
Conservation and entanglement of Hermite-Gaussian modes in parametric down-conversion

S. P. Walborn,* S. Pádua, and C. H. Monken
Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970, Brazil

sReceived 11 August 2004; revised manuscript received 22 February 2005; published 25 May 2005d

We show that the transfer of the angular spectrum of the pump beam to the two-photon state in spontaneous
parametric down-conversion enables the generation of entangled Hermite-Gaussian modes. We derive an
analytical expression for the two-photon state in terms of these modes and show that there are restrictions on
both the parity and order of the down-converted Hermite-Gaussian fields. Using these results, we show that the
two-photon state is indeed entangled in Hermite-Gaussian modes. We propose experimental methods of cre-
ating maximally-entangled Bell states and nonmaximally entangled pure states of first order Hermite-Gaussian
modes.
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I. INTRODUCTION

Recently, a great deal of attention has been paid to the
higher-order Gaussian modes of the electromagnetic field. In
the paraxial approximation, two interesting cases are the
Laguerre-GaussiansLGd and Hermite-GaussiansHGd modes.
These modes are solutions of the paraxial Helmholtz equa-
tion f1g and are eigenstates of the free-space propagator. It
has been shown that the LG modes carry orbital angular
momentum in the form of an azimuthal phaseei,f in the
transverse planef2,3g. Allen et al. f2g have shown that field
modes with this type of phase dependence carry an orbital
angular momentum of," per photon, where, is the azi-
muthal beam index.

These higher-order modes are of great interest in quantum
information schemes, since they can be used to represent
discreteD-statequdits. For example, the orbital angular mo-
mentum of single photons in LG modes provides a possible
qudit encoding scheme. The quantum number, can be co-
herently raised or lowered using holographic masksf4g. One
can measure the orbital angular momentumsLG modesd of
single photons up to a desired accuracy using interferometric
techniquesf5,6g. In, addition, Mair et al. f7g have shown
experimentally that with spontaneous parametric down-
conversionsSPDCd it is possible to create photon pairs en-
tangled in orbital angular momentum and other theoretical
f8–14g and experimental worksf12g have followed, includ-
ing the generation of entangled 3-state qutritsf15,16g.

The HG modes may also be of use in quantum informa-
tion schemes. In particular, the first-order HG and LG modes
can be described and manipulated in a way that is analogous
to linear and circular polarization of the electromagnetic field
f17g. Devices that act on the first-order transverse mode in a
manner equivalent to polarizing beamsplitters, half-wave
plates and quarter-wave plates can be constructed using
asymmetric interferometersf18,19g, Dove prismsf17g and
mode convertersf20g. The first-order modes can thus be used

to define qubits and the above devices implement single qu-
bit rotations. Recently, Langfordet al. have produced pho-
tons entangled in first-order HG mode and performed quan-
tum state tomography using holographic masks and single
mode fibersf16g. Since the HG modes form an infinite-
dimensional orthonormal basis, they too might be used to
encode higher-dimensional qudits.

Here we provide a theoretical description of the genera-
tion of entangled HG modes for arbitrary HG pump beams.
We show that there are restrictions on the parity and order of
the down-converted HG fields. We introduce our notation in
Sec. I and briefly review the two-photon quantum state gen-
erated by SPDC in Sec. II. Our main results concerning the
generation of correlated HG modes using SPDC are derived
in Sec. III, including a general expression for the probability
amplitude to generate combinations of different HG modes.
In Sec. IV, we provide a proof that the down-converted HG
modes are indeed entangled and we discuss the experimental
generation of Bell-states and nonmaximally entangled pure
states.

HG modes: For convenience, we will adopt the notation
used in Ref.f20g. The Hermite-Gaussian modes are given by
the complex field amplitude

HGnmsx,y,zd = Cnm
1

wszd
HnS Î2x

wszd
DHmS Î2y

wszd
D

3 expS−
x2 + y2

wszd2 D
3 expF− i

ksx2 + y2d
2R

− isn + m+ 1d«szdG ,

s1d

where the coefficientsCnm are given by

Cnm=Î 2

2sn+mdpn!m!
, s2d

andHnsxd is thenth-order Hermite polynomial. The radius of
curvatureRszd, beam waistwszd and Gouy phase«szd are
given by
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wszd = w0Î1 +
z2

zR
2 , s3d

Rszd = zS1 +
z2

zR
2D , s4d

and

«szd = arctan
z

zR
, s5d

respectively. The parameterzR is the Rayleigh range. The
orderN of the beam is the sum of the indicesN=m+n. Note
that the usual Gaussian beam is the zeroth-order HG00 beam.

In Sec. III, we will make use of the diagonal Hermite-
Gaussian modessDHGd defined byf17,20g

DHGnmsx̃,ỹ,zd = o
k=0

n+m

bsn,m,kdHGN−k,ksx,y,zd, s6d

with x̃=sx+yd /Î2, ỹ=sx−yd /Î2 and the coefficient
bsn,m,kd defined as

bsn,m,kd =Îsn + m− kd!k!

2sn+mdn!m!

1

k!

dk

dtk
ufs1 − tdns1 + tdmgut=0.

s7d

II. STATE GENERATED BY SPDC

Here we review the two-photon quantum state generated
by SPDC. We consider that a photonp from a sufficiently
weak cw pump beam is incident on a nonlinear crystal, pro-
ducing down-converted signal and idler photonss and i, re-
spectively. We will work in the monochromatic approxima-
tion, which is justified experimentally by the use of narrow
bandwidth interference filters in the detection system. It is
assumed that the filters are centered at the degenerate wave-
lengthlc=2lp, wherelp is the pump beam wavelength. We
will also work in the paraxial approximation, which will be
discussed below. For a sufficiently weak cw laser, the quan-
tum state generated by SPDC can be written asf21,22g

ucl12 = C1uvacl + C2ucl, s8d

where

ucl = o
ss,si

Css,si E E
D

dqsdqiFsqs,qiduqs,sslsuqi,sili . s9d

The coefficientsC1 and C2 are such thatuC2u! uC1u. C2 de-
pends on the nonlinearity coefficient and length of the non-
linear crystal, the magnitude of the pump beam, as well as
other experimental parameters. The ketuq j ,s jl represents a
single-photon state in a plane wave mode. The vectorq j is
the transverse component of the wave vectork j ands j is the
polarization of the modej =s or i, where the sum is over two
orthogonal polarization directionss j ands̄ j. The polarization
state of the down-converted photon pair is defined by the
coefficients Css,si

. The normalized functionFsqs,qid is
given by f22g

Fsqs,qid =
1

p
Î2L

K
vsqs + qidsincSLuqs − qiu2

4K
D , s10d

wherevsqd is the normalized angular spectrum of the pump
beam,L is the length of the nonlinear crystal in the propa-
gation szd direction, sincsxd;ssinxd /x, andK is the magni-
tude of the pump field wave vector. The integration domain
D is defined as the region in which the paraxial approxima-
tion is valid. In most experimental conditions, however,D is
much larger than the region in whichFsqs,qid is appre-
ciable.

We assume thatFsqs,qid does not depend on the polar-
izations of the down-converted photons. This assumption
may not be true, especially if the crystal is cut for type-II
SPDC. However, the polarization dependence can be reduced
by placing birefringent crystal compensators in the down-
converted beamsf23g.

We note here that recent experimental workf12,22,24g
has shown that the quantum states9d is an accurate descrip-
tion of the two-photon component of the quantum state gen-
erated by SPDC using a cw laser.

III. GENERATION OF ENTANGLED HG MODES WITH
SPDC

In the following we will denotevnmsqd as the normalized
angular spectrum of the HG mode, which can be calculated
by taking the two-dimensional Fourier transform ofs1d. Ex-
plicitly,

vnmsqx,qyd = wDnmHnSwqx

Î2
DHmSwqy

Î2
D

3 expS−
w2sqx

2 + qy
2d

4
D

3 expf− isn + m+ 1d«szdg, s11d

wherew;wszd and

Dnm=
− i sn+md

2
Cnm s12d

such thatvnmsqx,qyd is properly normalized. The general
problem we are considering is illustrated in Fig. 1. We now

FIG. 1. The angular spectrum of the pump beamVnmsqpd, char-
acterized by the wavelengthlp and beam width thew0p, creates
down-converted fields with angular spectrav jksqsd andvutsqid, char-
acterized by the wavelengthlc=2lp and the beam widthw0c

=Î2w0p.
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consider that the nonlinear crystal is pumped with a Hermite-
Gaussian beam HGnm, generating a two-photon stateucnml.
To account for the different wavelengths of the pump and
down-converted fields, we will write the angular spectrum of
the HG pump beam asVnm, which is equivalent to expression
s11d but characterized by the wavelengthlp and the beam
radius w0p. The angular spectrum of the down-converted
field vab is characterized by the wavelengthlc and the beam
radius w0c. It will be shown in the Appendix thatw0c
=Î2w0p.

Since the HG beams form a complete basis, we can ex-
pand the two-photon state as

ucnml = o
j ,k,u,t=0

`

h ikvutuskv jkucnmljuv jklsuvutli , s13d

where we have introduced the shorthand notation

uvabl =E dqvabsqduql. s14d

We note here thatj skd andu std are thex syd indices of the
signal and idler fields, respectively. To facilitate the calcula-
tions, we will assume thatzs=zi =0 at the crystal face. De-
fining

Cjkut
nm = kvutukv jkucnml, s15d

we have

ucnml = o
j ,k,u,t=0

`

Cjkut
nm uv jkluvutl. s16d

The task at hand is to calculate the coefficientsCjkut
nm .

For simplicity, we assume that the down-converted fields
are not entangled in polarization. Then, we can ignore the
polarization dependence of the two-photon states9d. De-
pending on the type of phase matching, the pump and down-
converted fields may suffer a small astigmatism when propa-
gating through the birefringent nonlinear crystalf25g. This
astigmatism depends on the order of the modes as well as the
length L of the nonlinear crystal, being negligible for thin
crystals and/or low-order modes. Here we will assume that
the crystal is cut for type-I phase matching such that the
pump beam is polarized in the extraordinary direction and
suffers an astigmatism, while the ordinarily polarized down-
converted fields do not suffer any deformation. We will also
assume that the pump beam is of low orderN=n+mø2 and
consider that the crystal length is on the order of a few mil-
limeters. Under these conditions, we can ignore the birefrin-
gence and astigmatism effectsf25g. Then, using Eqs.s9d,
s10d, ands14d in Eq. s15d gives

Cjkut
nm =

1

p
Î2L

K
E E dqsdqiv jk

* sqsdvut
* sqid

3 Vnmsqs + qidsincS L

4K
uqs − qiu2D . s17d

In the Appendix, we show that

Cjkut
nm =Îa!b!

Ap
S1

2
Dsa+bd/2 arctanA

sa/2d!sb/2d!
bs j ,u,adbsk,t,bd

3 o
r=0

sa+bd/2 1a + b

2

r
2S − 2

Î1 + A2Dr

sincsr arctanAd

s18d

if j +uùn andk+ tùm, elseCjkut
nm =0. Herebs j ,u,ad is given

by Eq. s7d and we have definedA=L /Kwp
2, a=N−n, andb

=M −m.
In the Appendix, it is also shown that for thin nonlinear

crystalssL,1 mmd, Cjkut
nm simplifies to

Cjkut
nm → C̃jkut

nm =Î2A

p
bs j ,u,N − ndbsk,t,M − md

3 HGN−n,M−ms0,0,0d, s19d

if j +uùn andk+ tùm, otherwiseCjkut
nm =0. Here HGgd is the

Hermite-Gaussian modes1d evaluated atx=y=z=0. Wheng
is odd, the Hermite polynomialHgs0d=0, which gives an-
other conservation condition:N−n andM −m must be even.
In other words, the sum of thex syd indices of the down
converted fieldsN= j +u sM =k+ td must have the same parity
as thex syd index of the pump fieldn smd. In summary, the
conservation conditions are

j + u ù n and paritys j + ud = parity n, s20ad

k + t ù m and paritysk + td = parity m. s20bd

We note here that the conservation conditions restrict, for
example, the sumj +u and notj or u individually.

The parity of the product of the signal and idler HG
modessor the sum of the HG mode indicesd must maintain
the parity of the pump beam angular spectrum, which has
been transferred to the two-photon quantum state. From a
mathematical point of view, these results are intuitive. For
example, consider an even functionf and an expansion of
the sort

fsx + yd = o
i

Aigisxdhisyd. s21d

The even parity off requires thatfsx+yd= fs−x−yd or

o
i

Aigisxdhisyd = o
i

Aigis− xdhis− yd. s22d

Since f is an even function, all productsgisxdhisyd in the
expansion must have the same parity, which in this example
implies that eitherg andh are both even functions org and
h are both odd functions. From the point of view of physics,
the underlying physical process governing the generation of
HG modes is the transfer of the angular spectrum of the
pump beam to the two-photon states9d, upon which the deri-
vation of the coefficientsCjkut

nm and parity and order restric-
tions above are based. We note here that it is also the angular
spectrum transfer which is responsible for the generation of
entangled orbital angular momentum statesf9,12g.
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We have calculated the exact and approximate probability
amplitudes for the generation of any arbitrary combination of
HG modes with SPDC. These results show that the indices of
the HG modes must obey the conditionss20d. Equations
s18d–s20d are the principal results of this paper. Let us now
analyze these results for some particular HG pump beams
with typical experimental parameters.

Figure 2 shows the total probabilities obtained by sum-
ming all the exactuCjkut

00 u2 scirclesd or approximateuC̃jkut
00 u2

scrossesd probabilities up to a given orderO= j +k+u+ t. The
pump beam is a Gaussiansn=m=0d with lp=351 nm, and
the crystal lengthL is 1 mm. Results are shown for pump
beam widthw0p=1 mm, 0.1 mm, and 0.05 mm. The total
probability ouCjkut

00 u2 approaches unity faster for narrower
width pump beams. This indicates that experimentally one
can increase the generation efficiency of lower order modes
by focusing the pump beam at the plane of the nonlinear
crystal. For smallerw0p, the approximate solutions19d is
valid only for lower orders. Calculations of the total prob-
ability for an extremely focused pump beamsnot shownd
shows that the total probability for the exact solution con-
verges to 1, which indicates that the two-photon stateucnml is
properly normalized.

The parameter of interest isA=L /Kw0p
2 , which shows that

the generation efficiency of lower-order modes can also be
increased by using a longer crystal. However, we again em-
phasize that the pump and down-converted fields may suffer
greater astigmatic effects in longer crystals. It is interesting
to note thatA can also be written asA=L / s2zRd, wherezR is
the Rayleigh range of the pump beam. This shows that the
critical parameter is the crystal lengthL compared to the
Rayleigh range of the pump beam. arctanA in s18d can be
viewed as a phase retardation, similar to the Gouy phases5d.

Figure 3 contains the amplitudesCjkut
00 and Cjkut

11 up to
fourth ordersO=4d for HG00 and HG11 pump beams with
crystal lengthL=1 mm and pump beam widthwp=0.1 mm.
For visual clarity, only nonzero terms have been included.

IV. ENTANGLEMENT

Previous experiments have shown that the pure state
given by Eq.s9d is an accurate description of the two-photon

state generated by SPDCf12,22,24g. Here we have show that
the two-photon states9d can also be written as a combination
of correlated HG modes in the forms16d with the normalized
coefficientsCjkut

nm satisfying the restrictions on parity and or-
der given ins20d. We will now use these restrictions to show
that the two-photon state is entangled in HG modes.

Let us denote the reduced density operator of, say, the
signal photon byrs. It is well known thatrs has the follow-
ing propertiesf26g: sid rs is a positive operator,sii d tr rs=1,
and siii d tr rs

2ø1. If rs represents a pure state, then trrs=1,
while tr rs

2,1 indicates thatrs represents a mixed statef26g.
For the pure two- photon stateucnml, tr rs

2,1 implies that
the overall state is entangledf27g. We will show thatucnml is
entangled by proving that trr2,1.

It is straightforward to calculate the reduced density op-
erator from the two-photon states16d:

rs = o
jkdf=0

`

Fjkdfuv jklsskvdfu, s23d

where

FIG. 2. Total probability of HG mode generation as a function
of the orderj +k+u+ t for a Gaussian pump beam with widthw0p

=1 mm, 0.1 mm, and 0.05 mm.

FIG. 3. CoefficientsCjkut
nm up to orderO= j +k+u+ t=4 for HG00

and HG11 pump beams with widthw0p=0.1 mm and crystal length
L=1 mm. To improve visualization, only nonzero coefficients have
been included.
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Fjkdf = o
gd=0

`

Cjkgd
nm Cdfgd

nm . s24d

Here we have recognized that the coefficientsCjkut
nm given by

Eq. s18d are real. For the argument below, we note that:
Fjkdf=Fdf jk, Fjkjkù0 and trrs=o jk=0

` Fjkjk=1. The reduced
density operatorrs satisfies

tr rs
2 = o

jkdf=0

`

sFjkdfd2 ø 1. s25d

Sincers has unity trace, we can write

o
jk=0

`

Fjkjk o
df=0

`

Fdfdf = 1, s26d

so that from Eqs.s25d and s26d we obtain

o
jkdf=0

`

fsFjkdfd2 − FjkjkFdfdfg ø 0. s27d

rs is a positive operator, so its elements satisfy the general-
ized Cauchy-Schwartz-Buniakowski inequalityf28,36g,

sFjkdfd2 ø FjkjkFdfdf. s28d

Equations28d implies that ifsFjkdfd2,FjkjkFdfdf for any par-
ticular values ofj , k, d, and f, then the equality ins27d must
be false, which indicates that trrs

2,1 anducnml is entangled.
From the parity conservation conditionss20d, we see that for
anyg in the summation in Eq.s24d, j +g andd+g must have
the same parity asn, otherwiseCjkgdCdfgd=0. A similar re-
lation exists fork+d, f +d, and m. This implies thatFjkdf
=0 unlessj and d and k and f have the same parity. The
conditionss20d restrict the parity of the sumj +g but not j
independently, soj can be either even or odd, as is seen in
Fig. 3 for the particular cases of HG00 and HG11 pump
beams. Then there existsFjkjkÞ0 andFdfdfÞ0 such thatj
andd or k and f do not have the same parity, which, using
the fact that in this caseFjkjk.0, implies thatsFjkdfd2=0
,FjkjkFdfdf. Then equality ins27d is false, which shows that
ucnml is entangled.

For an infinite dimensional space there will be an infinite
number of terms which satisfy the above conditions. The
above proof can also be used to show that the stateucnml is
entangled in an arbitrarily large but finite dimensional space,
as long as the coefficientss18d are properly normalized. Ex-
perimentally, one can postselect the desired HG components
of the two-photon state, as will be briefly discussed in the
next section. As long as the reduced density matrix contains
one termFjkdf such thatj and d or k and f have different
parity, the equality ins27d is false.

A. Generating Bell states

Through postselection, it is possible to obtain finite-
dimensional entangled states of higher-order Gaussian
modes. Experimentally, postselection can be achieved by
coupling the down-converted fields into optical fibers
f7,15,16,29g, which filter out unwanted modes. Similarly, en-
tanglement concentration of LG modes was achieved by
properly coupling these modes into optical fibersf29g.

Referring to Fig. 3 for the HG00 pump beam, if one con-
siders only first-order down-converted fieldss j +k=1,u+ t
=1d, the resulting quantum state is maximally entangled, re-
sembling thef+ Bell state, as was observed inf16g. It is then
fairly straightforward to experimentally generate all four Bell
states using first-order HG modes. Using a Dove prism
saligned at 45°d to rotate HG01↔HG10 of either the signal or
idler field, one can generate thec+ Bell state. Placing one
additional mirror reflectionsor a Dove prism aligned at 90°d
in either the signal or idler path, such that HG01→−HG01
and HG10→HG10, one can then generate the maximally en-
tangledf− andc− states.

Another method of generating Bell-states of first-order
HG modes is with the second-order pump beam HG11. Iso-
lating only first-order modes, the output state resembles the
maximally-entangledc+ state, as seen in Fig. 3. This method
may be advantageous since the high-probability zero-order
HG00-HG00 term is not present.

B. Generating nonmaximally entangled states

Table I shows results up to second-order for HG02 and
HG20 beams. Looking at first order terms onlysHG01 and

TABLE I. Amplitudes and probabilities for Hermite-Gaussian pump beams HG02 stopd and HG20 sbot-
tomd up to second order for crystal lengthL=1 mm and beam widthwp=0.1 mm. The order is defined as
O= j +k+u+ t.

O jk ut Cjkut
02 uCjkut

02 u2 C̃jkut
02 uC̃jkut

02 u2

2 00 02 0.042169 0.001778 0.042170 0.001778

2 01 01 0.059636 0.003556 0.059637 0.003557

2 02 00 0.042169 0.001778 0.042170 0.001778

O jk ut Cjkut
20 uCjkut

20 u2 C̃jkut
20 uC̃jkut

20 u2

2 00 20 0.042169 0.001778 0.042170 0.001778

2 10 10 0.059636 0.003556 0.059637 0.003557

2 20 00 0.042169 0.001778 0.042170 0.001778
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HG10d, the HG02 pump beam creates an HG01-HG01 term,
while a HG20 pump generates the HG10-HG10 term. Creating
a pump beam that is an arbitrary coherent superposition of
these two beams, we can generate nonmaximally entangled
pure states. Figure 4 shows a possible experimental setup.
The input pump beam is a horizontally polarized HG02 beam.
A half- sHWP1d and quarter-wave platesQWP1d are used to
adjust the pump polarization. Rotating HWP1, one can
change the pump polarization asuHl→cosuuHl+sinuuVl,
whereH andV stand for horizontal and vertical polarization.
By tilting QWP1 one can adjust the relative phasef30g. The
pump polarization is thenuHl→cosuuHl+eif sinuuVl up to
a global phase. The pump beam then enters a polarization-
dependent Sagnac interferometer with a nested Dove prism
sDPd orientated at 22.5°. This type of Sagnac interferometer
is experimentally advantageous since it is insensitive to
phase fluctuations, and has been used to construct an optical
single-photon CNOT gatef31g and to measure the spatial
Wigner functionf32g. It is well known that a Dove prism
orientated at an azimuthal anglew rotates an image by an
angle 2w in the transverse plane. The polarizing beam splitter
sendsH and V-polarized components into opposite ends of
the interferometer, where the Dove prism rotates the image
of the H-polarized component by 45°, while theV-polarized
component, which is propagating in the opposite direction, is
rotated by −45°. The second Dove prismslocated outside the
interferometerd is used to realign the images in the
horizontal-vertical coordinate system. A Dove prism will
also slightly rotate the polarization direction. However, since
in all cases the Dove prisms are followed by PBS’s which
project onto the desired polarization direction, this will result
in only a slight reduction in beam intensity. After the second
Dove prism, the pump beam is in a superposition:
cosuuHlV02+eif sinuuVlV20. Using a polarizing beamsplitter
sPBSd, one can project onto the 45°-polarization component,
after which the pump beam is in the superposition:u45l

scosuV02+eif sinuV20d. The last half-wave platesHWP2d is
used to realign the polarization before entering the nonlinear
crystal, where the HG components generate the terms in
Table I. Postselecting the first-order termss j +k=1,u+ t=1d,
the two photon state is

ucl = cosuuv01luv01l + eif sinuuv10luv10l. s29d

The weights and relative phase of the two-photon states29d
can be adjusted by rotating HWP1 and tilting QWP1, which,
along with rotations and reflections of the down-converted
fields described in the last section, allows for the creation of
any bipartite pure state.

C. Hyperentangled states

Another interesting possibility is the creation of hyperen-
tangled statesf33g. It has been shown that such states may be
useful in quantum dense coding and quantum cryptography
f34g. Using one of the experimental situations described
above and replacing the single type-I crystal we have con-
sidered with either the type-II “crossed cone” sourcef23g or
the two-crystal type-I sourcef30g of polarization-entangled
photons, it should be possible to generate a two-photon state
entangled in HG- mode and polarization. These sources gen-
erally require that the crystals are thinson the order of a few
millimetersd, so the possible astigmatism effects discussed in
Sec. III should be minimal, even for the type-II source.
Moreover, the experimental setups described above require
only lower order HG modes.

V. CONCLUSION

We have shown that it is possible to generate correlated
Hermite-Gaussian modes through spontaneous parametric
down-conversion. We have derived exact and approximate
analytical expressions for the probability amplitudesCjkut

nm to
generate arbitrary combinations of Hermite-Gaussian fields.
For any Hermite-Gaussian pump beam, there exist parity
conservation conditions for thex andy indices of the down-
converted Hermite-Gaussian modes. We have used these re-
sults to show that the two-photon state is indeed entangled in
Hermite-Gaussian modes. We have discussed the generation
of maximally entangled Bell-states and nonmaximally en-
tangled pure states of first-order Hermite-Gaussian fields.
These results can be used to engineer entangled states of
higher-dimension, and promise to be useful in quantum in-
formation schemes.
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APPENDIX: CALCULATION OF Cjkut
nm

In Sec. III, we showed that the coefficientCjkut
nm is given

by Eq. s17d,

FIG. 4. Possible experimental setup to generate nonmaximally
entangled statesssee textd. The input pump beam is a vertically
polarized HG02 beam. A half- sHWP1d and quarter-wave plate
sQWP1d are used to adjust the pump polarization. The Dove prisms
sDPd rotate the transverse spatial profile of the pump beam.
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Cjkut
nm =

1

p
Î2L

K
E E dqsdqiv jk

* sqsdvut
* sqid 3 Vnmsqs

+ qidsincS L

4K
uqs − qiu2D . sA1d

Changing coordinates to

Q = qs + qi ,

P = qs − qi , sA2d

such thatdqsdqi =dQdP/2, we have

Cjkut
nm =

1

p
Î L

2K
E E dQdPv jk

* SQ + P

2
Dvut

* SQ − P

2
D

3 VnmsQdsincS L

4K
P2D . sA3d

Now consider a down-converted HG modevnm with
wavelengthlc and beam radiusw0c. To be more precise, let
us temporarily writevnmsq ,lc,w0cd. Since we are working
with down-converted fields satisfyinglc=2lp, it is easy to
show from the general form of HG modes that
vnmsq /Î2,lc,Î2w0pd=Vnmsq ,lp,w0pd. That is, the down-
converted HG modes withw0c=Î2w0p will have the same
Rayleigh rangezR, Gouy phase«szd and radius of curvature
Rszd as the pump field. Using this property of the Gaussian
modes, we can expandv jk

* ssQ+Pd /2d andvut
* ssQ−Pd /2d and

regroup thex andy terms, which gives

v jk
* SQ + P

2
Dvut

* SQ − P

2
D = V ju

* SQx + Px

Î2
,
Qx − Px

Î2
D

3Vkt
* SQy + Py

Î2
,
Qy − Py

Î2
D ,

sA4d

where we used definitionss2d and s12d to show thatDjk
* Dut

*

=Dju
* Dkt

* . We note here that relationsA4d is valid for all zs
=zi. Then, using the definition of the DHG modess6d, Eq.
sA4d can be expressed as

v jk
* SQ + P

2
Dvut

* SQ − P

2
D = o

a=0

N

bs j ,u,adVN−a,a
* sQx,Pxd

3o
b=0

M

bsk,t,bdVM−b,b
* sQy,Pyd,

sA5d

where N= j +u and M =k+ t. Noting that DN−a,a
* DM−b,b

*

=DN−a,M−b
* Da,b

* , it is straightforward to show that the product
of angular spectra on the RHS of Eq.sA5d can be rewritten
as

VN−a,a
* sQx,PxdVM−b,b

* sQy,Pyd = VN−a,M−b
* sQdVa,b

* sPd.

sA6d

Putting these Eqs.sA5d and sA6d back into Eq.sA3d, the
coefficentCjkut

nm becomes

Cjkut
nm =

1

p
Î L

2K o
a=0

N

o
b=0

M

bs j ,u,adbsk,t,bd

3E dQVN−a,M−b
* sQdVnmsQd

3E dPVa,b
* sPdsincS L

4K
P2D . sA7d

The HG modes are orthonormal, so

E dQVN−a,M−b
* sQdVnmsQd = dN−a,ndM−b,m sA8d

which gives

Cjkut
nm =

1

p
Î L

2K
bs j ,u,N − ndbsk,t,M

− md E dPVN−n,M−m
* sPdsincS L

4K
P2D , sA9d

if N= j +uùn andM =k+ tùm, elseCjkut
nm =0.

Using the following expression for the Hermite
polynomials:35

Hnsjd = o
j=0

n/2
s− 1d jn!

j !sn − 2jd!
s2jdn−2j , sA10d

it is straightforward to calculate the integral insA9d analyti-
cally. After some algebraic manipulation,

Cjkut
nm =Îa!b!

Ap
S1

2
Dsa+bd/2 arctanA

sa/2d!sb/2d!
bs j ,u,adbsk,t,bd

3 o
r=0

sa+bd/2 1a + b

2

r
2S − 2

Î1 + A2Dr

sincsr arctanAd

sA11d

if j +uùn andk+ tùm, elseCjkut
nm =0. Here we have defined

A=L /Kwp
2, a=N−n, b=M −m and used the usual binomial

coefficient.
For thin nonlinear crystals, it is possible to arrive at a

more revealing solution. If the nonlinear crystal is thinsL
,1 mmd, we can approximate sincsL /4KP2d<1 in Eq.
sA9d, giving edPVa,b

* sPdsincsL /4KP2d<edPVa,b
* sPd. Nu-

merical integration shows that errors due to this approxima-
tion are less than 3% for modes as high asa=b=10 for
typical experimental values. Then, integration inP trans-
forms s18d to

Cjkut
nm → C̃jkut

nm =Î2A

p
bs j ,u,N − ndbsk,t,M − md

3 HGN−n,M−ms0,0,0d, sA12d

if j +uùn and k+ tùm, otherwiseCjkut
nm =0. HGgd is the

Hermite-Gaussian modes1d evaluated atx=y=z=0.
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