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Beam propagation in a helically twisted optical waveguide is theoretically studied and shown to provide an
optical analog to the electron wave packet dynamics of a two-dimensional atom subject to a high-frequency
and high-intensity circularly polarized laser field.
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In recent years, many interesting and unusual dynamical
quantum phenomena of atoms in intense and high-frequency
laser fields have been the subjected of an extended studysfor
reviews on this subject see, e.g., Ref.f1gd. One of the most
spectacular effects of laser-atom interaction in the high-
frequency and high-intensity regime, which strongly deviates
from the most known behavior of low-intensity laser-atom
physics, is the adiabatic stabilization of the atom against ion-
ization, i.e., an unusual increase of the atom lifetime as the
laser intensity is increasedf2g. Such an effect, which was
predicted by Gavrila and co-workers in theoretical calcula-
tions on atomic hydrogen driven by a linearly polarized high-
frequency laser fieldf3g, can be captured by considering the
electron dynamics in the Kramers–HennebergersKHd refer-
ence frame, which is the rest frame of a classical electron in
the laser field. The phenomenon of adiabatic stabilization is
closely related to a strong distortion of the electronic wave
packet, showing a characteristic dichotomous shape for a lin-
early polarized fieldf3g and a toroidal shape for a circularly
polarized fieldf4g. This is due to the fact that, at high laser
frequencies, the atomic core potential seen by the electron in
the KH frame varies so fast that the dynamics is ruled out by
a cycled-averagesdressedd KH potential. Classical models,
based on a phase-space analysis of classical Hamiltonian de-
scribing the electron motion subjected to either a linearly or
a circularly polarized laser field, have been as well consid-
ered to explain the existence of long-lived states, and two-
dimensional s2Dd models for atomic hydrogen has been
widely adopted to highlight the main dynamical features
f5,6g. A comprehensive and accurate calculation of three-
dimensionals3Dd dynamic stabilization of atomic hydrogen
in circularly polarized laser fields, which accounts for pulse
shape effects, has been recently given in Ref.f7g. Despite a
wide amount of theoretical studies on this subject has ap-
peared in the past two decades, experimental observations of
adiabatic stabilization and wave packet distortion in the
atomic context are to date very few and rather indirectf1,8g.
It has been recently suggestedf9g and experimentally dem-
onstratedf10g that an optical analogy of the wave packet
dichotomy of an electron cloud subjected to a linearly polar-
ized laser field, described originally by Gavrila and co-
workers f3g, occurs in a periodically curved optical wave-
guide, where beam propagation along the waveguide mimics
the temporal evolution of the electronic wave function. In
Refs. f9,10g, a periodic bending of a waveguide on a plane
was employed to simulate the effects of a linearly polarized

laser field. In this paper we extend the quantum-mechanical
analogy of Ref.f9g and present a 3D waveguide model
which mimics the wave packet dynamics of an electron in a
2D atomf6g subjected to acircularly polarizedlaser field.

The starting point of the analysis is provided by the scalar
and paraxial model for wave propagation in a channel optical
waveguide, whose axis is allowed to weakly and slowly de-
viate from straightness; we indicate byx=x0szd and y
=y0szd the Cartesian equations of the curved axis, wherez is
the direction of the straight waveguide andx,y are the trans-
verse coordinatesfsee Fig. 1sadg. As previously shown in
Ref. f9g, the propagation wave equation for a monochromatic
light field csx,y,zd with a vacuum wavelengthl provides
the optical analog to the semiclassical Schrödinger equation
in the KH reference frame and reads explicitly

FIG. 1. sad Schematic of a helical waveguide.sbd Rotating ref-
erence framesx8 ,y8d used to study beam propagation in the helical
waveguide. The shaded area represents the waveguide channel, i.e.,
the potential wellVsrd in the atomic analogy, which is centered on
the x8 axis at a distanceAszd from the axis origin.
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−nsx,yd, ns is the waveguide bulk refractive index,nsx,yd
swith unsx,yd−nsu!nsd is the transverse refractive index pro-
file of the waveguide channel, and¹'

2 is the transverse La-
placian. Note that, after the formal substitutionÂ→", z→ t,
and ns→m, Eq. s1d is equivalent to the semiclassical
Schrödinger equation, in the KH frame, for a 2D electron in
the binding potentialVsx,yd, subjected to an external laser
field, the termsx0szd and y0szd representing the quiver mo-
tion of a classical electron subjected such an external field.
The optical analog corresponding to a 2D bound electron
subjected to a linearly-polarized laser field was studied in
Ref. f9g by considering a channel waveguide with a periodic
axis bending on a plane, and the experimental observation of
wave packet dichotomy associated with the adiabatic stabili-
zation was reported in Ref.f10g. Here we focus our attention,
conversely, to the optical analogy corresponding to the inter-
action with acircularly polarizedlaser field. To this aim, we
assume that the optical waveguide has an helically twisted
axis, i.e., that x0szd=A coss2pz/Ld and y0szd
=A sins2pz/Ld, whereL is the spatial periodicity of the he-
lix and A its radius. To account for a smooth turn on of the
laser pulse in the atomic analogyf6g, we assume that the
radius of the helixA is slowly increased from zero to a
constant valueA0 with a quarter sine-square rising profile
fsee Fig. 1sadg. We further assume that the refractive index
nsx,yd of the waveguide channel has a radially symmetric
shape, i.e., thatn=nsrd with r=sx2+y2d1/2; this is in fact the
most interesting case in the spirit of the quantum-optical
analogy, since Eq.s1d with a radially symmetric potential
exactly describes, in the optical context, 2D models for elec-
tron dynamics in atomic hydrogen subjected to a circularly
polarized laser fieldf6g. We note that, though a 3D helical
waveguide structure is unlikely achievable using common
fabrication techniques, it can be obtained by the recently
developed femtosecond-based microfabrication technique,
which has been demonstrated to provide good-quality 3D
waveguide-based photonic devicesssee, for instance, Ref.
f11gd. To study the beam propagation dynamics along the
helical waveguide, it is worth introducing a reference frame
sx8 ,y8d rotating with the helical spatial periodicity; this
yields the field equation
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whereLz;−i Â sx8]y8−y8]x8d is the angular momentum op-
erator along thez axis, andr is shown in Fig. 1sbd. Note that
the potentialV in Eq. s2d depends implicitly, throughr, onx8
andy8, but also onz owing to the slow variation of the helix
radius Aszd with z fsee the geometric construction of Fig.
1sbdg. Note also that, once the helix radius has stabilized to
its constant valueA0, V turns out to depend onx8 and y8
solely, leading to an autonomoussi.e.,z independentd Hamil-
tonian. In this case, the issue of adiabatic stabilization of the
atom, i.e., of low-loss light guiding along the helical struc-

ture in the optical analogy, is ultimately related to the exis-
tence of bound or quasibound states for the quantum Hamil-
tonian, which in turn strongly depends on the dimensionless
parametere=l / sLDnd, whereDn is the peak refractive in-
dex change of the waveguide profile. In fact, it is worth
rewriting Eq.s2d in dimensionless units by rescaling the spa-
tial variables according tox8→x8L', y8→y8L', z→zLz,
with scalesL'=ls2nsDnd−1/2 and Lz=l /Dn. By further in-
troducing the polar coordinatessr ,wd fFig. 1sbdg, Eq. s2d
assumes the dimensionless form
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wheref =V/Dn is the potential profile normalized to its mini-
mum valueDn. In its present form, Eq.s3d is suited for a
perturbative analysis. If we consider a constant helix radius,
f is independent ofz and the eigenmodes are of the form
csr ,w ,zd=Fsr ,wdexps−ibzd, with sH+ ie]wdF=bF and H
;−¹'8

2+ fsr ,wd. Depending on the value ofe, we have two
limiting dynamical regimes. The first one occurs whene
!1, i.e., the long helix period regime. In this regime,F and
b can be constructed by means of standard perturbation
analysis starting from an unperturbed bound mode of the
HamiltonianH. Therefore, in thesx,yd laboratory reference
frame, we expect the helical waveguide to guide, with low
losses, the modes of the straight waveguide—slightly per-
turbed by the bending—which adiabatically follow the heli-
cal axis trajectory. The other limiting dynamical regime,
which is analogous to the high-frequency limit in the atomic
analogy, corresponds to a short helix period, i.e., toe@1. In
this case, one can develop a stationary perturbation analysis
in power series of the small parameter 1/e, yielding at lead-
ing orderb=e l +b0 and Fsr ,wd=Rsrdexps−ilwd, wherel is
the azimuthal index, related to the beam angular momentum,
andR andb0 satisfy the radial eigenvalue equation
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where favsrd=1/s2pde0
2pdwfsr ,wd is the averaged potential

over the angular coordinate. We, hence, expect the wave-
guide to guide, with low losses, the modes of a straight
waveguide which, in the laboratorysx,yd reference frame,
shows a refractive index profile given by the cycled-averaged
refractive index of the helical waveguide. We also note that,
if we include the slow dependence of the potentialf on z due
to the adiabatic increase of the helix radiusAszd from zero to
the constant valueA0 fsee Fig. 1sadg, in the limit e→` the
following cycled-averaged wave equation can be derived
form Eq. s3d by a multiple scale analysisssee, e.g., Ref.f9g
for technical detailsd
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wherefavsr ,zd=1/s2pde0
2pdw fsr ,w ,zd. It is clear that, if the

helix radius becomes comparable or larger than the radial
size of the potentialf, the angle-averaged potentialfav has an
annular profile, with a depressed refractive index in the inner
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and outer parts of a ring of radiusr .A0, so that the modes
guided by the helically twisted waveguide in the short-period
limit are those of an annularsor tubulard waveguidessee, for
instance, Ref.f12gd. It is also interesting to note that, since
within the average waveguide models5d the angular momen-
tum operatorLz=−i Â]w commutes with the Hamiltonian
−¹8'

2 + favsr ,zd+ i]w, one hasdkLzl /dz=0, i.e., the mean
value of the angular beam momentum is conserved during
the propagation. In the operational conditions corresponding
to a finite value fore, strong radiation losses may occur, and
a direct integration of Eq.s1d over a finite transverse domain
with absorbing boundary conditions is needed to determine
radiation lossesssee Ref.f9gd. We numerically integrated Eq.
s1d using a pseudospectral beam propagation method on a
square transverse domain with absorbing boundary condi-
tions assuming, as an example, a Gaussian profile for the
potential well,Vsrd.ns−nsx,yd=−Dn exps−r2/a2d. Analo-
gously to the lifetime calculation of atomic hydrogen sub-
jected to a strong laser fieldf6g, the beam powerPszd
=eucsx,ydu2dxdycontained in the finite transverse integration
domain can be used to quantitatively measure radiation
losses, i.e., the ionization probability of the atom in the
quantum-mechanical context. We numerically computed the
power transmission of the helical waveguide of lengthL,
PsLd /Ps0d, as a function of the dimensionless parametere
=l / sLDnd and helix radiusA0, scaled toL'= Â s2nsDnd−1/2.
A waveguide lengthL=1000Lz has been assumed, with a
20% initial stage in which the helix radius adiabatically in-
creases, through a quarter sine-square ramp, from zero to its
final valueA0 fsee Fig. 1sadg. The waveguide was excited in
its fundamental radially symmetric modef13g. Figure 2
shows the behavior of beam power transmission vse for a
fixed value of the helix radius. Note that, according to the
perturbative analysis, low losses are found for small or large
values of e, with a connecting region where the guiding
properties of the helical waveguide are fully lost. The largee
limit corresponds to the high-frequency adiabatic stabiliza-
tion regime, in which beam propagation is well described by
the “average” waveguide wave equations5d. This is shown in
Fig. 3, where an example of beam propagation in the adia-
batic stabilization regime is depicted; note the appearance of
a stabilized annular-shaped wave packet after the adiabatic
waveguide section, which resembles the electron wave form
of a 2D hydrogen atom subjected to a circularly polarized
field f6g. In terms of real-world physical parameters, for a
peak refractive index changeDn=0.01, a substrate refractive

indexns=1.5 and for a probing wavelengthl=1.55mm, the
waveguide shown in Fig. 3 corresponds to a total lengthL
.24.67 mm, a helix periodL.246.7mm, a helix radius
A0.36 mm, and a transverse size of the waveguide channel
a.9 mm; the transverse and longitudinal spatial scales are
then L'=1.46mm and Lz=24.67mm, respectively. The
well-known phenomenon of adiabatic stabilization and ion-
ization quenchingf6g is shown in Fig. 4, where beam power
transmission vs helix radius amplitudeA0 is depicted for a
fixed value ofe f14g. Note that, whenA0 is smaller than the
characteristic sizea of the potentialVsrd, as A0 increases
radiation losses increase; however, at higher values ofA0,
corresponding to the appearance of an annular-shaped aver-
aged potentialfav, the beam power transmission increases as
A0 is increased.

In summary, we proposed a 3D helical optical waveguide
model to mimic, in an optical system, the electron wave
function dynamics of a 2D atom subjected to a high-
frequency and high-intensity circularly polarized laser field.

FIG. 2. Power transmission vse for a L=1000 longsin unitsLzd
helical waveguide with a Gaussian-shaped refractive index profile.
Parameter values area=6.3246 andA0=25.3 sin units L'd.

FIG. 3. Beam dynamics along a helical waveguide, showing
adiabatic beam stabilization.sad Gray-scale plot of beam amplitude
ucu on they=0 plane;sbd Evolution of beam powerP; scd Intensity
profile ucu2 of injected fundamental waveguide modef13g; sdd In-
tensity beam profile at the output of the waveguide. The square
transverse domain is 1903190 widesin units L'd. Parameter val-
ues areA0=25.3L' ande=p /5; the other parameter values are the
same as in Fig. 2.

FIG. 4. Power transmission vs dimensionless helix radius
A0/L' for e=p /5. The values of other parameters are the same as
in Fig. 2.
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The optical analogy may be of relevance for an experimen-
tally accessible study of adiabatic stabilization and annular
wave function distortion phenomena which are not easily
accessible to date in the atom-laser physics context. It is also

envisaged that, within the ray-optics limitÂ→0, the helical
waveguide system may also provide a way to study the com-
plex classical dynamics of hydrogen atoms in circularly po-
larized laser fieldsf6g.
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