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The entanglement of quantumXY spin chains of arbitrary length is investigated via a recently developed
global measure suitable for generic quantum many-body systems. This entanglement is determined over the
phase diagram and found to exhibit rich structure. In particular, the field derivative of the entanglement density
becomes singular along the critical line. The form of this singularity is dictated by the universality class
controlling the quantum phase transition.
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INTRODUCTION

Quantum entanglement, a term coined by Schrödinger,
has been recognized over the past decade as the central actor
in many quantum information processing tasksf1g. More re-
cently, entanglement has emerged on the nearby stage of
quantum many-body physics, especially for systems that ex-
hibit quantum phase transitionsf2–7g, where it can play the
role of a diagnostic of quantum correlations. Quantum phase
transitionsf8g are transitions between qualitatively distinct
phases of quantum many-body systems, driven by quantum
fluctuations. In view of the connection between entangle-
ment and quantum correlations, one anticipates that en-
tanglement will furnish a dramatic signature of the quantum
critical point, where quantum fluctuations are greatly en-
hanced. From the viewpoint of quantum information, the
more entangled a state, the more resources it is likely to
possess. It is thus desirable to study and quantify the degree
of entanglement near quantum phase transitions. By employ-
ing entanglement to diagnose many-body quantum states one
may obtain fresh insight into the quantum many-body prob-
lem.

To date, progress in quantifying entanglement has taken
place primarily in the domain of bipartite systemsf9g. For
multipartite systems, however, the complete characterization
of entanglement requires the consideration of multipartite en-
tanglement, for which a consensus measure has not yet
emerged. Much of the previous work on entanglement in
quantum phase transitions has been based on bipartite mea-
sures, i.e., entanglement either between pairs of partiessvia
the concurrenced f2,3g or between a part and the remainder of
a systemsvia the von Neumann entropyd f4,6,7g. Singular
and scaling behavior of entanglement near quantum critical
points was discovered by Osterloh and co-workersf3g, who
invoked Wootters’two-qubitconcurrencef10g. Vidal and co-
workersf4g have connected the von Neumann entropy to the
results of conformal field theory. Gu and co-workersf7g have
found further application of the von Neumann entropy in the
extended Hubbard model. Despite the success of these two
bipartite measures as a probe of quantum phase transitions,
body problems, Yang has recently found examples where
both measures fail to faithfully reflect the underlying quan-
tum critical pointsf11g.

To characterize the entanglement of a many-body system,
a multipartite approach of entanglement is indispensible.

Here we study a recently developedglobal measure of en-
tanglementf12g that provides aholistic, rather than bipartite,
characterization of the entanglement of quantum many-body
systems. It has the merit of being applicable beyond qubit
systems, and allows us to study thethermodynamicentangle-
ment density. In the present paper we employ the Jordan-
Wigner technique and calculate the global entanglement for
both the ground and first excited states for arbitrary number
of spins. The thermodynamic entanglement density we have
obtained provides information on various phases and phase
boundaries. Specifically, we observe that it varies in a singu-
lar manner near the quantum critical line, and that it vanishes
along the disorder line.

GLOBAL MEASURE OF ENTANGLEMENT

To introduce a measure for characterizing theglobal en-
tanglement, consider a general,n-partite, normalized pure
state: uCl=op1¯pn

Cp1p2¯pn
uep1

s1dep2

s2d
¯epn

sndl. If the parties are
all spin-1/2 then each can be taken to have the basishu↑l,
u↓lj. Our scheme for analyzing the entanglement involves
considering how well an entangled state can be approxi-
mated by some unentangledsnormalizedd statese.g., the state
in which every spin points in a definite directiond: uFl;
^ i=1

n ufsidl. The proximity of uCl to uFl is captured by their
overlap; the entanglement ofuCl is revealed by the maximal
overlapf12g,

LmaxsCd ; max
F

ukFuClu; s1d

the largerLmax is, the less entangled isuCl. If the entangled
state consists of two separate entangled pairs of subsystems,
Lmax is the product of the maximal overlaps of the two.
Hence, it makes sense to quantify the entanglement ofuCl
via the followingextensivequantity f12,13g:

Elog2
sCd ; − log2 Lmax

2 sCd, s2d

This normalizes to unity the entanglement of EPR-Bell and
N-parity Greenberger-Horne-ZeilingersGHZd states, as these
states haveLmax=1/Î2 f12g, as well as gives zero for unen-
tangled states. To characterize the properties of the quantum
critical point we use the thermodynamic quantityE defined
by
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E ; lim
N→`

EN, EN ; N−1Elog2
sCd. s3d

.

QUANTUM XY SPIN CHAINS AND ENTANGLEMENT

We consider the family of models governed by the Hamil-
tonian

HXY = − o
j=1

N S1 + r

2
s j

xs j+1
x +

1 − r

2
s j

ys j+1
y + hs j

zD , s4d

wherer measures the anisotropy betweenx andy couplings,
h is the transverse external field along thez direction, and we
impose periodic boundary conditions. Atr =0 we have the
isotropic XY limit salso known as theXX modeld and atr
=1, the Ising limit. All anisotropicXY models s0, r ø1d
belong to the same universality class, i.e., the Ising class,
whereas the isotropicXX model belongs to a different uni-
versality class.XY models exhibit three phasesssee Fig. 1d:
oscillatory sOd, ferromagneticsFd and paramagneticsPd
f14g.

As is well knownf8,14,15g, the energy eigenproblem for
the XY spin chain can be solved by a Jordan-Wigner trans-
formation, via which the spins are recast as fermions, fol-
lowed by a Bogoliubov transformation, which diagonalizes
the quadratic Hamiltonian. Having found the eigenstates,
Lmax of Eq. s1d, and hence the entanglement, can be found.
To do this, we parametrize the separable states via

uFl ; ^
i=1

N

fcossji/2du↑li + eifi sinsji/2du↓lig, s5d

whereu↑l su↓ld denote spin states parallelsantiparalleld to the
z axis. Instead of maximizing the overlap with respect to the
2N real parametershji ,fij, for the lowest two states it is
adequate to appeal to the translational symmetry and the re-
ality of the wave functions. Thus takingji =j andfi =0 we

make the ansatz:uFsjdl;e−ij/2o j=1
N

s j
y
u↑ ↑ . . .↑ l for searching

the maximal the overlapLmaxsCd f16g. This form shows that
this separable state can be constructed as a global rotation of
the ground state ath=`, viz., the stateu↑↑…↑l. The energy
eigenstates are readily expressed in terms of the Jordan-
Wigner fermion operators, and so too are the ansatz states
uFsjdl. By working in this fermion basis we are able to
evaluate the overlaps between the two lowest states and the
ansatz states. WithuC0l suC1ld denoting the lowest state in
the evensoddd fermion-number sector, we arrive at the over-
laps

kCasr,hduFsjdl = fN
sadsjd p

m=1−a

m,sN−1d/2

fcosum
sadsr,hdcos2sj/2d

+ sinum
sadsr,hdsin2sj/2dcot„km,N

sad /2…g,

km,N
sad ;

2p

N
Sm+

a

2
D ,

tan 2um
sadsr,hd ; r sinkm,N

sad /sh − coskm,N
sad d;

fN
s1dsjd ; 1, fN

s0dsjd ; ÎN sinsj/2dcossj/2d, sN evend;

fN
s1dsjd ; cossj/2d, fN

s0dsjd ; ÎN sinsj/2d, sN oddd;
s6d

wherea=0,1 andmP f0,N−1g is an integer. The above re-
sults are exact for arbitraryN, obtained with periodic bound-
ary conditions on spins rather than the so-calledc-cyclic ap-
proximation f15g. Given these overlaps, we can readily
obtain the entanglement of the ground state, the first excited
state, and any linear superposition, cosauC0l+sinauC1l of
the two lowest states, for arbitrarysr ,hd andN, by maximiz-
ing the magnitude of the overlap with respect to the single
real parameterj.

The formulas that we have just established contain all the
results that we explore in the present paper. By analyzing the
structure of Eq.s6d, we find that the global entanglement

FIG. 1. sColor onlined Entanglement densityEN supperd and
phase diagramslowerd vs sr ,hd for theXY model withN=104 spins,
which is essentially in the thermodynamic limit. There are three
phases:O: ordered oscillatory, forr2+h2,1 andr Þ0; F: ordered
ferromagnetic, betweenr2+h2.1 andh,1; P: paramagnetic, for
h.1. As is apparent, there is a sharp rise in the entanglement across
the line h=1, which signifies a quantum phase transition. The arc
h2+r2=1, along which the entanglement density is zerossee also
Fig. 2d, separates phasesO and F. Along r =0 lies theXX model,
which belongs to a different universality class from the anisotropic
XY model.

WEI et al. PHYSICAL REVIEW A 71, 060305sRd s2005d

RAPID COMMUNICATIONS

060305-2



does provide information on the phase structure and critical
properties of the quantum spin chains. In addition to arbi-
trary number results, two of our key results, as captured in
Figs. 1 and 2, are that:sid although the entanglement itself is,
generically, not maximized at the quantum critical line in the
sr ,hd plane,the field derivative of the entanglement diverges
as the critical line h=1 is approached; andsii d the entangle-
mentvanishesat the disorder liner2+h2=1, which separates
the oscillatory and ferromagnetic phases.

ENTANGLEMENT AND QUANTUM CRITICALITY

From Eq.s6d it follows that the thermodynamic limit of
the entanglement density is given by

Esr,hd = −
2

ln 2
max

j
E

0

1/2

dm lnfcosusm,r,hdcos2sj/2d

+ sinusm,r,hdsin2sj/2dcotpmg, s7d

where tan 2usm ,r ,hd; rssin 2pmd / sh−cos 2pmd.

Figure 2 shows the thermodynamic limit of the entangle-
ment densityEsr ,hd and itsh derivative in the ground state,
as a function ofh for three values ofr, i.e., three slices
through the surface shown in Fig. 1. As ther =1 slice shows,
in the Ising limit the entanglement density is small for both
small and largeh. It increases withh from zero, monotoni-
cally, albeit very slowly for smallh, then swiftly rising to a
maximum ath<1.13 before decreasing monotonically upon
further increase ofh, asymptotically to zero. The entangle-
ment maximumdoes notoccur at the quantum critical point.
However, the derivative of the entanglement with respect to
h doesdiverge at the critical pointh=1, as shown in the
inset. The slice atr =1/2 shows qualitatively similar behav-
ior, except that it is finitesalthough smalld at h=0, and starts
out by decreasing to a shallow minimum of zero ath
=Î1−r2. By constrast, the slice atr =0 sXXd starts out ath
=0 at a maximum value of 1−2gC/ sp ln 2d<0.159.swhere
gC is the Catalan constantd, the globally maximal value of
the entanglement over the entiresr ,hd plane. For largerh it
falls monotonically until it vanishes ath=1, remaining zero
for largerh.

Inspecting the behavior of entanglement, we find that
along the liner2+h2=1 the entanglement density vanishes in
the thermodynamic limit. In fact, this line exactly corre-
sponds to thecrossoverboundary separating theO and F
phases; the boundary can be characterized by a set of sepa-
rable ground statesf17g with all spins pointing in the direc-
tion

sx,y,zd = „±Î2r/s1 + rd,0,Îs1 − rd/s1 + rd…. s8d

Hence the total entanglement is at most of order unity, and
thus of zero entanglement density. The entanglement density
is also able to track the phase boundarysh=1d between theF
and P phases. Associated with the quantum fluctuations ac-
companying the transition, the entanglement density shows a
drastic variation across the boundary and the field derivative
diverges all alongh=1. The two boundaries separating the
three phases coalesce atsr ,hd=s0,1d, i.e., the XX critical
point. Figures 1 and 2 reveal all these features. The different
nature of the two boundaries is reflected in the different be-
havior of entanglement across the boundary.

The singular behavior of the entanglement densitys7d can
be analyzed in the vicinity of the quantum critical line, and
we find the asymptotic behaviorsfor r Þ0d

]E
]h

< −
1

2pr ln 2
lnuh − 1u, for uh − 1u ! 1. s9d

From the arbitrary-N resultss6d we analyze the approach to
the thermodynamic limit, in order to further understand con-
nections with quantum criticality. We focus on the exponent
n, which governs the divergence at criticality of the correla-
tion length:Lc,uh−1u−n. To do this, we compare the diver-
gence of the slope]EN/]h sid near h=1 sat N=`d, given
above, andsii d for large N at the value ofh for which the
slope is maximal sviz., hmax,Nd, i.e., u]EN/]huhmax,N
<0.230r−1 ln N+const., obtained by analyzing Eq.s6d for
various values ofr. Then, noting thats2p ln 2d−1<0.2296
and that the logarithmic scaling hypothesisf18g identifiesn

FIG. 2. sColor onlined Upper panel: Entanglement density and
its h derivative sinsetd for the ground state of three systems atN
=`. Solid blue line: Isingsr =1d limit; dashed black line: aniso-
tropic sr =1/2d XY model; dash-dotted red line:sr =0d XX model.
For the sake of clarity, theXY-case curves are shifted to the right by
0.5, indicated by the green arrow. For ther =1/2, ath2+r2=1 the
entanglement density vanishes, which is a general property for the
anisotropicXY model. Note that whilst the entanglement itself has a
nonsingular maximum ath<1.1 sIsingd, h<1.04 sXY r=1/2d, h
=0 sXXd, respectively, it has a singularity at the quantum critical
point ath=1, as revealed by the divergence of its derivative. Lower
panel: The solutions of the single rotation parameterj for the ansatz
state vsh.
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with the ratio of the amplitudes of these divergences,
0.2296/0.230<1, we recover the known result thatn=1.

Compared withr Þ0 case, the nature of the divergence of
]E /]h at r =0 belongs to a different universality class,

]

]h
Es0,hd < −

log2sp/2d
Î2p

1
Î1 − h

, sh → 1−d. s10d

From this divergence, the scaling hypothesis, and the as-
sumption that the entanglement density is intensive, we can
infer the known result that the critical exponentn=1/2 for
the XX model. In keeping with the critical features of the
XY-model phase diagram, for any small but nonzero value of
the anisotropy, the critical divergence of the entanglement
derivative is governed by Ising-type behavior. It is only at
ther =0 point that the critical behavior of the entanglement is
governed by theXX universality class. For smallr, XX be-
havior ultimately crosses over to Ising behavior.

As is to be expected, at finiteN the two lowest statesuC0l
and uC1l featuring in Eq.s6d do not spontaneously break the
Z2 symmetry. However, in the thermodynamic limit they are
degenerate forhø1, and linear combinations are also ground
states. The question then arises as to whether linear combi-
nations that explicitly breakZ2 symmetry, i.e., the physically
relevant states with finite spontaneous magnetization, show
the same entanglement properties. In fact, we see from Eq.
s6d that, in the thermodynamic limit, overlaps for bothuC0l
anduC1l are identical, up to the prefactorsfN

s0d and fN
s1d. These

prefactors do not contribute to the entanglement density, and
the entanglement density is therefore the same for bothuC0l
and uC1l. It follows that, in the thermodynamic limit, the
results for the entanglement density are insensitive to the
replacement of a symmetric ground state by a broken-
symmetry one, as is the case of concurrencef19g.

CONCLUDING REMARKS

In summary, we have quantified the global entanglement
of the quantumXY spin chain. This model exhibits a rich
phase structure, the qualitative features of which are reflected
by this entanglement. Perhaps the most interesting aspect is
the divergence of the field derivative of the entanglement as
the critical linesh=1d is crossed. Furthermore, the thermo-
dynamic entanglement density vanishes on the disorder line
sr2+h2=1d. The structure of the entanglement surface over
the entire phase diagram is surprisingly rich.

We close by pointing towards a deeper connection be-
tween the global entanglement and the correlations among
quantum fluctuations. The maximal overlapLmax

2 sCd s1d can
be decomposed in terms of correlation functionsf20g,

1

2N + max
urWu=1

N

2NHkrW · sW 1l +
1

2o
j=2

N

krW · sW 1 ^ rW · sW jl + ¯ J ,

where translational invariance is assumed and the Cartesian
coordinates ofrW can be taken to bessinj ,0 ,cosjd, and the
average is taken with respect to the stateuCl. The two-point
correlations appearing in the decomposition are related to the
concurrence, which also shows similar singular behaviorf3g.
It would be interesting to establish the connection between
the global entanglement and correlations more precisely, e.g.,
by identifying which correlators are responsible for the sin-
gular behavior in the global entanglement and how they re-
late to the better known critical properties.
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