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High-order above-threshold ionization by few-cycle laser pulses is analyzed in terms of quantum orbits. For
a given carrier-envelope phase, the number of contributing orbits and their ionization and rescattering times
determine the shape of the angle-resolved spectrum in all detail. Conversely, analysis of a given spectrum
reveals the carrier-envelope phase and the various interfering pathways from which the electron could choose.
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Few-cycle pulses in the near infrared with stable and con-
trollable carrier-envelopesCEd phase have come to provide a
powerful tool for the investigation of the atomic ionization
dynamics, which is much more sensitive and versatile than
the long pulses utilized thus farf1g. Varying the CE phase,
one can probe the atom in many different ways and extract
much more information than can be gained with a long pulse
whose shape is identical from cycle to cyclef2–6g.

In the high-intensity low-frequency regime where most
intense-laser-atom experiments have been carried out, our
physical understanding relies on the rescattering modelf7g.
For a specified final state, this model yields an ionization
time t0, i.e., the time when the electron enters the continuum
via ionization, and a rescattering timet1, when the oscillating
laser field drives the electron back to its parent ion, off which
in the case of high-order above-threshold ionizationsHATI d,
it rescatters into its final state. For long pulses, these two
times are rigidly connected both with respect to each other
and to their location within the laser cycle, and the ionization
dynamics within each cycle of the pulse are identicalspro-
vided depletion of the ground state can be neglectedd. For
few-cycle pulses, this is no longer so, and the additional
freedom is reflected in the HATI electron spectrumf5,8g.

Laser-atom physics in the high-intensity low-frequency
regime combines in a unique fashion quantum-mechanical
and classical features, viz. tunneling and interference of mat-
ter versus classical propagation. An appealing and efficient
description of both aspects is afforded by the method of
“quantum orbits” f9,10g, which relies upon a saddle-point
evaluation of the quantum-mechanical transition amplitude
and retrieves Feynman’s path integral in this contextf11g.
This method has been successfully applied to various laser-
atom processes in the presence of an infinitely long pulse
f12g. It can be employed for few-cycle pulses as wellf6g. In
this paper, we will utilize it to analyze HATI by few-cycle
pulses. We concentrate onhigh-order above-threshold ion-
ization sATI d, since this is much more sensitive to the CE
phase than ATI of low ordersdirect electronsd f5g.

For low laser frequency and high intensity, the strong-

field approximationsSFAd applies, which neglects the effect
of the laser field on the initial bound stateu0l and the effect
of the binding potential on the final continuum stateupl with
momentump. The transition amplitude from the former to
the latter state can be conveniently evaluated in the saddle-
point approximation, which returns it in the formf10–12g
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s

as expfiSsspdg. s1d

Here theas are complex coefficients whose specific form
does not concern us here and
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is the action of an electron along its path from the ground
state of the atom with ionization potentialIp to the detector.
This path starts when the electron is born by ionization at the
instant of timet0s with drift momentumks. It rescatters off
the ion at the later timet1s, such that it reaches the detector
with momentump. For givenp, there are several such paths
or orbits, which we number by the subscripts. They are
obtained asscomplexd solutions of the so-called saddle-point
equationsf10–12g. Any such solutionst0s,t1s,ksd defines the
electron’sscomplexd “quantum orbit” f12g
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where txR;Retx. While xst0sd=0, the real part of the orbit
starts atxsRet0sdÞ0. Examples of such orbits are presented
below in Fig. 3.

Conceptually, the method of quantum orbits is very
straightforward: the solutions of the saddle-point equations
have to be determined and inserted into Eq.s1d. However,
finding the solutions is not always a trivial task, in particular
for a few-cycle pulse. Details of the procedure we employed
will be published elsewhere.

For a laser fieldAstd that is periodic with the periodT
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=2p /v, with any solutionst0,t1,kd of the saddle-point equa-
tions, st0+T,t1+T,kd will be another solution, that is, the
quantum orbits are identical from one cycle to the next. To-
gether with the forms2d of the action, this has the conse-
quence thatsUp denotes the ponderomotive energy of the
infinitely extended laser field andEp;p2/2d

Mp0 = o
n

dsEp + Ip + Up − nvdo
s8

as8e
iSs8spd, s4d

where the sum overs8 is now restricted to quantum orbits
having return timest1s8 within only one cycle of the field, say
0ø t1s8R,T. Hence, periodicity of the laser field implies a
spectrum having discrete peaks spaced byv. In other words,
all energies other than those allowed by the energy-
conservingd function in Eq.s4d are eliminated by destruc-
tive interference of the contributions from the various cycles
of the field.

We will consider the linearly polarized few-cycle pulse
with the electric-field vector

Estd = E0stdcossvt + fdê s5d

for 0ø tøTp=npT with integer np, and zero outside this
interval. The sine-square envelope functionE0std
=E0 sin2svt /2npd assumes its maximum att=Tp/2. The CE
phasef specifies the delay between this maximum of the
envelope and the nearest maximum of the electric field of the
carrier wave with frequencyv. Carrier-envelope phasesf
=0 andf=p /2 smodulo pd correspond to cosine and sine
pulses with respect to the maximum of the envelope. For
pulses this short, the quantum orbits are different from cycle
to cycle and, for each cycle, have to be calculated separately.
We can no longer use Eq.s4d, but have to return to Eq.s1d,
which receives contributions from all orbits with 0, t1sR
,` including times when the pulse has already passed
through.

Therefore, the number of orbits that, in principle, need be
considered is much larger than in the periodic case. How-
ever, only those orbits make significant contributions, for
which the electric field at the ionization time is sufficiently
strong. In addition, for the high-energy part of the electron
spectrum, the electric field after the rescattering time must
still be sufficiently strong, since it is the latter field that ac-
celerates electrons to energies higher than*4Up. These two
conditions combined entail that for pulses withTp&8T only
orbits contribute that start and rescatter close to the maxi-
mum of the field envelope. Normally, there are no more than
two pairs of such orbits, whose rescattering timest1s are
approximately one cycle apart.

We will now present examples of the effects characteristic
of HATI with few-cycle pulses. We assume the fields5d for
np=7, which corresponds to 6.8 fs full width at half maxi-
mum in intensity. The rescattering potential is modeled by a
potential of the Yukawa-typef8g. We consider electron en-
ergy spectra for emission along the polarization axis in either
direction, u=0° sleft-hand detector, black curvesd and u
=180° fright-hand detector, redsgrayd curvesg. Figure 1 il-
lustrates the left-right asymmetry for a CE phase off=0°.
The plots were generated by a purely numerical evaluation of

the matrix elementMp0 in the SFA, using methods intro-
duced elsewheref8g sthese references also exhibit left-right
spectra for CE phases other than 0°d. One immediately real-
izes that the left-right asymmetry is much more pronounced
for the rescattered than for the direct electronsf5,13g. For
shorter pulsessnpø6d, this effect is bigger still. Much more
eye-catching, however, is the presence of what appears like
well-developed ATI peaks in one direction and their com-
plete absence in the other. It is these structures that we will
investigate in detail below.

The very high contrast of the ATI peaks calculated sug-
gests that they are caused by interference of two or more
contributions with almost equal magnitudes in the quantum-
orbit representations1d of the transition amplitude. There-
fore, in Fig. 2 we exhibit those quantum orbits that are in-
strumental in building up the spectra of Fig. 1. Foru=0°, the
upper panel displays the contributions of the six most domi-
nant orbits foru=0°, which come in three pairs. As a general
feature, the contributions of the two members of each pair
differ for low electron energy. Then, at some well-defined
energy, which almost agrees with the classical cutoff, they
become nearly identical. For higher energy, the contribution
of one of the two saddle points—the one drawn dashed in the
figures—explodes exponentially and has to be dropped from
the sums1d f14g. The cutoff caused by the pairsb,b8d around
57 eV matches the highest cutoff of the corresponding ATI
spectrum in Fig. 1. The pairsc,c8d has a higher cutoff near
64 eV, but up to this point the contribution ofsb,b8d is stron-
ger by an order of magnitude. Around and beyond this cutoff,
however, the orbitsb and c make comparable contributions
and, in consequence, the spectrum exhibits an extremely
well-developed interference pattern. For an infinitely long
pulse,sc,c8d and sb,b8d would be identical orbits, the latter
being one period later than the former, so that only one
would be included in the sums4d.

In the opposite directionsu=180°d, the lower panel of
Fig. 2 shows a very different picture. Many orbits contribute

FIG. 1. sColor onlined Differential ionization probabilities of
argon sIp=15.76 eVd as functions of the electron energyEp, for
emission in the directionu=0 ° sblack curvesd and u=180° fred
sgrayd curvesg, for the linearly polarized seven-cycle sine-square
pulse s5d with CE phase f=0. The laser-field intensity is
1014 W cm−2 and the wavelength 800 nm. The results were ob-
tained by numerical integration, which is responsible for the jitter
above 80 eV.
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to the medium-energy region, which is so complicated that a
detailed analysis is futile. In contrast, the conditions at high
energy are now completely different and very simple: only
the pair se,e8d contributes, which results in the complete
absence of any interference pattern for energies above 55 eV.

The temporal evolution of the orbitss3d just discussed is
depicted in Fig. 3, for the energy 56 eV. All orbits start at
positions<0.6A0/v sA0=E0/vd on either side of the ion,
which is close to the quasistatic “exit of the tunnel” atIp/E0.
The origin of the nomenclature of the “long” and the “short
orbit” becomes very apparentf6,9g. For u=0°, the orbits
c and c8 start at times when the field is weaker than at the
later times when the orbitsb andb8 take off. This is why the
contribution of c and c8 to the sums1d is less important
except at high energies where this disadvantage is compen-
sated by the fact that the field is stronger when they return
and by the ensuing higher cutoff. Figure 3 also shows an
orbit forbit a; its partnera8 is not shown since at the chosen
energy of 56 eV it is discarded from the sums1dg that departs

from the ion in the direction opposite to the detector. Such
orbits rescatter only upon their second revisiting the ion. Fig-
ure 2 shows that they only contribute to energies below about
35 eV. They arenot responsible for the weak interference
pattern between 25 and 40 eV foru=0°, since they return at
the same time as the dominant orbitsb andb8. This interfer-
ence is rather caused by the weaker orbitsc and c8. In the
opposite directionsu=180°d, as mentioned above only the
orbitse ande8 contribute at high energy. They both return to
the ion at about the same time right after the maximum of the
field. Hence, they can gain an energy almost as high as in the
long-pulse limit.

The lowest panel of Fig. 3 shows the spectrum that is
generated when only two selected orbits, denoted byx andy,
are included in the coherent sums1d. We refer to the result-
ing probability bywx+y. The figure shows that when the two
orbits rescatter at about the same time,wx+y depends very
smoothly on the energyEp; cf. the orbits sx,yd=sb,b8d,
sc,c8d, andse,e8d. If, on the other hand, their return timest1x

and t1y are about one cycle apart,wx+y displays a fringe pat-
tern with a peak separation of aboutv. More precisely, if
Dt= ut1x− t1yu,T, we observe a fringe separation of more
than v fin the case wheresx,yd=sb8 ,cdg, and vice versa if
Dt.T fin the case wheresx,yd=sb,c8dg.

This behavior can be traced back to the actions2d. For the

FIG. 2. sColor onlined Quantum-orbit analysis of the spectra of
Fig. 1. Foru=0° supper paneld, the contributions of the dominant
three pairs of quantum orbits are presented, as well as the direct-
ATI probability sDd. The highly structuredsdark blued curve that
extends from the upper left to the lower right gives the coherent
sum of all these contributionssD+SPd. For u=180° slower paneld,
there are five dominant pairs as well as the direct electrons. Contri-
butions represented by dashed lines must be excluded from the
coherent sums1d after their respective cutoffs.

FIG. 3. sColor onlined Real parts of the quantum orbitss3d in-
vestigated in Fig. 2, for the same parameters as in Fig. 1. Their
distance from the ionsin multiples of the excursion amplitude
A0/vd is plotted as a function of timesin multiples of the carrier-
wave periodTd. The black dashed curve shows the seven-cycle
electric field s5d, which underlies the calculation. The upper and
middle panels correspond to the directionsu=0° andu=180°, re-
spectively. Only the orbits most important at 56 eV are depicted.
These are, using the nomenclature of Fig. 2,a, b, b8, andc,c8 for
u=0°, ande, e8, andd for u=180°. The lowest panel displays the
probabilitieswx+y defined in the text for the orbitsx andy specified
in the inset.
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interference pattern, only the final part of the orbit matters,
which starts at the timet1s when the electron finally leaves
the ion towards the detector. Given two such orbitsx andy,
by evaluating their actionsSxspd andSyspd one may convince
oneself that their superposition yields the transition probabil-
ity

wx+ysEpd ~ uMp0u2 ~ a + b sinsEpDt + cd, s6d

where the parametersa, b, andc are functions of the coef-
ficientsax anday in Eq. s1d. This expression holds provided
et1y

t1xdtAstd can be neglected, which is usually the case, be-
causeDt is either small or<T. The position of the maxima
depends on the parameterc. The fringe separation is
DEp /v=T/Dt.

While, in Fig. 3, the contributions of selected orbits such
assb,c8d andsb8 ,cd display a fringe separationDEpÞv, the
total transition probability summed over all pairs of orbits
shows almost exactlyDEp=v. This will be different as soon
as the atomic dynamics deal differently with the long and the
short orbit of a pair. A real many-electron atom will see to
that, via its particular effective binding potential, and a mol-

ecule even more so. In consequence, analyzing the fringe
separation in the high-energy ATI spectrum allows one to
deduce very subtle details of the ionization dynamics on a
time scale of a small fraction of the optical cycle, without
having to utilize an additional attosecond pulsef15g. How-
ever, interpreting the fringe pattern will not be easy.

In summary, we have extended the formalism of quantum
orbits to the case of high-order above-threshold ionization
generated by few-cycle laser pulses. Thereby, the many fea-
tures of spectra that develop upon variation of the CE phase
and the pulse duration can be explained in terms of the prop-
erties of a few quantum orbits, which are closely related to
classical electron trajectories. In particular, we have shown
that the interference patterns of few-cycle ATI spectra can be
controlled by the CE phase. Conversely, such patterns can
reveal subtle features of the ionization dynamics deep down
into the attosecond time scale.
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was supported in part by VolkswagenStiftung and by the
Federal Ministry of Education and Science, Bosnia and
Herzegovina.
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