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We propose a practical, scalable, and efficient scheme for quantum computation using spatially separated
matter qubits and single-photon interference effects. The qubit systems can be nitrogen-vacancy centers in
diamond, Pauli-blockade quantum dots with an excess electron, or trapped ions with optical transitions, which
are each placed in a cavity and subsequently entangled using a double-heralded single-photon detection
scheme. The fidelity of the resulting entanglement is extremely robust against the most important errors such
as detector loss, spontaneous emission, and mismatch of cavity parameters. We demonstrate how this entan-
gling operation can be used to efficiently generate cluster states of many qubits, which, together with single-
qubit operations and readout, can be used to implement universal quantum computation. Existing experimental
parameters indicate that high-fidelity clusters can be generated with a moderate constant overhead.
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Quantum computation �QC� offers a potentially exponen-
tial computational speed-up over classical computers, and
many physical implementations have been proposed. Particu-
larly promising proposals are those in which unitary opera-
tions and readout in matter qubits are implemented via laser-
driven optical transitions. Examples include the original ion-
trap proposal �1�, nitrogen-vacancy �NV� centers in diamond
�2�, and schemes utilizing the Pauli-blockade effect in quan-
tum dots with a single excess electron �3,4�. Single-qubit
operations and readout, using a combination of optical and
radio-frequency �RF� control fields, have already been dem-
onstrated in ion-trap and NV-diamond systems �2,5,6�, while
a number of promising techniques for optically addressing
quantum dot spin qubits have been proposed �3,4�. In all
these cases, the ratio of the single-qubit operation time to the
intrinsic decoherence times suggests that very high-fidelity
operations are possible.

However, there are substantial difficulties in scaling these
implementations to the large numbers of qubits required for
useful QC. Multiqubit gates are facilitated by a direct inter-
action between qubits. Thus adding a new qubit to a quantum
register, together with the associated control fields, necessar-
ily modifies the Hamiltonian of the system. This can mean
that, as more qubits are added, logic gate implementations
become progressively more complex, and new decoherence
channels can be introduced. Furthermore, the need to opti-
cally address individual qubits can lead to seemingly contra-
dictory system requirements: the qubits need to be suffi-
ciently well separated to be resolved by the optical field, but
must be close enough such that two-qubit logic can be imple-
mented via the interqubit interaction.

Our proposed solution to these scaling challenges is to
perform distributed quantum computing, in which the matter
qubits are spatially separated, and there is no direct interac-
tion between the qubits. Instead, entangling operations �EOs�
between qubits are implemented via single-photon interfer-

ence effects. Several schemes to entangle pairs of distant
qubits in this way have been proposed �7�. Recently, it has
been shown that unitary logic gates can be performed in this
manner �8,9�. However, the latter schemes are either inher-
ently nondeterministic �9� or are sensitive to photon loss or
photodetector inefficiency �8� and it is not clear whether they
can be used for scalable QC. Schemes using single-photon
interference effects together with local two-qubit unitary op-
erations have also been proposed �10,11�.

In this paper, we propose a fully scalable scheme for dis-
tributed QC using individual matter qubits assuming only
single-qubit operations. Our scheme is robust to photon loss
and other sources of errors, and uses optical transitions of the
qubit system, together with linear optics and photodetection
to entangle pairs of spatially separated matter qubits in a
nondeterministic manner. A key observation is that even such
a nondeterministic EO is sufficient for scalable QC: our EO
can be used to efficiently generate cluster states of many
qubits, which, together with single-qubit operations and mea-
surements, are capable of universal QC �12�. In the context
of linear optics QC �13�, it has recently been shown �14–16�
that the cluster state model can be used to significantly re-
duce the resource overheads required for scalable QC.

We consider matter systems comprised of two long-lived,
low-lying states �↑� and �↓�, and one excited state �e�, in an L
configuration �see Fig. 1�. The system is constructed in such
a way that an optical � pulse will induce the transformation
�↓ �→ �e� and �↑ �→ �↑ �. The transition �↑ �↔ �e� is forbidden,
e.g., by a selection rule. The states �↑� and �↓� represent the
logical qubit states �0� and �1�, respectively. We assume that
high-fidelity single-qubit operations and measurements can
be performed on these logical qubits. Physical systems that
have a suitable level structure include NV centers in dia-
mond �2�, quantum dots with a single excess electron �3,4�,
and various trapped ion and atomic systems. Each such sys-
tem is embedded in a separate optical cavity, such that only
the �↓ �↔ �e� transition is coupled to the cavity mode. One
end of each cavity is leaky, with the leakage rate of the ith
cavity given by 2�i. The light escaping from the cavities is
mixed on a 50:50 beam splitter �BS�, the output modes of
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which are monitored by two vacuum-discriminating detec-
tors, D+ and D−, with efficiency �.

The EO scheme proceeds as follows. Firstly, both qubits
are prepared in the state �+ �= ��↑ �+ �↓ �� /�2. We then imple-
ment the following sequence of operations: �i� Apply an op-
tical � pulse to each qubit, coherently pumping the popula-
tion in the �↓� state into the �e� state. �ii� Wait for up to a time
twait for a photodetection event in either D+ or D−. �iii� Wait
for a further time trelax for any remaining excitation in the
qubit-cavity systems to relax. �iv� Apply an X operation to
both qubits, coherently flipping the spins as �↑ �→ �↓ � and
�↓ �→ �↑ �. �v� Repeat steps �i�–�iii�.

Appropriate values for twait and trelax are determined by the
system parameters, as discussed below. If zero or two pho-
todetection events are observed on either round of the pro-
cedure, the EO failed, and the qubits must be reprepared
before reattempting the EO. On the other hand, if one �and
only one� photodetection event is observed on each round of
the protocol, the EO has succeeded, and a maximally en-
tangled state is prepared with unit fidelity, even in the pres-
ence of photon loss. This double-heralding technique turns
out to be exceedingly robust against the most common ex-
perimental errors.

We analyzed the scheme in detail using the quantum tra-
jectories formalism �17�. For clarity, we first consider the
ideal case, in which the detectors have unit efficiency ��
=1�, and spontaneous emission of photons from the transi-
tion �e�→ �↓ � into modes other than the cavity mode is ne-
glected. During time periods where no detector clicks are
observed, the conditional state of the system, in the interac-
tion picture, evolves smoothly according to the effective
Hamiltonian ��=1�,

Heff = �
i=A,B

gi

2
��↓�ii	e�ĉi

† + H.c.� − i �
i=A,B

�iĉi
†ĉi.

Here, gi denotes the Jaynes-Cummings coupling between the
�e�i↔ �↓ �i transition and the mode of the ith cavity, and ĉi is
the corresponding annihilation operator. For the purpose of
illustrating the ideal case, we assume that systems A and B
are identical, such that gA=gB=g and �A=�B=�, and that
��g.

When a single click is observed in detector D±, the state
of the whole system discontinuously evolves as ���t��

→ ĉ±���t��, where ĉ±= �ĉA± ĉB� /�2 denotes the correspond-
ing jump operators. Thus, after steps �i� and �ii� of the entan-
gling protocol, conditioned on observing a detector click at
time t1� twait, the unnormalized state of the whole system is

��̃�t1�� = 	�t1��
±� + 	�t1���t1�
�↓,0;e,0� ± �e,0;↓,0�

�2

+ 2	2�t1�
�↓,0;↓,1� ± �↓,1;↓,0�

�2
. �1�

Here, �qA , pA ;qB , pB� is the state of the whole system,
with qA�B� and pA�B� denoting the states of matter system
A �B� and cavity mode A �B�, respectively, �
±�
= ��↓ ,0 ; ↑ ,0�± �↑ ,0 ; ↓ ,0�� /�2 are maximally entangled
states, 	�t�=−ig / �4��2−g2��e−�slowt/2−e−�fastt/2� and ��t�
= 1

2 �1+� /��2−g2�e−�slowt/2+ 1
2 �1−� /��2−g2�e−�fastt/2, where

�fast=�+��2−g2 and �slow=�−��2−g2. In order to obtain a
detector click with high probability, we require twait
3�slow

−1 .
Equation �1� implies that it is possible to observe a second

detector click on the first round of the protocol. However,
realistic photodetectors typically cannot resolve two photons
arriving in quick succession �18�. Within the quantum trajec-
tories description, this can be simulated by assuming that no
information is available from either detector after the first
click. After a time trelax��slow

−1 , the system decoheres to the
state �=N−1�
±�	
±�+ �1−N−1��↓ ↓ �	↓↓ � where N=1
+ ���t1��2+ �	�t1��2. The undesirable second term in � is re-
moved by applying steps �iv� and �v� of the entangling pro-
cedure. If a photodetection occurs on the second round, the
final state of the system is a pure, maximally entangled state.
If the two clicks are observed in the same �different� detec-
tor�s�, the final state is �
+� ��
−��. The four possible suc-
cessful outcomes occur with probability 1

8 , leading to a total
success probability of p= 1

2 .
We also analyzed the scheme in the nonideal case, allow-

ing for imperfect detector efficiency ��1, and finite spon-
taneous emission into free space ��1=�2=��0�. These im-
perfections do not reduce the fidelity of the final state, but do
reduce the success probability �see Fig. 2�a��.

The dominating experimental imperfections that do re-
duce the fidelity are: �1� decoherence of the matter qubits, �2�
dark counts in the detectors, and �3� imperfect mode match-
ing of the photons incident on the beam splitter. Firstly, the
effect of spin decoherence depends on the way the cluster
states are generated, and can be estimated by comparing the
spin decoherence time td with the “clock time” tc
10�slow

−1 at
which the EO can be repeated. If the preparation of cluster
states is performed in parallel, the typical time overhead is m
clock cycles �see below�. Thus the average age of a qubit the
moment it is added to the cluster is �m /2�tc, and m�8 for
reasonable detector efficiencies. Assuming a reasonable cav-
ity qubit coupling, g=100�, and critically damped cavities
�g���, the size of errors due to spin decoherence is given by
�
�m /2�tc / td
0.4�−1 / td. For instance, for the NV-diamond
system ��−1=25 ns �19� and td=32 �s �20��, we have �
3
�10−4.

FIG. 1. In the circle: The qubit system ��↑�, �↓� with the excited
state �e�. The � pulse affects only the transition �↓ �→ �e�, and the
emission of a photon into the cavity mode brings the excited state
back to the qubit state �↓�. Each system is placed in a leaky cavity.
Emission from a pair of such cavities, via a 50:50 beam splitter
�BS�, is detected in detectors D+ or D−, and conditionally leads to
entangled qubit states.
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Secondly, detector dark counts on either round of the EO
can lead to a spurious “success” of the EO, which can reduce
the fidelity of the entanglement. For existing avalanche-
photodiode detectors, dark count rates are typically �dc
�500 s−1 �21�. The effect on the cluster fidelity can be made
negligible by observing the detector output only for the win-
dow twait
3�slow

−1 �
1 ns for NV diamond�, leading to an
error probability of pdc=�dctwait
10−7.

Finally, imperfect mode matching of the photons emitted
by the matter qubit-cavity systems reduces the fidelity, be-
cause the photons carry information regarding their origin.
Nonidentical central frequencies and spatiotemporal mode
shapes of the photons can reduce the fidelity. The frequency
of the photons emitted from cavity i depends on the frequen-
cies of both the �↓ �i↔ �e�i transition ��↓e,i� and the cavity
mode ��cav,i�. The �↓e,i’s can be tuned independently, e.g., by
using local electric and magnetic fields. The �cav,i’s can also
be tuned, e.g., by using strain-tunable silica microcavities
�22�, or piezoelectrically tuned fiber-optic microcavities �23�.
The spatiotemporal mode shapes of the emitted photons de-
pend on the gi’s and �i’s of the respective cavities, which are
more difficult to calibrate once the cavities have been fabri-
cated. However, the EO is rather robust to such mismatches
�see Fig. 2�b��: mismatches of a few percent reduce the fi-
delity by less than 10−3.

The next step towards scalable quantum computers is
linking qubits together into cluster states, using the EO de-
scribed above. A cluster state of qubits �q1 ,q2 , . . .qN can be
represented graphically by a collection of qubit nodes con-
nected by edges connecting neighboring qubits, as depicted
in Fig. 3�a�. A linear cluster of N qubits �a chain� may be
represented in the form �C�1. . .N= ��↑ �1+ �↓ �1Z2���↑ �2

+ �↓ �2Z3� . . . ��↑ �N+ �↓ �N�, where Zi represents the Pauli
phase-flip operation acting on qubit i. Such linear clusters
can be grown using our EO, as we now describe. Given
a cluster �C�2. . .N, qubit 1 can be added to the end of the
cluster by first preparing qubit 1 in the state �+ �1��↓ �1
+ �↑ �1 and then applying the EO to qubits 1 and 2. If the EO
is successful, the resulting state is of the form
��↑ �1�↓ �2± �↓ �1�↑ �2Z3��C�3. . .N, depending on whether both
clicks were observed in the same detector. This can be trans-

formed into a cluster state by applying the local operations
H1X2 or X1H1X2, conditional on the outcome of the EO �here
Hi is the Hadamard operation, and Xi the Pauli operator
implementing a bit flip�. If the EO fails, the state of qubit 2
is, in general, unknown. However, measuring qubit 2 in the
computational basis removes qubit 2 from the cluster, but
projects qubits �3, . . . ,N back into a pure cluster state.
Therefore, failure of the EO causes the original cluster to
shrink by one qubit.

Repeatedly applying this procedure allows long chains to
be grown. However, the theoretical upper limit on the suc-
cess probability of our EO is p= 1

2 , and therefore, with this
procedure one cannot create large clusters efficiently. If re-
cycling of the clusters after a failure �16� is not performed,
the average number of EOs required to create a cluster of m
qubits is NEO=�i=1

m−1p−i.
A way around this problem is a “divide and conquer”

approach, in which short chains are grown separately and
then joined to a longer cluster using the EO together with
local operations. The EO can be used to join two clusters, as
shown in Fig. 3�b�. These chains, A and B of length N and m,
respectively, can be joined together by first performing the
local operation XA1

, then applying the EO between qubits A1

and B1, and measuring B1 in the basis �± �B1
��↓ �B1

± �↑ �B1
. If

the EO was successful, the remaining qubits are left in a state
which may be transformed, via a local operation on qubit
A1, into a cluster state of length N+m−1, of qubits
�AN , . . . ,A1 ,B2 , . . . ,Bm. If the EO fails, qubit A1 must be
measured in the computational basis, and the original cluster
state shrinks by one qubit. Thus the average length of the
new cluster is L= p�N+m−1�+ �1− p��N−1�. In order that
the cluster grows on average, we require L�N, which im-
plies that length of the short chains should satisfy m�1/ p.

Chains of fixed length m can be grown independently us-
ing the EO, either by sequentially adding single qubits to the
end of a cluster, or by joining subchains together. Growing
these m-chain adds a constant overhead cost to the cluster
generation process. For example, growing a 4-chain �without
recycling� requires on average p−3+ p−2+ p−1 applications of
the EO, and each attempt to join such a chain adds on aver-
age 4p−1 qubits to the large cluster, leading to a total cost of
C4= �p−3+ p−2+ p−1+1� / �4p−1� EOs per qubit added to the
large cluster. A 5-chain can be grown by joining two 3-chains
together, a 9-chain can be grown by joining two 5-chains,
and so on. Joining such chains to a longer cluster leads to
total costs of C5= �2p−3+2p−2+ p−1+1� / �5p−1� and C9

= �4p−4+4p−3+2p−2+ p−1+1� / �9p−1� EOs per qubit, respec-

FIG. 2. �Color online� �a� Probability of success p vs the detec-
tor efficiency � after both rounds of the entangling procedure, plot-
ted for different values of the spontaneous emission rate �
= �0,0.1�slow,0.2�slow �top to bottom�. Other parameters are g
=0.3 and �=1. �b� Fidelity of the entangled qubit pair for imper-
fectly mode-matched photons. Upper curve: fidelity for nonidentical
leakage rates, x=�1 /�2, taking g1=g2. Lower curve: fidelity for
nonidentical coupling parameters, x=g1 /g2, taking g2=0.3 and �1

=�2=1.

FIG. 3. Cluster states. �a� The qubits �circles� are entangled with
their nearest horizontal neighbor via EOs �depicted by lines be-
tween the qubits�, and gates between computational qubits are in-
corporated by the vertical lines. �b� Linear clusters can be joined
together by applying the EO between qubits A1 and B1, and subse-
quently performing single-qubit operations and measurements.
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tively. For example, for p�0.24 �or �=70% with �=0�, we
require m=5, and we find C5=775. A modest improvement
in detector efficiency dramatically reduces the overhead cost:
for �=85% and �=0, we find C4=73.4. There may be more
efficient schemes for growing linear clusters using our EO
�e.g., employing recycling of small clusters �16�� which yield
lower overhead costs.

In order to build linear chains into two-dimensional clus-
ter states capable of simulating arbitrary logic networks,
crosslinks between linear chains must be constructed �15�.
Such a link can be created by first using the EO to create an
I-shaped cluster �see Fig. 3�a�� offline, for some fixed cost.
Provided the arms of this I cluster are sufficiently long, the
EO can be used to join the I cluster to a pair of linear clusters
with a high probability, and therefore create a crosslink be-
tween the clusters. This leads to a constant overhead cost per
crosslink added to the cluster, and hence per two-qubit logic
operation in the computation. Other methods for creating
two-dimensional clusters, e.g., using microclusters �15� or
redundant encoding �16�, have also been proposed.

Our proposal has a number of very desirable features with

respect to practical implementations. Firstly, our scheme re-
quires only a simple level structure and single-qubit opera-
tions. Secondly, photon loss does not reduce the fidelity of
the entangled states, but merely adds to the overhead cost.
Thirdly, owing to the simplicity of the optical networks used,
mode matching should be relatively straightforward.
Fourthly, the scheme is inherently distributed, and our
scheme lends itself naturally to distributed applications, such
as quantum repeaters �24� and cryptography �25�. Finally,
many of the techniques described here have been demon-
strated experimentally, and the system requirements needed
to create high-fidelity cluster states do not seem prohibitively
restrictive.

Note added. While preparing this manuscript, we became
aware of an alternative scheme that may also be used for
generating cluster states of matter qubits �26�.
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sions. The authors are supported by the E.U. Nanomagiqc
and Ramboq projects.

�1� J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 �1995�.
�2� F. Jelezko et al., Phys. Rev. Lett. 92, 076401 �2004�.
�3� E. Pazy et al., Europhys. Lett. 62, 175 �2003�.
�4� A. Nazir et al., Phys. Rev. Lett. 93, 1505021 �2004�.
�5� M. Riebe et al., Nature �London� 429, 734 �2004�.
�6� M. D. Barrett et al., Nature �London� 429, 737 �2004�.
�7� C. Cabrillo et al., Phys. Rev. A 59, 1025 �1999�; S. Bose et al.,

Phys. Rev. Lett. 83, 5158 �1999�; X. L. Feng et al., ibid. 90,
217902 �2003�; L.-M. Duan and H. J. Kimble, ibid. 90,
253601 �2003�; D. E. Browne, M. B. Plenio, and S. F. Huelga,
ibid. 91, 067901 �2003�; C. Simon and W. T. M. Irvine, ibid.
91, 110405 �2003�.

�8� I. E. Protsenko et al., Phys. Rev. A 66, 062306 �2002�.
�9� X. Zou and W. Mathis, e-print quant-ph/0401042.

�10� L.-M. Duan et al., Quantum Inf. Comput. 4, 165 �2004�.
�11� J. M. Taylor et al., e-print cond-mat/0407640.
�12� R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188

�2001�.

�13� E. Knill, R. Laflamme, and G. J. Milburn, Nature �London�
409, 26 �2001�.

�14� N. Yoran and B. Reznik, Phys. Rev. Lett. 91, 037903 �2003�.
�15� M. A. Nielsen, Phys. Rev. Lett. 93, 040503 �2004�.
�16� D. E. Browne and T. Rudolph, e-print quant-ph/0405157.
�17� H. J. Carmichael, An Open Systems Approach to Quantum Op-

tics, Lecture Notes in Physics, Vol. 18 �Springer, Berlin, 1993�.
�18� P. Kok and S. L. Braunstein, Phys. Rev. A 61, 042304 �2000�.
�19� A. Beveratos et al., Eur. Phys. J. D 18, 191 �2002�.
�20� T. A. Kennedy et al., Phys. Status Solidi B 233, 416 �2002�.
�21� SPCM data sheet at http://optoelectronics.perkinelmer.com
�22� W. VonKlitzing et al., New J. Phys. 3, 14 �2001�.
�23� Jason Smith �private communication�.
�24� H. J. Briegel et al., Phys. Rev. Lett. 81, 5932 �1998�.
�25� A. K. Ekert, Phys. Rev. Lett. 67, 661 �1991�.
�26� Y. L. Lim, A. Beige, and L. C. Kwek, e-print quant-ph/

0408043.

S. D. BARRETT AND P. KOK PHYSICAL REVIEW A 71, 060310�R� �2005�

RAPID COMMUNICATIONS

060310-4


