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We reexamine the back-action of emitted photons on the wave packet evolution about the relative position
of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the
localization of the relative position of the two atoms through the entanglement between the spatial motion of
individual atoms and their emitted photons. The obtained result provides a more realistic model for the analysis
of the environment-induced localization of a macroscopic object.
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I. INTRODUCTION

To understand the transition from the quantum world to
the classical world, one of the central issues is to consider
how the macroscopic object is localized in a certain spatial
domainf1,2g. Superposition and its many-particle version—
entanglement—are the essential features of quantum physics
that permit macroscopic objects to spread across the whole
space, while classical physics is based on a local realism and
thus a macroscopic object in the classical world has a well-
defined position. The theory of quantum decoherence is a
successful description about the quantum-classical transition
and it is explained that the loss of the quantum coherence of
macroscopic objects is due to their coupling with the envi-
ronment. Therefore perfect knowledge of the mechanism of
decoherence is crucial for understanding the quantum-
classical transition since delocalization usually results from
quantum coherence. On the other hand, in the science of
quantum information, information is mainly processed by us-
ing quatnum coherence. Knowing how decoherence destroys
the wave nature of matter in the wave-particle duality makes
it possible to find decoherence-free states such as the com-
putation spacef3g.

Theoretical studies in this context have concerned a vari-
ety of modeled systemsf4–9g. Corresponding experiments
have also been done in the last yearsf10–12g to demonstrate
the dynamic process of decoherence and the collapse and
revival of the quantum coherence. We studied the phenom-
enon of the quantum decoherence of a macroscopic object by
introducing a novel concept, adiabatic quantum entangle-
ment between collective statesfsuch as that of the center-of-
masssc.mdg and inner statesf9,13g. In the adiabatic separa-
tion of slow and fast variables of a macroscopic object, its
wave function can be written as an entangled state with cor-
relation between adiabatic inner states and quasiclassical mo-
tional configuration of the c.m. Since the adiabatic inner
states are factorized with respect to the composing parts of
the macroscopic objectf14g, this adiabatic separation can

induce quantum decoherence of the collective motion. This
observation thus provides us with a possible solution to the
Schrödinger cat paradox at least at the model level. In this
sense, the quantum-classical transition is just characterized
by localization of the macroscopic object. When this idea
was generalized to a triple systemsformed by the measured
system, the “pointer” of Schrödinger-cat-like matter and its
inner variablesd similar to that by Zurekf5,6g, a consistent
approach for quantum measurement was presented by
Zhang, Liu, and Sunf8g.

The next step is naturally to investigate actual physical
systemsssuch as atoms interacting with the vacuumd demon-
strating the essence of such environment-induced decoher-
ence. In this context to focus on the essence of the problem
we need not consider a realistic macroscopic object consist-
ing of too many particles. In principle the localization phe-
nomenon of the relative coordinate of two atoms induced by
the environment is sufficient to account for the fundamental
conception behind such a quantum decoherence problem.

Actually, physicists have studied a more realistic model
involving a sequence of external scattering interactions with
a system of two particles considering neither the interparticle
interaction f15g nor the inner structure of the particle. It
shows that the scattering interactions progressively entangle
two particles and decohere their relative phase, naturally
leading to localization of the particles in relative-position
space. A more profound result for the measurement-induced
localization has been discovered and the phenomenon of
phase entanglement was first defined in Ref.f16g. It is found
that there is phase entanglement only in coordinate space,
which can interpret the spatial localization phenomenon of
atom. They also make a Schmidt-mode analysis of the en-
tanglement between the emitting atom and the emitted pho-
ton generated in the process of spontaneous emission and
show that the localization of the phonon can be controlled by
measuring the atom statef17g. Newly a model of two en-
tangled atoms located inside two spatially separated cavities
has also been investigatedf18g. It is found that the local
decoherence takes an infinite time while the disentanglement
due to spontaneous emission may take a finite time. For ap-
plications in quantum computing, You has investigated deco-
herence effects due to motional degrees of freedom of
trapped electronically coded atomic or ionic qubitsf19g.
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In this article, we continue the studies of the environment-
induced decoherence for the motion of the c.m. of a pair of
atoms induced by the back-action of light emitted from the
atomic inner states. Our investigation will emphasize the re-
ality of the physical model examining the localization of the
relative position due to such spontaneous emission. Under
the second-order approximation we study the time evolution
of the c.m. relevant state in detail by considering the realistic
environment formed by the photons in spontaneous emis-
sion, which causes the atomic recoils. The corresponding lo-
calization phenomenon is characterized by the spatial re-
duced density matrix in real space as the vanishing of the
off-diagonal elements.

This paper is organized as follows. In Sec. II, by neglect-
ing multiphoton processes such as the higher-order approxi-
mation we present a simplified model to study the time evo-
lution of the spatial states of the two-atom system under the
back-action of emitted photons. In Sec. III the spatial deco-
herence induced by atomic spontaneous emission is studied
by caculation of the reduced density matrix. Section IV dem-
onstrates the localization of a macroscopic object resulting
from the spatial decoherence by two simple examples, and
finally conclusions are given in Sec. V.

II. MOTION OF THE c.m. OF TWO ATOMS INFLUENCED
BY A VACUUM ELECTROMAGNETIC FIELD

Our system consists of a pair of noninteracting two-level
atoms of the same massm and same transition frequencyv0
placed in a vacuum electromagnetic field. Here and further
on we use blackbody text to denote vector quantities for
convenience. The atoms are spatially separated in the posi-
tionsr A andr B, respectively, and the corresponding momenta
are pA and pB sas illustrated in Fig. 1d. We denote the c.m.
and relative momenta, respectively, byP=pA+pB and p
=spA−pBd /2, and similarly the c.m. and relative positions
can be denoted respectively byX and r .

Under the rotating-wave approximation, the Hamiltonian
of our system reads

H =
P2

2M
+

p2

2m
+

1

2
"v0ssz

s1d + sz
s2dd + o

k
"vkak

†ak + "o
k

gskd

3fss+
s1deik·sX+r /2d + s+

s2deik·sX−r /2ddak + H.c.g, s1d

whereM =2m and m=m/2. The atomic transition operators
are denoted bys+

sid= ueilkgiu ands−
sid= ugilkeiu si =1,2d with re-

spect to the excited statesuel and the ground statesugl of
each atom.ak

† andak are the annihilation and creation opera-
tors of the vacuum electromagnetic field modek with fre-
quencyvk=ck sk= uk ud. The coupling constant

"gskd =Î "vk

2«0V
«k ·d s2d

depends on the effective mode volumeV, the polarization
vector of the field vector«k, and the transition dipole mo-
ment of the atomd.

For simplicity, we consider the problem in two-
dimensional space. We assume the atoms move only along

the x axis while photons can be emitted along any direction
into the field. We also supposew is the angle between the
wave vectork of the emitted photon and they axis. The
momentum kick given by the emitted photon to the atom is
pw="k sinw. At t=0 the relative momentum of the atoms is
undefined and its state is a linear combinationssuperposi-
tiond of the eigenstatesupl of the relative momentum opera-
tor p. The c.m. momentum state isuPl which is the eigenstate
of c.m. momentum operatorP corresponding to the eigen-
valueP and the two atoms are both in excited states initially.
The initial wave function of the system can be written as a
product state,

uCs0dl = uPl ^ E d3pCpupl ^ ue1l ^ ue2l ^ u0l, s3d

where Cp is the distribution function corresponding to the
relative momentum eigenstateupl and satisfies the normaliza-
tion conditione−`

` uCpu2 dp=1, andue1l and ue2l represent the
excited states of atomsA andB, respectively.u0l means the
vacuum state of the electromagnetic field. The time evolution
of the stateuCstdl is described by the Schrödinger equation.

Under the second-order approximation about the weak
coupling characterized bygskd, the state vectoruCstdl can be
calculated as

FIG. 1. sad Schematic illustration of two atomsA andB in the
positionsr A andr B interacting with a vacuum electromagnetic field
coherently. sbd The vacuum light scattering in two-dimensional
space: the atoms move only along thex axis while the photon can
be emitted along the anglew between the wave vectork of the
emitted photon and they axis. The momentum kick given by the
emitted photon to the atom ispw="k sinw.
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uCstdl = exps− iv0tdFE dpAsp,tduP,p,e1,e2,0l

+ o
k
E dpBk,pstdFUP − pw,p −

1

2
pw,g1,e2,1kLG

+ FUP − pw,p +
1

2
pw,e1,g2,1kLG

+ o
k,k8

E dpDk,k8,pstduP − pw − pw8l

^ Up −
1

2
spw − pw8dL ^ ug1,g2l ^ u1k1k8lG , s4d

with pw8 ="k8 sinw8 andedp roughly denotes the definite in-
tegral of e−`

` dp. We notice that exps−iv0td is a common
phase factor, and the first term in Eq.s4d means that both
atoms are in the excited states while the field is in the state of
vacuum. The second term denotes one of the atoms decaying
to the ground stateugil si =1,2d from the excited statesueil
with a photon of momentum"k emitted simultaneously. The
last term describes the situation when both atoms jump down
to the ground states emitting two photons with momenta"k
and"k8, respectively.

The time-dependent coefficientsAsp,td, Bk,pstd, and
Dk,k8,pstd can be calculated by directly solving the
Schrödinger equation. The obtained system of equations is

Ȧp + isvA − v0dAp = − 2io
k

Bk,pstdgskd, s5d

Ḃk,p + fivBskd − v0gBk,p = − iApgskd − io
k8

Dk,k8,pgsk8d,

s6d

and

Ḋk,k8,p + fivDsk,k8d − v0gDk,k8,p = − iBk,pgsk8d − iBk8,pgskd,

s7d

where the coefficients

"vA = P2/2M + p2/2m + "v0, s8d

"vBskd =
sP − pwd2

2M
+

sp − 1
2pwd2

2m
+ "vk s9d

describe the scattering processes with photon recoil while

"vDsk,k8d =
sP − pw − pw8d2

2M
+

sp − 1
2pw + 1

2pw8d2

2m
+ "vk

+ "vk8 − "v0 s10d

means that two-photon scattering will induce the momentum
transfer. Notice that in the above calculation we have ignored
the higher-order multiphoton processes.

We perform the Laplace transformation on Eqs.s5d–s7d
with the initial conditions Asp,0d=Cp, Bk,ps0d=0, and

Dk,k8,ps0d=0. The explicit solutions toApsp,td, Bk,pstd, and
Dk,k8,pstd can be obtained in the Weisskopf-Wigner approxi-
mationf20g ssee the Appendix for detailed calculationsd. For
the purpose of this paper we need not write them down here
for arbitrary timet. In the limit t→`, we haveAps`d→0,
Bk,ps`d→0, and

Dk,k8,ps`d → gsk8dgskdCp

ifvBskd − vDsk,k8dg +
G

2

3
e−ifvDsk,k8d−v0gt

ifvBsk8d − vDsk,k8dg +
G

2

, s11d

whereG is the decay rate of an atom from stateuel to state
ugl. Neglecting the small recoil energies, we have

Dk,k8,ps`d → gsk8dgskdCp

iFv0 − vk8 − S p

2m
−

P

M
Dpw8

"
G +

G

2

3
e−ifvDsk,k8d−v0gt

iFv0 − vk − S p

2m
−

P

M
Dpw

"
G +

G

2

. s12d

In general the c.m. momentum of a hot atom is very large
and so its momentum exchange with the electromagnetic
field can be neglected. In this sense the electromagnetic field
does not influence its c.m. state nearly. However, it is not the
case for the ultracold atoms because their c.m. momenta are
very small. The influence of the interaction between the at-
oms and electromagnetic field on the spatial motion of the
atoms becomes very important. Therefore how the spatial
states of the ultracold atoms are affected by the electromag-
netic field is a crucial issue. In the following section, we will
go on to study how spontaneous emission affects the distri-
bution of the atomic relative position.

III. SPATIAL DECOHERENCE INDUCED BY
INCOHERENT SPONTANEOUS EMISSION

According to the above analysis, after a sufficiently long
time t@1/G, the state of the system becomes

uCl → o
k,k8

E dpDk,k8,ps`duP − pw − pw8l ^ Up −
1

2
spw − pw8dL

^ ug1,g2l ^ u1k1k8l. s13d

Supposing that the modes of the field are closely spaced in
the frequency domain, we can replaceok,k8 by the integral of

V2

s2pd4E
0

`

kdkE
0

2p

dwE
0

`

k8dk8E
0

2p

dw8.

Considering that the velocity of a realistic atom is far smaller
than the light velocity in vacuum, we can further simplify
Eq. s13d in the representation of the c.m. relative coordinates
sX andxd:
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uCl = NE djesi/"dpxe−si/2"dxspw−pw8duX,x,g1,g2,1k,w1k8,w8l

3
Cpe

si/"dPXe−si/"dXspw8+pwde−ifvDsk,k8d−v0gt

Fisv0 − vk8d +
G

2
GFisv0 − vkd +

G

2
G , s14d

whereedj roughly denotes the definite multi-integral of

E
0

`

dkE
0

2p

dwE
0

`

dk8E
0

2p

dw8E
−`

`

dxE
−`

`

dXE
−`

`

dp

andN is a normalization factor including the slowly varying
gsk8d andgskd.

Tracing over the electromagnetic field, the inner states of
the atoms, and the c.m. motion, one can obtain the reduced
density matrix

rsx,x8,td = N8E dw dw8 e−isv0/2cdsx−x8dsinweisv0/2cdsx−x8dsin w8

3 cSx +
"v0tssinw + sinw8d

2mc
,tD

3c*Sx8 +
"v0tssinw + sinw8d

2mc
,tD

< N8csx,tdc*sx8,tdJ0Fv0

2c
sx − x8dG2

, s15d

whereN8 is the normalization factor and

csx,td =E
−`

`

Cp expF i

"
Spx−

p2

2m
tDGdp. s16d

Considering that the term of"v0tssinw+sinw8d / s2mcd in
Eq. s15d means the small offset induced by atomic spontane-
ous emission of the relative position between the two atoms,
we have expanded c(x+"v0tssinw+sinw8d / s2mcd ,t)
aroundx to the first-order approximation and also supposed
v0@G. J0szd is a Bessel function of the first kind. Here we
have used the following integral formulasa is real numberd:

E
0

2p

cosfa sinszdgdz= 2pJ0sad.

Now we can define the decoherence factorFsx,x8d as

Fsx,x8d = J0
2Sp

l
sx − x8dD . s17d

Herel=2pc/v0 is the wavelength of atomic radiation. The
elements of the reduced density matrix can be rewritten as

rsx,x8,td = N8csx,tdc*sx8,tdFsx,x8d. s18d

In Fig. 2, we draw the schematic curve ofFsx,x8d. It is
illustrated that the off-diagonal elements of the reduced den-
sity matrix vanish whent@1/G and thus the quantum coher-
ence of the system is lost. And the diagonal elements of the
reduced density matrix are suppressed with the ultimate
breadthl / sped. The result also shows that the quantum in-
terference becomes more clear as the wavelength of the pho-

ton emitted becomes larger or the the distance of the atoms
becomes smaller.

IV. FROM DECOHERENCE TO LOCALIZATION
OF A MACROSCOPIC OBJECT

Now we take a simple example to illustrate how the
above-discussed decoherence can result in the localization of
a macroscopic object. We take the initial state as a superpo-
sition,

Cs0d = csxd =
1
Î2

fG−sxd + G+sxdg, s19d

of two Gaussian wave packets

G±sxd =
1

Î4 2pd2
expF−

sx ± ad2

4d2 G . s20d

As pointed out in Ref.f1g, models with this initial state may
arise in the double-slit experiment. Now we study the dy-
namical evolution of the wave packets whent@1/G. In the
coordinate picture the elements of the corresponding reduced
density matrix can be expressed as

rsx,x8,td = N8csx,tdc*sx8,tdFsx,x8d

= N8J0Sp

l
sx − x8dD2

hG−sx,tdG−sx8,td

+ G−sx,tdG+sx8,td + G+sx,tdG−sx8,td

+ G+sx,tdG+sx8,tdj, s21d

where

G±sx,td =
1

s2pd1/4Îd + it"/s2mdd

3exp1−
S1 −

i"

2md2tDsx ± ad2

4d2 +
t2"2

m2d2
2 . s22d

In fact, the spreading speed of the wave packets may be
faster than the speed of the decay of the atoms when the

FIG. 2. Schematics of the decoherence factorFsx,x8d sthe unit
of x andx8 is l /pd. Whensp /ldsx−x8d,e−1, there exists a perfect
quantum interference. WhenFsx,x8d.e−3, the quantum coherence
disappears.
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distance of the two atoms is far smaller because the spread-
ing speed is fast in this case. The wave packets have over-
lapped before the atoms decay. We will discuss this case in
the following and here we suppose the distance of the atoms
is large enough so that we can say the two packets have not
overlapped when we study it at some timet@1/G. We give
the schematics of the evolution of the reduced density matrix
at three different times and in two cases in Fig. 3: one is
when there is no spontaneous emission and the other is when
there exists spontaneous emission. It demonstrates the evo-
lution of the localization of the two initial Gaussian wave
packets.

Actually, about ten years agof21g, we studied generally a
quite simple dynamical problem: the motion of the wave
packet for a “free” particle of one dimension in present in a
dissipative environment. An interesting result is that the dis-
sipation suppresses the spreading of the wave packet if the
breadth of the initial wave packet is so wide that the effect of
Brownian motion can be ignored. However, for the case with
dissipation, there appears to be a significant difference about
the wave packet spreading. This suppression of the wave
packet spreading by dissipation possibly provides a mecha-
nism to localize the macroscopic object. It might be of inter-
est to note that the finite value of the width of the damped
particle wave packet fort→` leads to exactly the same final
value for the uncertainty product of the damped free particle,

also found by Schuch using a nonlinear Schrödinger equa-
tion f22g. In the following, we will demonstrate such a local-
ization in our present realistic model.

We take the initial state as a narrow Gaussian wave packet
G+sx−ad for the relative position representation of the two-
atom system. Obviously the narrowness of the wave packet
implies that the two-atom system is initially in localization.
If spontaneous emission did not exist, the Gaussian wave
packet would spread into the full space infinitely and the
localization of the wave packet is lost during the evolution of
the system. Its breadth increases to infinity while its height
decreases from its initial value to zero. In presence of the
spontaneous emission, we calculate the time evolution of

G+sx − a,t = 0d =E
−`

`

Cpe
isp/"dx dp, s23d

Cp =
2d2

pÎ2p
e−sd2/"dp2

. s24d

According to Eqs.s16d and s18d, the reduced density matrix
at time t@1/G is

rsx,x8,td = N8G+sx − a,tdG+
* sx8 − a,tdFsx,x8d, s25d

where

G+sx − a,td =
1

s2pd1/4Îd + it"/s2mdd

3exp1−
S1 −

i"

2md2tDx2

4d2 +
t2"2

m2d2
2 . s26d

According to Eq.s25d, we can conclude that the breadth of
the spreading wave packet is suppressed as can also be seen
in Fig. 4. We give the schematics of the evolution of the
wave packet at three different times and in two cases: one is
when there is no spontaneous emission and the other is when
there exists spontaneous emission. From Eq.s25d and Fig. 4,
we can see that the wave packet spreading is suppressed and
the ultimate breadth is related to the wavelength of the
atomic radiation. The longer is the atomic radiative wave
length, the wider is the breadth of the ultimate wave packet.

V. CONCLUSIONS

In summary, we have investigated the atomic
spontaneous-emission-induced quantum decoherence phe-
nomenon in association with the localization of the relative
position of a two-atom system. The spontaneous emission or
interaction with the vacuum electromagnetic field may be a
fundamental process destroying quantum effects in macro-
scopic objects. By analyzing two simple examples, we dem-
onstrate how spontaneous emission suppresses the spreading
wave packet and thus localizes a macroscopic object.

In forthcoming research along this direction we will deal
with a more realistic macroscopic object consisting of inter-
acting particles. In this practical case the interaction between

FIG. 3. Schematics of the evolution of the system state at three
different timest1=100/G, t2=200/G, andt3=1000/G sthe unit ofx
andx8 is l /pd. sa1d, sb1d, andsc1d demonstrate the state evolution
when there is no spontaneous emission whilesa2d, sb2d, and sc2d
represent the case when spontaneous emission exists.sc1d andsc2d
correspond to the case when the two packets have overlapped.
These schematics illustrate that the quantum coherence of the sys-
tem is lost in the presence of spontaneous emission and thus the
spreading wave packets are suppressed.
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the c.m. variable and inner degrees of freedom will also
serve as another source of quantum decoherence of the c.m.
motion together with the environment of a vacuum electro-
magnetic field.
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APPENDIX: SOLUTIONS OF THE SCHRÖDINGER
EQUATION

In this appendix we give the calculations on solving the
system of equations consisting of Eqs.s5d–s7d. We take the
Laplace transformation of Eqs.s5d–s7d and obtain

fL + isvA − v0dgAsp,Ld = − 2io
k

Bk,psLdgskd + Cp,

sA1d

hL + ifvBskd − v0gjBk,psLd

= − iAsp,Ldgskd − io
k

Dk,k8,psLdgsk8d, sA2d

hL + ifvDsk,k8d − v0gjDk,k8,psLd

= − iBk,psLdgsk8d − iBk,psLdgskd. sA3d

From Eq.sA3d, we have

Dk,k8,psLd =
− iBk,psLdgsk8d − iBk,psLdgskd

L + ifvDsk,k8d − v0g
. sA4d

Substituting Eq.sA4d into Eq.sA2d, we can rewrite Eq.sA2d
as

hL + ifvBskd − v0gjBk,psLd

= − iAsp,Ldgskd − Bk,psLdo
k8

g2sk8d
L + ifvDsk,k8d − v0g

− o
k8

Bk8,psLdgsk8dgskd

L + ifvDsk,k8d − v0g
. sA5d

Since we have ignored the higher-order multiphoton pro-
cesses, we can omit the last term on the right of Eq.sA5d.
Then we obtain

Bk,psLd =
− iAsp,Ldgskd

L + isvBskd − v0d + o
k8

g2sk8d
L + isvDsk,k8d − v0d

.

sA6d

According to the Weisskopf-Wigner approximationf20g, we
can obtain

G

2
+ iDv = o

k8

g2sk8d
L + ifvDsk,k8d − v0g

,

whereG=v0
2udu2/ s4«0"c2d is the decay rate of an atom from

stateuel to stateugl andDv is the Lamb shift which is omit-
ted in our following calculations since it can be merged into
the transition frequencyv0. EquationsA6d can be simplified
as

Bk,psLd =
− iAsp,Ldgskd

L + ifvBskd − v0g +
G

2

. sA7d

Submitting Eq.sA7d into Eq. sA1d, we have

Asp,Ld =
Cp

L + isvA − v0d + 2o
k

g2skd

L + ifvBskd − v0g +
G

2

.

sA8d

In the Weisskopf-Wigner approximation, we can also obtain

G

2
+ iDv = o

k

g2skd

L + ifvBskd − v0g +
G

2

.

So Eq.sA8d can be written as

FIG. 4. Schematics of the suppression of a wave packet spread-
ing sthe unit ofx andx8 is 10l /pd. sa1d, sb1d, andsc1d correspond
to the evolution of the single wave packet at three different in-
stances when there is no spontaneous emission andsa2d, sb2d, and
sc2d represent the cases when the spontaneous emissions exist. Here
t1=2/G, t2=3/G, and t3=5/G. They demonstrate how the atomic
spontaneous emission suppresses the spreading of the wave packet.
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Asp,Ld =
Cp

L + isvA − v0d + G
. sA9d

Combining Eqs.sA4d, sA7d, andsA9d, we can obtain

Bk,psLd =
− iCpgskd

L + ifvBskd − v0g +
G

2

1

L + isvA − v0d + G
,

sA10d

Dk,k8,psLd =
− gsk8dgskdCp

L + ifvDsk,k8d − v0g
1

L + isvA − v0d + G

3 1 1

L + ifvBskd − v0g +
G

2
2

+ 1 1

L + ifvBsk8d − v0g +
G

2
2 . sA11d

Taking the inverse Laplace transformation of the above three
equations, we obtain the solutions to Eqs.s5d–s7d:

Asp,td = Cpe
−Gte−isvA−v0dt, sA12d

Bk,pstd = − igskdCp
eiv0−sG/2dtse−ivBt − e−ivAtd

ifvA − vBskdg +
G

2

, sA13d

Dk,k8,pstd =
gsk8dgskdCp

ifvA − vDsk,k8dg + G3 e−ifvDsk,k8d−v0gt

ifvBskd − vDsk,k8dg +
G

2

−
e−isvA−v0dt−Gt

ifvBskd − vAg −
G

2

+
e−ifvBskd−v0gt−sG/2dt

HifvDsk,k8d − vBskdg −
G

2
JHifvA − vBskdg +

G

2
J +

e−ifvDsk,k8d−v0gt

ifvBsk8d − vDsk,k8dg +
G

2

−
e−isvA−v0dt−Gt

ifvBsk8d − vAg −
G

2

+
e−ifvBskd−v0gt−sG/2dt

HifvDsk,k8d − vBsk8dg −
G

2
JHifvA − vBsk8dg +

G

2
J4 . sA14d
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