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Global entanglement and quantum criticality in spin chains
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The entanglement of quantuklY spin chains of arbitrary length is investigated via a recently developed
global measure suitable for generic quantum many-body systems. This entanglement is determined over the
phase diagram and found to exhibit rich structure. In particular, the field derivative of the entanglement density
becomes singular along the critical line. The form of this singularity is dictated by the universality class
controlling the quantum phase transition.
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INTRODUCTION Here we study a recently developgtbbal measure of en-

Quantum entanglement, a term coined by Schrbdingert,anglemeﬁtl_z] that provides dolistic, rather than bipartite,
has been recognized over the past decade as the central actBaracterization of the entanglement of quantum many-body
in many quantum information processing tagkk More re- ~ Systems. It has the merit of being applicable beyond qubit
cently, entanglement has emerged on the nearby stage 8ystems, and allows us to study thermodynamientangle-
quantum many-body physics, especially for systems that exnent density. In the present paper we employ the Jordan-
hibit quantum phase transitiofi2—7], where it can play the Wigner technique and calculate the global entanglement for
role of a diagnostic of quantum correlations. Quantum phasgoth the ground and first excited states for arbitrary number
transitions[8] are transitions between qualitatively distinct of spins. The thermodynamic entanglement density we have
phases of quantum many-body systems, driven by quantu@btained provides information on various phases and phase
fluctuations. In view of the connection between entangleboundaries. Specifically, we observe that it varies in a singu-
ment and quantum correlations, one anticipates that erar manner near the quantum critical line, and that it vanishes
tanglement will furnish a dramatic signature of the quantumalong the disorder line.
critical point, where quantum fluctuations are greatly en-
hanced. From the viewpoint of quantum information, the
more entangled a state, the more resources it is likely to GLOBAL MEASURE OF ENTANGLEMENT

possess. It is thus desirable to study and quantify the degree To introduce a measure for characterizing giebal en-

pf entanglement near quantum phase transitions. By emp|°¥énglement, consider a generakpartite, normalized pure
ing entanglement to diagnose many-body quantum states one v D2,

A — ) :
may obtain fresh insight into the quantum many-body prob- ate.|\I’)—2pl.,.pn plpZ"'pn|epl €, "%, ) If the parties are

lem. all spin-1/2 then each can be taken to have the bikis

To date, progress in quantifying entanglement has takeH>}' _Our_ scheme for analyzing the entanglement involve_s
place primarily in the domain of bipartite systerf@. For considering how well an entang!ed state can be approxi-
multipartite systems, however, the complete characterizatioff@ted by some unentangléubrmalized state(e.g., the state
of entanglement requires the consideration of multipartite en'—nnv"h'((?h every spin points in a definite directiorid)=
tanglement, for which a consensus measure has not y&tic1/4"). The proximity of |¥) to |®) is captured by their
emerged. Much of the previous work on entanglement irPVeriap; the entanglement pF) is revealed by the maximal
quantum phase transitions has been based on bipartite meeriap[12],
sures, i.e., entanglement either between pairs of ng(l\tias Amad®) = maX(®|W)); (1)
the concurrendd2,3] or between a part and the remainder of P
a system(via the von Neumann entropy4,6,7]. Singular
and scaling behavior of entanglement near quantum critic
points was discovered by Osterloh and co-worké&is who
invoked Wootterstwo-qubitconcurrencg10]. Vidal and co-
workers[4] have connected the von Neumann entropy to th
results of conformal field theory. Gu and co-workgfshave
found further application of the von Neumann entropy in the Epog,(¥) = - log, A2 (D), 2)
extended Hubbard model. Despite the success of these two
bipartite measures as a probe of quantum phase transitionBhis normalizes to unity the entanglement of EPR-Bell and
body problems, Yang has recently found examples wher&l-parity Greenberger-Horne-ZeilinggHZ) states, as these
both measures fail to faithfully reflect the underlying quan-states have\,,=1/12 [12], as well as gives zero for unen-
tum critical points[11]. tangled states. To characterize the properties of the quantum

To characterize the entanglement of a many-body systengyritical point we use the thermodynamic quanittydefined
a multipartite approach of entanglement is indispensibleby

aqwe largerA 4 iS, the less entangled j¥). If the entangled
State consists of two separate entangled pairs of subsystems,
Amax is the product of the maximal overlaps of the two.
é—|ence, it makes sense to quantify the entanglemen®pf

via the following extensivequantity[12,13:
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E=lim SN, SN = N_1E|ng(\l,). (3)

N— o0

QUANTUM XY SPIN CHAINS AND ENTANGLEMENT

1
We consider the family of models governed by the Hamil- o.15}
tonian
N 1+r 1-r gNo‘l -
== 3 (ot oot enl). @ ooef

=1

wherer measures the anisotropy betweeandy couplings,

h is the transverse external field along théirection, and we
impose periodic boundary conditions. A£0 we have the
isotropic XY limit (also known as theXX mode) and atr

=1, the Ising limit. All anisotropicXY models (0<r=<1)
belong to the same universality class, i.e., the Ising class
whereas the isotropiXX model belongs to a different uni-
versality classXY models exhibit three phasésee Fig. L
oscillatory (0), ferromagnetic(F) and paramagneti¢P)
[14].

As is well known[8,14,15, the energy eigenproblem for
the XY spin chain can be solved by a Jordan-Wigner trans-
formation, via which the spins are recast as fermions, fol-
lowed by a Bogoliubov transformation, which diagonalizes
the quadratic Hamiltonian. Having found the eigenstates,
Amax Of EQ. (1), and hence the entanglement, can be found.
To do this, we parametrize the separable states via

N
®) = ®[cog&/2)|1) + &% sin(&/2)] | ) ' 5 FIG. 1. (Color onling Entanglement densitfy (uppe) and
®) i:l[ &2 &)l © phase diagrartiower) vs (r,h) for the XY model withN=10" spins,

h d . | . I h which is essentially in the thermodynamic limit. There are three
where|f) (1)) denote spin states parall@ntiparalle] to the phasesO: ordered oscillatory, for?+h®< 1 andr # 0; F: ordered

z axis. Instead of maximizing the overlap with respect to theferromagnetic, betweer?+h2>1 andh<1; P: paramagnetic, for

2N real parametersé;, ¢}, for the _|0W93t two states It IS > 1 Asis apparent, there is a sharp rise in the entanglement across
adequate to appeal to the translational symmetry and the reqe jine h=1, which signifies a quantum phase transition. The arc
ality of the wave functions. Thus taking=¢ and ¢;=0 we  h2+r2=1, along which the entanglement density is zé&ee also
make the ansatztgp(g»ze‘iflzzj!\‘:l"ﬂT T7...7) for searching Fig. 2), separates phas€ andF. Along r=0 lies theXX model,

the maximal the overlap .{¥) [16]. This form shows that which belongs to a different universality class from the anisotropic
this separable state can be constructed as a global rotation &Y model.

the ground state dt=c, viz., the statg]1...7). The energy

eigenstates are readily expressed in terms of the Jordan- fg\lﬂ(g) =1, f(’\?)(,g) = \/Nsin(§/2)cos(§/2), (N even;

Wigner fermion operators, and so too are the ansatz states
|®(€)). By working in this fermion basis we are able to
evaluate the overlaps between the two lowest states and the

fO(&) = cog&2), (&= Nsin&2), (N odd);

ansatz states. WithPy) (|¥,)) denoting the lowest state in (6)
Itggseven(odq) fermion-number sector, we arrive at the over- wherea=0,1 andme [0,N-1] is an integer. The above re-
sults are exact for arbitrany, obtained with periodic bound-
m<(N-1)/2 ary conditions on spins rather than the so-catieryclic ap-
(P r, @) =12 [I [cosd@(r,hcod(£/2) proximation [15]. Given these overlaps, we can readily
m=1-a obtain the entanglement of the ground state, the first excited
+5in 62(r, h)sin(&/2)cotk@/2)1, state, and any linear superposition, e¥ ) +sina|¥;) of
' the two lowest states, for arbitrafty,h) andN, by maximiz-
20 a ing the magnitude of the overlap with respect to the single
kﬁf?,\, = —<m+ 5) , real parameteé.

The formulas that we have just established contain all the
2 @) @ results that we explore in the present paper. By analyzing the
tan 267 (r,h) = r sinkia\/(h = coskh); structure of Eq.(6), we find that the global entanglement
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Figure 2 shows the thermodynamic limit of the entangle-
ment densitye(r,h) and itsh derivative in the ground state,
as a function ofh for three values of, i.e., three slices
through the surface shown in Fig. 1. As threl slice shows,
in the Ising limit the entanglement density is small for both
small and largéh. It increases witth from zero, monotoni-
cally, albeit very slowly for smalh, then swiftly rising to a
maximum ath~1.13 before decreasing monotonically upon
further increase oh, asymptotically to zero. The entangle-
ment maximundoes notccur at the quantum critical point.
However, the derivative of the entanglement with respect to
h doesdiverge at the critical poinh=1, as shown in the
inset. The slice at=1/2 shows qualitatively similar behav-
ior, except that it is finitdalthough smajlath=0, and starts
out by decreasing to a shallow minimum of zero fat
=\1-r2. By constrast, the slice at=0 (XX) starts out ah
=0 at a maximum value of 1—2/ (7 In 2)=~0.159.(where
vc is the Catalan constank, the globally maximal value of
the entanglement over the entig h) plane. For largeh it
falls monotonically until it vanishes d=1, remaining zero
for largerh.

Inspecting the behavior of entanglement, we find that
along the line?+h?=1 the entanglement density vanishes in
the thermodynamic limit. In fact, this line exactly corre-

FIG. 2. (Color onling Upper panel: Entanglement density and sponds to thecrossoverboundary separf_;\tlng the® and F
its h derivative (insef for the ground state of three systemshat Phases; the boundary can be characterized by a set of sepa-
=c. Solid blue line: Ising(r=1) limit; dashed black line: aniso- rable ground statefsl 7] with all spins pointing in the direc-
tropic (r=1/2) XY model; dash-dotted red lin¢r=0) XX model. ~ tion
For the sake of clarity, th¥Y-case curves are shifted to the right b r /
0.5, indicated by theygreen arrow. For thel1/2, ath®+r?=1 ?he g (Xy,2) = (EN2r/(1+7),0 V(L =1)/(1 +71)). (8)
entanglement density vanishes, which is a general property for theience the total entanglement is at most of order unity, and
anisqtropicXY moldel. Note that whi.lst the entanglement itself has ath s of zero entanglement density. The entanglement density
nonsingular maximum a=1.1 (Ising), h=1.04 (XY r=1/2), h 5 5150 able to track the phase boundéry 1) between thé
=0 (XX), respectively, it has a singularity at the quantum critical 34 p hhases Associated with the quantum fluctuations ac-
point fath—l, as revealed by.the dlvergence of its derivative. Lowercompanying the transition, the entanglement density shows a
panel: The solutions of the single rotation paramétier the ansatz . S - A
state vsh, d_rastlc variation across the boundary anql the field d_erlvatlve
diverges all alondh=1. The two boundaries separating the
o ) .. three phases coalesce @th)=(0,1), i.e., the XX critical
does provide information on the phase structure and criticghoin: Figures 1 and 2 reveal all these features. The different
properties of the quantum spin chains. In addition to arbiy,4re of the two boundaries is reflected in the different be-

trary number results, two of our key results, as captured i, 5vior of entanglement across the boundary.

Figs. 1 and 2, are thati) although the entanglement itselfis, 1o singular behavior of the entanglement den&liycan
generically, not maximized at the quantum critical line in theq analyzed in the vicinity of the quantum critical line, and
(r,h) plane,the field derivative of the entanglement diverges,,a find the asymptotic behavidfor r # 0)

as the critical line k=1 is approachedand(ii) the entangle-
mentvanishesat the disorder line?+h?=1, which separates €

1
the oscillatory and ferromagnetic phases. o 2mrin2 Infh-1

0.175

, for|lh-1]<1. 9

From the arbitraryN results(6) we analyze the approach to
ENTANGLEMENT AND QUANTUM CRITICALITY the thermodynamic limit, in order to further understand con-
nections with quantum criticality. We focus on the exponent
From Eq.(6) it follows that the thermodynamic limit of 3, which governs the divergence at criticality of the correla-

the entanglement density is given by tion length:L.~|nh—1|"". To do this, we compare the diver-
2 gence of the slop&&y/oh (i) nearh=1 (at N=), given
&(rih)=- 2 maxf du In[coS O, r,h)coL(&/2) above, andii) for large N at the value ot for which the
In2 ¢ Jo slope is maximal (Viz., hpap), i€,  dE/ohl

%) ~0.23071In N+const., obtained by analyzing E¢6) for
various values of. Then, noting tha{2xIn 2)"1~0.2296
where tan 2(w,r,h)=r(sin 2ru)/(h—cos 2ru). and that the logarithmic scaling hypothefis8] identifies v

+8in 6(u,r,h)sir(&2)cot ],
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with the ratio of the amplitudes of these divergences, CONCLUDING REMARKS

0.2296/0.236= 1, we recover the known result that 1. In summary, we have quantified the global entanglement
Compared witlr # 0 case, the nature of the divergence of of the quantumXY spin chain. This model exhibits a rich
d&ldh atr=0 belongs to a different universality class, phase structure, the qualitative features of which are reflected
by this entanglement. Perhaps the most interesting aspect is
the divergence of the field derivative of the entanglement as
ig(o h) ~ - |092£7T/2) 1_ (h—17) (10) the critical line(h=1) is crossed. Furthermore, the thermo-
oh V2w \1-h' ' dynamic entanglement density vanishes on the disorder line
(r’+h?=1). The structure of the entanglement surface over
o ] ) the entire phase diagram is surprisingly rich.
From th|S d|Vergence, the Sca“ng hypOtheSIS, and the as- We close by pointing towards a deeper connection be-
sumption that the entanglement density is intensive, we cafiveen the global entanglement and the correlations among
infer the known result that the critical eXponeﬂt 1/2 for quantum fluctuations. The maximal OVerlAﬁ}aX(\P) (1) can

the XX model. In keeping with the critical features of the pe decomposed in terms of correlation functif2e],
XY-model phase diagram, for any small but nonzero value of

the anisotropy, the critical divergence of the entanglement 1 NJ . . N I,
derivative is governed by Ising-type behavior. It is only at >N * r‘gf‘lxﬁ (Froy)+ 5%“ o1 ®F o+,
ther =0 point that the critical behavior of the entanglement is :
governed by theXX universality class. For smatl, XX be-  where translational invariance is assumed and the Cartesian
havior ultimately crosses over to Ising behavior. coordinates of can be taken to bésin&,0,cosé), and the

As is to be expected, at finité the two lowest stateldl,) average is taken with respect to the s{ait¢. The two-point
and|W,) featuring in Eq.(6) do not spontaneously break the correlations appearing in the decomposition are related to the
Z, symmetry. However, in the thermodynamic limit they are concurrence, which also shows similar singular beha\Bor
degenerate fan<1, and linear combinations are also groundlIt would be interesting to establish the connection between
states. The question then arises as to whether linear comlihe global entanglement and correlations more precisely, e.g.,
nations that explicitly break, symmetry, i.e., the physically by identifying which correlators are responsible for the sin-
relevant states with finite spontaneous magnetization, shogular behavior in the global entanglement and how they re-
the same entanglement properties. In fact, we see from Edgate to the better known critical properties.
(6) that, in the thermodynamic limit, overlaps for bdt#)
and|W,) are identical, up to the prefactoi‘,g) andfﬁ\,l). These ACKNOWLEDGMENTS
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