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We analyze the finite-size properties of the two-level BCS model. Using the continuous unitary transforma-
tion technique, we show that nontrivial scaling exponents arise at the quantum critical point for various
observables such as the magnetization or the spin-spin correlation functions. We also discuss the entanglement
properties of the ground state through the concurrence which appears to be singular at the transition.
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Since its experimental discovery in 1911 by Kamerlingh=4,;,5, ., g is a positive coupling constant that we set to
Onnes, superconductivity has been the object of intensivanity, N is the total number of state§g=1,...,N) that is
research. More than 45 years elapsed before Bardeen, Cogassumed to be even, and theNLfactor ensures that the
per, and Schrieffe(BCS) gave it a theoretical foundatida]. thermodynamical limit is well behaved. For the sake of sim-
The revival of interest for superconductivity in the last two plicity, we furthermore restrict ourselves to the subspace
decades originates mainly in the inability of the BCS theorywhere all stateg have occupation number 0 or 2. This sub-
to explain neither high, superconductivity nor finite-size space is not coupled to its complement by the BCS Hamil-
effects in nanoscale graif]. The effect of discreteness in tonian. Via the mapping
the energy spectrum of nanograins has been studied in the

reduced BCS moddkee Eq(1)], whose exact solution was d,=cC4 o,=1-¢ c.-¢ ., 2)
obtained by Richardson in 1963-5] and whose integrabil-
ity has been proved only recen{l@]. of fermionic to spin operators, the two-level Hamiltonidn

In this Communication, we focus on the two-level re- at half filling becomes
duced BCS model, which displays a second-order quantum 1
phase transition to a superconducting state, for a finite value - _ _ _
of the electronic attraction. At the critical point, we show that H NSz~ %) N(Sf ¥ Sz*/)' ®
the spectrum and correlation functions possess nontrivial .
finite-gize scaling exponents as already suggested for the we hgve dengted ftthe energies of_the_ two _Ieve(sh .
ground-state enerdy,8]. Following the same line as for the =0), which are mterpret_ed as magnetic f|eId_s in the spin
Lipkin-Meshkov-Glick (LMG) model[9,10], we combine a language. W(ia have mtroduced total spin operators
1/N expansion, the continuous unitary transformations>i@a=iel;, /2, 112 b€iNg the set of stateswith energy
(CUT9 technique, and a scaling argument, to exactly deter+h(-h), andS,=S,,+S,, (Wherea=x,y,2).
mine these exponents. Our results are supported by a numeri- Note that we have also used the conservation of the num-
cal investigation of the finite-size effects. In a second stepber of fermions, which readS,=0 in the spin language. The
we discuss the entanglement properties of the ground statégamiltonian(3) further commutes with the total spin opera-
via the so-called concurren€#l]. Using a standard mapping tors § and % Here, we focus on the maximum spin sector
of the reduced BCS model onto a spin system, we show thatp which the low-energy states belong to.
as in one-dimensional spin chaifs2,13, this concurrence In the spin language, the two-level BCS Hamiltonian thus
displays some singular behavior at the transition point. In thelescribes the physics of two couplEX models with infinite
present case, one may, however, distinguish between twange (constant interactions, and embedded in transverse
cases depending on which level the two spins considered fanagnetic fields of opposite directions. In the thermodynami-

the concurrence belong to. cal limit, the Hamiltonian(3) undergoes the well-known
We consider the reduced BCS Hamiltonidn2] BCS mean-field quantum phase transitionhatl, that we
1 g now briefly describe. Replacing the large spin operators by
H= EE siCiTgCi,g— NE CLCI_Cj,_C,-,h (1) their classical valugk=1, 2,
i,o=% ij
N . .
where ciT’J_, and ¢; . are fermionic creation and annihilation S= Z(Sln 6,Cc0S ¢y, Sin 6, Sin ¢y, cosby), (4)

operators obeying the anticommutation relat[opu,ci‘t,’a,]+
and minimizing(3) with respect tod and ¢, yields the solu-
tion (6,=0, 6,=m) in the symmetric phaseh=1, and
*Electronic address: sdusuel@thp.uni-koeln.de (#,=arccosh, 6,=m—0;) in the broken phasé<1l. The
"Electronic address: vidal@Iptmc.jussieu.fr spontaneous breaking of the rotational symmetry atofay
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h<1 gives rise to infinitely degenerate ground states TABLE I. Scaling exponents for the ground-state energy per

(¢1:¢; can take any valye spin ey, the gapA, the magnetizatiodS,,), and the two-point cor-
We compute the finite-size scaling exponents followingrelation functior(s;,) and(Sy,S,,.

the same strategy as in Ref9,10]. We consider the sym-

metric phaseh=1, and use the bosonic Holstein-Primakoff % o Ng Ng+2£p/3

representation14] of both spins around the mean-field

ground state € /2 1 4ls
A 1/2 0 1/3
S,=N/4-a'a, S,,=b'b-N/4, (5) A(S,)IN -1/2 1 2/3
16(S)IN? -1/2 1 213
S+ = (S0)"= (NI2)Y2(1 - 2aTa/N) 2, (6) 16(S, Sy /N2 -1/2 1 2/3
$.=($)"=(N/2)V'(1 - 20™0/N) Y2, (7
One then inserts these in E(B), and expands the square 16<§Z> = 1+1{4_2(_L_1/?}
roots to the lowest order needed to compute the exponents, N N =1G)
ie., (1/N)1._The Hamiltopian is not diagonal _an_d contains 1 [ 2h(an®-8h?+6h-1)
terms creating or destroying omeand oneb excitations, for N2 =72
examplea’b’+ab. Since it is quartic, it cannot be simply =(h)
diagonalized by a Bogoliubov transform, but one can use the 2h(4h? - 6h + 3)
CUTs[15-17 to perform this tasksee also Ref$18,1( for - =(h)3"? ' 12

detaily. Starting from the initial Hamiltoniatd(0)=H, one
considers a unitary equivalent Hamiltoni&t(l) satisfying
the flow equation

168, (1 1 i{_ h(2h-1) h(4h- 3)}
N2 - N E(h)l/Z N2 E(h)z E(h)g/z )

GH(1) =[7(1),HD)]. (®) (13

7(l) is the generator of the unitary transformation, chosen t?/vhereE(h)zh(h—l).
make the final Hamiltoniati(I=«) diagonal. For the prob-
lem at hand, the simplest generator is the so-called particl
conserving generatdil 9], with particle number operatdd
=n,+n,, wheren,=a'a and n,=b'b. With this choice, the
final Hamiltonian is polynomial im, and n,. To compute
correlation functions, one has to follow the flow of spin op
erators.S,=ny,—n, is found to have no flow, so that eigen- .
states of the final Hamiltonian must satisfy=n, to fulfill Oy (h) = DFYh) + DYY(h). (14
S,=0. The ground statéirst excited stateof H(l=x) is the
state withn,=0(1) boson.

Concerning the spectrum, we focus on the ground-stat
energy per site, and the gap\. For the magnetization, one
has(S,,)=—(S,,), and the rotation invariance around the
axis implies(S,9 =(S,»=0 for k=1, 2. Finally, all spin-spin
correlation functions(S§,S+SS.) with j,ke{1,2} and
a,Bel{x,y,z either vanish or can be deduced froi,) D) = E(h)f“)]_. (NE(h)®?) (15)
and (S,,S,. As in our earlier works on the LMG model N Nhe 7 PH= '

[9,10], the flow equations can be integrated exactly,
five quantities of interest are found to behave as

Let us now outline the argument already used in Refs.
€9,10] to compute finite-size scaling exponents. Thé&l k.-
pansion of any physical quantit§ considered here has a
simple structure. It consists of two contributions which are,
respectively, regulafreg and singular(sing when h ap-
" proaches the critical point. Schematically, one has

Nevertheless, it is clear that no divergence can occur at finite
N for these quantites or its derivatives with respedt,teven

&t the critical point. This basic fact straightforwardly leads to
the scaling exponents. Indeed, a close analysis of the singular
part ®3"Yh) allows us, in the vicinity ofh,, to write it as
follows:

and th(?/vhere Fo is a function that only depends on the scaling
variable NZ(h)%®2. To compensate the singularity coming
h(2h - 1) h } from E(h)%®, one thus must haveFg(x)~x %3 so that

22(h)  E(h)2 PSY(1) ~ N~(Me*20/3 The scaling exponents corresponding

— h 1 = 1/ i
€= 2+N( h+Z(h) 2)+N2[ . .
to (9)—(13) are listed in Table |.
© We emphasize that here, we have approached the critical
point from the symmetric phaséh— 1%). However, we
could, as for the LMG mod€gl10], have reached it from the
broken phase. As pointed out by Richard$@0], who de-
rived the exact solution in this regime, theNLdevelopments
&Sy, 1 2h-1 1 h2 h of t_he _ground-gtate energy aljd _the. occupa'.tion number
N =1 +N 2- =(n)? =(h)? - W , (which is egsentlally the magnetization in the spin langhage
= = - are also singular at the critical point. We have checked
(11  that the scaling argument given above also predicts

1
A=2E h1/2+—{
™+

h4h-1) _ h
2(h) = (h)Y?

], (10)

N
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4 T T T T T T T T Let us now discuss the entanglement properties of the
0le 5eg g, | ground state. Here we focus on the concurrdridg, which
el 0 BB e gy characterizes the entanglement between two spins. As in the
AR s T '.:'.._‘:_‘__F'__E = LMG model[21], in the thermodynamical limit the ground
state becomes a completely separable state. Thus the non-
s A(N) @ A & : . "
trivial properties of the concurrence are encoded in the finite
12k > N-1/3 «e--- - N corrections and one has to consider the rescaled concur-
i eo(N)+1/2+1/N o ) renceCg=(N-1)C. For the two-level reduced BCS model,
N one has to distinguish between two cagésboth spins be-
220 . long to the same subsét; or |,); (i) each spin belongs to
» . | | | | | | | distinct subsets. In both situations, one can express the res-

2 4 6 3 0 12 14 16 18 caled concurrence as a function of the observables previously
log,(N) calculated. Generalizing for our purpose the results given in
Ref.[22], one gets
FIG. 1. Behavior of the ground-state energy per spiand the —
gap A as a function of the system si2¢(log,-log, plot) at the Cr'=C&%=2max0,w - \v,v_), (16)
critical point compared to analytical results.

. _ CR?=C&'=2(y-v). (17)
e3"4N) ~ N3 and 4S,,)5"9/ N~ N2 from this side of this
transition, i.e., wherh— 1". Recently, the nontrivial scaling
exponent ofey has been observed numericall§] and ana-

The superscript refers to the subset to which the spins con-
sidered belong to, and

lytically derived using a spin coherent state representation 1 N 16<§1Z> 2

[8], but the other scaling exponents given in Table | have w=-"11-=— 2 N (18)
. 4 N-2\ N N

never been discussed. The present results can be compared to

those recently obtained in the LMG modé&,10]. For the

isotropic LMG model, which has the same interaction term oo = }{1+ XS0 N (16<§z> _ g” (19

(S$+S) as the Hamiltoniar(3), scaling exponents are trivial 47T N ON=-2\ N2 N/ [

since the 1N expansion is not singular at the critical point.

However, for the anisotropic LMG model, similar exponents 116(S,Sy0) 1 16(S2)
are found(multiple of 1/3 except thatx andy directions = 5 N 0 Y = 2 1 TN
have different exponents.

To check the validity of the present approach, we have Using expressiong11)—(13) truncated to ordef1/N)?,
performed numerical diagonalizations of critical finite-size one can compute the thermodynamical limit of the rescaled
systems, with up tdN=2'" spins fore; andA and up toN  concurrence in the symmetric phage=1), and one finds
=213 spins for the magnetization and the correlation func-
tions, which require the knowledge of the eigenstates. The cli—g cl2= 2<1 B /h;l> 21)
results are depicted in Figs. 1 and 2 and show an excellent R =% ¥R 7 h /-
agreement with the analytical predictions. Note that the regu- )
lar part®°(h=1) has been substracted to underline the nonIn the broken phase@<h=1), one has to use the Holstein-
trivial scaling behavior. Primakoff representation around the mean-field ground state.
We found out that it is then enough to perform a Bogoliubov
transform to compute the concurrence. Indeed, although such
a simple calculation fails to provide the fiill/N)* contribu-

(20)

2 I I I I I I

0 tion to the spin expectation valuéss explained in Ref.10]
9 for the LMG mode), the unknown parts of thél/N)* con-
tributions cancel each other when computing the thermody-
-4 namical limit of the rescaled concurrence, and one obtains
-6
1
Cil= ma><0,2 —,=),
-8 R V1 -h?
-10 B
12 1 1 1 1 1 1 ClR,Z: 2-V1-h% (22)
2 4 1 12 14 . . A
0 610g2(N)8 0 The rescaled concurrence is depicted in Fig. 3 for several

system sizes as well as in the thermodynamical limit. Let us
FIG. 2. Finite-size scaling of the magnetization and the correla2|S0 mention that the finite-size scaling exponentGgf can
tion functions(log,-log, plot) at the critical point. A clear power- be computed using the same scaling argument as preVIou_st
law behavior is observed with a nontrivial scaling exponent 2/3and equals 1/3 instead of 2/3 as expected from the scaling
predicted by the present method. of the observables.
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S=N/2 and S,=0, whose rescaled concurrence equals 1
[22,24). Note that, in this limit, the distinction between sub-
setsl; andl, becomes irrelevant so that both rescaled con-
currences are identical. In the infinite limit, the ground
state is the separable staigy)=(®;c; |1))®(®;c1| 1)),
which has also a vanishing total magnetizati&=0) but
which is not an eigenstate &. However, it is clear that the
concurrence of such a state is exactly zero whatever the two
considered spins.
0 \ ‘% The method used in the present work is certainly well
1'5 50 suited to tackle many similar problems for which a semiclas-
‘ : sical description of the thermodynamical limit is exact as
illustrated here or in the LMG model. An interesting issue is
FIG. 3. Rescaled concurrence of the ground state as a functiotd understand the key ingredients that allow for exact solu-
of the magnetic field foN=32, 64, 128, 256, and. In the ther-  tions of the flow equations. In particular, it would be of spe-
modynamical limit a cusplike singularity appears at the critical cial interest to analyze, along the same line, models where
point. some regions of the phase diagram are known to be chaotic
) ) . ) and others integrable. Finally, let us note that our method
As in the LMG or the Dicke moddI23], it is interesting

I , ) .9 may also be useful to compute the von Neumann entropy
to note thatCy“ displays a cusplike behavior at the critical

. o i g which displays some interesting features in quantum critical
point, whereas it is a smooth function for= 1. More inter- systemg25-28.

estingly, the max function used in definitidd6) leads to

Ck'=0 forh=13/2. It is worth noting that this value of the ~ We are indebted to J. Dukelsky, A. Reischl, A. Rosch, and
magnetic field does not play any special role in the phas&. P. Schmidt for fruitful and valuable discussions. We also
diagram, whereas it naturally arises in the entanglemenwvarmly thank G. Sierra for sending us unpublished results
analysis. However, if we do not consider the max function,about the critical properties of the BCS modél]. S.D.
Cé’l diverges at the critical point. In the zero-field limit, the gratefully acknowledges financial support of the DFG in
ground state is simply the Dicke state corresponding t&SP1073.
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