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Density fluctuations of a hard-core Bose gas in a one-dimensional lattice near the
Mott insulating phase
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The characteristic oscillations of the density-density correlation function and the resulting structure factor
are studied for a hard-core Bose gas in a one-dimensional lattice. Their wavelength diverges as the system
undergoes a continuous transition from an incommensurate to a Mott insulating phase. The transition is
associated with a unit static structure factor and a vanishing sound velocity. The qualitative picture is un-
changed when a weak confining potential is applied to the system.
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Recent experiments on one-dimensiofHD) Bose sys- z=Tre P =[] 2w,k
tems in an optical latticEl—3] have opened an exciting field wk

of physics. This will provide us with an extended and deeper

understanding of the special properties of strongly interact\-Nherew is the Matsubara frequency akds the wave vector

ing particles at low dimensions. From the theoretical point 01Jor a translational-invariant 1D system. In order to determine

view 1D systems are easier to treat in comparison with two? (@,k) we will adopt an approach o the statistics of directed

and three-dimension&2D and 3D systems but also prevent pplymers[G]_ In two d'mef‘s'ons- The analogy with .th's clas-
. . . sical statistical problem is based on the observation that the
us from using conventional mean-field methods.

St Isi I t ¢ b . world lines of a grand-canonical ensemble of bosons are
rong repuision aflows at most one boson per r‘n"’"mm‘ﬁiequivalent to directed polymers, random walks, or fluctuat-

of the optical lattice. This situation has been realized in re—Ing flux lines[7,8]. This can be formally expressed by the

cent experiment§3]. In such a system there is a competition ¢t that the partition functio of the grand-canonical en-
between repulsive and kinetic energy: For a sufficiently weakemple of these systems is identical.
tunneling rate the repulsive energy always wins and a Mott oy directed polymers in two dimensions it was shown

insulator is formed. In the case of weak repulsion Mott inSU+hatZ can be written as a determing6i. Thus the partition
lators can also be formed at commensurable fillings of the,ction of hard-core bosons =1 reads

optical lattice withn=1,2,...bosons at each potential mini-
mum. Subsequently we shall only consider the case of strong Z=]] detR(w), (1)
repulsion. ®
_ A well-known fact of one-dimensional many-body phys- \hereR is diagonal with respect to the Matsubara frequency
ics is that a continuous hard-core Bose gas can be mapped [0
a free Fermi gag4,5]. This can be understood when we
study a grand-canonical ensemble of bosons. The bosons dif-
fuse along the 1D lattice by tunneling between nearest-
neighbor sites like free particles. They experience each other
only when they try to tunnel to the same site at the same _ ig(l _eiw+-‘r—1_eiwfr)02_ )
time. However, this process is excluded by the strong repul- 2
sion between the bosons. The exclusion condition is also an ) A
intrinsic statistical property of fermions as a consequence of 1S the shift operator along the 1D latti¢&f(r)=f(r +1)),
the antisymmetry of the fermionic wave function under par-and theo; are the Pauli matrices
ticle exchange. The fact that bosons have a symmetric wave 10 0 1 0 —i
function under particle exchange is irrelevant in 1D because 00:( ) o= ( ) o= ( )
particles cannot exchange their positions in this case. There- 01 10 10
fore, free fermions and hard-core bosons are equivalent i, k) is obtained fromR(w) by diagonalization with re-
1D but not in higher dimensions. spect to the 1D lattice and thex22 structure.

For free fermions the multiparticle wave functi¢8later This model describes the tunneling of bosons with rate
determinant factorizes in the diagonal representation of thej=0 between nearest neighbors, expressed by the shift op-

individ.ual particles. The partitioq functic_)n C.)f a grand- eratorT and its inversd™. J is dimensionless and measured
canonical ensemble of fermions with Hamiltonidnat tem- in units of the energyi2/2me?, wherem is the mass of the
perature 15 then reads particles andh the lattice constant. The>X2 structure arises
from the fact that particle exchange between neighboring
sites through simultaneous tunneling is prohibited. This re-
*Electronic address: klaus.ziegler@physik.uni-augsburg.de duces the translational symmetry to sublattices with every

. J ) ~ . A
R(w)=(€°-Yop+ 5(1 +e9+T1+eT)oy
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second site, wherar is the position on a sublattice, amd
takes integer values.

>0 is the fugacity that controls the density of bosons in
the system. Here, it is related to the chemical poteniial
which is measured in the same energy unitlagy {1=1
- u. The fugacity is not directly accessible in the experiment
but only indirectly through the density(Z,J). Therefore,
physical quantities should be measured as functiomsasfd
J. An additional potential, superimposed on the optical lat-
tice, is described by a space-dependent fugagity

Physical quantities can be derived from the maRixFor
instance, if we are interested in properties at zero tempera-
ture we can use the integral with respect to the Matsubara
frequency

27 do 0.0 0.2 0.4 JO 0.6
G, = R_l T 3
fo (R (3 ;
) FIG. 1. The zero-temperature phase diagram of the model shows
to evaluate the local density of bosons as three phases: a Mott insulattivil), an incommensurat¢CP), and
an empty phase. Far>Jy=1/2 there is no MI.
n=1+¢ G 4

. . , 1 ~
It should be noticed thas, ;. is not the Green’s function for n=1-—[k¥ (k" —m], (7)
the propagation of an individual boson in the system but a 2m
correlation function between two bosons. Therefore, it is notyhere = correspond to the cases>1 and (<1, respec-
possible to evaluate the momentum distribution of boson T L ;
[3-5,9-14 from this expression. On the other hand, theﬁvely’ andk, k* are given by

evaluation of the density and the density-density correlation ~ (L+¢79H?
function becomes a simple task with the mat@x,. [6]. k=arccogl--—— 5| (8)
. ; nagl o . 2({7+J9)
Another interesting quantity is the correlation function of
the density fluctuations 12
x (1-27)
k* = arcco TR 1. (9

Cr,r’ = (grgr')_lc‘r,r’c‘r’,r +{ r_lGr,rér,r’ (5)
The transition from the intermediate to the Mott insulating
from which the static structure factor as a function of thephase at the critical fugacit§,=1/(1-2J) is continuous.
momentunk can be obtained by Fourier transformat{drb] To investigate the behavior of the system near the Mott
transition we calculate the correlations of density fluctuations
Si=1-2 (Co, + nob‘r’o)e“kr/E (Cor +Nodr o). (6)  asymptotically from Eq(5) for r>1 andk*<1 as
r r

Coy ~ (sin(k*r)/r)2. (10)
k'is dimensionless and measured in unitsié. _ After a Fourier transformation we obtain the static structure
The local densityn, and the correlation of the density f5ctor as
fluctuations can be directly measured in an experinh&él
This motivates the following study of these quantities for a M Ikl < 2Kk*
translational-invariant system as well as for a system with a S~ 2k K . (11
weak parabolic potential. We will compare the results in the 1 K> 2k

incommensurate regime near the transition to the Mott insu-
lator and discuss their characteristic properties. These quantities are shown in Figga2and Zb) for two

(i) Translational-invariant caseFor constant fugacity,  values of the tunneling ratéin the ICP.Cy, vanishes as the
= { the system has translational symmetry on the sublatticesvll phase is reached due to the fact that the MI exhibits no
andG, ;» can be calculated analytical[$]. Figure 1 shows density fluctuations. The correlation function of the density
the zero-temperature phase diagram of the model. The pafluctuations shows significant oscillations in the ICP. Their
ticle density is constant in space. Three phases can be idewavelengthA=2#/k* determines the characteristic length
tified: an empty phase with=0 for {<1/(1+2J), a Mott  scale for density fluctuations and diverges as the Mott tran-
insulator(MI) with n=1 for {>1/(1-2J) andJ<1/2, and sition is approacheds, grows linearly to both sides frork
an incommensurate phad€P). ForJ>J,=1/2 thesystem =0 in the interval[-2k*,2k*] and is constantly 1 elsewhere.
exhibits no Ml phase. The density in the ICP can be calcuThe Feynman relatios,=k?/2mAiw(k) with the dispersion
lated from Eq.(4) and gives relation w(k) =#ck+O(k?), which is linear for small values
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FIG. 2. Correlation function of
/ density fluctuation£,, and static
v structure factorS, for different
tunneling rates). First row: con-
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of k, allows us to identify the sound velociy ask*/m#. the density fluctuations, and the static structure factor by
The dependence & on the density for varying tunneling inverting the matrixR numerically on a lattice witiN=500
rates is depicted in Fig. 3. At low densitigSincreases with  sites.
increasingn until it reaches its maximal value of at a The local particle density, is shown in Fig. 4 for differ-
certain density, where it shows a cusp fbre. ForJ=<J, ent values of the tunneling ratk The density is symmetric
the system can undergo a Mott transition, whiereanishes  around the minimum of the parabolic potential at0 with a
at n=1. Otherwise it is nonzero. This behavior is substan-maximum at the centdid7]. It is suppressed as the potential
tially different from the behavior of the continuo@$onks- becomes larger with increasing distance from the center of
Girardeay gas[4,15]. In the latter the role ok* is played by  the trap. As the tunneling rate is decreased the distribution of
ke (=mn) which depends linearly on the density. This differ- the particles along the lattice becomes narrower and the den-
ence reflects the fact that the lattice system undergoes a trasity is shifted upwards. Whea reaches some valuk, we
sition to a Mott insulating phase, in contrast to the continu-observe a region with local particle density=1 developing
ous Bose gas which cannot become a Mott insulator withousymmetrically around =0.

an additional potential. Recent experimefits-3] were per- To investigate the development of this plateau we have
formed in a strong optical potential that can be described bgvaluated the correlations of the density fluctuatiGgs to-
a lattice model. gether with the associated static structure factor. These quan-

(i) Parabolic background potentialA parabolic potential tities are depicted in Figs.(® and 2d) for two values of
can be expressed as a spatially varying fuga¢ify=¢*  J=Jp. The correlation function of the density fluctuations
+Qr?, whereQ) determines the strength of the potential. In exhibits oscillations that do not have a unique wavelength
this caseG, » cannot be evaluated simply by a Fourier trans-andS, does not show a sharp cutoff. However, the properties
formation, since the translational invariance is broken. Weare qualitatively the same as in the translational-invariant
have calculated the local particle density, the correlations ofase Cy, vanishes whedp is reached, owing to the fact that
there are no density fluctuations within the plateau. The char-
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FIG. 3. Characteristic wave vect&t as a function of the den- FIG. 4. Local particle density for parabolic background potential

sity in the translational-invariant case. Curves are plotted for differ{/ ~1=0.3,Q0=3x 107%). Development of a Mott plateau in the cen-
ent values of the tunneling ratel=0.2<J, (solid), J=0.5=], ter of the trap(r=0) as the tunneling raté@ is decreased belovp
(dashegl J=0.8>J, (dotted. ~0.35.
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acteristic length scales become larger as the Mott plateau ®ructure factofS.. Its characteristic wave vectéf =2/ is
approached. Close t#) we observe clear indications for the proportional to the sound velocity S, is linear and saturates
developing Mott platea[d8]. The correlations of the density at a value of 1 fofk| > 2k*. k* itself vanishes continuously as
fluctuations are suppressed around the center of the trap leaghe Ml is approached an,=1 in the Ml phase. This behav-
ing to a local minimum ofC,, atr=0. This is accompanied jor also survives qualitatively if a weak parabolic potential is
by an increase of the slope &. applied to the interacting Bose gas. In particular, the static

Conclusion For the 1D strongly interacting Bose gas in strycture factor is strongly suppressed if a large fraction of
an optical lattice we have identified characteristic oscillationspe gose gas is in the MI state.

of the density-density correlation function with length

This can be used as a measure for the distance of the systemWe are grateful for inspiring discussions with G. Shlyap-
from the MI state: the lengtk diverges in units of the lattice nikov and M. Girardeau. This research was supported in part
spacing with the density as 1{1-n) when we approach the by the National Science Foundation under Grant No.
MI. This phenomenon is related to the behavior of the statid®®HY99-07949.
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