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We show how to prepare a variety of cavity field states for multiple cavities. The state preparation technique
used is related to the method of stimulated adiabatic Raman passage. The cavity modes are coupled by atoms,
making it possible to transfer an arbitrary cavity field state from one cavity to another and also to prepare
nontrivial cavity field states. In particular, we show how to prepare entangled states of two or more cavities,
such as an Einstein-Podolsky-Rosen state and aW state, as well as various entangled superpositions of
coherent states in different cavities, including Schrödinger cat states. The theoretical considerations are sup-
ported by numerical simulations.
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I. INTRODUCTION

A recent paperf1g presented an efficient method to adia-
batically transfer field states between two different cavities.
The scheme is closely related tostimulated Raman adiabatic
passagesSTIRAPd f2,3g. STIRAP was first used to coher-
ently control dynamical processes in atoms and molecules.
Two external laser pulses drive population between an initial
and a final state in an atom or molecule, through an interme-
diate level. One pulse couples the initial state to the interme-
diate state and the other pulse couples the intermediate and
final state. The pulses are applied in a counterintuitive way,
in the sense that the pulse that couples the final and interme-
diate states is turned on first. The pulses do have to overlap
though, and in order for the process to work successfully it
has to be adiabatic, as the name suggests. Population will
then follow the instantaneous eigenstates adiabatically. One
of the eigenstates is of particular interest: namely, thedark
state. This state has eigenvalue zero, and the intermediate
state is never populated during the evolution.

In the method suggested inf1g, a two-level atom interacts
with two cavities. In this scheme, the couplings between the
atom and two cavities correspond to the two laser pulses in
traditional STIRAP. As the atom traverses the cavities it will
see the varying shape of the mode it interacts with, and con-
sequently, the coupling becomes time dependent. By letting
the cavities partly overlap spatially, it is possible to realize a
situation very similar to STIRAP. In fact, if the state, adia-
batically transmitted between the cavities, is a one-photon
stateu1l, the corresponding Hamiltoniansin the dipole and
rotating-wave approximationsd looks exactly the same as the
standard STIRAP one. The ingenious feature of the method
is that it works for any field state, not just the one-photon
state. The Hilbert space will, of course, increase when larger
photon number states are involved, and therefore the adiaba-
ticity constraints become more stringentf4g. There is still a
dark state with zero population in the upper atomic level,
even for general field states.

Other schemes, where the atom experiences a varying
mode shape as it traverses the cavity, have also been sug-
gested for adiabatic-state preparation of the field modes
f5–9g. However, these schemes differ from the present

model. For example, in Refs.f5,6g a L-type atom is used, in
f5,7,8g a strong external classical laser field is utilized, and in
f9g only one cavity and one two-level atom is considered.

In this paper we will extend the model inf1g to more
complex systems involving more than just one two-level
atom and two cavities. As we have mentioned, in the one-
photon case the model inf1g is analogous with the traditional
STIRAP. Likewise, the extensions made in this paper are
related to similar generalizations of the traditional STIRAP,
if we consider the one-photon case. General situations for
multilevel STIRAP have been analyzed in several papers;
just to mention a few, seef10–14g. By including more atoms
and cavities, we will show that various interesting field states
can be prepared. Due to the fact that the dimension of the
accessible Hilbert space easily blows up when the photon
number is increased in these extended models, we will
choose the transferred field state to contain just one photon
in our numerical simulations. However, in the adiabatic limit,
the system is solvable also for higher photon numbers. Using
more photons only means that the adiabaticity constraints are
stricter, as mentioned above. As compared with the method
in f1g, we will note that also these more complicated systems
have an adiabatic dark state, which will be used for the evo-
lution. It will be shown that it is possible to entangle spa-
tially separated cavities and prepare, for example, Einstein-
Podolsky-RosensEPRd or W field states, but also more
complex entangled states. By making atomic measurements,
it is feasible to create Schrödinger cat states. The setups
given in this paper are only a couple of examples, and others
are of course possible; we just illustrate the basic idea. We
consider preparation of the various field states, but the meth-
ods could equally well be applied for creating different
atomic states if desired.

The outline of the paper is as follows: In Sec. II we re-
view the basic idea and properties of the method presented in
f1g. We introduce the adiabatic eigenstates and explain the
dynamics behind the transfer of arbitrary field states between
two cavities. In Sec. III we consider two different setups,
which we call the “H” configuration, consisting of three
cavities and the ”star” configuration, which could contain
any numberM of cavities. In the H configuration we show
how a state is transferred between two spatially separated
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cavities by virtual pass through a third cavity and it is also
explained how EPR states could be prepared. The other
model, the star configuration, could also be used for achiev-
ing EPR states as well asW states and generalizations of
these states. In Sec. IV, we make use of a third atomic level
and projective atomic measurements for preparing various
types of Schrödinger cat states. Finally we conclude with a
summary and discussion in Sec. V.

II. ADIABATIC TRANSFER BETWEEN CAVITY MODES

We will first briefly review how to adiabatically transfer a
quantum state from one cavity mode to another, following
f1g. We consider a situation where there are two cavity
modes interacting with a single two-level atom. The Hamil-
tonian for this system is a generalization of the widely used
Jaynes-Cummings modelf15g,

H =
1

2
vssz + 1d + V1â1

†â1 + V2â2
†â2 + sg1â1 + g2â2dsa

+

+ sg1â1
† + g2â2

†dsa
−. s1d

Here â1
† and â2

† are the boson creation operators for cavity
modes 1 and 2, respectively,sz, s+, ands− are the Pauliz
and the raising and lowering operators for the atom, andg1std
andg2std describe the time-dependent coupling between the
light and two-level atom. The basis states for the system are
of the form

un1,n2,sl ; un1lun2lusl, s2d

wheren1 andn2 refer to the number of excitations in mode 1
and 2, ands=± refers to the state of the two-level atom, with
szusl=susl. In the following we will assume that the cavity
modes are degenerate,V1=V2=V, so that perfect transfer of
excitations between the modes is possible. If we start with a
single excitation in mode 1 and the atom in its ground state,
then the accessible Hilbert space is spanned by the three
states

u1,0,−l,u0,0, +l,u0,1,−l. s3d

The Hamiltonian commutes with the operator

N =
1

2
ssz + 1d + â1

†â1 + â2
†â2, s4d

so that we can work in an interaction picture, with the
Hamiltonian

H8 = H − VN = Dssz + 1d + hfg1stdâ1 + g2stdâ2gs+ + H.c.j,

s5d

whereD=sv−Vd /2. The atom does not need to be on reso-
nance with the cavity modes; i.e.,D can be nonzero.

As in the case of adiabatic transfer between atomic states
f2,3,16g, there is an eigenstate of this Hamiltonian with ei-
genvalue zero, given by

uCadl = K12fg2stdu1,0,−l − g1stdu0,1,−lg, s6d

where the normalization constant is given byK12
−2=g1

2std
+g2

2std. Consider the case when

lim
t→−`

g1std
g2std

= 0,

lim
t→`

g2std
g1std

= 0. s7d

If the couplingsg1std and g2std change slowly enough, the
system will start in the stateu1,0,−l and end up in the state
u0,1,−l, following the adiabatic eigenstate given in Eq.s6d.
This method is called stimulated Raman adiabatic passage
f2,3g. The exact shapes of the pulsesg1std and g2std do not
matter, as long as they vary slowly enough and conditionss7d
hold. The pulse sequence iscounterintuitivein the sense that
the two initially empty levels are coupled first, and only then
is the initially populated level coupled to the “middle” level.
The two pulsesg1std andg2std must, however, overlap.

By choosing limt→`g2std /g1std=1 instead of 0, we can
also adiabatically reach the state

1
Î2

su1,0,−l − u0,1,−ld, s8d

or, by choosing another suitable ratio betweeng1st→`d and
g2st→`d, we can reach any superposition ofu1,0,−l and
u0,1,−l. This process is referred to asfractional STIRAPf3g.

Transfer of an arbitrary cavity field state

Also more than one field excitation can be transferred
between the cavity modesf1g. For example, a Fock stateunl
in mode 1 can be transferred to mode 2. We can write the
adiabatic states6d as

uCadl = Â†u0,0,−l, s9d

where the boson operatorÂ† is defined as

Â† = K12sg2â1
† − g1â2

†d. s10d

The Hamiltonian, on the other hand, can be written as

H8 = Dssz + 1d + K12
−1sB̂s+ + B̂†s−d, s11d

where the boson operatorB̂† is given by

B̂† = K12sg1â1
† + g2â2

†d. s12d

We find thatfB̂,Â†g=0, so that the state

uCad
n l =

1

sn ! d1/2sÂ†dnu0,0,−l s13d

is an adiabatic state, sinceH8uCad
n l=0. Choosing the cou-

plings so that conditionss7d hold, we immediately find that
the stateun,0 ,−l adiabatically changes intou0,n,−l.

More generally, we can consider the adiabatic state

fsÂ†du0,0,−l = Cn
sÂ†dn

sn ! d1/2u0,0,−l. s14d

If the couplings again satisfy conditionss7d and if we choose
the pulses so thatg1/g2,0, then the statefsâ1

†du0,0,−l will
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adiabatically change intofsâ2
†du0,0,−l. For example, a co-

herent stateual can be transferred from cavity mode 1 to
cavity mode 2 by choosing

uCadl = expS−
uau2

2
DexpsaÂ†du0,0,−l. s15d

III. ADIABATIC TRANSFER WITH MULTIPLE
CAVITIES

A. Three cavities and two atoms in an H configuration

We will now move on to consider cavity state transfer in
a situation where we have three cavities and two atoms. Sup-
pose cavities 1, 2, and 3 are placed so that cavity 1 is over-
lapping with both cavities 2 and 3. Atoma is placed in the
crossing between cavities 1 and 2 and atomb in the crossing
between cavities 2 and 3, as shown in Fig. 1. The Hamil-
tonian for this system is given by

H =
1

2
vassaz+ 1d +

1

2
vbssbz+ 1d + V1â1

†â1 + V2â2
†â2

+ V3â3
†â3 + fsg1aâ1 + g2aâ2dsa

+ + sg1bâ1 + g3bâ3dsb
+

+ H.c.g, s16d

wheresasbdz, sasbd
+ , andsasbd

− refer to atomasbd andâi
† andâi

are the creation and annihilation operators for cavityi. We
have denoted the coupling strengths between cavityi and
atoma asgia and correspondingly for atomb. The number of
excitations in the systems is conserved, and we find that the
Hamiltonian commutes with the operator

N =
1

2
ssaz+ 1d +

1

2
ssaz+ 1d + â1

†â1 + â2
†â2 + â3

†â3. s17d

In the following we will assume thatV1=V2=V3;V. Oth-
erwise, perfect transfer of cavity field states would not be
possible, since energy is conserved. In the interaction pic-
ture, we form the Hamiltonian

H̃ = H − VN = Dassaz+ 1d + Dbssbz+ 1d + fsg1aâ1 + g2aâ2dsa
+

+ sg1bâ1 + g3bâ3dsb
+ + H.c.g, s18d

whereDa=sva−Vad /2 and similarly forb. We now write the
basis states asun1,n2,n3,±a,±bl, where the three first entries
refer to the number of photons in cavities 1, 2, and 3 and the
two last entries to the states of the atoms. The subspace with
exactly one excitation in the system is spanned by the five

basis states u0,1,0,−,−l, u0,0,0, + ,−l, u1,0,0,−,−l,
u0,0,0,−, +l, and u0,0,1,−,−l. Using this ordering of the
basis states, the Hamiltonian in matrix form for this subspace
becomes

H̃ =1
0 g2a 0 0 0

g2a
* Da g1a 0 0

0 g1a
* 0 g1b 0

0 0 g1b
* Db g3b

0 0 0 g3b
* 0

2 . s19d

This Hamiltonian has an adiabatic eigenstate with eigenvalue
zero. Making the ansatzsC2,0 ,C1,0 ,C3dT for this state, the
condition on the coefficientsCi becomes g2a

* C2+g1aC1
=g1b

* C1+g3bCb=0, so that the adiabatic eigenstate is

uClad = Ksg1ag3b,0,−g2a
* g3b,0,g1b

* g2a
* dT, s20d

where K is a normalization constant. We see that there
should be a possibility of transferring the state of cavity 2
directly to cavity 3 with very little population in cavity 1. For
a thorough exposition of adiabatic transfer between atomic
levels with multiple intermediate states, seef10g. The theory
can be directly applied to cavity state transfer as well. To
achieve transfer from cavity 2 to cavity 3, we should start
with

ug1ag3bu @ ug1bg2au s21d

and finish with

ug1bg2au @ ug1ag3bu, s22d

keeping

ug1ag3bu2 + ug1bg2au2 @ ug2ag3bu2 s23d

all the time. There are many possible pulse sequences satis-
fying these conditions. A few possible coupling sequences
will be discussed in the next subsection. In all cases we start
with one field excitation in cavity 2.

As for the case where two cavity modes are coupled by
one atomf1g, the transfer of arbitrary cavity states from
mode 2 to mode 3 will also be possible. If we form the
“adiabatic operator”

Â†std = Kstdfg1astdg3bstdâ2
† − g2a

* stdg3bstdâ1
† + g1b

* stdg2a
* stdâ3

†g,

s24d

whereKstd is a normalization constant, then, in the adiabatic

limit, if we start in the stateffÂ†s0dgu0l, we will also stay in

the stateffÂ†stdgu0l as the couplings are changed. For ex-
ample, starting infsâ2

†du0,0,−l, we can adiabatically transfer
the cavity state to mode 3,fsâ3

†du0,0,−l. As before, this
means that we can transfer not only one field excitation, but
also, for example, number states, wherefsA†d=A†n, and co-

herent states, wherefsA†d=expsuau2/2dexpsaÂ†d.

B. Numerical simulations of the H configuration

For all the numerical simulations in the paper we use
Gaussian pulses for the couplings, of the form

FIG. 1. A possible setup of the three cavitiess1, 2, and 3d and
the two atomicsa andbd trajectories for the H configuration.
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ginstd = GinexpS−
st − tind2

sin
2 D . s25d

The indexi stands for theith cavity andn for atomn; cavi-
ties will be labeled with numbers and atoms with letters. If
there is only one atom present, the atomic index will be
omitted.G is the coupling amplitude, and it will be chosen
the same for all pulses in the different examples, except for a
couple of examples in the next section. The indices will be
omitted when theG’s are all the same. The parametertin
gives the pulse center and the width is given bysin. We are
using scaled parameters with"=1. The time t and pulse
widthss are given in units of a suitable characteristic timeT
andG andD in units of "T−1.

We will consider two possible pulse sequences for adia-
batic transfer in the H configuration. The first pulse se-
quence, which is shown in Fig. 2, is completely counterin-
tuitive, in the sense that we start by coupling cavity 3 and
atomb, then cavity 1 and atomb, followed by cavity 1 and
atom a, and finally cavity 2 and atoma. This could, for
example, be achieved if the cavities are crossing each other
horizontally, partly overlapping, and we let the atomb
traverse first cavity 3 and then cavity 1 and similarly for
atoma and cavities 1 and 2. The parameters in the figure are
t3b=−5.22, t1b=−1.72, t1a=1.78, andt2a=5.28 ands=3, D
=0, andG=100. The dynamics is, forD=0, determined by
the dimensionless adiabaticity parameterGs f1g.

The pulses are seen in the left plot and the populations in
the right one. As shown in Fig. 2, numerical simulations
confirm that an excitation in cavity 2 can be transferred adia-
batically to cavity 3, while the population in cavity 1 remains
small in between. The final population in stateu0,0,1,−,−l
is 99.8% and maximum population in cavity 1 is 0.2% and is
located aroundt=0. The coupling amplitudes are rather large

in this example in order to have an adiabatic process and
correspondingly a successful transfer. This is due to the fact
that the population virtually passes through three levels,
u1,0,0,−,−l, u0,0,0, + ,−l, andu0,0,0,−, +l, instead of just
one in the standard STIRAP. However, it is still clear that if
the procedure is slow enough, it is possible to transfer the
population adiabatically. It is also possible to switch the or-
der of the two middle pulsesf10g.

In this example, the population transfer takes place
mainly when all four pulses differ from zero, when the prod-
uct gprod=g1ag2ag1bg3bÞ0. Lettinggprod increase by making
the pulses overlap more in time, it is possible to have effi-
cient population transfer from state 1 to state 5 with a smaller
adiabaticity parameterGs. However, the price one has to
pay is that in this case, the intermediate states become more
populated during the evolution, since conditions23d is not as
well satisfied. Thus, there is a trade-off between strict adia-
baticity constraintsslargeGsd and small population of inter-
mediate states or weaker constraints but population of the
intermediate states during the transfer.

Another possible coupling sequence is shown in Fig. 3.
Here the coupling time between atoma and cavity 1 is
longer than the coupling time between and atomb and cavity
3, and these two couplings are centered around thesame
time. Similarly, the coupling time between atomb and cavity
1 is longer than the coupling time between atoma and cavity
2, and these couplings are also centered around the same
time. This coupling sequence also satisfies the conditions
s21d–s23d. It could be achieved by making the diameters of
laser beams 2 and 3 smaller than the diameter of laser beam
1. Numerical simulations confirm that this coupling sequence
works, and the population is transferred from cavity 2 to
cavity 3 with very little population of cavity 1 during the
transfer. The parameters in this second choice for the pulses
are t1a= t3b=−3 and t1b= t2a=3, s1a=s1b=6 and s2a=s3b
=3, and againG=100. The plot to the right, for the popula-

FIG. 2. The figure to the left shows our first example of a pulse
sequence for realizing complete population transfer from cavity 2 to
cavity 3 with minimal population in the intermediate cavity 1 for
the H configuration. The pulses are ordered in a completely coun-
terintuitive way, from left to rightg3b, g1b, g1a, and g2a. Time is
given in units of a suitable characteristic timeT. The widths of the
pulses are alls=3, also in units ofT, and the maximum amplitudes
are G=100 in units ofT−1. The other plot shows the populations
uCiu2 si =1, 2, 3, 4, or 5d as a function of the scaled interaction time
t. It is clear that population is transferred adiabatically from the
second cavityssolid line markeduC1u2d to the third cavitysdotted
line markeduC5u2d, without remarkable population in cavity 1. The
final population in the third cavity is 99.8%, and maximum popu-
lation of cavity 1 during the process is 0.2%.

FIG. 3. The same model as in Fig. 2, but with the second choice
of pulse sequence, where the pulses are allowed to have different
widths. The pulses, shown to the left, come in the following order:
first g1a ssolid lined andg3b sdotted lined at t1a= t3b=−3 and theng1b

ssolid lined and g2a sdotted lined at t1b= t2a=3. The widths forg1a

andg1b ssolid curvesd ares=6 and for the other two pulsessdotted
lined s=2, and the maximum amplitudes are as in the previous
exampleG=100. Time is given in units ofT and the pulse height in
units of T−1. The population transfer, shown in the right plot, is
similar to the previous example, with a final population in cavity 3
uC5u2=99.8% and a maximum population in the middle cavity equal
to 0.8%.

J. LARSON AND E. ANDERSSON PHYSICAL REVIEW A71, 053814s2005d

053814-4



tion transfer, looks similar to populations in Fig. 2 and here
we have final transfer in cavity 3uC5u2=99.8% and maxi-
mum population in the middle cavity 1uC3u2=0.8%, thus a
small fraction more than in the previous example.

Since cavity 1 remains almost unpopulated for the cou-
pling sequences we have discussed, relatively large losses in
cavity 1 should not affect the efficiency of the state transfer.
This is also confirmed by numerical simulations. In order to
investigate the effect of losses in the intermediate cavity we
add a loss term

d = e−igt/2 s26d

to the derivative of the amplitude of the stateu1,0,0,−,−l.
To check the advantage of our model, without population in
cavity 1, compared to a situation with population in cavity 1,
we simulate a situation where atoma transfers the photon
first to cavity 1 from cavity 2 and then atomb takes it to
cavity 3. This amounts to two consecutive ordinary STI-
RAP’s with population in the middle cavity. First we show
the population transfer without losses in cavity 1 in the left
plot of Fig. 4 and then we add the loss terms26d to the
Hamiltonian with a decay rateg=0.1, and we see the result
in the plot to the right, the transfer efficiency goes down
from 100% to 20%. When adding the same loss term to the
example in Fig. 2, the decrease in population transfer is only
0.1 percentage units. The parameters for Fig. 4 aret1a=−3,
t2a=−1, t3b=1, andt1b=3, s=2, andG=100. If we increase
the decay rate tog=1, keeping all other parameters the same,
the population goes down to 99.0% in our first method, while
in the second model, when cavity 1 is populated, no popula-
tion ends up in cavity 3.

Losses will, however, broaden the line shape of the cavity.
If the cavity is too long, factors expsikrd coming from the
propagation in the cavity will most probably disturb the adia-
batic transfer process, since the line is broadened and there-

fore not only one value, but values ofk in an interval are
involved. For a long lossy cavity 1, the efficiency of adia-
batic transfer from cavity 2 to cavity 3, trying to avoid the
lossy cavity 1, will be lowered.

C. Preparation of an EPR state in the H configuration

So far we have only been discussing transfer of a field
state between two cavities, separated in space, but the model
could also be used for creating entanglement between the
cavities. Here we give an example of that, and the following
two sections will consider entanglement in more detail. We
introduced the adiabatic eigenstates20d with eigenvalue
zero, and by choosing the pulsesgin carefully we could trans-
fer population, but of course, there are numerous other inter-
esting pulse sequences. Assume thatg2a and g3b are turned
on simultaneously and theng1a andg1b are turned on simul-
taneously. The adiabatic state then begins, att=−`, as
s0,0,1,0,0dT and ends ass−1,0,0,0,−1dT/Î2. Thus, by let-
ting atoma andb interact simultaneously with cavities 2 and
3 respectively, and then simultaneously interact with cavity
1, the initial photon in cavity 1 will be transferred into an
EPR state,

uEPRl± =
1
Î2

su0,1l ± u1,0ld, s27d

of cavities 2 and 3. This procedure is shown in Fig. 5. The
pulses are given in the left plot and the populations in the
right plot. The parameters aret2a= t3b=−2 and t1a= t1b=2,
s=3 andG=5. Note that here the coupling amplitudessand
correspondingly the degree of adiabaticityd do not need to be
as large as in the examples of adiabatic transfer. The photon
clearly ends up in cavities 2 and 3. That the state is really the
pure states27d, and not a mixture, is checked by calculating
the fidelity between the final state from the numerical simu-
lation and the EPR state:

FIG. 4. This figure shows the effect of losses in the intermediate
cavity 1. The setup is as a double STIRAP, the first atom transfers
the photon from cavity 2 to cavity 1, and finally the second atom
brings it into cavity 3. Note that the pulses of the two STIRAP
overlap; thus, the middle cavity is never fully populated. The pulse
parameters areG=100sin units ofT−1d, t1a=−3, t2a=−1, t3b=1, and
t1b=3, and s1a=s2a=s1b=s3b=2 sin units of Td. The left plot
shows the populations without losses in cavity 1, while in the right
figure, cavity 1 has a decay rateg=0.1. The final population trans-
fer from cavity 2 to 3 is reduced from 100% to 20%. This should be
compared to, for example, using the pulse sequence of Fig. 2, with
losses. If we add the same decay rateg=0.1 for cavity 1 in that
process, the population transfer goes down from 99.8% to 99.7%.

FIG. 5. In this figure it is shown how well the method works for
preparation of EPR states between cavities 2 and 3. To the left we
show the pulses, with the parametersG=5 sin units of T−1d, t1a=2,
t2a=−2, t3b=−2 andt1b=2 ands1a=s2a=s1b=s3b=3 sin units of
Td. The right plot gives the populations, and it is clear that popula-
tion initially in cavity 1 ssolid lined is transferred equally to cavities
2 and 3sdotted and dashed linesd. Note that in this situation the
amplitudeG is much smaller than in Figs. 2 and 3. For the fidelity
in this example we haveF= zkEPRucst= +`dlz=0.9999.
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F = z+kEPRucst = + `dlz. s28d

With the state obtained numerically with the parameters in
Fig. 5, the fidelity becomesF=0.9999. By controlling the
phases of the couplings it would be possible to obtain differ-
ent EPR states. Starting with a general field state in cavity 1,
the final state would be a more complicated entangled state
of cavities 2 and 3, obtained with the method explained in
the previous section, by acting with the adiabatic operator

fsÂ†d on the vacuum. The situation is analogous to when a
coherent state is split by a 50-50 beam splitter.

D. Star configuration

We can easily extend the situation to more than three
cavities or to other setups, such as a ring configuration,
where the three cavities form a triangle, overlapping each
other at the corners of the triangle. In this section we inves-
tigate a situation withM cavities and one single atom
coupled to all of the cavities, as shown in Fig. 6. We will also
discuss the effect of adding further atoms coupled to some,
but not all, of the cavities. If the atom travels along, say, the
z axis, the cavities form a star in thexy plane. We assume
that M −1 of them are in the same plane, centered aroundz
=0, and cavityM is slightly shifted fromz=0. Initially only
cavity M is populated and again we take allVi’s to be iden-
tical.

The effective Hamiltonian for the system is, in the
rotating-wave and dipole approximation, given by

H = Dssa + 1d + FgMaâMsa
+ + ga o

i=1

M−1

âisa
+ + H.c.G . s29d

Note that we have assumed that the couplings are identical
for the first M −1 cavities,gia=ga for i =1,2,… ,M −1. For
simplicity, we again consider only the case with one excita-
tion, N=1. By labeling the states asu1,0,… ,0 ,−l ,

u0,1,… ,0 ,−l ,… , u0,0,… ,1 ,−l , u0,0,… ,0 , +l, we find the
adiabatic eigenstate

uClad = Ks− gMa,− gMa,…,− gMa,ga,0dT, s30d

with eigenvalue zero. Thus, if we have

limt→−`SgMa

ga
D = 0, and limt→+`S ga

gMa
D = 0, s31d

the photon will be adiabatically transferred from cavityM
into all other cavities with equal probability and phase. With
M =3, the final state in the first two cavities will be an EPR
state, and withM =4, we get a so-calledW state

uWl =
1
Î3

su1,0,0l + u0,1,0l + u0,0,1ld. s32d

For M .4, it is possible to prepare the natural generalization
of the W state to higher dimensions. A similar setup and the
generation ofW states were discussed inf17g.

In Fig. 7 we show the pulses and populations during the
passage of the atom, with four cavitiessM =4d. The param-
eters areD=0, G=5, t1,2,3=1, t4=−1, ands1,2,3,4=2. The
dotted lines show the pulsesgastd and the solid line the pulse
g4astd. The process is counterintuitive like the original STI-
RAP. In fact, this is an “ordinary” STIRAP, but withN−1
final states, rather than just a single one. We clearly see that
the population is equally split between the first three cavities,
and with these parameters the fidelity isF= zkWucst= +`dlz
=99.8. Note that, as for the generation of the EPR state in
Fig. 5, the amplitudeG is rather small in this example, com-
pared to the case of population transfer between the cavities
in the H configuration which is shown in Figs. 2 and 3.

Next we show how well the process works for different
parameters, changing the coupling amplitudeG and the de-
tuningD between the atomic transition frequencyva and the
common field frequencyV. In Fig. 8, the parameter depen-
dence of the fidelityF= zkWucst= +`dlz, in the previous ex-
ample, is shown; first as function of the amplitudeG, with

FIG. 6. This figure shows a possible setup for the star configu-
ration with three cavities. Note that two of the cavities should be in
the same plane, while onesthe initially populated cavityd is slightly
off the plane. The atom passes through the cavities in the middle
point of the star.

FIG. 7. This shows the numerical simulation of the star configu-
ration and the preparation of aW state. The left plot gives the pulses
in time. The parameters areG=5, s1=s2=s3=s4=2, and t1= t2
= t3=−1 sdotted linesd and t4=1 ssolid lined. Time and the pulse
widths s are given in units ofT and the pulse heights are given in
units ofT−1. To the right we see the population, and it is easily seen
that the initial population in cavity 4ssolid lined is equally trans-
ferred to cavities 1, 2, and 3sdotted linesd. The fidelity is F
= zkWucst= +`dlz=99.8%.
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D=0, and then as function ofD, with G=5. The other pa-
rameters are as in Fig. 7. The fidelity, as expected, increases
with the coupling and decreases with the detuning. Similar
plots could be made for the other examples, and the infor-
mation obtained would be similar.

In Sec. II we explained how a general Fock stateunl is
adiabatically transferred between two cavities. The same pro-
cedure can, of course, be used also in this configuration. In a
similar fashion as in Eq.s9d, we introduce an “adiabatic op-
erator.” Using the pulse sequence above, the adiabatic state
s30d will then evolve according to

u0,…,0,nl → o
k1+¯+kM−1=n

1

N

n!

k1 ! ¯ kM−1!

3sâ1
†dk1

¯ sâM−1
† dkM−1u0,− l, s33d

where u0,−l on the right-hand side means vacuum plus
ground-state atom and 1/N is a normalization constant. Here
we have also used the multinomial theorem. Knowing how a
Fock state transforms, it is easy to calculate how a general
state in cavityM evolves. States of similar forms as the one
above, but for two modes have been discussed, for example,
in f18,19g. By selecting the coefficients in Eq.s29d to differ
between the individual modes, more general final states can
be prepared adiabatically.

In the adiabatic limit the system evolves according to the
adiabatic states, and the process is robust against small
changes in the parametersf20g, which is a great advantage,
for example, in quantum computingf21,22g. The adiabatic
states are, however, sensitive to small changes in the Hamil-
tonian, which will be shown next. If a second atomb, also in
its ground state, is coupled to only cavityj in the star con-
figuration during the whole passage of the first atom through
the M cavities, we have to add an interaction term to the
Hamiltonians29d of the form

V = gjbâjsb
+ + H.c. s34d

We assume that the detuning between thej th cavity and the
second atomb is zero, so in the interaction picture the atomic
energy vanishes. The shape ofgjb is not so important as long
as it is nonzero during the process. We take it to be constant,
but it could also be a very broad Gaussian, so that it extends

outside the other Gaussian pulsesga andgMa, which could be
the situation if the second atom moves much slower than the
first atom and only through thej th cavity. By adding the term
s34d to the original Hamiltonian, the Hilbert space dimension
obviously increases by one unit, due to the state
u0,0,… ,0 ,−, +l, and the corresponding adiabatic states30d
becomes

uClad = Ks− gMa,− gMa,…,0,…,− gMa,ga,0,0dT, s35d

where the new 0 is on thej th position. The added atom thus
takes away the population in thej th cavity. In the adiabatic
limit, the magnitude ofgjb is not important, just that it is
nonzero. In other words, coupling one of the “bare” states in
the Hamiltonian weakly to a “new” state drastically affects
the adiabatic evolution. If a new atomc or atomb is coupled
to yet another cavityl during the whole interaction, the popu-
lation of that state would become zero.

The modification in the evolution is shown in Fig. 9. We
use exactly the same example and parameters as in Fig. 7,
except that the common amplitude is nowG=50. In the left
plot a second atomb has been coupled to the third cavity
with a constant couplingg3b=G3b=5, and it is seen that all of
the photon ends up in cavities 1 and 2. Note that atoma is
coupled ten times as strongly to the field as atomb. In the
plot to the right, a further third atomc is coupled with a
constant couplingg2c=G2c=5 to cavity 2, and all population
now ends up in the first state: namely, the photon is in cavity
1. These plots clearly show how a small disturbance to the
adiabatic Hamiltonian changes the evolution. IfG would
have been made larger, the perturbations could have been
made smaller.

FIG. 8. This figure shows the fidelityF= zkWucst= +`dlz as a
function of the coupling amplitudeG sleft plotd and as a function of
the detuningD sright plotd, for the example given in Fig. 7. In the
first plot D=0 and in the secondG=5 sin units of T−1d otherwise,
the parameters are as in the previous figure 7.

FIG. 9. This figure shows the dynamics of the same star con-
figuration as in Fig. 7, but with small perturbations to the Hamil-
tonian. The left plot shows the same evolution as in Fig. 7, but now
with a second atomb coupled, in its ground state, to cavity 3. The
coupling amplitudeG between the first atoma and the four cavities
is nowG=50, but all other parameters are the same as the previous
example. The coupling between atomb and cavity 3 is constant
during the process,g3b=G3b=5, and the corresponding detuning is
zero. The added atom-cavity interaction clearly modifies the evolu-
tion so that the photon ends up in cavities 1 and 2sdashed and
dotted linesd. To the right we have added yet a third atomc, also
with a constant couplingg2c=G2c=5 and zero detuning, interacting
with cavity 2, and now the population in that state is removed, so
that only cavity 1 is populatedsdotted lined. Note that atomb andc
is much weaker coupled to the fields than atoma. Time is given in
units of T and pulse heights in units ofT−1.
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IV. STATE PREPARATION USING ADIABATIC
TRANSFER AND ATOMIC MEASUREMENTS

In the previous sections the atom remained more or less in
its lower state during the whole process and could be seen as
an ancillary state, which is never very entangled with the
field state. Assuming perfect detection efficiency, a measure-
ment on the atomic state in theu± l basis, after the interac-
tion, would give u−l with unit probability. As long as the
atomic state does not get entangled with the field states, an
atomic measurement would not modify the cavity states.

By introducing a third atomic leveluql, which does not
interact with the field, it is possible to create atom-field en-
tanglement. Thus, an atom in the stateuql will pass through
the cavities without any interaction, which could be due to a
large detuning or selection rules. The Hamiltonian is corre-
spondingly only modified by the term for the atomic energy
in stateuql, which could, of course, be omitted in a rotating
frame.

In this section we will look at the H configuration, but
other setups could also be considered. We will show how it is
possible to create entangled superpositions of coherent
states, so-called Schrödinger cat statesf23–25g, by measur-
ing the atomic state after the interaction. We introduce the
atomic states

uxl±
a,b =

1
Î2

su− la,b ± uqla,bd, s36d

where the indicesa and b refer to the different atoms. We
will first couple cavities 1 and 2. From the STIRAP evolu-
tion,

u0,a,− l → u− a,0,−l,

u0,a,ql → u0,a,ql, s37d

for coherent states, it follows, starting from one of the atomic
statess36d in the H configuration, that

u0,a,0luxl+
a → 1

Î2
su− a,0,0lu− la + u0,a,0luqlad. s38d

After the interaction, the atom is measured in theuxl±
a basis,

and depending on the measurement result the field will be in
the state

Nfu− a,0,0l + s− 1diu0,a,0lg, s39d

where i =0 for the measurement outcomeuxl+
a and i =1 for

the resultuxl−
a, and the normalization constant is given by

N−2=2f1+s−1diexps−uau2dg.
The atomic measurement in the desired basis can be ef-

fected by first using Raman pulses to couple the atomic
statesu−l and uql. The resulting unitary evolution should
transformuxl+ into u−l anduxl− into uql, so that the measure-
ment can then be implemented by testing for population in
the levelsu−l anduql with a fluorescence measurement. With
this procedure it is possible to reach a very high measure-
ment efficiency, almost 100%. Similar methods can be used
to implement also generalized quantum measurements on at-
oms or ionsf26g.

A second atom is then injected into cavities 1 and 3 in the
stateuxl+

b. The state will evolve into

N
Î2

fu0,0,alu− lb + u− a,0,0luqlb + s− 1diu0,a,0lu− lb

+ s− 1diu0,a,0luqlbg. s40d

Atom b is then measured in the same basis as that for atoma,
with the result proportional to

u0,0,al + s− 1d ju− a,0,0l + s− 1diu0,a,0l + s− 1di+ju0,a,0l,

s41d

for the cavity field states, wherej is defined asi is, but for
atomb. We have here left out the normalizing constant, since
it will depend on the measurement outcome for atomb. De-
pending on the known measurement outcomes for atomsa
andb, we are able to prepare four possible entangled states,

uC00l ~ su− a,0,0l + 2u0,a,0l + u0,0,ald, i = j = 0,

uC01l ~ s− u− a,0,0l + u0,0,ald, i = 0,j = 1,

uC10l ~ su− a,0,0l − 2u0,a,0l + u0,0,ald, i = 1,j = 0,

uC11l ~ s− u− a,0,0l + u0,0,ald, i = j = 1. s42d

We may also consider the following scenario. If the sec-
ond atom is injected in the stateu−lb instead, it will leave the
setup in the same state, and the resulting field state is

N„u0,0,al + s− 1diu0,a,0l…. s43d

Let us fix b througha=2b and introduce the displacement
operatorD with the properties

Dsbdual = ei Imsab* dua + bl. s44d

If the operatorDs−bd is applied to both cavities 2 and 3 and
for real a and b, the resulting entangled state of cavities 2
and 3 becomes

N„u− b,bl + s− 1diub,− bl…, s45d

whereN is defined as before. Here cavities 2 and 3 are both
in a Schrödinger cat state and entangled with each other. This
kind of entangled state is of great interest for quantum tele-
portationf27g and quantum computing with coherent states
f28g, but also for studying quantum phenomena in general,
like entanglement and decoherence in the classical limitf29g.
Using a 50-50 beam splitter, this state may be transformed
into uÎ2b ,0l+s−1diu−Î2b ,0l—i.e., a cat state in one of the
modes only, with vacuum in the other mode.

It should be mentioned that the atomic statesuxl± could
have been defined in different ways, leading to other en-
tangled field states. The initially prepared and measured
atomic basis need not be the same. We could have considered
different setups of cavities and atoms and the initial coherent
state could have been any state—for example, squeezed
states.

We conclude this section by considering another example
of how to prepare a Schrödinger cat state. We now assume
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just two overlapping cavities and a single atom as in Sec. II.
The difference is that the atoma now should havesat leastd
two degenerate ground-state levelsu−lI,II labeled by I and II,
such that the coupling amplitudes areG1a,I =G2a,I =G1a,II
=G andG2a,II =−G, where 1 and 2 indicate the cavity and I,II
the transition.

One way to achieve this might be to impose a chosen
quantization axis for the atom using an external electric field,
thus forcing the dipole momentd of the atom to have the
suitable components along the directions of the two laser
fields. Alternatively it may be possible to use selection rules
for the transitions in such a way that it is possible to choose
the signs of the electric field components inducing the differ-
ent transitions. The choice should be made in such a way that
d ·E has the required signs for the four different combina-
tions of laser and atomic transition.

Assuming that this choice of coupling constants is pos-
sible, if we now prepare the atom in stateu−lI

a, an initial
coherent stateua ,0l in mode 1 will be transferred into
u0,−al in mode 2. This is because as we can see from the
discussion in Sec. IIA, whenG1a,I /G2a,I .0, then an arbi-
trary field statefsâ1

†du0l in cavity 1 will be transferred into a
state fs−â2

†du0l in cavity 2. But if the atom is prepared in
u−lII

a, an initial coherent stateua ,0l in mode 1 will be trans-
ferred into u0,al in mode 2,without the minus sign. Again,
this is becauseG1a,II /G2a,II ,0, so that an arbitrary field state
in cavity 1, fsâ1

†du0l, will be transferred into a statefsâ2
†du0l

in cavity 2. If the atom is initially in a superposition of the
two states,ucl±

a=1/Î2su−lI
a± u−lII

ad, the result will be

ua,0lucl±
a → 1

Î2
su0,−alu− lI

a ± u0,alu− lII
ad. s46d

This is a Schrödinger cat state for cavity 2 and the atom. If
we wish to disentangle the atom and cavity, the atom may be
measured in the basis 1/Î2su−lI

a± u−lII
ad. Depending on the

measurement outcome, we are left with one of the states

Nsu0,al ± u0,−ald. s47d

The coherent state is transferred from cavity 1 into a cat state
in cavity 2.

V. CONCLUSIONS

In this paper, we have given several examples of cavity-
field-state preparation and transfer using adiabatic methods.
The technique we use is related to stimulated Raman adia-
batic passagef2,3g. In standard STIRAP, atomic energy lev-
els are coupled by laser pulses in order to transfer population
between the atomic states. In the present scheme, cavity field
mode are effectively coupled by atoms in order to transfer
population between the cavity modes. A previous paper
showed that not only photon number states, but arbitrary

cavity field states can be transferred using this methodf1g. In
this paper, we have in particular considered preparation of
entangled states of two or more cavities, such as an EPR
state and aW state, and various entangled superpositions of
coherent states in different cavities. The theoretical consider-
ations are supported by numerical simulations. It may also be
possible to use similar techniques in solid state systems, re-
placing the cavities and atoms in our discussion with cavities
coupled to Josephson junctionsf30g.

One advantage of adiabatic state transfer and preparation
methods is that they are relatively robust against changes in
the individual coupling pulse strengths and pulse durations.
In contrast, state transfer, e.g., in the Jaynes-Cummings
modelf15g relies on the ability to experimentally control the
areas of coupling pulses very accurately. The situations con-
sidered in this paper are by no means totally unrealistic con-
sidering the present status of experiments in QED. An im-
portant condition is that all the cavity modes have to be
degenerate. This results from energy conservation; if the
modes were not degenerate, perfect state transfer between
modes would not be possible. The adiabaticity for processes
like the ones considered in this paper is roughly given by the
coupling amplitude times the pulse widthGs; seef1g. In the
example of Fig. 2 we haveGs=300, while using typical
experimental values ofG/2p,100 MHz and s,0.3 s−1

f8,31g, the adiabaticity parameter becomesGs<200. With
these characteristic nonscaled parameters, the coupling is
multiplied by 2p3106 and the time scales by 10−7, the adia-
batic transfer of Fig. 2 gives a final population of 96.9% in
the target cavity, while the maximum population in the inter-
mediate cavity 1, during the process, is 2.2%. The whole
operation, with the two atoms passing through the three cavi-
ties, takes about 2ms, which is much shorter than the char-
acteristic lifetimes of cavity and the atomic statesf31g. Re-
member that the example of adiabatic transfer in Figs. 2 and
3 involves more virtual intermediate levels than, for ex-
ample, in the generation of EPR andW states in Figs. 5 and
7. Another point to emphasize is that, as the field amplitude
increases, the number of intermediate states also increases,
which makes the adiabaticity constraints stricter. Even
though it is possible to have strong enough couplings and
small decay rates for realizing the schemes proposed in this
paper, it is not obvious whether it is a simple task to add
crossing cavities in current experimental setups.

In conclusion, adiabatic techniques offer rich possibilities
for state transfer and population.
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