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Wave packet dynamics in a helical optical waveguide
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Beam propagation in a helically twisted optical waveguide is theoretically studied and shown to provide an
optical analog to the electron wave packet dynamics of a two-dimensional atom subject to a high-frequency
and high-intensity circularly polarized laser field.
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In recent years, many interesting and unusual dynamicdaser field. In this paper we extend the quantum-mechanical
quantum phenomena of atoms in intense and high-frequenahalogy of Ref.[9] and present a 3D waveguide model
laser fields have been the subjected of an extended #toidy  which mimics the wave packet dynamics of an electron in a
reviews on this subject see, e.g., Ref]). One of the most  2p atom[6] subjected to aircularly polarizedlaser field.
spectacular effects of laser-atom interaction in the high- 14 starting point of the analysis is provided by the scalar

frequency and high-intensity regime, which strongly deviatesand paraxial model for wave propagation in a channel optical

from the most known behavior of low-intensity Iaser-atomwave Uide. whose axis is allowed to weakly and slowly de-
physics, is the adiabatic stabilization of the atom against ion-. 9 ’ y y

ization, i.e., an unusual increase of the atom lifetime as th¥iateé from straightness; we indicate by=x,(2) and y
laser intensity is increasel®]. Such an effect, which was =Yo(2) the Cartesian equations of the curved axis, wizdee
predicted by Gavrila and co-workers in theoretical calculathe direction of the straight waveguide axg are the trans-
tions on atomic hydrogen driven by a linearly polarized high-verse coordinatefsee Fig. 1a)]. As previously shown in
frequency laser fiel{i3], can be captured by considering the Ref.[9], the propagation wave equation for a monochromatic
electron dynamics in the Kramers—Henneber@ét) refer-  jight field ¢(x,y,z) with a vacuum wavelength provides

ence frame, which is the rest frame of a classical electron ifng gptical analog to the semiclassical Schrédinger equation
the laser field. The phenomenon of adiabatic stabilization I the KH reference frame and reads explicitly

closely related to a strong distortion of the electronic wave
packet, showing a characteristic dichotomous shape for a lin-
early polarized field3] and a toroidal shape for a circularly
polarized field[4]. This is due to the fact that, at high laser
frequencies, the atomic core potential seen by the electron in
the KH frame varies so fast that the dynamics is ruled out by
a cycled-averagédresseyl KH potential. Classical models,
based on a phase-space analysis of classical Hamiltonian de
scribing the electron motion subjected to either a linearly or
a circularly polarized laser field, have been as well consid-
ered to explain the existence of long-lived states, and two-
dimensional (2D) models for atomic hydrogen has been
widely adopted to highlight the main dynamical features
[5,6]. A comprehensive and accurate calculation of three-
dimensional(3D) dynamic stabilization of atomic hydrogen

in circularly polarized laser fields, which accounts for pulse
shape effects, has been recently given in [Réf. Despite a 2 N R ——
wide amount of theoretical studies on this subject has ap- y
peared in the past two decades, experimental observations o v
adiabatic stabilization and wave packet distortion in the % .
atomic context are to date very few and rather indifécs]. \ \{4\(2)
It has been recently suggestgd] and experimentally dem- e
onstrated[10] that an optical analogy of the wave packet == \@n/N)z
dichotomy of an electron cloud subjected to a linearly polar- X

ized laser field, described originally by Gavrila and co-

workers[3], occurs in a periodically curved optical wave-  F|G. 1. (a) Schematic of a helical waveguidé) Rotating ref-
guide, where beam propagation along the waveguide mimicsrence framéx’,y’) used to study beam propagation in the helical
the temporal evolution of the electronic wave function. Inwaveguide. The shaded area represents the waveguide channel, i.e.,
Refs.[9,10], a periodic bending of a waveguide on a planethe potential welV(p) in the atomic analogy, which is centered on
was employed to simulate the effects of a linearly polarizedhe x’ axis at a distancé(z) from the axis origin.
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1 X2 ) ture in the optical analogy, is ultimately related to the exis-
A= EVL'/HV(X— X(2.y=Yo(2)#, (1) tence of bound or quasibound states for the quantum Hamil-

S tonian, which in turn strongly depends on the dimensionless
where  X=\/(27), V(x,y)E[ng—nz(x,y)]/(Zns)zns parametere=\/(AAn), whereAn is the peak refractive in-

-n(x,y), ns is the waveguide bulk refractive inder(x,y)  dex change of the waveguide profile. In fact, it is worth

(with [n(x,y)—ng <ny) is the transverse refractive index pro- rewriting Eq.(2) in dimensionless units by rescaling the spa-

file of the waveguide channel, ariwf is the transverse La- tial variables according t’—x'L,, y'—y'L,, z—zl,

placian. Note that, after the formal substitutidn-#%, z—t,  With scalesL, =X(2nAn)"2 and L,=\/An. By further in-

and n—m, Eq. (1) is equivalent to the semiclassical troducing the polar coordinates,¢) [Fig. 1(b)], Eq. (2)

Schrédinger equation, in the KH frame, for a 2D electron inassumes the dimensionless form

the binding potentiaM(x,y), subjected to an external laser

field, the termsxy(z) andyy(z) representing the quiver mo- iﬁ_‘p_ -V 2+ f(r . Y

! - 1 ,qD,Z)lﬂ"' le ’ (3)

tion of a classical electron subjected such an external field. 0z e

The optical analog corresponding to a 2D bound eIeCtrqr\‘Nheref:V/An is the potential profile normalized to its mini-

subjected to a _Iine_arly-polarized laser “‘?'d was studi_ed "hum valueAn. In its present form, Eq(3) is suited for a
Re_f. [9] by considering a channel Wavegmde with a pe“F)d'C erturbative analysis. If we consider a constant helix radius,
axis bendLng g'nr? plane, and the %xpgrt;mﬁntaép%se.rvatmgI_ is independent o and the eigenmodes are of the form
wave packet dichotomy associated with the adiabatic stabili- _ _ ; : _

zation was reported in Rdf10]. Here we focus our attention, Wr e D=F(r, g)ex-ifz), with (H+ied,)F=pF and H
conversely, to the optical analogy corresponding to the inter
action with acircularly polarizedlaser field. To this aim, we _
assume that the optical waveguide has an helically tvviste?j
axis, i.e., that xg(z22=Aco92mz/A) and yy(2)
=Asin(2wz/ A), whereA is the spatial periodicity of the he-
lix and A its radius. To account for a smooth turn on of the
laser pulse in the atomic analod§], we assume that the
radius of the helixA is slowly increased from zero to a

=-V'2+1(r, ¢). Depending on the value & we have two
imiting dynamical regimes. The first one occurs when

1, i.e., the long helix period regime. In this reginfeand

can be constructed by means of standard perturbation
analysis starting from an unperturbed bound mode of the
Hamiltonian?. Therefore, in theXx,y) laboratory reference
frame, we expect the helical waveguide to guide, with low
losses, the modes of the straight waveguide—slightly per-

tant val ith " . - fil turbed by the bending—which adiabatically follow the heli-
constant value, with a quarter sine-square rising profile cal axis trajectory. The other limiting dynamical regime,

E]S(ie ;: Igf. tlr?)].ww\? furgger a;]ssnunm? r;[hatghriu;ieflrl""c“vrenI'th(?ixwhich is analogous to the high-frequency limit in the atomic
+y) of In€ waveguide channet has ally symme Canalogy, corresponds to a short helix period, i.egxol. In

i — i —(v2 2\1/2. e e
shape., €., th-a'n—n(p) W_'th p=(x +y )™ this is in fact the_ this case, one can develop a stationary perturbation analysis
most interesting case in the spirit of the quantum-optical, hower series of the small parameterelyielding at lead-
analogy, since Eq(1l) with a radially symmetric potential ing order B=e |+ B, and F(r, o) =R(r)exp(-il ¢), wherel is

exactly describes, in the optical context, 2D models for elecfhe azimuthal index, related to the beam angular momentum

tron dynamics in atomic hydrogen subjected to a circularly, e A : '
; : X andR and 3, satisfy the radial eigenvalue equation

polarized laser field6]. We note that, though a 3D helical Po fy 9 q

waveguide structure is unlikely achievable using common 19 R\ 12
fabrication techniques, it can be obtained by the recently r; +ﬁR+fav(r)R=:30R’ (4)
developed femtosecond-based microfabrication technique,

which has been demonstrated to provide good-quality 3Dvhere f,(r)=1/(2m)[3"def(r,¢) is the averaged potential
waveguide-based photonic devicésee, for instance, Ref. over the angular coordinate. We, hence, expect the wave-
[11]). To study the beam propagation dynamics along theyuide to guide, with low losses, the modes of a straight
helical waveguide, it is worth introducing a reference framewaveguide which, in the laboratorix,y) reference frame,
(x",y") rotating with the helical spatial periodicity; this shows a refractive index profile given by the cycled-averaged

rar

yields the field equation refractive index of the helical waveguide. We also note that,
5 if we include the slow dependence of the potentiah z due
i x Iy —_ K—V'flﬂ— 2—7T£Z¢+ V(p)ib, ) to the adiabatic increase of _the helix radA(s;) f_rom zero to
Iz 2ng A the constant valué, [see Fig. 13)], in the limit e—« the

following cycled-averaged wave equation can be derived
form Eq. (3) by a multiple scale analysisee, e.g., Ref9]
for technical details

where £,=-iX(X'd, —y'dy) is the angular momentum op-
erator along the axis, andp is shown in Fig. 1b). Note that
the potentiaV in Eq. (2) depends implicitly, througlp, onx’
andy’, but also orz owing to the slow variation of the helix N1
radius A(z) with z [see the geometric construction of Fig. 'Ez -
1(b)]. Note also that, once the helix radius has stabilized to

its constant valued,, V turns out to depend or’ andy’  wheref,(r,2)=1/(2m)[37d¢ f(r,¢,2). Itis clear that, if the
solely, leading to an autonomots., zindependentHamil-  helix radius becomes comparable or larger than the radial
tonian. In this case, the issue of adiabatic stabilization of thaize of the potential, the angle-averaged potentfgl, has an
atom, i.e., of low-loss light guiding along the helical struc- annular profile, with a depressed refractive index in the inner

V2 olr 2+ €L, (5)
Je

055402-2



BRIEF REPORTS PHYSICAL REVIEW A1, 055402(2009

__ 100 s ?
= - g T
8 ™
% 60 P .
. ~
g 40 1 =
=]
E 2 .
9 . 055 0 95
0.01 0.1 1 10 )
e=M/(An A) b

FIG. 2. Power transmission \esfor a L=1000 long(in unitsL.) 5 \
helical waveguide with a Gaussian-shaped refractive index profile. z 0.9
Parameter values ae=6.3246 andA;=25.3(in unitsL ).

P

=08 =
and outer parts of a ring of radius=A,, so that the modes g.‘? - \‘\
guided by the helically twisted waveguide in the short-period ®lLy
limit are those of an annuldor tubulay waveguide(see, for 0 200 400 800 800 1000
instance, Ref[12]). It is also interesting to note that, since Propagation distance z/L,

within the average waveguide modg) the angular momen- . . : .
tum operatorZ,=-iAd, commutes with the Hamiltonian FIG. 3. Beam dY'_‘am."’S along a helical waveguide, shownng
‘V'zﬁ‘fav(r ,Z)+i(?¢, one hasd(£,)/dz=0, ie., the mean adiabatic beam stabilizatiofa) Gray-scale plot of beam amplitude

. .|y on they=0 plane;(b) Evolution of beam poweP; (c) Intensity
value of the angular beam momentum is conserved during, e |2 of injected fundamental waveguide moBtEs]; (d) In-

the propagation. In the operational conditions correspondingysiry beam profile at the output of the waveguide. The square
to a finite value fore, strong radiation losses may occur, andansyerse domain is 190190 wide(in units L | ). Parameter val-

with absorbing boundary conditions is needed to determin@ame as in Fig. 2.

radiation lossegsee Ref[9]). We numerically integrated Eq.
(1) using a pseudospectral beam propagation method oniadexns=1.5 and for a probing wavelengi+1.55um, the
square transverse domain with absorbing boundary condiwaveguide shown in Fig. 3 corresponds to a total lerigth
tions assuming, as an example, a Gaussian profile for the24.67 mm, a helix period\ =246.7 um, a helix radius
potential well, V(p) =ns—n(x,y)=—An exp(-p?/a?). Analo-  Ay=36 um, and a transverse size of the waveguide channel
gously to the lifetime calculation of atomic hydrogen sub-a=9 um; the transverse and longitudinal spatial scales are
jected to a strong laser fielfb], the beam powerP(z) then L, =1.46 um and L,=24.67um, respectively. The
:f|¢(x,y)|2dxdycontained in the finite transverse integration well-known phenomenon of adiabatic stabilization and ion-
domain can be used to quantitatively measure radiatiofzation quenching6] is shown in Fig. 4, where beam power
losses, i.e., the ionization probability of the atom in thetransmission vs helix radius amplitudg is depicted for a
guantum-mechanical context. We numerically computed théixed value ofe [14]. Note that, whemA, is smaller than the
power transmission of the helical waveguide of length ~characteristic size of the potentialV(p), as A, increases
P(L)/P(0), as a function of the dimensionless parameter radiation losses increase; however, at higher valuesgpf
=\/(AAn) and helix radius?,, scaled toL , = X(2n,An)~1/2, corresponding to the appearance of an annular-shaped aver-
A waveguide length_=1000_, has been assumed, with a age_:d _potentiafav, the beam power transmission increases as
20% initial stage in which the helix radius adiabatically in- Ao IS increased. _ . _
creases, through a quarter sine-square ramp, from zero to its [N sSummary, we proposed a 3D helical optical waveguide
final valueA, [see Fig. 18)]. The waveguide was excited in Model to mimic, in an optical system, the electron wave
its fundamental radially symmetric modd.3]. Figure 2 function dynamics of a 2D atom subjected to a high-
shows the behavior of beam power transmissiore ¥er a frequency and high-intensity circularly polarized laser field.
fixed value of the helix radius. Note that, according to the

: : 80 <

perturbative analysis, low losses are found for small or large = I

values of ¢, with a connecting region where the guiding S 60 .

properties of the helical waveguide are fully lost. The la¢ge 5 »

limit corresponds to the high-frequency adiabatic stabiliza- 8 40 . .

tion regime, in which beam propagation is well described by &

the “average” waveguide wave equati@). This is shown in § 20 " L

Fig. 3, where an example of beam propagation in the adia- 0

batic stabilization regime is depicted; note the appearance of 0.1 1 10 100
a stabilized annular-shaped wave packet after the adiabatic Normalized helix radius  4,/L,

waveguide section, which resembles the electron wave form

of a 2D hydrogen atom subjected to a circularly polarized FIG. 4. Power transmission vs dimensionless helix radius
field [6]. In terms of real-world physical parameters, for aAy/L, for e==/5. The values of other parameters are the same as
peak refractive index changen=0.01, a substrate refractive in Fig. 2.
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The optical analogy may be of relevance for an experimenenvisaged that, within the ray-optics limit— 0, the helical
tally accessible study of adiabatic stabilization and annulawaveguide system may also provide a way to study the com-
wave function distortion phenomena which are not easilyplex classical dynamics of hydrogen atoms in circularly po-
accessible to date in the atom-laser physics context. It is aldarized laser field$6].
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