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Cavity-state preparation using adiabatic transfer
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We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique
used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms,
making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare
nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities,
such as an Einstein-Podolsky-Rosen state and/ atate, as well as various entangled superpositions of
coherent states in different cavities, including Schrédinger cat states. The theoretical considerations are sup-
ported by numerical simulations.
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I. INTRODUCTION model. For example, in Reff5,6] a A-type atom is used, in

A recent papef1] presented an efficient method to adia- [5,7,8 a strong e_xternal classical laser field i_s utilize_d, and in
batically transfer field states between two different cavities/ 9] Only one cavity and one two-level atom is considered.
The scheme is closely related¢tmulated Raman adiabatic " this paper we will extend the model ii] to more
passage(STIRAP) [2,3]. STIRAP was first used to coher- COMPIeX systems involving more than just one two-level
ently control dynamical processes in atoms and molecule{om and two cavities. As we have mentioned, in the one-
Two external laser pulses drive population between an initigPn0ton case the model ja]is analogous with the traditional

and a final state in an atom or molecule, through an interme> | |RAP. Likewise, the extensions made in this paper are

diate level. One pulse couples the initial state to the interme.r-elated to ?‘m”af generalizations of the traditional STIRAP,
we consider the one-photon case. General situations for

! . . if
diate state and the other pulse couples the intermediate a%jultilevel STIRAP have been analyzed in several papers:
ust to mention a few, sgel0-14. By including more atoms

final state. The pulses are applied in a counterintuitive way;,
nd cavities, we will show that various interesting field states

in the sense that the pulse that couples the final and interm
diate states is turned on first. The pulses do have to overlag,, e prepared. Due to the fact that the dimension of the

though, and i_n ord_er for the process to work successfully ibccessible Hilbert space easily blows up when the photon
has to be adiabatic, as the name suggests. Population Wilymper is increased in these extended models, we will
then follow the instantaneous eigenstates adiabatically. Ongnhoose the transferred field state to contain just one photon
of the eigenstates is of particular interest: namely,dBe&k  in our numerical simulations. However, in the adiabatic limit,
state This state has eigenvalue zero, and the intermediatghe system is solvable also for higher photon numbers. Using
state is never populated during the evolution. more photons only means that the adiabaticity constraints are
In the method suggested [ii], a two-level atom interacts stricter, as mentioned above. As compared with the method
with two cavities. In this scheme, the couplings between then [1], we will note that also these more complicated systems
atom and two cavities correspond to the two laser pulses ihave an adiabatic dark state, which will be used for the evo-
traditional STIRAP. As the atom traverses the cavities it will lution. It will be shown that it is possible to entangle spa-
see the varying shape of the mode it interacts with, and cortially separated cavities and prepare, for example, Einstein-
sequently, the coupling becomes time dependent. By lettinfodolsky-Rosen(EPR or W field states, but also more
the cavities partly overlap spatially, it is possible to realize acomplex entangled states. By making atomic measurements,
situation very similar to STIRAP. In fact, if the state, adia- it is feasible to create Schrddinger cat states. The setups
batically transmitted between the cavities, is a one-photowgiven in this paper are only a couple of examples, and others
state|1), the corresponding Hamiltoniagin the dipole and are of course possible; we just illustrate the basic idea. We
rotating-wave approximatioh$ooks exactly the same as the consider preparation of the various field states, but the meth-
standard STIRAP one. The ingenious feature of the methodds could equally well be applied for creating different
is that it works for any field state, not just the one-photonatomic states if desired.
state. The Hilbert space will, of course, increase when larger The outline of the paper is as follows: In Sec. Il we re-
photon number states are involved, and therefore the adiabaiew the basic idea and properties of the method presented in
ticity constraints become more stringdd. There is still a [1]. We introduce the adiabatic eigenstates and explain the
dark state with zero population in the upper atomic level,dynamics behind the transfer of arbitrary field states between
even for general field states. two cavities. In Sec. lll we consider two different setups,
Other schemes, where the atom experiences a varyinghich we call the “H” configuration, consisting of three
mode shape as it traverses the cavity, have also been sugavities and the "star” configuration, which could contain
gested for adiabatic-state preparation of the field modeany numberM of cavities. In the H configuration we show
[5-9]. However, these schemes differ from the presentiow a state is transferred between two spatially separated
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cavities by virtual pass through a third cavity and it is also oy(b)

explained how EPR states could be prepared. The other tllrpwﬁ=0,

model, the star configuration, could also be used for achiev- T2

ing EPR states as well a4/ states and generalizations of

these states. In Sec. IV, we make use of a third atomic level li %(0) =0 7)

and projective atomic measurements for preparing various t—0a(t)
types of Schrddinger cat states. Finally we conclude with

summary and discussion in Sec. V. % the couplingsgy(t) and g,(t) change slowly enough, the

system will start in the staté,0,-) and end up in the state
Il. ADIABATIC TRANSFER BETWEEN CAVITY MODES 0,1,-), following the adiabatic eigenstate given in Ef).
- . . . . This method is called stimulated Raman adiabatic passage
We will first briefly review how to adiabatically transfer a [2 3]. The exact shapes of the pulsgst) and g,(t) do not
quantum state from one cavity mode to another, followingmatter, as long as they vary slowly enough and conditi@hs
[1]. We consider a situation where there are two cavityho|d. The pulse sequencedsunterintuitivein the sense that
modes interacting with a single two-level atom. The Hamil-the two initially empty levels are coupled first, and only then
tonian for this system is a generalization of the widely useds the initially populated level coupled to the “middle” level.

Jaynes-Cummings modgL5], The two pulsesy;(t) andg,(t) must, however, overlap.
1 By choosing lim_..g,(t)/g,(t)=1 instead of 0, we can
H= Ew(02+ 1) + Q4814 + 0,808, + (9,8, + g,3,) o also adiabatically reach the state
o Af - 1
+ (9181 + God)) 0. 1) SLo-lo.1-), 8)
v

Here al and &} are the boson creation operators for cavity _ ' '
modes 1 and 2, respectively,, o*, ando~ are the Paulz ~ OF, by choosing another suitable ratio betweg(t— =) and
and the raising and lowering operators for the atom,gyil ~ g(t—), we can reach any superposition |df,0,-) and
andg,(t) describe the time-dependent coupling between thd0,1,-). This process is referred to &sctional STIRAH3].
light and two-level atom. The basis states for the system are . _
Transfer of an arbitrary cavity field state
of the form
Also more than one field excitation can be transferred

1Nz, = npinyls), (2 petween the cavity modd4]. For example, a Fock state)

wheren, andn, refer to the number of excitations in mode 1 in mode 1 can be transferred to mode 2. We can write the
and 2, ands=+ refers to the state of the two-level atom, with adiabatic stat¢6) as
o,s)=9ls). In the following we will assume that the cavity Wy = At
modes are degenerafe; =(),=(), so that perfect transfer of (Wag) = A
excitations be_:twe_en the modes is p053|ble_z. I_f we start with Hhere the boson operatéﬁ is defined as
single excitation in mode 1 and the atom in its ground state,
tsrtlgtrésthe accessible Hilbert space is spanned by the three ATZKlZ(QZé-I_glé-;)- (10)

0,0,-), 9

The Hamiltonian, on the other hand, can be written as
11,0,-),/0,0, +),]0,1,-). )

r— -1+, Rt .~
The Hamiltonian commutes with the operator H'=A(o,+ 1) + Kp2(Bo™ + Blor), 1D

1 L where the boson operat@ is given by
N= 5(0'2 +1) +2ala, +ala,, (4) i
B = Ky(0:8] + g,8)). (12
so that we can work in an interaction picture, with the . ~ oy
Hamiltonian We find that[B,A']=0, so that the state
r— _ a a 1 ~
H'=H-ON=A(0,+1) +{[0:(D)a; + g,(D@,]0™ + H.c}, [y = (n,—)l/z(AT)n|OvO'_> (13)

5

whereA=(w-))/2. The atom does not need to be on reso-
nance with the cavity modes; i.&\, can be nonzero.

As in the case of adiabatic transfer between atomic stat
[2,3,16, there is an eigenstate of this Hamiltonian with ei-

is an adiabatic state, sind¢’|¥])=0. Choosing the cou-
plings so that condition§7) hold, we immediately find that
Jhe statgn, 0,-) adiabatically changes int@,n, -).

More generally, we can consider the adiabatic state

genvalue zero, given by R (AT)n
f(Ah]0,0,-)=C 0,0,-). 14
Ve =Kidga0[1,0,9) - 00, L), (® (A0I0,0,7)= oy l0:0:7) 4
where the normalization constant is given B5=g3(t) If the couplings again satisfy conditiofig) and if we choose
+g5(t). Consider the case when the pulses so thay;/g,<0, then the staté(éJ{)|O,O,—> will
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cavity2 baSIS States|01110!_!§y |010;0|+!$| |11010;_!§y
|0,0,0,-,4, and|0,0,1,—,. Using this ordering of the
. basis states, the Hamiltonian in matrix form for this subspace

becomes
cavity 1 0 O2a 0 0 0
g;a Aa O1a 0 0
FIG. 1. A possible setup of the three cavitids 2, and 3 and H={ 0 9. 0 9 O |. (19
the two atomic(a andb) trajectories for the H configuration. 0 0 gy A, O

0 0 0 gy O
adiabatically change inté(a})[0,0,-). For example, a co- Yab

herent statda) can be transferred from cavity mode 1 to This Hamiltonian has an adiabatic eigenstate with eigenvalue

cavity mode 2 by choosing zero. Making the ansatC,,0,C,,0,C,)" for this state, the
) condition on the coefficientsC; becomes g;aC2+ 01.C1
|V, = exp(— ﬂ)exp(a,&*ﬂo 0,-) (15) =0,,C1+093,Cp=0, so that the adiabatic eigenstate is
2 ' ' ' * * *
|‘P>ad = K(glangiov _92a93b! OrgleZa)T! (20)
where K is a normalization constant. We see that there
I1l. ADIABATIC TRANSFER WITH MULTIPLE should be a possibility of transferring the state of cavity 2
CAVITIES directly to cavity 3 with very little population in cavity 1. For

a thorough exposition of adiabatic transfer between atomic
levels with multiple intermediate states, 446]. The theory
We will now move on to consider cavity state transfer incan be directly applied to cavity state transfer as well. To
a situation where we have three cavities and two atoms. Su@chieve transfer from cavity 2 to cavity 3, we should start
pose cavities 1, 2, and 3 are placed so that cavity 1 is ovemwith
lapping with both cavities 2 and 3. Atomis placed in the

A. Three cavities and two atoms in an H configuration

crossing between cavities 1 and 2 and atoin the crossing |912930] > G109zl (21)
between cavities 2 and 3, as shown in Fig. 1. The Hamiland finish with
tonian for this system is given by
L L 910924l > (914930 (22)
H= Ewa(o'az‘* 1)+ Ewb(o'bz"' 1)+ 0,304, + 0,403, keeping
|912936° + [ 916924l * > 920030/ (23)

+ 058585+ (01481 + UraB2) 05 + (G1pd1 + Gapd) o
all the time. There are many possible pulse sequences satis-
+H.c], (16) . e . .
fying these conditions. A few possible coupling sequences
whereoyp,, oxy), andoy, refer to atoma(b) anda anda,  will be discussed in the next subsection. In all cases we start

are the creation and annihilation operators for cauityye ~ With one field excitation in cavity 2.

have denoted the coupling strengths between caviyd As for the case where two cavity modes are coupled by
atoma asg;, and correspondingly for atom The number of ~One atom[1], the tran_sfer of arb|trary_ cavity states from
excitations in the systems is conserved, and we find that th@0de 2 to mode 3 will also be possible. If we form the

Hamiltonian commutes with the operator “adiabatic operator”
1 1 AT(t) = K(t)[91a(t) 9an() A — Gha()gan(DA] + gD gha (DAL,
N= E(O'az+ 1) + E(O'az+ 1) + ﬁIél + azéz + égég (17) ( ) ( )[gla( )g3b( ) 2 gZa( )93b( ) 1 glb( )QZa( ) (:;]4)

In the following we will assume tha®,=0,=0,=0. Oth-  whereK(t) is a normalization constant, then, in the adiabatic

erwise, perfect transfer of cavity field states would not belimit, if we start in the Staté[AT(o):”C»’ we will also stay in

ossible, since energy is conserved. In the interaction pic- ~ .
!coure we form the Ha?%/iltonian P the statef[Af(1)]|0) as the couplings are changed. For ex-

ample, starting irf(a})|0,0,-), we can adiabatically transfer
H=H-QON=Ay(00+ 1) + Ag(0p,+ 1) + (91081 + Goad) 0 the cavity state to mode %(&})|0,0,5. As before, this
means that we can transfer not only one field excitation, but
also, for example, number states, whéfa")=A™, and co-

whereA,=(w,—Q)/2 and similarly forb. We now write the  herent states, wheriéA") =exp(| |2/ 2)exp(aA').

basis states d8,,n,,Nns, *,, %), Where the three first entries _ ) ) ) )

refer to the number of photons in cavities 1, 2, and 3 and the B. Numerical simulations of the H configuration

two last entries to the states of the atoms. The subspace with For all the numerical simulations in the paper we use
exactly one excitation in the system is spanned by the fiv&saussian pulses for the couplings, of the form

+ (G181 + Gang)op, + H.C, (18)
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FIG. 2. The figure to the left shows our first example of a pulse  FIG. 3. The same model as in Fig. 2, but with the second choice
sequence for realizing complete population transfer from cavity 2 tf pulse sequence, where the pulses are allowed to have different
cavity 3 with minimal population in the intermediate cavity 1 for widths. The pulses, shown to the left, come in the following order:
the H configuration. The pulses are ordered in a completely counfirst g, (solid line) andgs, (dotted ling att;,=t3,=—3 and thery,;,
terintuitive way, from left to rightgsp, 91n, 01a, @aNdgp,. Time is  (solid line) and g,, (dotted ling at t;,=t,,=3. The widths forg;,
given in units of a suitable characteristic tifieThe widths of the  andgy, (solid curve$ arec=6 and for the other two pulsddotted
pulses are ali-=3, also in units off, and the maximum amplitudes line) ¢=2, and the maximum amplitudes are as in the previous
are G=100 in units of T". The other plot shows the populations exampleG=100. Time is given in units of and the pulse height in
|Ci]? (i=1, 2, 3, 4, or Bas a function of the scaled interaction time units of T-X. The population transfer, shown in the right plot, is
t. It is clear that population is transferred adiabatically from thesimilar to the previous example, with a final population in cavity 3
second cavity(solid line marked/C4|?) to the third cavity(dotted  |C5|?=99.8% and a maximum population in the middle cavity equal
line marked|Csg|?), without remarkable population in cavity 1. The to 0.8%.
final population in the third cavity is 99.8%, and maximum popu-

lation of cavity 1 during the process is 0.2%. in this example in order to have an adiabatic process and

correspondingly a successful transfer. This is due to the fact
(t—t,)2 that the population virtually passes through three levels,
gi,(t) = Gj,ex ‘T>- (25 11,0,0,-,3,10,0,0,+,,and|0,0,0,—, 4, instead of just
v one in the standard STIRAP. However, it is still clear that if
The indexi stands for théth cavity andv for atomv; cavi-  the procedure is slow enough, it is possible to transfer the
ties will be labeled with numbers and atoms with letters. Ifpopulation adiabatically. It is also possible to switch the or-
there is only one atom present, the atomic index will beder of the two middle pulsedO].
omitted. G is the coupling amplitude, and it will be chosen  In this example, the population transfer takes place
the same for all pulses in the different examples, except for aainly when all four pulses differ from zero, when the prod-
couple of examples in the next section. The indices will beuct gyr0q=091a92a910930 # 0. Letting gproq increase by making
omitted when theG's are all the same. The parametgr the pulses overlap more in time, it is possible to have effi-
gives the pulse center and the width is givendyy. We are  cient population transfer from state 1 to state 5 with a smaller
using scaled parameters with=1. The timet and pulse adiabaticity parameteGo. However, the price one has to
widths o are given in units of a suitable characteristic tilne pay is that in this case, the intermediate states become more
andG andA in units of AT™1, populated during the evolution, since conditi@3) is not as
We will consider two possible pulse sequences for adiawell satisfied. Thus, there is a trade-off between strict adia-
batic transfer in the H configuration. The first pulse se-baticity constraintglarge Go) and small population of inter-
quence, which is shown in Fig. 2, is completely counterin-mediate states or weaker constraints but population of the
tuitive, in the sense that we start by coupling cavity 3 andintermediate states during the transfer.
atomb, then cavity 1 and atorh, followed by cavity 1 and Another possible coupling sequence is shown in Fig. 3.
atom a, and finally cavity 2 and atona. This could, for Here the coupling time between atomand cavity 1 is
example, be achieved if the cavities are crossing each othéwnger than the coupling time between and atoemd cavity
horizontally, partly overlapping, and we let the atomn 3, and these two couplings are centered aroundstmae
traverse first cavity 3 and then cavity 1 and similarly for time. Similarly, the coupling time between atdnmand cavity
atoma and cavities 1 and 2. The parameters in the figure aré is longer than the coupling time between atamnd cavity
tg,=-5.22,t,,=-1.72,1,,=1.78, andt,,=5.28 ando=3, A 2, and these couplings are also centered around the same
=0, andG=100. The dynamics is, foA=0, determined by time. This coupling sequence also satisfies the conditions
the dimensionless adiabaticity parameger [1]. (21)—<(23). It could be achieved by making the diameters of
The pulses are seen in the left plot and the populations itaser beams 2 and 3 smaller than the diameter of laser beam
the right one. As shown in Fig. 2, numerical simulations1. Numerical simulations confirm that this coupling sequence
confirm that an excitation in cavity 2 can be transferred adiaworks, and the population is transferred from cavity 2 to
batically to cavity 3, while the population in cavity 1 remains cavity 3 with very little population of cavity 1 during the
small in between. The final population in sta®e0,1,-,- transfer. The parameters in this second choice for the pulses
is 99.8% and maximum population in cavity 1 is 0.2% and isare t;,=t3,=—3 and t;,=t,,=3, 015=01,=6 and oy,=03,
located around=0. The coupling amplitudes are rather large=3, and agairG=100. The plot to the right, for the popula-
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FIG. 4. This figure shows the effect of losses in the intermediate FIG. 5. In this figure it is shown how well the method works for

cavity 1. The setup i,s asa do”‘?'e STIRAP} the first atom transferﬁreparation of EPR states between cavities 2 and 3. To the left we
the photon from cavity 2 to cavity 1, and finally the second atoMgp 0w the pulses, with the paramet&s 5 (in units of T3, t,,=2
brings it into cavity 3. Note that the pulses of the two STIRAP tya=—2, typ=—2 andty,=2 andoy,=op=cyp=0g=3 (in units o,f

a~ 1 - - a— a— - -

overlap; thus, th_e mid?"e CfiVit); is_lnever_fully p(ipulated_. The pUISeT). The right plot gives the populations, and it is clear that popula-
parameters aré=100(in units of T™), t15=-3,ta=-1,ty=1,and 4, jnitially in cavity 1 (solid line) is transferred equally to cavities

t1p=3, and 01,= 0a=T1p=03,=2 (in units of T). The left plot 5 54 3(dotted and dashed linesNote that in this situation the
shows the populations without losses in cavity 1, while in the ”ghtamplitudeG is much smaller than in Figs. 2 and 3. For the fidelity

figure, cavity 1 has a decay raje=0.1. The final population trans- in this example we havE=[(EPR| (t= +))|=0.9999
fer from cavity 2 to 3 is reduced from 100% to 20%. This should be ' '

compared to, for example, using the pulse sequence of Fig. 2, with ) )
losses. If we add the same decay rate0.1 for cavity 1 in that fore not only one value, but values &fin an interval are

process, the population transfer goes down from 99.8% to 99.7%Involved. For a long lossy cavity 1, the efficiency of adia-
batic transfer from cavity 2 to cavity 3, trying to avoid the

tion transfer, looks similar to populations in Fig. 2 and hereIOSSy cavity 1, will be lowered.

we have final transfer in cavity 85/2=99.8% and maxi-
mum population in the middle cavity [C4|?=0.8%, thus a C. Preparation of an EPR state in the H configuration
small fraction more than in the previous example.

Since cavity 1 remains almost unpopulated for the cou- So far we have only been discussing transfer of a field
pling sequences we have discussed, relatively large losses $tate between two cavities, separated in space, but the model
cavity 1 should not affect the efficiency of the state transfercould also be used for creating entanglement between the
This is also confirmed by numerical simulations. In order tocavities. Here we give an example of that, and the following
investigate the effect of losses in the intermediate cavity wéwo sections will consider entanglement in more detail. We
add a loss term introduced the adiabatic eigenstat20) with eigenvalue

_ i zero, and by choosing the pulsgs carefully we could trans-

o=¢€ (26) fer population, but of course, there are numerous other inter-
to the derivative of the amplitude of the stale0,0,-,5.  €sting pulse sequences. Assume iigtand gs, are turned
To check the advantage of our model, without population iP" Simultaneously and them, andg,;, are turned on simul-
cavity 1, compared to a situation with population in cavity 1,taneously. The adiabatic state then begins t=ate, as
we simulate a situation where atomtransfers the photon (0,0,1,0,07 and ends a6-1,0,0,0,-1"/y2. Thus, by let-
first to cavity 1 from cavity 2 and then atomtakes it to  ting atoma andb interact simultaneously with cavities 2 and
cavity 3. This amounts to two consecutive ordinary STI-3 respectively, and then simultaneously interact with cavity
RAP’s with population in the middle cavity. First we show 1. the initial photon in cavity 1 will be transferred into an
the population transfer without losses in cavity 1 in the leftEPR state,
plot of Fig. 4 and then we add the loss te(26) to the
Hamiltonian with a decay rate=0.1, and we see the result 1
in the plot to the right, the transfer efficiency goes down [EPR, = —=(
from 100% to 20%. When adding the same loss term to the V2
example in Fig. 2, the decrease in population transfer is only
0.1 percentage units. The parameters for Fig. 4tgre-3,  of cavities 2 and 3. This procedure is shown in Fig. 5. The
tra=—1,t3,=1, andt,;,=3, o=2, andG=100. If we increase pulses are given in the left plot and the populations in the
the decay rate tg=1, keeping all other parameters the sameyight plot. The parameters aitg,=tgz,=—2 andt;=t;,=2,
the population goes down to 99.0% in our first method, whilec=3 andG=5. Note that here the coupling amplitudesd
in the second model, when cavity 1 is populated, no populaeorrespondingly the degree of adiabatititdp not need to be
tion ends up in cavity 3. as large as in the examples of adiabatic transfer. The photon

Losses will, however, broaden the line shape of the cavityclearly ends up in cavities 2 and 3. That the state is really the
If the cavity is too long, factors exjkr) coming from the pure statg27), and not a mixture, is checked by calculating
propagation in the cavity will most probably disturb the adia-the fidelity between the final state from the numerical simu-
batic transfer process, since the line is broadened and thertion and the EPR state:

0,1)+(1,0), (27)
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Population

FIG. 7. This shows the numerical simulation of the star configu-
ration and the preparation ofVd state. The left plot gives the pulses
in time. The parameters ai®=5, oy=0,=03=0,=2, andt;=t,
=t;=-1 (dotted line$ and t,=1 (solid line). Time and the pulse
widths ¢ are given in units ofl and the pulse heights are given in
units of T™L. To the right we see the population, and it is easily seen
that the initial population in cavity 4solid line) is equally trans-
ferred to cavities 1, 2, and 8dotted line$. The fidelity is F
[(W| y(t=+00))| =99.8%.

FIG. 6. This figure shows a possible setup for the star configu
ration with three cavities. Note that two of the cavities should be in
the same plane, while orthe initially populated cavityis slightly
off the plane. The atom passes through the cavities in the middI&

point of the star.
l0,1,...,0,9,...,]0,0,...,1,9,]0,0,...,0, +), we find the

F=|(EPRy(t= +))|. (28) adiabatic eigenstate

— T
With the state obtained numerically with the parameters in [¥)ag=K(= G~ Outar -+~ Gt G0 (30
Fig. 5, the fidelity become&=0.9999. By controlling the with eigenvalue zero. Thus, if we have
phases of the couplings it would be possible to obtain differ-
ent EPR states. Starting with a general field state in cavity 1, Iimtﬁ_m<g—'\"a> -0, and |imﬁ+x(&> -0, (31)
the final state would be a more complicated entangled state OmMa
of cavitie_s 2 and 3 obtaineq with_the metht_)d e>_<plained ir‘the photon will be adiabatically transferred from cavidy
th? previous section, by acjung _W'th_ the adiabatic operato[mo all other cavities with equal probability and phase. With
f(AT) on the vacuum. The situation is analogous to when a1 =3 the final state in the first two cavities will be an EPR
coherent state is split by a 50-50 beam splitter. state, and witiM =4, we get a so-calleWV state

a

. . 1
D. Star configuration W) = ’—§(|1,0,Q +|0,1,0+1/0,0,1D). (32
\‘J

We can easily extend the situation to more than three
cavities or to other setups, such as a ring configurationf-or M >4, it is possible to prepare the natural generalization
where the three cavities form a triangle, overlapping eachof the W state to higher dimensions. A similar setup and the
other at the corners of the triangle. In this section we invesgeneration ofW states were discussed [ih7].
tigate a situation withM cavities and one single atom In Fig. 7 we show the pulses and populations during the
coupled to all of the cavities, as shown in Fig. 6. We will alsopassage of the atom, with four cavitiéd =4). The param-
discuss the effect of adding further atoms coupled to somesters areA=0, G=5, t;,3=1, t,=-1, andoy ,3+~2. The
but not all, of the cavities. If the atom travels along, say, thedotted lines show the pulsgg(t) and the solid line the pulse
z axis, the cavities form a star in they plane. We assume g,.(t). The process is counterintuitive like the original STI-
thatM -1 of them are in the same plane, centered araind RAP, In fact, this is an “ordinary” STIRAP, but withi-1
=0, and cavityM is slightly shifted fromz=0. Initially only  fina| states, rather than just a single one. We clearly see that
cavity M is populated and again we take 8)'s to be iden-  the population is equally split between the first three cavities,

tical. _ o o and with these parameters the fidelityFis [(W]| y(t= +o))|
The effective Hamiltonian for the system s, in the —gg 8 Note that, as for the generation of the EPR state in
rotating-wave and dipole approximation, given by Fig. 5, the amplitude is rather small in this example, com-
M-1 pared to the case of population transfer between the cavities
_ A+ A+ in the H configuration which is shown in Figs. 2 and 3.
H=A(ga+ 1) +| Guadmoa + gagl &oa* H'C'] - (29 Next we show how well the process works for different

parameters, changing the coupling amplit@end the de-
Note that we have assumed that the couplings are identic&lining A between the atomic transition frequeneoy and the
for the firstM -1 cavities,g,=g, for i=1,2,...,M—1. For common field frequenc{). In Fig. 8, the parameter depen-
simplicity, we again consider only the case with one excita-dence of the fidelityr =[(W/| 4(t=+))|, in the previous ex-
tion, N=1. By labeling the states a$l1,0,...,0,-), ample, is shown; first as function of the amplituGe with
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FIG. 8. This figure shows the fidelitf=|(W|¢(t=+x))| as a
function of the coupling amplitud@ (left plot) and as a function of
the detuningA (right plot), for the example given in Fig. 7. In the
first plot A=0 and in the secon@®=5 (in units of T) otherwise,
the parameters are as in the previous figure 7.

A=0, and then as function of, with G=5. The other pa-
rameters are as in Fig. 7. The fidelity, as expected, increas
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FIG. 9. This figure shows the dynamics of the same star con-
figuration as in Fig. 7, but with small perturbations to the Hamil-
tonian. The left plot shows the same evolution as in Fig. 7, but now
with a second atorb coupled, in its ground state, to cavity 3. The
coupling amplitudes between the first atora and the four cavities
is nowG=50, but all other parameters are the same as the previous
example. The coupling between atdmand cavity 3 is constant
during the procesgys,=G3,=5, and the corresponding detuning is

ggro. The added atom-cavity interaction clearly modifies the evolu-
with the coupling and decreases with the detuning. Similag Y y

ion so that the photon ends up in cavities 1 anddashed and

plots could be made for the other examples, and the inforgqaq lines. To the right we have added yet a third atamalso

mation obtained would be similar.
In Sec. Il we explained how a general Fock stateis

with a constant coupling,.=Go,.=5 and zero detuning, interacting
with cavity 2, and now the population in that state is removed, so

adiabatically transferred between two cavities. The same pranat only cavity 1 is populategtotted ling. Note that atonb andc

cedure can, of course, be used also in this configuration. In
similar fashion as in Eq9), we introduce an “adiabatic op-

i8 much weaker coupled to the fields than atanTime is given in
units of T and pulse heights in units df 2.

erator.” Using the pulse sequence above, the adiabatic state

(30) will then evolve according to

>

Kyt ++ky—1=n

X (&) ()-)"1/0,-),

1 n!

0,...,0,n) — T ——
| n> Nkl' "'kM_l!

(33

outside the other Gaussian pulggsndgy,,, which could be

the situation if the second atom moves much slower than the
first atom and only through thi¢h cavity. By adding the term
(34) to the original Hamiltonian, the Hilbert space dimension
obviously increases by one unit, due to the state
|0,0,...,0,-,+), and the corresponding adiabatic st¢86)

where |0,-) on the right-hand side means vacuum plusbecomes

ground-state atom and M/is a normalization constant. Here

we have also used the multinomial theorem. Knowing how a

|q,>ad: K(_ Omar ~ Iva N gMa:gavan)T: (35)

Fock state transforms, it is easy to calculate how a general

state in cavityM evolves. States of similar forms as the one

above, but for two modes have been discussed, for exampl

in [18,19. By selecting the coefficients in E€R9) to differ

between the individual modes, more general final states ca,

be prepared adiabatically.

In the adiabatic limit the system evolves according to th
adiabatic states, and the process is robust against sm
changes in the parametdi20], which is a great advantage,
for example, in quantum computif@1,22. The adiabatic

states are, however, sensitive to small changes in the Hami

tonian, which will be shown next. If a second atdxralso in
its ground state, is coupled to only cavityin the star con-
figuration during the whole passage of the first atom throug

the M cavities, we have to add an interaction term to theth

Hamiltonian(29) of the form

V:gjbéjag+ H.c. (34)

We assume that the detuning between jtiecavity and the
second atonb is zero, so in the interaction picture the atomic
energy vanishes. The shapegyf is not so important as long

G

@ﬁl

where the new 0 is on thgh position. The added atom thus

fakes away the population in th¢h cavity. In the adiabatic
limit, the magnitude ofg;, is not important, just that it is
nzero. In other words, coupling one of the “bare” states in
the Hamiltonian weakly to a “new” state drastically affects
e adiabatic evolution. If a new atooror atomb is coupled
yet another cavity during the whole interaction, the popu-
lation of that state would become zero.

The modification in the evolution is shown in Fig. 9. We
lljse exactly the same example and parameters as in Fig. 7,
except that the common amplitude is n@w50. In the left

lot a second atonb has been coupled to the third cavity
ith a constant couplings,=G3,=5, and itis seen that all of
e photon ends up in cavities 1 and 2. Note that atois
coupled ten times as strongly to the field as atenin the
plot to the right, a further third atons is coupled with a
constant couplin@,.=G,.=5 to cavity 2, and all population
now ends up in the first state: namely, the photon is in cavity
1. These plots clearly show how a small disturbance to the
adiabatic Hamiltonian changes the evolution.Gf would

as it is nonzero during the process. We take it to be constanhave been made larger, the perturbations could have been
but it could also be a very broad Gaussian, so that it extendsiade smaller.
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IV. STATE PREPARATION USING ADIABATIC A second atom is then injected into cavities 1 and 3 in the
TRANSFER AND ATOMIC MEASUREMENTS state|X>E_ The state will evolve into

In the previous sections the atom remained more or less in N b b .
its lower state during the whole process and could be seenas ~ 5[10,0.0)|=)"+ |- 2,0,0(0)° + (- 1)
an ancillary state, which is never very entangled with the _
field state. Assuming perfect detection efficiency, a measure-  + (- 1)'|0,a,0)|)®]. (40
ment on the atomic state in the) basis, after the interac-
tion, would give |-) with unit probability. As long as the
atomic state does not get entangled with the field states,
atomic measurement would not modify the cavity states. 0,0,) + (- 1))|- ,0,0) + (- 1)|0,,0) + (- 1)™1|0,a,0),

By introducing a third atomic levelg), which does not
interact with the field, it is possible to create atom-field en- (41)
tanglement. Thus, an atom in the stajewill pass through  for the cavity field states, wheieis defined as is, but for
the cavities without any interaction, which could be due to aatomb. We have here left out the normalizing constant, since
large detuning or selection rules. The Hamiltonian is correit will depend on the measurement outcome for atmnbe-
spondingly only modified by the term for the atomic energypending on the known measurement outcomes for at@ms

in state|q), which could, of course, be omitted in a rotating andb, we are able to prepare four possible entangled states,
frame.

0,a,0)]- )P

Atom b is then measured in the same basis as that for atom
a\ﬁith the result proportional to

In this section we will look at the H configuration, but [Woo = (|- @,0,0 +2/0,2,0) +[0,0,)), i=j=0,
other setups could also be considered. We will show how it is
possible to create entangled superpositions of coherent |Wop) % (-|-,0,00+]0,0,0)), i=0,j=1,
states, so-called Schrédinger cat std@%-25, by measur-
ing the atomic state after the interaction. We introduce the ¥, ) o« (|- ,0,0) - 2|0,2,0) +|0,0,)), i=1,j=0,

atomic states
W19 % (=]~ a,0,0+|0,0,0), i=j=1. (42
We may also consider the following scenario. If the sec-

ond atom is injected in the stajte)® instead, it will leave the
setup in the same state, and the resulting field state is

1
|20 = TE(" Y20+ |g)2P), (36)

where the indices and b refer to the different atoms. We
will first couple cavities 1 and 2. From the STIRAP evolu- ,
tion, N(|0,0,e) + (- 1)'|0,e,0)). (43

0,0, ) — |- @,0,-), Let us fix B througha=28 and introduce the displacement
operatorD with the properties
0,a,0) — [0,a,0, (37)

D(B)|a) =€ ™|+ ). (44)
for coherent states, it follows, starting from one of the atomice operatoD(~p) is applied to both cavities 2 and 3 and
states(36) in the H configuration, that . -
for real « and B, the resulting entangled state of cavities 2

and 3 becomes

N(- 8,8+ (- 1|8~ B), (45)

After the interaction, the atom is measured in (R basis,  whereN is defined as before. Here cavities 2 and 3 are both
and depending on the measurement result the field will be ifh a Schrodinger cat state and entangled with each other. This

1
0,,0)[ )% — EU— ,0,0/-)*+0,,0)a)%). (38)

the state kind of entangled state is of great interest for quantum tele-
N[|- @,0,0 + (- 1)'|0., 0)], 39 portation[27] and quantum computing with cohergnt states
[I=.0,0+(=1)]0,0,0] (39) [28], but also for studying quantum phenomena in general,
wherei=0 for the measurement outcomg? andi=1 for  like entanglement and decoherence in the classical [26it
the result|x)?, and the normalization constant is given by Using a 50-50 beam splitter, this state may be transformed
N72=2[1+(-1)'exp(—|a|?)]. into [v28,0)+(-1)'|-\2B,00—i.e., a cat state in one of the

The atomic measurement in the desired basis can be efrodes only, with vacuum in the other mode.
fected by first using Raman pulses to couple the atomic It should be mentioned that the atomic stafgs could
states|-) and |g). The resulting unitary evolution should have been defined in different ways, leading to other en-
transform|y). into |-) and|x)- into |g), so that the measure- tangled field states. The initially prepared and measured
ment can then be implemented by testing for population iratomic basis need not be the same. We could have considered
the levels-) and|q) with a fluorescence measurement. With different setups of cavities and atoms and the initial coherent
this procedure it is possible to reach a very high measurestate could have been any state—for example, squeezed
ment efficiency, almost 100%. Similar methods can be usedtates.
to implement also generalized quantum measurements on at- We conclude this section by considering another example
oms or iong 26]. of how to prepare a Schrédinger cat state. We now assume
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just two overlapping cavities and a single atom as in Sec. licavity field states can be transferred using this meffi¢dn
The difference is that the atomnow should havdat least  this paper, we have in particular considered preparation of

two degenerate ground-state levely |, labeled by | and Il,  entangled states of two or more cavities, such as an EPR
such that the coupling amplitudes a@, =Gy, =Gia) state and aV state, and various entangled superpositions of
=G andGy,;=-G, where 1 and 2 indicate the cavity and |,Il coherent states in different cavities. The theoretical consider-
the transition. ations are supported by numerical simulations. It may also be

One way to achieve this might be to impose a choserpossible to use similar techniques in solid state systems, re-
quantization axis for the atom using an external electric fieldplacing the cavities and atoms in our discussion with cavities
thus forcing the dipole momert of the atom to have the coupled to Josephson junctiof30].
suitable components along the directions of the two laser One advantage of adiabatic state transfer and preparation
fields. Alternatively it may be possible to use selection rulesmethods is that they are relatively robust against changes in
for the transitions in such a way that it is possible to chooséhe individual coupling pulse strengths and pulse durations.
the signs of the electric field components inducing the differ-In contrast, state transfer, e.g., in the Jaynes-Cummings
ent transitions. The choice should be made in such a way thamodel[15] relies on the ability to experimentally control the
d-E has the required signs for the four different combina-areas of coupling pulses very accurately. The situations con-
tions of laser and atomic transition. sidered in this paper are by no means totally unrealistic con-

Assuming that this choice of coupling constants is possidering the present status of experiments in QED. An im-
sible, if we now prepare the atom in stdte?, an initial  portant condition is that all the cavity modes have to be
coherent statda,0) in mode 1 will be transferred into degenerate. This results from energy conservation; if the
|0,-a) in mode 2. This is because as we can see from thenodes were not degenerate, perfect state transfer between
discussion in Sec. IlA, whe®,,,/G,,,>0, then an arbi- modes would not be possible. The adiabaticity for processes
trary field state‘(al)|0> in cavity 1 will be transferred into a like the ones considered in this paper is roughly given by the
state f(— a2)|0> in cavity 2. But if the atom is prepared in coupling amplitude times the pulse widBv; see[1]. In the
|-)a, an initial coherent statfy,0) in mode 1 will be trans- example of Fig. 2 we hav&s=300, while using typical
ferred into|0,a) in mode 2,withoutthe minus sign. Again, experimental values of5/27~100 MHz ando0~0.3 s*
this is becaus@la”/ G,a1 <0, so that an arbitrary field state [8,31], the adiabaticity parameter becom®s ~ 200. With
in cavity 1, f(al)|0> will be transferred into a statk(a2)|0> these characteristic nonscaled parameters, the coupling is

in cavity 2. If the atom is initially in a superposition of the multiplied by 27X 10 and the time scales by 10 the adia-
two states|i)2=1/12(]-)2+|-)2), the result will be batic transfer of Fig. 2 gives a final population of 96.9% in

the target cavity, while the maximum population in the inter-
mediate cavity 1, during the process, is 2.2%. The whole
operation, with the two atoms passing through the three cavi-
ties, takes about 2s, which is much shorter than the char-
This is a Schrodinger cat state for cavity 2 and the atom. Icteristic lifetimes of cavity and the atomic staféd]. Re-

we wish to disentangle the atom and cavity, the atom may benember that the example of adiabatic transfer in Figs. 2 and
measured in the basis {Z(|-)*£|-)7). Depending on the 3 involves more virtual intermediate levels than, for ex-
measurement outcome, we are left with one of the states ample, in the generation of EPR akdstates in Figs. 5 and

7. Another point to emphasize is that, as the field amplitude

1
Ia,0>|df>i‘—>E(IO,—a>|—>?i|0,a>l- M. (46)

N([0,) £ 0,~a)). (47) increases, the number of intermediate states also increases,
The coherent state is transferred from cavity 1 into a cat stat¢hich makes the adiabaticity constraints stricter. Even
in cavity 2. though it is possible to have strong enough couplings and
small decay rates for realizing the schemes proposed in this
V. CONCLUSIONS paper, it is not obvious whether it is a simple task to add

crossing cavities in current experimental setups.

In this paper, we have given several examples of cavity- In conclusion, adiabatic techniques offer rich possibilities
field-state preparation and transfer using adiabatic methodgor state transfer and population.
The technique we use is related to stimulated Raman adia-
batic passagg2,3]. In standard STIRAP, atomic energy Ievj ACKNOWLEDGMENTS
els are coupled by laser pulses in order to transfer population
between the atomic states. In the present scheme, cavity field We would like to thank Professor Stig Stenholm for in-
mode are effectively coupled by atoms in order to transfeispiring discussions and comments. E.A. acknowledges finan-
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