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Berry’s phase of the atom in the state with a positive or negativeg factor for partial cycles of a rotating
magnetic field was determined free from the dynamical phase shift using a time-domain atom interferometer.
The experimental phase shift is in good agreement with the prediction of Berry’s phase for partial cycles. It was
found that the sense of Berry’s phase depends on the sign of the magnetic quantum number, the sense of the
rotating magnetic field, and the sign of theg factor of the state.
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Since Berry predicted that the wave function of an adia-
batically changing quantum-mechanical system acquires to-
pological sgeometricald phases for cyclic evolution of the
Hamiltonian in 1984f1g, numerous experiments on Berry’s
phase have been carried out using polarized lightsf2g, neu-
tron interferometersf3g, nuclear magnetic resonancesf4g,
atom interferometersf5g, and so onf6g. Presently, Berry’s
phase has become well known in many physical systems, not
only Berry’s proposal for a particle with a spin component of
m along the magnetic field whose amplitude is kept constant
but whose direction is varied slowly around a circuit. Re-
cently, the topological phase has been imprinted in the atoms
of the Bose-Einstein condensate by adiabatically inverting a
magnetic bias field and has succeeded in generating vortices
in a Bose-Einstein condensatef7g.

When a particle with a spin component ofm is in a slowly
rotating magnetic field around a circuitC, it acquires a geo-
metrical phase factor exphigsCdj in addition to the familiar
dynamical phase factor. Berry’s phase for a particle with a
complete turn of the magnetic field around a cone of semi-
angleu is given by

gsCd = − 2pms1 − cosud. s1d

In a special case in which the magnetic field rotates in the
equator plane ofu=p /2, the solid angle is reduced to geo-
desic arcs connecting two points. Then Berry’s phase is
given by f8,9g

g = − mw, s2d

wherew is the angle betweenA and B. Therefore, Berry’s
phase becomes −2mp for a complete turn and −mw for a
partial cycle of the anglew. Consequently, for a partial cycle,
it is expected that Berry’s phase gains or loses also according
to the direction of the rotation of the magnetic field and the
sign of the magnetic quantum number. On the other hand, it
is well known that Berry’s phase does not depend on the
magnitude of theg factor. However, Tycko demonstrated that
it also depends on the sign of theg factor using a single
crystal in a magnetic fieldf10g. In atomic systems, there are
states with positiveg factors and negativeg factors. There-
fore, we will observe the sense of Berry’s phase reversed
depending on theg factor of the state.

However, most of the previous measurements were car-
ried out under a complete turn and therefore the sign of Ber-

ry’s phase has not been taken into consideration. Only the
dependences of Berry’s phase on the rotation angle for par-
tial cycles have been found by Weinfurter and Badurek using
the neutron spin, but the direction of the rotation was not
discussedf11g. These dependences could be verified by mea-
suring Berry’s phase of atoms which have both states of
positive and negativeg factors, for partial cycles.

In order to verify the dependence of Berry’s phase on the
direction of the rotation, we attempted to use an atom inter-
ferometer. Atom interferometers using the interaction of at-
oms with light as a beam splitter, which were realized in
1991f12,13g, have become powerful tools for measuring the
quantum phases, because they can determine the phase dif-
ference between two states with different quantum numbers
such as an optical polarization interferometer. One of the
authorssA.M.d developed a Mach-Zender-type atom interfer-
ometer using copropagating laser beamsf14g and thus far we
have measured the Aharonov-Casher phase using the space-
domain atom interferometer with states ofm=1 andm=−1
f15,16g and the scalar Aharonov-Bohm effect using the time-
domain sodium atom interferometer with states ofm=2 and
m=1 f17g. We confirmed that the phase shift was in propor-
tion to the variation of the strength of the resultant magnetic
field during two light pulses. In that experiment, the phase
change was found to be due only to the variation in magni-
tude of the resultant magnetic field, under the magnetic field
which rotated by a certain angle in one direction and then
returned to the original position. Therefore, we are very in-
terested in determining how the phase of the state with a
magnetic quantum numberm changes when the magnetic
field with constant amplitude rotates in one direction, whose
situation is exactly equivalent to that of Berry’s phase. Fur-
thermore, since the two ground hyperfine states of a sodium
atom have both a positiveg factor and a negativeg factor, it
is appropriate to examine the dependence of Berry’s phase
on the direction of the rotation of the magnetic field.

In the present Brief Report, we demonstrate the measure-
ment of Berry’s phase for partial cycles using a time-domain
atom interferometer and confirm that the sense of the phase
shift for magnetic sublevels ofm=1 is opposite to that for
m=−1 for the sameg factor. Finally, we confirm that Berry’s
phase depends on the direction of the rotation of the mag-
netic field and the sign of theg factor of the state in the
atomic system.

Our strategy for examining the phase shift between states
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with different magnetic quantum numbers under the rotation
of the magnetic field was as follows. The time-domain so-
dium atom interferometer with two copropagating stimulated
Raman pulses was used to measure the phase difference be-
tween two ground hyperfine states under the rotation of the
magnetic field. The relative direction of the phase shift can
be observed from the phase of the interference fringes, with
some offset phase without any rotation field. Figure 1 shows
the energy levels of the two ground hyperfine states of so-
dium which were used as arms of the interferometer and
Raman transitions which connected both states, under the
influence of the external magnetic field. The atom in theS1/2
andF=1 state has a negativeg factor of −1/2 and the ener-
gies of the magnetic substates are in the sequence of −1, 0, 1
at an equal interval from the highest energy. On the other
hand, the atom in theS1/2 and F=2 state has a positiveg
factor of 1/2 and the magnetic states are in the reverse se-
quence, but with the same interval as that ofF=1. Therefore,
for the same direction of the rotation of the magnetic field,
the phase differences due to Eq.s2d between the upper state
of uS1/2,F=2,mF=1l and the lower state ofuS1/2,1 ,0l—that
is, Dm=1—are opposite to that between theuS1/2,2 ,−1l and
uS1/2,1 ,0l—that is,Dm=−1. However, the former phase dif-
ference will be in the same direction as that between
uS1/2,2 ,0l anduS1/2,1 ,1l—that is,Dm=−1—for the same di-
rection of rotation, since theg factor has an opposite sign.

The measurements of Berry’s phase for the above states
were carried out as shown schematically in Fig. 2. The atom
interferometer used was almost the same as that used for the

study of the scalar Aharonov-Bohm effect using cold sodium
atomsf17g. In this Brief Report, we describe briefly the es-
sential steps in the measurement of Berry’s phase. The ex-
perimental details will be described in another paperf18g.

Sodium atoms of theF=2 state were trapped in a
magneto-optical trap with a temperature of less than 1 mK.
At 3 ms after free expansion of trapped atoms, the sodium
atoms were initialized perfectly by optical pumping to the
F=1 state. Then a quantization magnetic field was applied to
sodium atoms, and two-photon Raman laser pulses with a
pulse widtht of 20 ms were applied to them with a pulse
separation of 80ms to compose the atom interferometer. The
two Raman pulse beams have right-handed circular polariza-
tion. The laser frequency was detuned to approximately
500 MHz below the resonance frequency of the state
uS1/2,1 ,0l to uP3/2,2 ,m8l and was used as one of the Raman
beams. The other frequency of the Raman transition was
produced through an electro-optical modulator driven at
around 1.77 GHz using a synthesizer, which was tuned to the
frequency of the states ofuS1/2,1 ,0l to uS1/2,2 ,1l and is
equal to the frequency ofuS1/2,1 ,1l to uS1/2,2 ,0l. The laser
beam whose propagation axis is orthogonal to the rotation
plane of the magnetic field was used to irradiate the cold
sodium atoms. The quantization axis lies on the rotation
plane at an arbitrary time and the circular polarization de-
composes into two linearp and s polarizations with the
same amplitudes, which are parallel and orthogonal to the
quantization axis, respectively. With these two photons, the
sodium atom in theuS1/2,1 ,0l is excited to theuS1/2,2 ,1l via
uP3/2,2 ,m8l by s and p polarizations orp and s polariza-
tions. Then the atom interferometers were composed of the
upper state ofuS1/2,2 ,1l and the lower state ofuS1/2,1 ,0l as
two arms of the interferometer.

During two Raman pulses, the quantization magnetic field
was rotated while keeping the amplitude of the magnetic
field constant with a frequency off. The rotating magnetic
field was produced by two mutually orthogonal pairs of
Helmholtz coils which were driven by alternating currents
with a relative phase shift of 90° and with the same field
strength. In order to maintain a constant magnetic field
strength during rotation, each amplitude of the alternating
current was determined so as to generate the same Zeeman
frequency shift of the resonance, within 1 kHz, for both axes
of the Helmholtz coil. The constant magnetic field was typi-
cally 0.20 G, which corresponds to a Larmor frequency of
nR=140 kHz. Therefore, the rotation frequency of the mag-
netic field was kept below 10 kHz, to fulfill the adiabatic
condition. During the pulse separation ofT, the resultant
magnetic field was rotated with a constant frequency off
sdc,10 kHzd, and then it was rotated by an angle of
2p / hfsT+tdj.

At the second pulse afterT, the sodium atom interacts
with the same polarized lights as the first pulse, but they are
the same delay in the optical phase from the first ones. How-
ever, the optical phases have canceled out by simultaneous
stimulated absorption and emission. Therefore, if we mea-
sure the population ofuS1/2,2l after the second pulses, we
will see the differences between the phase ofuS1/2,2 ,1l in-
cluding Berry’s phase and that ofuS1/2,1 ,0l, which corre-
sponds to the reference. However, with the same frequencies

FIG. 1. Zeeman energy levels of the sodium ground hyperfine
states and some two-photon Raman transitions connecting them.

FIG. 2. Schematic diagram of Berry’s phase for atoms in the
rotating magnetic fieldB. A time-domain atom interferometer is
composed of a couple of circularly polarized two-photon Raman
pulses separated byT.
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and polarization of the laser, the sodium atom in the state
uS1/2,1 ,1l is also excited to theuS1/2,2 ,0l via uP3/2,2l by p
ands polarizations ors andp polarizations. Therefore, the
atom interferometers with theuS1/2,1 ,1l and uS1/2,2 ,0l are
also formed simultaneously. Thus we observe the overlapped
interference fringes of two atom interferometers which are
the combination ofuS1/2,2 ,1l and uS1/2,1 ,0l and the combi-
nation of uS1/2,2 ,0l and uS1/2,1 ,1l. The magnitudes of Ber-
ry’s phases for the two interferometers are the same since
uDmu=1. Therefore, if the Berry’s phases ofuS1/2,1 ,1l have
the same sign as those ofuS1/2,2 ,1l, the interference fringes
must be decreased without a phase shift. Otherwise, the in-
terference fringes will be overlapped cooperatively.

The frequency was swept by a frequency synthesizer in
order to observe the Ramsey fringes. The probability of at-
oms excited to the state ofF=2 after two pulses was proved
by the absorption coefficients of the laser beams which is
resonant fromF=2 in the stateS1/2 to an excited stateP3/2.
The time sequence was repeated every 10 ms and the exci-
tation probabilities for each run were accumulated and aver-
aged in a computer. In order to measure the phase shift, the
population probability of the excited state was monitored as
a function of detuning frequency.

Figure 3sad shows typical Ramsey fringes obtained at a
pulse width of 20ms and pulse separation of 80ms. Within a
spectrum width of 40 kHz, Ramsey fringes with a cycle of
10 kHz are clearly seen with a visibility of 0.42. Figure 3sbd
shows the Ramsey resonance under a rotating magnetic field
with a frequency of 5 kHz under the same excitation pulses.
The visibility is almost the same as that shown in Fig. 3sad
with the same fringe cycles. However, we can find the shift
of the center frequency of the envelope and the shift between
the two phases at the center frequency. This frequency shift
will occur due to the inevitable variation of the magnetic

field at the irradiation times of the two pulses. The phase
shift observed at the center is Berry’s phase. The fact that the
visibility under the rotation is the same degree of that with-
out rotation of the magnetic field shows that Berry’s phase
for uS1/2,1 ,1l with a negativeg factor has a sign opposite to
that for uS1/2,2 ,1l with a positiveg factor for the same rota-
tion. Thus, it is verified that the sign of the Berry’s phase
depends on the sign of theg factor—that is, the sense of a
precession motion like a right-handed or left-handed circular
polarization in the optical fiberf2g.

The phase shift was measured for several rotation fre-
quencies up to 10 kHz for clockwise rotation and counter-
clockwise rotation of the magnetic field. The angle of a
counterclockwise rotation was assumed to be a negative sign
for convenience. At 10 kHz, the magnetic field turns a com-
plete circle of 2p for T=100ms. Figure 4 shows the phase
shift as a function of rotation angle for the resonance be-
tween the states ofF=1, m=0 andF=2, m=1. The phase
changed along a straight line from a positive phase to a nega-
tive phase as the rotation angle varies from negative to posi-
tive. It shows that Berry’s phase is reversed by reversing the
direction of rotation. The slope of the phase shift is
−0.97±0.13, which is in agreement with the prediction of
Berry’s phase for partial cycles given in Eq.s2d. Further-
more, the same slope for both rotation directions will con-
firm that the dynamical phase shift is not included in the
phase. In order to test the dependence of the magnetic quan-
tum number, the phase shift forDm=−1 between the states
of F=1, m=0 andF=2, m=−1 was also examined. The re-
sult is also shown in Fig. 4. As we expect according to the

FIG. 3. Ramsey fringes obtained at a pulse width of 20ms and
pulse separation of 80ms under a static magnetic fieldsad and a
rotating magnetic field of 5 kHzsbd. Dashed lines are fitted curves.

FIG. 4. Observed phase differences as a function of the rotation
angle. Solid circle: the phase difference between the states ofF
=2, mF=1 andF=1, mF=0, together with that between the states of
F=2, mF=0 andF=1, mF=1. The dashed line is a fitted line with a
slope of −0.97±0.13. Open circle: the phase difference between the
states ofF=2, mF=−1 andF=1, mF=0 together with that between
the states ofF=2, mF=0 andF=1, mF=−1. The solid line is a fitted
line with a slope of 1.2±0.2.
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theory, the inclination of the phase shift was opposite to that
of Dm=1 and the slope is 1.2±0.2. This result verified
clearly the dependence of Berry’s phase on the magnetic
quantum number.

In conclusion, we demonstrated Berry’s phase for mag-
netic field rotation using a time-domain atom interferometer
free from a dynamical phase shift. The results show that the
phase is dependent on the magnetic quantum number multi-
plied by the rotation angle for partial cycles and that the
sense of the phase shift depends on the direction of rotation,
the sign of the magnetic quantum number, and the sign of the
g factor. In order to confirm the dependence of the Berry’s
phase on the sign of theg factor more clearly, a selection of
the magnetic substate is expected. Especially, measurement
of the phase difference between the states ofuS1/2,2 ,2l and
uS1/2,1 ,1l will be of interest, because Berry’s phase of the

former state will shift to a direction opposite to that of the
latter one.

Note added in proof.Recently we succeeded in measuring
the phase difference between the states ofuS1/2,2 ,2l and
uS1/2,1 ,1l for rotation of the magnetic field and found that
the slope of the phase shift is −3.0±0.3. This result strongly
confirms the dependence of Berry’s phase on the sign of the
g factor.
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