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Conservation and entanglement of Hermite-Gaussian modes in parametric down-conversion
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We show that the transfer of the angular spectrum of the pump beam to the two-photon state in spontaneous
parametric down-conversion enables the generation of entangled Hermite-Gaussian modes. We derive an
analytical expression for the two-photon state in terms of these modes and show that there are restrictions on
both the parity and order of the down-converted Hermite-Gaussian fields. Using these results, we show that the
two-photon state is indeed entangled in Hermite-Gaussian modes. We propose experimental methods of cre-
ating maximally-entangled Bell states and nonmaximally entangled pure states of first order Hermite-Gaussian
modes.
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[. INTRODUCTION to define qubits and the above devices implement single qu-
i ) bit rotations. Recently, Langfordt al. have produced pho-

_Recently, a great deal of attention has been paid to thg,ns entangled in first-order HG mode and performed quan-
higher-order Gaussian modes of the electromagnetic field. 1,1, state tomography using holographic masks and single
the paraxial approximation, twq interestil_’lg cases are the,qge fibers[16]. Since the HG modes form an infinite-
Laguerre-Gaussiaft.G) and Hermite-GaussiaiiG) modes.  gimensjonal orthonormal basis, they too might be used to
These modes are solutions of the paraxial Helmholtz equaspcode higher-dimensional qudits.
tion [1] and are eigenstates of the free-space propagator. It ere we provide a theoretical description of the genera-
has been shown that the LG modes carry orbital angulagio,, of entangled HG modes for arbitrary HG pump beams.
momentum in the form of an azimuthal phag€” in the  \ye show that there are restrictions on the parity and order of
transverse plang2,3]. Allen et al.[2] have shown that field e gown-converted HG fields. We introduce our notation in
modes with this type of phase dependence carry an orbitaec | and briefly review the two-photon quantum state gen-
angular momentum of# per photon, wher¢ is the azi-  grated by SPDC in Sec. II. Our main results concerning the
muthal beam index. _ _ generation of correlated HG modes using SPDC are derived
_These higher-order modes are of great interest in quantuip, gec. |11, including a general expression for the probability
information schemes, since they can be used to represegiyjitude to generate combinations of different HG modes.
discreteD-statequdits For example, the orbital angular mo- |, Sec. v, we provide a proof that the down-converted HG
mentum of single photons in LG modes provides a possiblg,gdes are indeed entangled and we discuss the experimental
qudit encoding scheme. The quantum numberan be co-  generation of Bell-states and nonmaximally entangled pure
herently raised or lowered using holographic mggksOne  giates.
can measure the orbital angular momentt® modes of LG modes For convenience, we will adopt the notation
single photons up to a desired accuracy using interferometrigseqd in Ref[20]. The Hermite-Gaussian modes are given by
techniqueg5,6]. In, addition, Mairet al. [7] have shown e complex field amplitude
experimentally that with spontaneous parametric down-

conversion(SPDQ it is possible to create photon pairs en- 1 ( \Ex) < \,Ey)
tangled in orbital angular momentum and other theoretical HG,n(X,Y,2) = Cpyp, Hp, m
[8-14] and experimental workgl2] have followed, includ- w(2)

w(z) w(2)

ing the generation of entangled 3-state quiits,16. X2 +y?
The HG modes may also be of use in quantum informa- xexp - W(2)2
tion schemes. In particular, the first-order HG and LG modes .
can be described and manipulated in a way that is analogous . k(x“+y9) .
; X L o X i————i(n+m+1)e(2) |,
to linear and circular polarization of the electromagnetic field 2R

[17]. Devices that act on the first-order transverse mode in a (1)
manner equivalent to polarizing beamsplitters, half-wave
plates and quarter-wave plates can be constructed usifghere the coefficientg,,, are given by
asymmetric interferometerfsl8,19, Dove prisms[17] and
mode converterg20]. The first-order modes can thus be used 2
Com= "\ 20 2

*Electronic address: swalborn@if.ufrj.br; present address: Instiand Hn(x) is thenth-order Hermite polynomial. The radius of
tuto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Post@UrvatureR(z), beam waistw(z) and Gouy phase(z) are
68528, Rio de Janeiro, RJ 21945-970, Brazil. given by
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w(z) =wp/1+ é , (3) Uyt (qz)
V%

Crystal

22 HG beam V
R<z>=2<“2>’ ¢ / vs(a,)

and Vnm(Qp)
e(2) = arctani, (5) FIG. 1. The angular spectrum of the pump bedr(q,), char-
R acterized by the wavelength, and beam width thev,, creates

down-converted fields with angular speat(gs) andv (), char-

respectively. The parameteg is the Rayleigh range. The acterized by the wavelength,=2\, and the beam widtwy,

order\ of the beam is the sum of the indic&&=m+n. Note

that the usual Gaussian beam is the zeroth-ordejlH&am. = \2Wop-
In Sec. lll, we will make use of the diagonal Hermite- ,
Gaussian mode®HG) defined by[17,20 1 /2L ([ L]as—qil
A C(as0) =~/ v(ds* g)sind = =], (10
n+m

DHG,(%,Y,2) = 2 b(n,mKHG-k(XY,D,  (6)  wheres(q) is the normalized angular spectrum of the pump
k=0 . . .
_ B beam,L is the length of the nonlinear crystal in the propa-
with  X=(x+y)/v2, ¥=(x-y)/V2 and the coefficient gation(z) direction, sin€x)=(sinx)/x, andK is the magni-

b(n,m,k) defined as tude of the pump field wave vector. The integration domain
( ) ’ D is defined as the region in which the paraxial approxima-
_ |/(n+m-K!k' 1 d n tion is valid. In most experimental conditions, howewRris
(MK =\ emm K g [(2 =L+ fe=o. much larger than the region in whic(qs,q;) is appre-
@) ciable.

We assume tha®(qs,q;) does not depend on the polar-
izations of the down-converted photons. This assumption
may not be true, especially if the crystal is cut for type-II

Here we review the two-photon quantum state generate§PDC. However, the polarization dependence can be reduced
by SPDC. We consider that a photpnfrom a sufficiently by placing birefringent crystal compensators in the down-
weak cw pump beam is incident on a nonlinear crystal, proconverted beami23].
ducing down-converted signal and idler photasrandi, re- We note here that recent experimental w¢ii2,22,24
spectively. We will work in the monochromatic approxima- has shown that the quantum sté® is an accurate descrip-
tion, which is justified experimentally by the use of narrow tion of the two-photon component of the quantum state gen-
bandwidth interference filters in the detection system. It iserated by SPDC using a cw laser.
assumed that the filters are centered at the degenerate wave-
lengthA =2\, where, is the pump beam wavelength. We
will also work in the paraxial approximation, which will be  ll. GENERATION OF ENTANGLED HG MODES WITH
discussed below. For a sufficiently weak cw laser, the quan- SPDC
tum state generated by SPDC can be writteifi2ds22|

Il. STATE GENERATED BY SPDC

In the following we will denotev,,(q) as the normalized

|912=Cqlvag + Cyly), (8) angular spectrum of the HG mode, which can be calculated
by taking the two-dimensional Fourier transform(@j. Ex-
where .
plicitly,
|¢> - O'EO'. C(rs’(ri f fD dqsinq)(qsaQi)MS, O-S>S|qi,o-i>i' (9) Unm(quqy) = WDann(V:I’_%X> Hm(%)
The coefficientsC,; and C, are such thajC,|<|C4|. C, de- W2+ o
pends on the nonlinearity coefficient and length of the non- X exp - —X4L

linear crystal, the magnitude of the pump beam, as well as

other experimental parameters. The |t ;) represents a X exg-i(n+m+1)e(2)], (11
single-photon state in a plane wave mode. The vegfds
the transverse component of the wave vektoando; is the
polarization of the modg¢=s or i, where the sum is over two — j(n+m)

orthogonal polarization directionsg anda;. The polarization Dnm= Tcnm (12
state of the down-converted photon pair is defined by the

coefficients C,_,.. The normalized functiond®(qgs,q;) is  such thatv,.(d,q,) is properly normalized. The general
given by[22] problem we are considering is illustrated in Fig. 1. We now

wherew=w(z) and
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consider that the nonlinear crystal is pumped with a Hermite- al B 1\ @P/2 arctanA

Gaussian beam Hg, generating a two-photon staltg,,. kut = A_(§> Wb(],u,a)b(k,t,ﬁ)
To account for the different wavelengths of the pump and i (@/2)1(12)!

down-converted fields, we will write the angular spectrum of (a+p)2 [ @+ B ;

the HG pump beam as,, which is equivalent to expression x S o <__2> sindr arctanA)

(12) but characterized by the wavelength and the beam V1 +A?

radius wo,. The angular spectrum of the down-converted

field v,z is characterized by the wavelengthand the beam (18)
Lafésvs()pWOC. It will be shown in the Appendix thatwg, if j +u=n andk+t=m, eIseCJkut—O Hereb(j,u, @) is given

)py Eq.(7) and we have defined=L/Kw?, a=N-n, and g
-m.
In the Appendix, it is also shown that for thin nonlinear
crystals(L~1 mm), Cjig, simplifies to

|¢nm> = E {i<Uut|s<vjk|(ﬂnm>}|vjk>s|vut>i, (13
j.k,u,t=0 2A -
jkut*> Cjkut \/ 7b(1 ,u,N-=n)b(k,t,M - m)

where we have introduced the shorthand notation

Since the HG beams form a complete basis, we can e
pand the two-photon state as

X HG\-nm-m(0,0,0), (19

|Uaﬁ>:f dqu .5(@)|a). (14)if j+u=n andk+t=m, otherwiseClj1,=0. Here HG s the
Hermite-Gaussian modé) evaluated ak=y=z=0. Whenvy

We note here thajt (k) andu (t) are thex (y) indices of the is odd, the Hermite polynomiat,(0)=0, which gives an-
signal and idler fields, respectively. To facilitate the calcula-other conservation conditio—n andM-m must be even.
tions, we will assume that,=z=0 at the crystal face. De- In other words, the sum of the (y) indices of the down

fining converted fieldN=j+u (M =k+t) must have the same parity
- as thex (y) index of the pump fieldh (m). In summary, the
Cliut = wud Wil Ynm (15 conservation conditions are
we have j+u=nand parity(j + u) = parity n, (203
| = 2 Clhndvi vy - (16) k+t=m and parity(k + t) = parity m. (20b)
j.ku,t=0

We note here that the conservation conditions restrict, for

The task at hand is to calculate the coefficieBis,. example, the sum+u and notj or u individually.

For simplicity, we assume that the down-converted fields The parity of the product of the signal and idler HG
are not entangled in polarization. Then, we can ignore thénodes(or the sum of the HG mode indidesust maintain
polarization dependence of the two-photon sté@@e De-  the parity of the pump beam angular spectrum, which has
pending on the type of phase matching, the pump and dowrPeen transferred to the two-photon quantum state. From a
converted fields may suffer a small astigmatism when propamathematical point of view, these results are intuitive. For
gating through the birefringent nonlinear crysfab]. This ~ example, consider an even functiérand an expansion of
astigmatism depends on the order of the modes as well as tfiee sort
length L of the nonlinear crystal, being negligible for thin
crystals and/or low-order modes. Here we will assume that f(x+y)= E AGi(X)hi(y). (21)
the crystal is cut for type-1 phase matching such that the :
pump beam is polarized in the extraordinary direction andrhe even parity of requires thaf(x+y)=f(-x-y) or
suffers an astigmatism, while the ordinarily polarized down-
converted fields do not suffer any deformation. We will also > AGOh(y) = X Agi (- X)hi(=y). (22
assume that the pump beam is of low ordérn+m<2 and i i
consider that the crystal length is on the order of a few mil-
limeters. Under these conditions, we can ignore the birefrin:
gence and astigmatism effedt®5]. Then, using Eqgs(9),

Since f is an even function, all productg(x)h;(y) in the
expansion must have the same parity, which in this example

implies that eitheig andh are both even functions @ and
(10), and(14) in Eq. (15 gives h are both odd functions. From the point of view of physics,
the underlying physical process governing the generation of
kut = fqusdQ. Vi (A9vy(al) HG modes is the transfer of the angular spectrum of the

pump beam to the two- photon std83, upon which the deri-
(L ) vation of the coefficient€; i}, and parity and order restric-
X Van(Gs+ gi)sin R‘QS_ ail*). (17 tions above are based. We note here that it is also the angular
spectrum transfer which is responsible for the generation of
In the Appendix, we show that entangled orbital angular momentum stdi@d 2).
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FIG. 2. Total probability of HG mode generation as a function
of the orderj+k+u+t for a Gaussian pump beam with widity,
=1 mm, 0.1 mm, and 0.05 mm.

We have calculated the exact and approximate probability
amplitudes for the generation of any arbitrary combination of
HG modes with SPDC. These results show that the indices of
the HG modes must obey the conditiof0). Equations
(18)—(20) are the principal results of this paper. Let us now
analyze these results for some particular HG pump beams
with typical experimental parameters.

Figure 2 shows the total probabilities obtained by sum-

ming all the exactC{,|? (circles or approximate|CJ., |2

(crossesprobabilities up to a given ord&€?=j+k+u+t. The
pump beam is a Gaussidn=m=0) with ;=351 nm, and
the crystal lengtiL is 1 mm. Results are shown for pump
beam widthwol%zl mm, 0.1 mm, and 0.05 mm. The total
probability E|Cj|?ut|2 approaches unity faster for narrower  FIG. 3. Coefficient et Up to orderO=j +k+u+t=4 for HGy
width pump beams. This indicates that experimentally onend HG; pump beams with widthvg,=0.1 mm and crystal length
can increase the generation efficiency of lower order modeg=1 mm. To improve visualization, only nonzero coefficients have
by focusing the pump beam at the plane of the nonlineapeen included.

crystal. For smallemg,, the approximate solutioi19) is
valid only for lower orders. Calculations of the total prob-
ability for an extremely focused pump beamot shown
shows that the total probability for the exact solution con-

verges to 1, which indicates that the two-photon is - o L .
pro?)erly normalized. P SRR coefficientsCjy,; satisfying the restrictions on parity and or-

The parameter of interest A=L/Kw2_, which shows that der given in(20). We will now use these restrictions to show
the generation efficiency of lower-order modes can also béhat the two-photon state is entangled in HG modes.
increased by using a longer crystal. However, we again em- Let us denote the reduced density operator of, say, the
phasize that the pump and down-converted fields may suffegignal photon byps. It is well known thatps has the follow-
greater astigmatic effects in longer crystals. It is interestingng propertied26]: (i) ps is a positive operatoji) tr ps=1,
to note thatA can also be written a&=L/(2zz), wherezzis ~ and(iii) tr p2<1. If p represents a pure state, thepgr 1,
the Rayleigh range of the pump beam. This shows that thwhile tr p§<1 indicates thap, represents a mixed stdt26].
critical parameter is the crystal length compared to the For the pure two- photon stafe., tr p2<1 implies that
Rayleigh range of the pump beam. arctam (18) can be the overall state is entangl¢@7]. We will show that] ¢,y is
viewed as a phase retardation, similar to the Gouy ptise entangled by proving that *<1.

Figure 3 contains the amplitude3}), and Cig, up to It is straightforward to calculate the reduced density op-
fourth order(O=4) for HGy, and HG; pump beams with  erator from the two-photon staté6):
crystal lengthL=1 mm and pump beam width,=0.1 mm.

For visual clarity, only nonzero terms have been included.

state generated by SP)2,22,24. Here we have show that
the two-photon stat€d) can also be written as a combination
of correlated HG modes in the for(h6) with the normalized

IV. ENTANGLEMENT ps= > Fiavisdvarl, (23
' jkdf=0
Previous experiments have shown that the pure state

given by Eq.(9) is an accurate description of the two-photon where
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TABLE I. Amplitudes and probabilities for Hermite-Gaussian pump beamg,H®p) and HG (bot-
tom) up to second order for crystal length-1 mm and beam widthv,=0.1 mm. The order is defined as

O=j+k+u+t.
0 jk ut Chax |Chad? cR2, 32,2
2 00 02 0.042169 0.001778 0.042170 0.001778
2 01 01 0.059636 0.003556 0.059637 0.003557
2 02 00 0.042169 0.001778 0.042170 0.001778
; 0 20 |2 ~ ~
0 jk ut Cout (e ez, 20,2
2 00 20 0.042169 0.001778 0.042170 0.001778
2 10 10 0.059636 0.003556 0.059637 0.003557
2 20 00 0.042169 0.001778 0.042170 0.001778

* For an infinite dimensional space there will be an infinite
Fiat= 2 CinsCifre- (24 number of terms which satisfy the above conditions. The
¥8=0 above proof can also be used to show that the $tatg is
entangled in an arbitrarily large but finite dimensional space,
as long as the coefficientd8) are properly normalized. Ex-
perimentally, one can postselect the desired HG components
of the two-photon state, as will be briefly discussed in the
next section. As long as the reduced density matrix contains
o one termF;.4 such thatj andd or k and f have different
tr p§: > (ijdf)Z <1. (25) parity, the equality in27) is false.
jkdf=0

Here we have recognized that the coefficie(ﬁﬂgt given by
Eq. (18) are real. For the argument below, we note that:
ijdf:Fdfjkv FJkaBO and trpSZE}i:Oijijl. The reduced
density operatop satisfies

Sincep has unity trace, we can write A. Generating Bell states

Through postselection, it is possible to obtain finite-

iF g Fo=1 26 dimensional entangled states of higher-order Gaussian
& Tikik < Tdfdf ™ = (26)  modes. Experimentally, postselection can be achieved by
jk=0 df=0 . . ; - .
coupling the down-converted fields into optical fibers
so that from Eqgs(25) and(26) we obtain [7,15,16,29, which filter out unwanted modes. Similarly, en-

tanglement concentration of LG modes was achieved by
properly coupling these modes into optical fibg29].
2_ [(Fikdf)z_ FikjFarar] < 0. (27) Referring to Fig. 3 for the Hg pump beam, if one con-
Jdf=0 siders only first-order down-converted fields+k=1,u+t

ps IS a positive operator, so its elements satisfy the generaF 1), the resulting quantum state is maximally entangled, re-

[’

ized Cauchy-Schwartz-Buniakowski inequalig,36], sembling thep* Bell state, as was observed[ibg]. It is then
fairly straightforward to experimentally generate all four Bell
(ijdf)2 < FikikFafat- (28) states using first-order HG modes. Using a Dove prism

(aligned at 45y to rotate HG; < HG, of either the signal or
idler field, one can generate thg Bell state. Placing one
additional mirror reflectiorior a Dove prism aligned at 9D°
in either the signal or idler path, such that j{&>-HGy;
and HG,— HG,,, one can then generate the maximally en-
tangled¢™ and ¢~ states.

Another method of generating Bell-states of first-order
. ) HG modes is with the second-order pump beam, HGo-
=0 unlessj andd and kand f have the same parity. The |54ing only first-order modes, the output state resembles the
conditions(20) restrict the parity of the sur+y but notj mayimally-entangleds* state, as seen in Fig. 3. This method

independently, s¢ can be either even or odd, as is seen inyay he advantageous since the high-probability zero-order
Fig. 3 for the particular cases of Hgand HG; pump HGoe-HGy, term is not present.
beams. Then there exisE# 0 andFy:q¢# 0 such thaf

andd or k andf do not have the same parity, which, using

Equation(28) implies that if (Fjqr)? < FjjFarar for any par-
ticular values ofj, k, d, andf, then the equality ir{27) must
be false, which indicates that,i§< 1 and|¢,y is entangled.
From the parity conservation conditiof®&0), we see that for
any y in the summation in Eq24), j + y andd+ y must have
the same parity as, otherwiseCy,;Cqt,s=0. A similar re-
lation exists fork+4, f+45, andm. This implies thatF s

the fact that in this cas€j >0, implies that(Fjqp)?=0 B. Generating nonmaximally entangled states
<FjFarar- Then equality in(27) is false, which shows that Table | shows results up to second-order for gl@nd
|y is entangled. HG,, beams. Looking at first order terms onlGy; and
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(CosBVgp+€? sin 6V,0). The last half-wave plattHWP2) is
used to realign the polarization before entering the nonlinear

@l O crystal, where the HG components generate the terms in
i Table I. Postselecting the first-order terfpsk=1,u+t=1),
—— HWP2 :
the two photon state is
PBS @ 45 - o
|49) = cosbluop|vey) + €7 sin Gluigv10)- (29
I:] DP @ -22.5 The weights and relative phase of the two-photon 2@
HWP1 can be adjusted by rotating HWP1 and tilting QWP1, which,
nn ; PBS along with rotations and reflections of the down-converted
HGoz —> I fields described in the last section, allows for the creation of
H polarized QWPI any bipartite pure state.
\ C. Hyperentangled states
L Another interesting possibility is the creation of hyperen-
DP @ 22.5

tangled stateg33]. It has been shown that such states may be

FIG. 4. Possible experimental setup to generate nonmaximall seful |n' quantum dense COd”’!g and qu.amu.m cryptogr'aphy
entangled stateésee text The input pump beam is a vertically 34]. Using one Qf the e>.<per|mental situations described
polarized HG, beam. A half- (HWP1) and quarter-wave plate a_bove anc_i reP'aC'”g the single type-I crystal we have con-
(QWPY) are used to adjust the pump polarization. The Dove prismsidered with either the type-Il “crossed cone” soufi28] or
(DP) rotate the transverse spatial profile of the pump beam. the two-crystal type-l sourcg30] of polarization-entangled

photons, it should be possible to generate a two-photon state
HG,o), the HG,, pump beam creates an KEHG,, term, entangled in HG- mode and polarization. These sources gen-
while a HG,, pump generates the HEHG,, term. Creating ~ €rally require that the crystals are thion the order of a few
a pump beam that is an arbitrary coherent Superposition dﬂillimeterﬁ, so the pOSSible aStigmatism effects discussed in
these two beams, we can generate nonmaximally entanglézec. Il should be minimal, even for the type-Il source.
pure states. Figure 4 shows a possible experimental setufloreover, the experimental setups described above require
The input pump beam is a horizontally polarized {i6eam.  Only lower order HG modes.
A half- (HWP1) and quarter-wave plat@WP1) are used to
adjust the pump polarization. Rotating HWP1, one can V. CONCLUSION
change the pump polarization did)— cosé|H)+sin 4|V),
whereH andV stand for horizontal and vertical polarization. ~ We have shown that it is possible to generate correlated
By tilting QWP1 one can adjust the relative ph486]. The  Hermite-Gaussian modes through spontaneous parametric
pump polarization is thefH) — cos6|H)+€¢ sin 6]V) up to down-conversion. We have derived exact and approximate
a global phase. The pump beam then enters a polarizatio@nalytical expressions for the probability amplitudgl}, to
dependent Sagnac interferometer with a nested Dove pris@ﬁnerate arbitrary combinations of Hermite-Gaussian fields.
(DP) orientated at 22.5°. This type of Sagnac interferometefor any Hermite-Gaussian pump beam, there exist parity
is experimentally advantageous since it is insensitive tgconservation conditions for theandy indices of the down-
phase fluctuations, and has been used to construct an opti¢g@nverted Hermite-Gaussian modes. We have used these re-
single-photon CNOT gaté31] and to measure the spatial Sults to show that the two-photon state is indeed entangled in
Wigner function[32]. It is well known that a Dove prism Hermite-Gaussian modes. We have discussed the generation
orientated at an azimuthal ang@ rotates an image by an of maximaIIy entangled Bell-states and nonmaximally en-
angle 2 in the transverse plane. The polarizing beam sp|itte|tang|ed pure states of first-order Hermite-Gaussian fields.
sendsH and V-polarized components into opposite ends of These results can be used to engineer entangled states of
the interferometer, where the Dove prism rotates the imaggigher-dimension, and promise to be useful in quantum in-
of the H-polarized component by 45°, while thepolarized ~ formation schemes.
component, which is propagating in the opposite direction, is
rotated by —45°. The second Dove prigiocated outside the ACKNOWLEDGMENTS
interferometer is used to realign the images in the
horizontal-vertical coordinate system. A Dove prism will ~The authors acknowledge financial support from the Bra-
also slightly rotate the polarization direction. However, sincezilian funding agencies CNPg, CAPES, and the Milenium
in all cases the Dove prisms are followed by PBS’s whichlInstitute for Quantum Information. We thank A. G. Costa
project onto the desired polarization direction, this will resultMoura for useful discussions.
in only a slight reduction in beam intensity. After the second
Dove prism, th_e pump bgam is in. a superpogition: APPENDIX: CALCULATION OF CI™
cosf|HYVyo+€? sin 6|V)V,o. Using a polarizing beamsplitter e
(PBS, one can project onto the 45°-polarization component, In Sec. Ill, we showed that the coefficie@f, is given
after which the pump beam is in the superpositiots)y by Eq.(17),
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Jkut \/ f f dgdg; Ujk(QS)Uut(Q) X Vam(Qs
) L
+ qi)sm{mqs— qi|2)-

Changing coordinates to

Q=q5+qii

(A1)

P=qgs-q;, (A2)

such thatdg,dq;=dQdP/2, we have

e [ oo )l %)

L
X Vnm(Q)sm4 4KP )

Now consider a down-converted HG modg,, with
wavelength\. and beam radius/,.. To be more precise, let
us temporarily writev,(d,A¢,Woc). Since we are working
with down-converted fields satisfying.=2\, it is easy to
show from the general form of HG modes that
vam(a/N2, )\c,\ZWOp) =Vom(d,N\p,Wop). That is, the down-
converted HG modes withvy.= \2w0p will have the same
Rayleigh rangezz, Gouy phase:(z) and radius of curvature

(A3)

R(2) as the pump field. Using this property of the Gaussian

modes, we can expang,((Q+P)/2) andv,((Q-P)/2) and
regroup thex andy terms, which gives

«[QtP Q-P QX+P Qx—Px
Ujk Uut VJU \’2 ' \E

2 2

" <le P, Q- P:I)
kt 5 PEE
V2 V2

(A4)

where we used definition&) and (12) to show thatDJkDut

D Dkt We note here that relatiofA4) is valid for all zg
=z. Then using the definition of the DHG modé&, Eq.
(A4) can be expressed as

(%7l %57)
Ujk Uyt

2 2

N

= 2 b(j,U, @) Vy_y o Q0 Py
a=0

M
X 2, bkt Vg 5(Qy: Py,
B=0

(A5)

where N=j+u and M=k+t. Noting that Dy_ MDM_M
:D*N_a’M_ﬁD p Itis straightforward to show that the product
of angular spectra on the RHS of E@5) can be rewritten
as

Vit-a:a( Qe PO Vit 5,4(Q0 Py = Vit s(QVi (P

(AB)
Putting these Eqs(A5) and (A6) back into Eg.(A3), the
coefficentCjiy, becomes
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1

nm _ —
jkut =

N oM
o2 2 b(j,ua)bkt,B)
T ¥ 2K 20 o

X f AV am-s(Q)Vam( Q)

* L
X f dPVaﬁ(P)sinc<RP2). (A7)
The HG modes are orthonormal, so
fdQVL—a,M—ﬁ(Q)Vnm(Q) = 5N—a,n5M—B,m (A8)
which gives
1 /L .
?krﬂt = ; Rb(],U,N -n)b(k,t,M
" , L ,
-m) | APV u-m(P)sing —P=|,  (A9)
’ 4K
if N=j+u=nandM=k+t=m, elseCjy=0.
Using the following expressmn for the Hermite
polynomials®®
n/2
Hy(é) = 2 (29", (A10)

'(n 21)'

it is straightforward to calculate the integral (A9) analyti-
cally. After some algebraic manipulation,

o /a!ﬁ! (l>(a+ﬂ)/2
Am \2

arctanA

(al2)1(B12)!

_2 r
( o A2> sindr arctanA)
V1+

b(j,u,@)b(k,t, )

jkut =

(a+p2 [ @+

X > 2
r=0

(A11)

if j+u=n andk+t=m, elseC}{}=0. Here we have defined
A=L/Kwj, a=N-n, B=M-mand used the usual binomial
coefﬂment

For thin nonlinear crystals, it is possible to arrive at a
more revealing solution. If the nonlinear crystal is thin
~1 mm), we can approximate sific/4KP?)~1 in Eq.
(A9), giving [dPV, 4(P)sindL/4KP?)~ [dPV, ,(P). Nu-
merical integration shows that errors due to this approxima-
tion are less than 3% for modes as high@&sp=10 for
typical experimental values. Then, integration Pntrans-
forms (18) to

~ 2A
Cit — Cikuc = \/?b(j,u,N—n)b(k,t,M—m)

X HGN-pm-m(0,0,0), (A12)

if j+u=n and k+t=m, otherwise Cj;=0. HG,; is the
Hermite-Gaussian modd) evaluated ak=y=z=0
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