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We analyze the finite-size properties of the two-level BCS model. Using the continuous unitary transforma-
tion technique, we show that nontrivial scaling exponents arise at the quantum critical point for various
observables such as the magnetization or the spin-spin correlation functions. We also discuss the entanglement
properties of the ground state through the concurrence which appears to be singular at the transition.
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Since its experimental discovery in 1911 by Kamerlingh
Onnes, superconductivity has been the object of intensive
research. More than 45 years elapsed before Bardeen, Coo-
per, and SchrieffersBCSd gave it a theoretical foundationf1g.
The revival of interest for superconductivity in the last two
decades originates mainly in the inability of the BCS theory
to explain neither high-Tc superconductivity nor finite-size
effects in nanoscale grainsf2g. The effect of discreteness in
the energy spectrum of nanograins has been studied in the
reduced BCS modelfsee Eq.s1dg, whose exact solution was
obtained by Richardson in 1963f3–5g and whose integrabil-
ity has been proved only recentlyf6g.

In this Communication, we focus on the two-level re-
duced BCS model, which displays a second-order quantum
phase transition to a superconducting state, for a finite value
of the electronic attraction. At the critical point, we show that
the spectrum and correlation functions possess nontrivial
finite-size scaling exponents as already suggested for the
ground-state energyf7,8g. Following the same line as for the
Lipkin-Meshkov-Glick sLMGd model f9,10g, we combine a
1/N expansion, the continuous unitary transformations
sCUTsd technique, and a scaling argument, to exactly deter-
mine these exponents. Our results are supported by a numeri-
cal investigation of the finite-size effects. In a second step,
we discuss the entanglement properties of the ground state
via the so-called concurrencef11g. Using a standard mapping
of the reduced BCS model onto a spin system, we show that,
as in one-dimensional spin chainsf12,13g, this concurrence
displays some singular behavior at the transition point. In the
present case, one may, however, distinguish between two
cases depending on which level the two spins considered for
the concurrence belong to.

We consider the reduced BCS Hamiltonianf1,2g

H =
1

2 o
i,s=±

«ici,s
† ci,s −

g

N
o
i,j

ci,+
† ci,−

† cj ,−cj ,+, s1d

where ci,±
† and ci,± are fermionic creation and annihilation

operators obeying the anticommutation relationfci,s ,ci8,s8
† g+

=di,i8ds,s8, g is a positive coupling constant that we set to
unity, N is the total number of statess j =1,… ,Nd that is
assumed to be even, and the 1/N factor ensures that the
thermodynamical limit is well behaved. For the sake of sim-
plicity, we furthermore restrict ourselves to the subspace
where all statesj have occupation number 0 or 2. This sub-
space is not coupled to its complement by the BCS Hamil-
tonian. Via the mapping

s+
i = ci,−ci,+, sz

i = 1 −ci,+
† ci,+ − ci,−

† ci,−, s2d

of fermionic to spin operators, the two-level Hamiltonians1d
at half filling becomes

H = − hsS1z − S2zd −
1

N
sSx

2 + Sy
2d. s3d

We have denoted ±h the energies of the two levelssh
ù0d, which are interpreted as magnetic fields in the spin
language. We have introduced total spin operators
S1s2da=oiPI1s2d

sa
i /2, I1s2d being the set of statesi with energy

+hs−hd, andSa=S1a+S2a swherea=x,y,zd.
Note that we have also used the conservation of the num-

ber of fermions, which readsSz=0 in the spin language. The
Hamiltonians3d further commutes with the total spin opera-
tors S1

2 and S2
2. Here, we focus on the maximum spin sector

to which the low-energy states belong to.
In the spin language, the two-level BCS Hamiltonian thus

describes the physics of two coupledXX models with infinite
range sconstantd interactions, and embedded in transverse
magnetic fields of opposite directions. In the thermodynami-
cal limit, the Hamiltonians3d undergoes the well-known
BCS mean-field quantum phase transition ath=1, that we
now briefly describe. Replacing the large spin operators by
their classical valuesk=1, 2d,

Sk =
N

4
ssinukcosfk,sinuksinfk,cosukd, s4d

and minimizings3d with respect tou andf, yields the solu-
tion su1

* =0, u2
* =pd in the symmetric phasehù1, and

su1
* =arccosh, u2

* =p−u1
*d in the broken phaseh,1. The

spontaneous breaking of the rotational symmetry alongz for
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h,1 gives rise to infinitely degenerate ground states
sf1

* =f2
* can take any valued.

We compute the finite-size scaling exponents following
the same strategy as in Refs.f9,10g. We consider the sym-
metric phasehù1, and use the bosonic Holstein-Primakoff
representationf14g of both spins around the mean-field
ground state

S1z = N/4 − a†a, S2z = b†b − N/4, s5d

S1+ = sS1−d† = sN/2d1/2s1 − 2a†a/Nd1/2a, s6d

S2+ = sS2−d† = sN/2d1/2b†s1 − 2b†b/Nd1/2. s7d

One then inserts these in Eq.s3d, and expands the square
roots to the lowest order needed to compute the exponents,
i.e., s1/Nd1. The Hamiltonian is not diagonal and contains
terms creating or destroying onea and oneb excitations, for
examplea†b†+ab. Since it is quartic, it cannot be simply
diagonalized by a Bogoliubov transform, but one can use the
CUTs f15–17g to perform this taskssee also Refs.f18,10g for
detailsd. Starting from the initial HamiltonianHs0d=H, one
considers a unitary equivalent HamiltonianHsld satisfying
the flow equation

]lHsld = fhsld,Hsldg. s8d

hsld is the generator of the unitary transformation, chosen to
make the final HamiltonianHsl =`d diagonal. For the prob-
lem at hand, the simplest generator is the so-called particle-
conserving generatorf19g, with particle number operatorQ
=na+nb, wherena=a†a and nb=b†b. With this choice, the
final Hamiltonian is polynomial inna and nb. To compute
correlation functions, one has to follow the flow of spin op-
erators.Sz=nb−na is found to have no flow, so that eigen-
states of the final Hamiltonian must satisfyna=nb to fulfill
Sz=0. The ground statesfirst excited stated of Hsl =`d is the
state withna=0s1d boson.

Concerning the spectrum, we focus on the ground-state
energy per sitee0 and the gapD. For the magnetization, one
has kS2zl=−kS1zl, and the rotation invariance around thez
axis implieskSkxl=kSkyl=0 for k=1, 2. Finally, all spin-spin
correlation functionskSjaSkb+SkbSjal with j ,kP h1,2j and
a ,bP hx,y,zj either vanish or can be deduced fromkS1z

2 l
and kS1xS2xl. As in our earlier works on the LMG model
f9,10g, the flow equations can be integrated exactly, and the
five quantities of interest are found to behave as

e0 = −
h

2
+

1

N
s− h + Jshd1/2d +

1

N2F−
hs2h − 1d

2Jshd
−

h

Jshd1/2G ,

s9d

D = 2Jshd1/2 +
1

N
Fhs4h − 1d

Jshd
− 2

h

Jshd1/2G , s10d

4kS1zl
N

= 1 +
1

N
F2 −

2h − 1

Jshd1/2G +
1

N2F h2

Jshd2 −
h

Jshd3/2G ,

s11d

16kS1z
2 l

N2 = 1 +
1

N
F4 −

2s2h − 1d
Jshd1/2 G

+
1

N2F2hs4h3 − 8h2 + 6h − 1d
Jshd2

−
2hs4h2 − 6h + 3d

Jshd3/2 G , s12d

16kS1xS2xl
N2 =

1

N

1

Jshd1/2 +
1

N2F−
hs2h − 1d2

Jshd2 +
hs4h − 3d
Jshd3/2 G ,

s13d

whereJshd=hsh−1d.
Let us now outline the argument already used in Refs.

f9,10g to compute finite-size scaling exponents. The 1/N ex-
pansion of any physical quantityF considered here has a
simple structure. It consists of two contributions which are,
respectively, regularsregd and singularssingd when h ap-
proaches the critical point. Schematically, one has

FNshd = FN
regshd + FN

singshd. s14d

Nevertheless, it is clear that no divergence can occur at finite
N for these quantites or its derivatives with respect toh, even
at the critical point. This basic fact straightforwardly leads to
the scaling exponents. Indeed, a close analysis of the singular
part FN

singshd allows us, in the vicinity ofhc, to write it as
follows:

FN
singshd .

JshdjF

NnF
FF„NJshd3/2

…, s15d

where FF is a function that only depends on the scaling
variable NJshd3/2. To compensate the singularity coming
from JshdjF, one thus must haveFFsxd,x−2jF/3 so that
FN

sings1d,N−snF+2jF/3d. The scaling exponents corresponding
to s9d–s13d are listed in Table I.

We emphasize that here, we have approached the critical
point from the symmetric phasesh→1+d. However, we
could, as for the LMG modelf10g, have reached it from the
broken phase. As pointed out by Richardsonf20g, who de-
rived the exact solution in this regime, the 1/N developments
of the ground-state energy and the occupation number
swhich is essentially the magnetization in the spin languaged
are also singular at the critical point. We have checked
that the scaling argument given above also predicts

TABLE I. Scaling exponents for the ground-state energy per
spin e0, the gapD, the magnetizationkS1zl, and the two-point cor-
relation functionkS1z

2 l and kS1xS2xl.

F jF nF nF+2jF /3

e0 1/2 1 4/3

D 1/2 0 1/3

4kS1zl /N −1/2 1 2/3

16kS1z
2 l /N2 −1/2 1 2/3

16kS1xS2xl /N2 −1/2 1 2/3
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e0
singsNd,N−4/3 and 4kS1zlsing/N,N−2/3 from this side of this

transition, i.e., whenh→1−. Recently, the nontrivial scaling
exponent ofe0 has been observed numericallyf7g and ana-
lytically derived using a spin coherent state representation
f8g, but the other scaling exponents given in Table I have
never been discussed. The present results can be compared to
those recently obtained in the LMG modelf9,10g. For the
isotropic LMG model, which has the same interaction term
sSx

2+Sy
2d as the Hamiltonians3d, scaling exponents are trivial

since the 1/N expansion is not singular at the critical point.
However, for the anisotropic LMG model, similar exponents
are foundsmultiple of 1/3d except thatx and y directions
have different exponents.

To check the validity of the present approach, we have
performed numerical diagonalizations of critical finite-size
systems, with up toN=217 spins fore0 and D and up toN
=213 spins for the magnetization and the correlation func-
tions, which require the knowledge of the eigenstates. The
results are depicted in Figs. 1 and 2 and show an excellent
agreement with the analytical predictions. Note that the regu-
lar partFN

regsh=1d has been substracted to underline the non-
trivial scaling behavior.

Let us now discuss the entanglement properties of the
ground state. Here we focus on the concurrencef11g, which
characterizes the entanglement between two spins. As in the
LMG model f21g, in the thermodynamical limit the ground
state becomes a completely separable state. Thus the non-
trivial properties of the concurrence are encoded in the finite
N corrections and one has to consider the rescaled concur-
renceCR=sN−1dC. For the two-level reduced BCS model,
one has to distinguish between two cases:sid both spins be-
long to the same subsetsI1 or I2d; sii d each spin belongs to
distinct subsets. In both situations, one can express the res-
caled concurrence as a function of the observables previously
calculated. Generalizing for our purpose the results given in
Ref. f22g, one gets

CR
1,1= CR

2,2= 2maxs0,w − Îv+v−d, s16d

CR
1,2= CR

2,1= 2sy − vd. s17d

The superscript refers to the subset to which the spins con-
sidered belong to, and

w =
1

4
F1 −

N

N − 2
S16kS1z

2 l
N2 −

2

N
DG , s18d

v± =
1

4
F1 ± 2

4kS1zl
N

+
N

N − 2
S16kS1z

2 l
N2 −

2

N
DG , s19d

y =
1

2

16kS1xS2xl
N2 , v =

1

4
S1 −

16kS1z
2 l

N2 D . s20d

Using expressionss11d–s13d truncated to orders1/Nd1,
one can compute the thermodynamical limit of the rescaled
concurrence in the symmetric phaseshù1d, and one finds

CR
1,1= 0, CR

1,2= 2S1 −Îh − 1

h
D . s21d

In the broken phases0øhø1d, one has to use the Holstein-
Primakoff representation around the mean-field ground state.
We found out that it is then enough to perform a Bogoliubov
transform to compute the concurrence. Indeed, although such
a simple calculation fails to provide the fulls1/Nd1 contribu-
tion to the spin expectation valuessas explained in Ref.f10g
for the LMG modeld, the unknown parts of thes1/Nd1 con-
tributions cancel each other when computing the thermody-
namical limit of the rescaled concurrence, and one obtains

CR
1,1= maxS0,2 −

1
Î1 − h2D ,

CR
1,2= 2 −Î1 − h2. s22d

The rescaled concurrence is depicted in Fig. 3 for several
system sizes as well as in the thermodynamical limit. Let us
also mention that the finite-size scaling exponent forCR

1,2 can
be computed using the same scaling argument as previously
and equals 1/3 instead of 2/3 as expected from the scaling
of the observables.

FIG. 1. Behavior of the ground-state energy per spine0 and the
gap D as a function of the system sizeNslog2-log2 plotd at the
critical point compared to analytical results.

FIG. 2. Finite-size scaling of the magnetization and the correla-
tion functionsslog2-log2 plotd at the critical point. A clear power-
law behavior is observed with a nontrivial scaling exponent 2/3
predicted by the present method.
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As in the LMG or the Dicke modelf23g, it is interesting
to note thatCR

1,2 displays a cusplike behavior at the critical
point, whereas it is a smooth function forhÞ1. More inter-
estingly, the max function used in definitions16d leads to
CR

1,1=0 for hùÎ3/2. It is worth noting that this value of the
magnetic field does not play any special role in the phase
diagram, whereas it naturally arises in the entanglement
analysis. However, if we do not consider the max function,
CR

1,1 diverges at the critical point. In the zero-field limit, the
ground state is simply the Dicke state corresponding to

S=N/2 and Sz=0, whose rescaled concurrence equals 1
f22,24g. Note that, in this limit, the distinction between sub-
setsI1 and I2 becomes irrelevant so that both rescaled con-
currences are identical. In the infiniteh limit, the ground
state is the separable stateuc0l=s^ iPI1

u↑ lid ^ s^ jPI2
u↓ l jd,

which has also a vanishing total magnetizationsSz=0d but
which is not an eigenstate ofS2. However, it is clear that the
concurrence of such a state is exactly zero whatever the two
considered spins.

The method used in the present work is certainly well
suited to tackle many similar problems for which a semiclas-
sical description of the thermodynamical limit is exact as
illustrated here or in the LMG model. An interesting issue is
to understand the key ingredients that allow for exact solu-
tions of the flow equations. In particular, it would be of spe-
cial interest to analyze, along the same line, models where
some regions of the phase diagram are known to be chaotic
and others integrable. Finally, let us note that our method
may also be useful to compute the von Neumann entropy
which displays some interesting features in quantum critical
systemsf25–28g.
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FIG. 3. Rescaled concurrence of the ground state as a function
of the magnetic field forN=32, 64, 128, 256, and̀ . In the ther-
modynamical limit a cusplike singularity appears at the critical
point.
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