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We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces
of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr non-
linearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is
nondestructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to
construct a nondestructive Bell-state detector.
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Two-qubit measurements are an important resource in
quantum information processingsQIPd, enabling key appli-
cations such as the teleportation of states and gates, dense
coding, and error correction. In particular, a measurement
device that does not destroy the qubits is a very powerful
tool, since it allows entanglement distillationf1g and efficient
quantum computing based on measurementsf2–4g. This is
especially useful when the qubits interact weakly, and
interaction-based quantum gates are hard to implementsfor
example, photonic qubits have negligible interactiond. Fur-
thermore, a nondestructive two-qubit measurement device
can act as an deterministic source of entangled qubits.

Optical QIP is of special interest, because electromagnetic
fields are ideal information carriers for long-distance quan-
tum communication. Photonic quantum states generally suf-
fer low decoherence rates compared to most massive qubit
systems, but we need optical information processing devices
that overcome the negligible interaction between the pho-
tons. Optical quantum computation and communication will
therefore benefit greatly from nondestructive two-qubit mea-
surements. Arguably the most important two-photon mea-
surement is the measurement in the maximally entangled
Bell basis. When the computational basis of a single-photon
qubit is given by two orthogonal polarization statessH and
Vd, then the Bell states can be written asuC±l
=suH ,Vl± uV,Hld /Î2 and uF±l=suH ,Hl± uV,Vld /Î2. A non-
destructive Bell measurement then projects the two photons
onto one of the Bell states. This can be used in the telepor-
tation of probabilistic gates into optical circuitsf5,6g, and
consequently enables efficient linear optical quantum com-
puting. In addition, a deterministic nondestructive Bell mea-
surement would also act as a bright source of entangled pho-
tons.

Braunstein and Mann presented a linear optical method to
distinguish two out of the four optical Bell statesf7g. In
1999, it was shown independently by Vaidman and Yoran,
and Lütkenhauset al. that the Braunstein-Mann method is
optimal f8,9g: When one is restricted to linear optics and
photon countingsincluding feed-forward processingd at most

half of the Bell states can be identified perfectly. This detec-
tion method is thereforeprobabilistic. Furthermore, it de-
stroys the photons in the photon counting process, and is thus
of limited use in efficient large-scale QIP.

One way to improve on this scheme is to move beyond
linear optics, i.e., to induce an interaction between the pho-
tons. This can be achieved using a cross-Kerr medium, i.e., a
nonlinear medium that can be described by an interaction
Hamiltonian of the form

ĤK = "xn̂an̂c, s1d

where n̂k is the number operator for modek, and"x is the
coupling strength of the nonlinearity. A photon in modec
will then accumulate a phase shiftu=xt that is proportional
to the number of photons in modea. Such a medium can be
used as an optical switchf10g. More to the point, when the
nonlinearity is largesi.e., u<pd, it naturally implements a
controlled-phase gate at the single photon level. This in-
spired applications such as photon number quantum non-
demolition sQNDd measurementsf11,12g, Noon-state gen-
eration f13g, a Fredkin gatef14g, and culminated in a full-
scale proposal for optical quantum computersf15g. In
particular, with a large nonlinearity we can build a Bell state
analyzerf16,17g.

Unfortunately, natural Kerr media have extremely small
nonlinearities, with a typical dimensionless magnitude ofu
<10−18 f18,19g. A large Kerr nonlinearity at the single-
photon level is therefore practically impossible. However,
there are ways to make nonlinearities of magnitude,10−2,
for example with electromagnetically induced transparencies
sEITd f20–22g, whispering-gallery microresonatorsf23g, op-
tical fibersf24g, or cavity QED systemsf25,26g. In this pa-
per, we show how to build a nondestructive interferometric
Bell-state analyzer with such small-but-not-tiny Kerr nonlin-
earities, and additional coherent state resources.

As a specific example of a very promising method for
generating the form of nonlinearity required, we consider
EIT in condensed matter systems. We have analyzed a model
system at lengthf21g, considering three photon modes inter-
acting through dipole couplings to a four-levelN atomic
systemf27g. Mode a generally describes a Fock stateunal,*Electronic address: sean.barrett@hp.com

PHYSICAL REVIEW A 71, 060302sRd s2005d

RAPID COMMUNICATIONS

1050-2947/2005/71s6d/060302s4d/$23.00 ©2005 The American Physical Society060302-1



and modec is a coherent stateuacl; these two fields interact
through a third pump mode that is a sufficiently intense co-
herent state that both it and the internal atomic energy levels
can be factored out of the evolution, creating an effective
nonlinear Kerr interaction between modesa and c of the
form given in Eq.s1d. In general, it is difficult to achieve a
substantial vacuum Rabi frequency using free-space fields
f28g, but encapsulating one or more atoms in a waveguide
ssuch as a line defect in a photonic crystal structured allows
field transversality to be maintained at mode cross-sectional
areas that have dimensions smaller than the optical wave-
lengths of the interacting fields. A two-dimensional photonic
crystal waveguide constructed from diamond thin film with
nitrogen-vacancy color centers fabricated in the center of the
waveguide channelf29,30g could provide a sufficiently large
nonlinearity to realize our method experimentally. For ex-
ample, a cryogenic NV-diamond system with 23104 color
centers can generate a phase shift of more than 0.1 rad per
signal photon with a probe photon numbernc=ac

2=1.3
3104 and modest detunings.

We turn now to the application of such nonlinearities for
Bell-state analysis. As mentioned above, it is well known
that a beam splitter can be used to discriminate between the
singlet and the remaining triplet Bell statesf7g. If the two
incoming modes are combined on a beam splitter, the Bell
states are transformed as

uC−l = uH,Vl − uV,Hl → uH,Vl − uV,Hl,

uC+l = uH,Vl + uV,Hl → uHV,0l − u0,HVl, s2d

uF±l = uH,Hl ± uV,Vl → uH2,0l − u0,H2l ± uV2,0l 7 u0,V2l.

After the beam-splitter transformation, the singlet state,
uC−l, is balanced, i.e., it has only one photon in each spatial
mode. On the other hand, the triplet states arebunched, i.e.,
they have coherent superpositions of either zero or two pho-
tons in each spatial mode. Our scheme proceeds by nonde-
structively distinguishing between these two cases, and sub-
sequently transforming the states back to the Bell basis using
a second beam splitter. This nondestructive symmetry analy-
sis therefore allows the singlet state to be discriminated from
the triplet states. As we discuss further below, a full nonde-
structive Bell measurement can be implemented by repeated
applications of the symmetry analysis, interleaved with ap-
propriate local operations.

It is important to note that the balanced and bunched
states must be discriminated in such a way that no other
information is discovered about the states. In particular, de-
termining the number of photons in a particular spatial mode,
even nondestructively, would destroy the coherence of the
bunched states. For this reason, existing photon number
QND measurement techniquesf11,12,21g with small u are
insufficient to perform the symmetry analysis step. The tech-
nique for nondestructive symmetry analysis that we describe
below is one of the principal results of this paper.

In order to describe our scheme for symmetry analysis,
we first consider the illustrative example of an analyzer ca-
pable of nondestructively distinguishing between the bal-
anced and bunched states,u1, 1l andsu2,0l± u0,2ld /Î2. Here,

u j ,kl represents a two-spatial mode optical state, withj pho-
tons in modea and k photons in modeb, with all photons
polarized in the same direction. The setup for discriminating
these states is shown in Fig. 1. Modec is initially prepared in
a coherent stateuacl=e−uacu2/2onac

n/În! unl, whereunl denotes
an n-photon number statef31g. The coherent state can be
generated, for example, by a laser pulse. The photons in
modec sequentially interact with those in modesa andb via
the two srelatively smalld cross-Kerr nonlinear operations,
acting with phasesu and −u, respectively. These operations
can be written as expsiun̂an̂cd and exps−iun̂bn̂cd, as follows
from Eq. s1d f32g.

Suppose now that the input state for the two signal modes
a andb and the probe modec is given by

uc0l = Fd1u1,1l +
d2

Î2
su2,0l ± u0,2ldGuacl, s3d

where d1, d2 are complex coefficients satisfying the usual
normalization requirements. The effect of each cross-Kerr
operation is to induce a phase shift in the coherent stateuacl,
which is proportional to the number of photons in the corre-
sponding signal modesalternatively, although each Fock
state in the coherent state imparts a different Kerr shift to the
signal photons, the measurement of the coherent state is de-
signed so that there is only one overall phase shift on the
signal photons afterwardsd. Thus, for theu1, 1l component of
the state, the total phase shift induced isu+s−ud=0, and for
the u2, 0l andu0, 2l components, the phase shifts are +2u and
−2u, respectively. After these cross-Kerr operations, the state
of the three modes is thus given by

uc1l = d1u1,1luacl +
d2

Î2
su2,0luace

2iul ± u0,2luace
−2iuld.

s4d

This state is illustrated in the phase space plot in Fig. 2sad.
In order to distinguish the balanced and bunched compo-

nents of uc1l, it is sufficient to measure theX quadrature
component of the probe modec. This can be achieved with a
standard homodyne measurement. To perform such a mea-
surement, the probe mode is combined at a beam splitter
with a local oscillator of the same frequency. The output is
then measured with photodetectorsf31g. Provided the local

FIG. 1. Schematic circuit showing how two relatively small
cross-Kerr nonlinearities can be used to discriminate between
su2,0l± u0,2ld /Î2 andu1, 1l nondestructively. The boxes labeled by
u and −u represent the cross-Kerr nonlinearities that induce a phase
shift in the coherent stateuacl proportional to the number of pho-
tons in the corresponding signal mode. A homodyne measurement
of the X quadrature with outcomex will then discriminate between
the two input states. Depending on this outcome, a relative phase
shift 2fsxd is needed to restore theu2,0l± u0,2l state.
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oscillator is prepared in a large-amplitude coherent state with
the same phase asuacl, homodyne measurement amounts to a

sdestructived measurement of the observableX̂= ĉ+ ĉ†, where
ĉ is an annihilation operator for photons in the probe mode.
Using the resultkxubl=s2pd−1/4expf−Imsbd2−sx−2bd2/4g
f33g, whereuxl is an eigenstate ofX with eigenvaluex, the
state of modesa andb after the measurement onc is

uc3l = d1fsx,acdu1,1l +
d2

Î2
fsx,ac cos 2ud

3seifsxdu2,0l ± e−ifsxdu0,2ld, s5d

where we have defined

fsx,bd ; s2pd−1/4 expf− sx − 2bd2/4g,

fsxd ; ac sin 2usx − 2ac cos 2ud mod 2p. s6d

The Gaussian termsfsx,acd and fsx,ac cos 2ud in Eq. s5d
correspond to probability amplitudes associated with each of
the two statesu1, 1l and u2,0l± u2,0l, respectivelyfsee Fig.
2sbdg. The phase shiftfsxd associated with the two-photon
components depends on the outcome of the homodyne mea-
surement. This can be corrected by applying the phase shift
operation expf−ifsxdn̂ag, conditional on the obtained value
of x. In order to resolve the balanced and the bunched com-
ponents, we require only a small overlap between their prob-
ability distributions. Values ofx below the midpoint between
the peaks define one measurement outcome, and values ofx
above it the other outcome. The error probability is thus the
sum of the lowerx distribution tail above the midpoint and
the upper distribution tail below the midpoint, and is given
by Perror=erfcsÎ2acu

2d /2. This is less than 0.01 provided
acu

2.1.2. Highly accurate discrimination is therefore pos-
sible with weak cross-Kerr nonlinearitiessu!pd provided
ac can be made sufficiently large. For example, the system
described in the NV-diamond example given above generates
the error probabilityPerror=0.01.

A straightforward generalization of the methodology de-
scribed above can be used to construct a nondestructive pho-

tonic symmetry analyzer on the two-qubit Hilbert spaceH of
the incoming modes, spanned by the statesuH ,Hl, uH ,Vl,
uV,Hl, and uV,Vl ssee Fig. 3d. As noted above, the beam
splitter transformation, Eq.s2d, transforms the singlet state
into a balanced state, whereas the triplet states are bunched.
The polarizing beam splitterssPBSd will separate the two
polarization modes. A polarization rotationsnot shownd ap-
plied to the same output of each PBS will then ensure that all
the photons have identical polarization, thus satisfying the
assumption made about the inputs to the analyzer of Fig. 1.
sThese rotations are then undone before the outgoing PBS.d
By counting the phase shiftssu and −ud we can determine the
total phase that is acquired byuacl. As before, thesbalancedd
singlet state will not induce a phase shift inuacl. The differ-
ent components of thesbunchedd triplet states will induce
phase shifts of +2u or −2u. Therefore, theX-quadrature ho-
modyne measurement of modec now allows the singlet and
triplet states to be distinguished nondestructively. After cor-
rective phase shiftssagain conditional on the outcome of the
X-quadrature measurementd and recombination on the PBS,
the final beam splitter will return the state to the two-qubit
Hilbert spaceH. Note that it is crucial that the measurement
does not introduce decoherence between the symmetric am-
plitudes, as repetition of the symmetry analysis is needed for
full Bell-state analysis.

Once we have a nondestructive symmetry analyzersSAd,
it is straightforward to construct a quantum nondemolition
Bell-state detectorsdepicted in Fig. 4d. First, we test whether
or not the input state is the singlet by applying the SA. We
then apply a bit flipsx to move the antisymmetric subspace
into the symmetric subspace. We apply the SA again, and if
the transformed input state is the singlet, we know that the
original state wasuF−l. We then apply a relative phase shift

FIG. 2. sad Schematic phase space illustration of the state
uc1l=d1u1,1luacl+sd2/Î2dsu2,0luace

2iul± u0,2luace
−2iuld. For the

u1, 1l component of the state, the probe mode receives zero total
phase shift, whereas for theu2, 0l and u0, 2l components, the phase
shifts are +2u and −2u, respectively.sbd The corresponding prob-
ability distribution for the outcome of theX quadrature measure-
ment of the probe beam. The two peaks in this distribution are
associated with the statesu1, 1l and u2,0l± u2,0l.

FIG. 3. The symmetry analyzer: photonic two-qubit input states
interfere on a 50:50 beam splittersBSd. The polarizing beam split-
ters sPBSd will transform the beam splitter output into four modes
with equal polarization. Using the methodology of Fig. 1, one can
distinguish between the resulting bunched and balanced states. This
results in a measurement of the symmetry of the photonic two-qubit
input state. The PBS and BS after the homodyne measurement re-
turn the two modes to the two-qubit space.

FIG. 4. The Bell-state detector: repeated application of the sym-
metry analyzersSAd and local unitary rotations inH subsequently
project onto different Bell states. The local unitaries are simply
performed with suitable optical plates for polarization qubits.
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sz. If the third SA finds the singlet, then the input wasuF+l.
If no singlet signal has arisen, then the input state must have
beenuC+l. We can test this by applying another bit flipsx
and invoke the SA again. The finalsz ensures that the out-
going state is actually that identified by the analyzer. Clearly
if one is prepared to accept not finding the singlet in the first
three analyzers as the signature ofuC+l, the final analyzer
can be omitted. In this case the third and final single-qubit
operation is insteadsy to restore the outgoing state to that
identified. Furthermore, if classical switching conditional on
the homodyne measurement results is employed, the analysis
could be terminated after a singlet signal from any SA, by
switching the two-qubit state out and then reconstructing the
identified Bell state by a local operation.

To summarize, in this paper we have shown how to con-
struct a Bell-state analyzer from small cross-Kerr
nonlinearities—small here means much less than the size of

the nonlinearity required to perform a maximally entangling-
disentangling gate directly between photons. Our analyzer
distinguishes all four polarization Bell states and is near de-
terministic in operation. We have suggested EIT systems as
one potential route for realizing the required cross-Kerr non-
linearities, which could lead to practical QIP in the relatively
near future, especially since for our proposed symmetry and
Bell-state analyzers there is not a requirement to generatep
phase shifts. As we have shown, as long as the probe beam
has a sufficient amplitudeac such thatacu

2*1, we can work
with much smaller phase shifts. This makes our analyzers
rather easier to implement that those based on standard non-
linear quantum logic.
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