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Localization of the relative position of two atoms induced by spontaneous emission
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We reexamine the back-action of emitted photons on the wave packet evolution about the relative position
of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the
localization of the relative position of the two atoms through the entanglement between the spatial motion of
individual atoms and their emitted photons. The obtained result provides a more realistic model for the analysis
of the environment-induced localization of a macroscopic object.
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[. INTRODUCTION induce quantum decoherence of the collective motion. This
- observation thus provides us with a possible solution to the
To understand the transition from the quantum world toschrgdinger cat paradox at least at the model level. In this
the classical world, one of the central issues is to considesense, the quantum-classical transition is just characterized
how the macroscopic object is localized in a certain spatiaby localization of the macroscopic object. When this idea
domain[1,2]. Superposition and its many-particle version—was generalized to a triple systeiformed by the measured
entanglement—are the essential features of quantum physisgstem, the “pointer” of Schrédinger-cat-like matter and its
that permit macroscopic objects to spread across the wholener variables similar to that by ZureK5,6], a consistent
space, while classical physics is based on a local realism arapproach for quantum measurement was presented by
thus a macroscopic object in the classical world has a wellZhang, Liu, and Su8].
defined position. The theory of quantum decoherence is a The next step is naturally to investigate actual physical
successful description about the quantum-classical transitiofystemssuch as atoms interacting with the vacyutemon-
and it is explained that the loss of the quantum coherence ditrating the essence of such environment-induced decoher-
macroscopic objects is due to their coupling with the envi-€nce. In this context to focus on the essence of the problem
ronment. Therefore perfect knowledge of the mechanism of/€ Néed not consider a realistic macroscopic object consist-
decoherence is crucial for understanding the quantumind Of too many particles. In principle the localization phe-
classical transition since delocalization usually results fron{!oMenon of the relative coordinate of two atoms induced by

quantum coherence. On the other hand, in the science l?e environment is sufficient to account for the fundamental

quantum information, information is mainly processed by us_concepnon behind such a quantum decoherence problem.

it pogsible to find decoherence-free states such as the COrniteraction[IS] nor the inner structure of the particle. It
putation spac¢3].

shows that the scattering interactions progressively entangle

Thfeore’gcz;ll itUd'eS n th'gs cgntext havg_ concerned a varig, pharticles and decohere their relative phase, naturally
ety of modeled systemgt-9]. Corresponding experiments |0, qing to localization of the particles in relative-position

have also peen done in the last yed8-12 to demonstrate space. A more profound result for the measurement-induced
the_ dynamic process of decoherence and _the collapse aff.ajization has been discovered and the phenomenon of
revival of the quantum coherence. We studied th? phgno bhase entanglement was first defined in RES). It is found

_enondof the quantun|1 decoheren((:je_: %f amacroscopic ObJeCtI hat there is phase entanglement only in coordinate space,
Introducing a novel concept, adiabatic quantum entangleyhich can interpret the spatial localization phenomenon of
ment between collective statesuch as that of the center-of- They also make a Schmidt-mode analysis of the en-
mass(c.m] and inner statef9,13. In the adiabatic separa- i, qjement between the emitting atom and the emitted pho-

tion of slow and fast variables of a macroscopic object, itston generated in the process of spontaneous emission and

wave function can be written as an entangled state with COlg . that the localization of the phonon can be controlled by
relation between adiabatic inner states and quasiclassical m

feasuring the atom staf@7]. Newly a model of two en-

tional conflfgurat!on dOf .tﬂe c.m. Smci the adiabatic innery, 104 atoms located inside two spatially separated cavities
states are factorized with respect to the composing parts ;5" 5150 been investigatéds]. It is found that the local

the macroscopic objedtl4], this adiabatic separation can decoherence takes an infinite time while the disentanglement

due to spontaneous emission may take a finite time. For ap-

plications in quantum computing, You has investigated deco-

*Electronic address: suncp@itp.ac.cn; URL: http://www.itp.ac.cnherence effects due to motional degrees of freedom of
~suncp trapped electronically coded atomic or ionic qubit9].
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In this article, we continue the studies of the environment-
induced decoherence for the motion of the c.m. of a pair of
atoms induced by the back-action of light emitted from the
atomic inner states. Our investigation will emphasize the re-
ality of the physical model examining the localization of the
relative position due to such spontaneous emission. Under
the second-order approximation we study the time evolution
of the c.m. relevant state in detail by considering the realistic
environment formed by the photons in spontaneous emis-
sion, which causes the atomic recoils. The corresponding lo-
calization phenomenon is characterized by the spatial re-
duced density matrix in real space as the vanishing of the
off-diagonal elements.

This paper is organized as follows. In Sec. Il, by neglect-
ing multiphoton processes such as the higher-order approxi-
mation we present a simplified model to study the time evo-
lution of the spatial states of the two-atom system under the
back-action of emitted photons. In Sec. Il the spatial deco-
herence induced by atomic spontaneous emission is studied
by caculation of the reduced density matrix. Section IV dem-
onstrates the localization of a macroscopic object resulting
from the spatial decoherence by two simple examples, and

finally conclusions are given in Sec. V. (b)
FIG. 1. () Schematic illustration of two atom& andB in the
II. MOTION OE THE c.m. OF TWO ATOMS INELUENCED positionsr 4 andr g interacting with a vacuum electromagnetic field
BY A VACUUM ELECTROMAGNETIC FIELD coherently. (b) The vacuum light scattering in two-dimensional

space: the atoms move only along thexis while the photon can

Our system consists of a pair of noninteracting two-levelbe emitted along the angle between the wave vectde of the
atoms of the same massand same transition frequeney  emitted photon and thg axis. The momentum kick given by the
placed in a vacuum electromagnetic field. Here and furtheemitted photon to the atom g, =%k sin ¢.
on we use blackbody text to denote vector quantities for
convenience. The atoms are spatially separated in the poshe x axis while photons can be emitted along any direction
tionsr , andrg, respectively, and the corresponding momentgnto the field. We also suppose is the angle between the
arepa andpg (as illustrated in Fig. I We denote the c.m. \yave vectork of the emitted photon and thg axis. The
and relative momenta, respectively, B=pa+ps and p momentum kick given by the emitted photon to the atom is
=(Pa~pe)/2, and similarly the c.m. and relative positions p =7k sin¢. At t=0 the relative momentum of the atoms is

can be denoted respectively byandr. ~ undefined and its state is a linear combinatisaperposi-
Under the rotating-wave approximation, the Hamiltoniantion) of the eigenstatelp) of the relative momentum opera-
of our system reads tor p. The c.m. momentum state|B) which is the eigenstate

P2 p2 1 of c.m. momentum operatd? corresponding to the eigen-
H=—+—+ Zhay(oY + 0?) + >, hwala, + 7>, g(k)  valueP and the two atoms are both in excited states initially.
2M - 2p 2 k k The initial wave function of the system can be written as a

X[(oDek X1 4 Ak X123 4 H c], (1)  Product state,

whereM=2m and u=m/2. The atomic transition operators
are denoted by =|e)(g;| ando”=|g))(e| (i=1,2 with re-

spect to the excited statés) and the ground statdg) of |¥(0))=|P) ® f *pCilp) ® e ® [ ® [0),  (3)
each atoma/ anda, are the annihilation and creation opera-

tors of the vacuum electromagnetic field mddewith fre-

quencya=ck (k=[k|). The coupling constant where C, is the distribution function corresponding to the

fooy relative momentum eigenstd@ and satisfies the normaliza-
hg(k) = PYRVAL
0

(2)  tion condition/”,|C,/?dp=1, and|e;) and|e,) represent the
excited states of atom& and B, respectively|0) means the
depends on the effective mode volurde the polarization ~vacuum state of the electromagnetic field. The time evolution
vector of the field vectok,, and the transition dipole mo- of the statgW(t)) is described by the Schrédinger equation.
ment of the atond. Under the second-order approximation about the weak
For simplicity, we consider the problem in two- coupling characterized hy(k), the state vecto(t)) can be
dimensional space. We assume the atoms move only alor@lculated as
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_ Dy’ ,p(0)=0. The explicit solutions td\y(p,t), By x(t), and
(W (1)) = exp(— iwgt) fdep,t)lP,p,el,ez,@ Dy k' p(t) can be obtained in the Weisskopf-Wigner approxi-
mation[20] (see the Appendix for detailed calculatipnBor
1 the purpose of this paper we need not write them down here
+ E fdpl?kp(t){ ‘ P-pgp- §p¢,gl,eg, 1k> for arbitrary timet. In the limit t—c, we haveAy(~)—0,
k Bk'p(OO)—>0, and

g(k")g(k)Cyp

1
+ ‘ P-pg.p+ §p¢1e119211k>:|

Dy ks p(*) — s
i[wg(k) — wp(k,k")]+ 5
+ > | dpDeyr p(OIP =P, - p.)
kk’ e—i[(uD(k,k')—wo]t
. X R i )
® 1P 5(py- p;)> ® |01,02) ® |1k1k/>] . @ i[wg(k’) — wp(k,k)]+ 7

with p(’p=hk’ sing’ and fdp roughly denotes the definite in- wherel is t_he decay rate of an atom from staé to state
tegral of [*.dp. We notice that ex-iwgt) is a common |g). Neglecting the small recoil energies, we have
phase factor, and the first term in E@) means that both g(k)g(k)C,

atoms are in the excited states while the field is in the state of Dy k7 p(*) — ; T
vacuum. The second term denotes one of the atoms decaying i{wo - wp - <£ - E>E<£J +—

to the ground statég;) (i=1,2 from the excited stateke) 2u M/ h 2

with a photon of momenturfik emitted simultaneously. The orilap(k k' -aglt

last term describes the situation when both atoms jump down X . (12
to the ground states emitting two photons with momeika i{w e (ﬂ _ E)&J r
and7k’, respectively. O T \ow M)A 2

The time-dependent coefficientd(p,t), By (t), and | Lth i t a hot atom | |
Dyxp(t) can be calculated by directly solving the h géneral the ¢.m. momentum ot a hot atom 1S very large

Schrédinger equation. The obtained system of equations isand SO its momentum exchange with the electromagnetic
9 q ' y q field can be neglected. In this sense the electromagnetic field

A il —_ o does not influence its c.m. state nearly. However, it is not the
Ao +ilwa= w0l ZIE,(: Bep(tglk), ®) case for the ultracold atoms because their c.m. momenta are

very small. The influence of the interaction between the at-

: . . . , oms and electromagnetic field on the spatial motion of the
Bicp * [iwg(k) — wolBy p =~ iA,g(k) _'2 Dixr,p9(k"), atoms becomes ve?y important. Therefgre how the spatial
K states of the ultracold atoms are affected by the electromag-

(6) netic field is a crucial issue. In the following section, we will

go on to study how spontaneous emission affects the distri-

and bution of the atomic relative position.

Dk,k’,p + [iwD(k,k’) - wo]Dk‘kr,p = - in‘pg(k,) - inr'pg(k),
(7) IIl. SPATIAL DECOHERENCE INDUCED BY
INCOHERENT SPONTANEOUS EMISSION

where the coefficients . . -
According to the above analysis, after a sufficiently long

hwp=P?2M + p?[2u + fwg, (8)  timet>1/T, the state of the system becomes

1, )2 , 1 ,
heog(k) = (P-py)* (p-3p,) tho ) (W) — 2 | dpDyyr ()P =P, =Py ® p—i(p¢—p¢)>
B oM 2u k KK’
describe the scattering processes with photon recoil while ® (91,92 ® |LLer)- (13
(P=p,-pL)> (p— %p + %p,)z Supposing that the modes of the field are closely spaced in
hop(k,k") = Z(R/I e+ ;M E— + fwy the frequency domain, we can repladg,. by the integral of
2 o 2 © 2
+ ﬁwkr - ﬁwo (10) Vv 4f kdkf d(Pf krdk/J dQD’.
(2m*Jo 0 0 0

means that two-photon scattering will induce the momentum

transfer. Notice that in the above calculation we have ignorec€onsidering that the velocity of a realistic atom is far smaller

the higher-order multiphoton processes. than the light velocity in vacuum, we can further simplify
We perform the Laplace transformation on E{)—(7) Eq. (13 in the representation of the c.m. relative coordinates

with the initial conditions A(p,0)=C,, B, ,(0)=0, and (X andx):
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|‘P> =N f d§e(i/ﬁ)pxe_(i/2h)X(p"°_p‘;)|Xvnglang 1k,<p1k’,cp'>

G, PXe(X(P, )Lk -agl
T J : (14)

x I
{i(wo_wk/)‘*EHi(a’o‘wk)‘*E

e

e

7/':‘&‘:‘:"2‘\“\“
SN
N N

where [d¢ roughly denotes the definite multi-integral of

o0 2 0 2 s o o
fdkf d(pf dk’f d(p'f dxf dxf dp
0 0 0 0 —o0 —o0 —

andN is a normalization factor including the slowly varying

FIG. 2. Schematics of the decoherence fa&tor,x’) (the unit
of x andx’ is M/ 7). When(m/\)(x—x') <e™%, there exists a perfect

!
9(k’) ar]d 9(k). L . guantum interference. Whef(x,x") > €3, the quantum coherence
Tracing over the electromagnetic field, the inner states Oﬁisappears.

the atoms, and the c.m. motion, one can obtain the reduced

density matrix ton emitted becomes larger or the the distance of the atoms

(X' 1) = N’ f do dg’ &(@0/2000x Isinegi(20(x-x')sin ¢’ becomes smaller.

7 . ., IV. FROM DECOHERENCE TO LOCALIZATION
% w(x , Tgl(sing + sin¢’) t) OF A MACROSCOPIC OBJECT
2uc ’
_M o Now we take a simple example to illustrate how the
Xz//*(x’ | rl(sing + sing’) t) above-discussed decoherence can result in the localization of
2uc ' a macroscopic object. We take the initial state as a superpo-
© 2 sition,
~ N'¢<x,t)w*(x',t>ao[2—§(x—x’)] , (15) 1
W(0) = (x) = ’_E[G‘(X) +G.(x)], (19
\J

whereN’ is the normalization factor and

o i p? of two Gaussian wave packets
z,lz(x,t):f C,ex %<px— t) dp. (16)

Z 1 (x*a)?
Gi(X) = WGX - 4d2 . (20)

Considering that the term diwgt(sing+sing’)/(2uc) in N
Eq. (15 means the small offset induced by atomic spontaneas pointed out in Ref[1], models with this initial state may
ous emission of the relative position between the two atomsarise in the double-slit experiment. Now we study the dy-
we have expanded y(x+fiwgt(sing+sing’)/(2uc),t)  namical evolution of the wave packets when1/T. In the

aroundx to the first-order approximation and also supposec:oordinate picture the elements of the corresponding reduced
wo>T". Jo(2) is a Bessel function of the first kind. Here we density matrix can be expressed as

have used the following integral formufa is real number .
p(X" 1) =N"(x, )¢ (X', F(x,x")

2
. _ _ )
f i codasin(z)]dz=2mJy(a). _ N'JO<X(X B X,)) (DG

Now we can define the decoherence fadtx,x’) as £ GG (X 1) + G (X DG_(X'.1)
— ] + 1 + 1 - ’

F(x,x") ;]S(%(x—x’)). (17) + G, (X, )G(X', 1)}, (21
where
Here\=2mc/ wg is the wavelength of atomic radiation. The
elements of the reduced density matrix can be rewritten as G.(x1) = 1
p(X,XI ,t) - N/ lﬁ(X,t) l/l* (X, ,t)F(X,X,) . (18) - (277)1/4\0"d + |tﬁ/(2,ud)
In Fig. 2, we draw the schematic curve Bfx,x’). It is <1 _ in t)(xi a)?

illustrated that the off-diagonal elements of the reduced den- y 2ud? 22)
sity matrix vanish whem> 1/I" and thus the quantum coher- ex 252

ence of the system is lost. And the diagonal elements of the 4d? + 2

reduced density matrix are suppressed with the ultimate #

breadth\/(7re). The result also shows that the quantum in- In fact, the spreading speed of the wave packets may be
terference becomes more clear as the wavelength of the phéaster than the speed of the decay of the atoms when the
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also found by Schuch using a nonlinear Schrédinger equa-
tion [22]. In the following, we will demonstrate such a local-
ization in our present realistic model.

We take the initial state as a narrow Gaussian wave packet

2
i
0

G.(x—a) for the relative position representation of the two-
atom system. Obviously the narrowness of the wave packet
implies that the two-atom system is initially in localization.

If spontaneous emission did not exist, the Gaussian wave
packet would spread into the full space infinitely and the
localization of the wave packet is lost during the evolution of
the system. Its breadth increases to infinity while its height
decreases from its initial value to zero. In presence of the
spontaneous emission, we calculate the time evolution of

p(x,x'ty)

G.(x-at=0)= f CoePMxdp, (23
2
0 C.= Ae—(d%)p{ (24)
p
2T
i :.:':"l ~20 Acc_ording to E_qs(16) and(18), the reduced density matrix
e at timet>1/T is

p(X, X", 1) =N'G,(x - a,t)G:(x’ -a,t)F(x,x"), (25

FIG. 3. Schematics of the evolution of the system state at threg\,here
different timest; =100/, t,=200/", andt;=10001" (the unit ofx
andx’ is N/ ). (al), (b1), and(cl) demonstrate the state evolution 1
when there is no spontaneous emission wké®, (b2), and (c2) G.x-at)= 2 U4 g+ it/(2ud)
represent the case when spontaneous emission gxistand(c2) N M

correspond to the case when the two packets have overlapped. in 2
These schematics illustrate that the quantum coherence of the sys- 1- 2,ud2t X
tem is lost in the presence of spontaneous emission and thus the xex 5.2 (26)
spreading wave packets are suppressed. 4d2 + tTﬁz
uod

distance of the two atoms is far smaller because the spread-

ing speed is fast in this case. The wave packets have ovefccording to Eq.(25), we can conclude that the breadth of
lapped before the atoms decay. We will discuss this case ithe spreading wave packet is suppressed as can also be seen
the following and here we suppose the distance of the atoms Fig. 4. We give the schematics of the evolution of the

is large enough so that we can say the two packets have natave packet at three different times and in two cases: one is
overlapped when we study it at some tin®e 1/I". We give  when there is no spontaneous emission and the other is when
the schematics of the evolution of the reduced density matrixhere exists spontaneous emission. From(E6). and Fig. 4,

at three different times and in two cases in Fig. 3: one isye can see that the wave packet spreading is suppressed and
when there is no spontaneous emission and the other is whehe ultimate breadth is related to the wavelength of the
there exists spontaneous emission. It demonstrates the evgtomic radiation. The longer is the atomic radiative wave
lution of the localization of the two initial Gaussian wave |ength, the wider is the breadth of the ultimate wave packet.
packets.

Actually, about ten years ad@1], we studied generally a
quite simple dynamical problem: the motion of the wave
packet for a “free” particle of one dimension in presentina In summary, we have investigated the atomic
dissipative environment. An interesting result is that the disspontaneous-emission-induced quantum decoherence phe-
sipation suppresses the spreading of the wave packet if th@dmenon in association with the localization of the relative
breadth of the initial wave packet is so wide that the effect ofposition of a two-atom system. The spontaneous emission or
Brownian motion can be ignored. However, for the case withinteraction with the vacuum electromagnetic field may be a
dissipation, there appears to be a significant difference abodttndamental process destroying quantum effects in macro-
the wave packet spreading. This suppression of the wavecopic objects. By analyzing two simple examples, we dem-
packet spreading by dissipation possibly provides a mechanstrate how spontaneous emission suppresses the spreading
nism to localize the macroscopic object. It might be of inter-wave packet and thus localizes a macroscopic object.
est to note that the finite value of the width of the damped In forthcoming research along this direction we will deal
particle wave packet far— o leads to exactly the same final with a more realistic macroscopic object consisting of inter-
value for the uncertainty product of the damped free particleacting particles. In this practical case the interaction between

V. CONCLUSIONS
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{L+ilwp(k,K") = wo]}Dy k7 p(L)
== iBy p(L)g(k") —iBy x(L)g(k). (A3)
From Eq.(A3), we have

~ B (LK) ~ B p(LIg(K)
L+i[awp(k,k") = wq]

Substituting Eq(A4) into Eq.(A2), we can rewrite Eq(A2)
as

{L +i[wg(k) = wo]}By p(L)

oy
LT
S
e
&

5

Dy p(l) = (A4)
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Since we have ignored the higher-order multiphoton pro-
cesses, we can omit the last term on the right of @d).
Then we obtain

22
ZELRELLLT
RIS
LRRLEL
S

(c1) (c2) _
By (L) = —iA(p.L)g(k)
FIG. 4. Schematics of the suppression of a wave packet spread- —X.P _ gk’
ing (the unit ofx andx’ is 10\/ ). (al), (b1), and(cl) correspond L +i(wg(k) — wp) + E . ,
to the evolution of the single wave packet at three different in- k' L +i(wp(k,k) = wp)
stances when there is no spontaneous emissior(a®d(b2), and (AB)

(c2) represent the cases when the spontaneous emissions exist. Here
t,=2IT, t,=3/T, andt;=5/T. They demonstrate how the atomic According to the Weisskopf-Wigner approximatifi20], we
spontaneous emission suppresses the spreading of the wave paclstn obtain

201!
the c.m. variable and inner degrees of freedom will also £+iAw=E _ gk ), ,
serve as another source of quantum decoherence of the c.m. 2 o L+ilop(k,k") = a]
motion together with the environment of a vacuum electro- 5 ]
magnetic field. wherel = wg|d|?/ (4efic?) is the decay rate of an atom from

state|e) to state]g) andAw is the Lamb shift which is omit-
ted in our following calculations since it can be merged into
the transition frequency,. Equation(A6) can be simplified
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10474104, and 10447133. It is also funded by the National
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Submitting Eq.(A7) into Eq. (A1), we have
APPENDIX: SOLUTIONS OF THE SCHRODINGER
EQUATION Alp.L) = Co

g(k)

L +i[wg(k) — wo] + g

In this appendix we give the calculations on solving the L+i(wp— o) + 2>
system of equations consisting of E¢5)—(7). We take the k
Laplace transformation of Eq§5)—(7) and obtain

(L + 0~ w0 JAL) =~ 25 BylLglh) + G, (A8)

In the Weisskopf-Wigner approximation, we can also obtain
r (k
Stibe=3 gk =
{L +i[wg(k) = wo]}By p(L) K L +i[wg(k) = wg] + 5
==iA(p,L)G(K) =i X D oLIg(k)),  (A2)
k

(A1)

So Eq.(A8) can be written as
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C -g(k")g(k)C 1
A(p,L) = B . A9 Dy p(L) = b
(p.L) L+i(wpa—wo) +T (49) ek o) L+i[wp(k,K") =] L+i(wa—wg) +T
1
% r
Combining Eqgs(A4), (A7), and(A9), we can obtain L +i[wg(k) — wg] + 5
1
. ~iC,q(k) 1 + _— ] Tl (A11)
kP TL+i(wp— )+ T L+ilogk) —wol +5
i) - o)+ 5 AT 2
Taking the inverse Laplace transformation of the above three
(A10) equations, we obtain the solutions to E®—(7):
|
A(p,t) = C e e (eawol, (A12)
) iwo—(F/Z)t(e—int _ e—iwAt)
By o(t) = —ig(k)C, . (A13)
i[wa = wg(k)]+ 5
(k/) (k)C e—i[a)D(k,k')—wo]t e—i(wA—wO)t—Ft
Dy ks p(t) = S L -

T i[wa— wp(k,k)]+T

e—i[wB(k)—wO]t—(FIZ)t

r r
i[wg(K) — wp(k,k")]+ 5 i[wg(k) — wal = >

e—i[wD(k,k')—wO]t e—i(wA—o)O)t—Ft

+ + -
H ’ ’ I H ’ I
{i[wo(k,k’) —wB(k)]—gHi[wA—wB<k>]+ g} ILog(k) —wplkkD]+ 75 ileplk) —wal =5

e ilopk)-wglt-(/2)t
+

r r
{i[wo(k,k') - wg(k")] - E}{i[wA_ wg(k")]+ E}
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