically, the adiabatic modification
of the metric may be unobservably small, being clearly of
higher order in its effects than the Berry vector potential. For
example, in the LW case, if the spinning particle has approxi-
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mately a Dirac gyromagnetic ratio, then the induced shift in
the metric will be

dI/I = O„2ps¹B̂d2/uBu…, s16d

where hereuBu is measured in units of an Aharonov-Bohm
quantum of flux. This quantity inevitably is much smaller
than unity for any reasonable setup. That may well be the
reason why its existence was overlooked for so long before
LW. An open question is whether there exist systems where
the primitive and the induced contributions to the inertia are
comparable, so that both must be taken into account for an
accurate description of the motion. A promising place to look
for such comparable contributions might be the motion of
quasiparticle excitations in a strongly correlated medium.
Whatever the general answer to the question may be, the
induction in adiabatic processes of all conceivably relevant
types of geometrysincluding ordinary spatial geometryd ap-
pears inescapable.

IV. FULL NEWTONIAN ADIABATIC HAMILTONIAN

Let us conclude with a comprehensive scheme for com-
putation of adiabatic quantum dynamics through second or-
der in velocity. To weave together the discussion here with
previously identified elements, one begins with the compu-

tation of the induced inertia, and uses the totalĨ=Iprimitive

+Iinduced to compute the inverse inertiaQ̃= Ĩ−1. An interest-
ing point here is that in some cases there may be ambiguity
about what is primitive and what is induced inertiasfor ex-
ample, one might choose to redefine fast variables as describ-
ing, instead of motion with respect to a fixed frame, rather
motion with respect to slow variablesd, but the sum should be
unambiguous. In terms of adiabatic perturbations, this state-
ment seems quite natural: The primitive inertia is simply an
explicit sdiagonald second-order perturbation of the zero-
velocity Hamiltonian, while the induced inertia comes from
iterating a first-order off-diagonal perturbation. By changing
choices of basis, one may shuffle contributions to the
second-order diagonal part between primitive and induced.

The total adiabatic Hamiltonian in the context of the
newersinduced-potentiald stream of adiabatics was presented
by Berry f15g,

Hef f = VB-O + sP − ABdiQijsP − ABd j/2 + "2gijQij /2,

s17d

whereVB-O is the Born-Oppenheimer potential, including all
potential energies and also the kinetic energies corresponding
to fast degrees of freedom, averaged over those fast variables
for specified values of the slow variables. The vector poten-
tial AB is the connection associated with the Berry phase,
which to this point in the present paper was kept hidden in
the path-dependent transformation factorUstd. The scalar po-

tential also comes from gradients of the path-dependentU.
The effect of including induced inertia should be obvious

at this point: One rewrites Eq.s17d as

Hef f = VB-O + sP − ABdiQ̃i jsP − ABd j/2 + "2gij Q̃ij /2,

s18d

having exchanged the primitive and convention-dependentI
for the complete quantityĨ, hence replacingQ by Q̃= Ĩ−1.

Thus the Newtonian adiabatic Hamiltonian is determined
by the ordinary geometrysboth primitive and inducedd of the
space of slow parameters, as well as by the induced or geo-
metric vector and scalar potentials, all in a coherent and con-
sistent pattern.

V. OUTLOOK

While it is worth recording the complete Newtonian adia-
batic “package,” the really interesting question is whether
this package could provide any new insights into physical
systems, and thus be something more than a mere catalogue
entry. The best prospect for such a development may be in
analysis of strongly correlated systems, their ground states,
and simple excitations. Here is an analogy: In classical elec-
trodynamics, the hydrogen atom would be unstable against
collapse, but quantum effects stabilize its ground state. This
makes the Newtonian approximation quite accurate for the
ground-state structure.

Similarly, perhaps the exponentially suppressed jumps in
adiabatic dynamics would simply disappear if one were us-
ing the adiabatic approximation to describe a stable structure,
such as a many-body ground state, or a state built on that
ground state with some fixed number of quasiparticles, each
carrying a conserved charge. Again, the evident stability of
these configurations suggests that the Newtonian description
may become accurate, once one treats the adiabatic param-
eters as quantum variables. In particular, for such an enter-
prise in the case of the fractional quantum Hall effect, where
with interactions neglected there is no inertia, induced inertia
clearly becomes essential to the description.
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