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Optimal control of time-dependent targets
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In this work, we investigate how and to which extent a quantum system can be driven along a prescribed
path in Hilbert space by a suitably shaped laser pulse. To calculate the optimal, i.e., the variationally best pulse,
a properly defined functional is maximized. This leads to a monotonically convergent algorithm which is
computationally not more expensive than the standard optimal-control techniques to push a system, without
specifying the path, from a given initial to a given final state. The method is successfully applied to drive the
time-dependent density along a given trajectory in real space and to control the time-dependent occupation
numbers of a two-level system and of a one-dimensional model for the hydrogen atom.
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I. INTRODUCTION trol schemes for time-independent targgtel,2Q with an

Given a quantum-mechanical system, which laser pulse i§Xténsion to Liouville-spacg21]. The schemes are general-
able to drive the system from state A to state B in a finitelz€d by introducing two new parameters like in Ref5] and
time-interval? Which laser pulse maximizes the density in dhen extended to include time-dependent targets. The new
certain given region in space by the end of the pulse? Quegnethod is monotonically convergent and, in contrast to
tions of this kind are addressed by optimal control theorytracking, does not require a large amount of intuition, i.e.,
(OCT) in the context of nonrelativistic quantum mechanics. choosing controllable objectives. Furthermore, the method is

OCT as a field of mathematics dates back to the lateénot restricted to two-level systems. While REE9] presents
1950s and is widely applied in engineering. One of the mosthe monotonically convergent algorithm, the full power of
famous examples in engineering is the reentry problem of ghe method has not been exploited as yet. The challenge is
space vehicle into the earth’s atmosph@ee, e.g.[1]). The  the control of a truly time-dependent target represented by a
application of OCT to quantum mechanics started in thepositive-semidefinite, explicitly time-dependent operator. In
1980s[2-5]. Due to the enormous progress in the shaping ofSec. I, we describe the general theory along with some ex-
laser fields[6], the control of chemical reactions became amples of such operators. In particular, we discuss the con-
within reach. Experiments using closed loop learni@fiL)  trol of occupation numbers in time and the indirect optimi-
[7] delivered highly convincing resul{8—11]. zation of the dipole operator. The iterative procedure and

Calculated pulse shapes may be employed directly in thgome numerical details are explained in Sec. lll. The results
experimental setup, e.g., as an initial guess for CLL geneti@re presented in Sec. IV.
algorithms. Perhaps more important, the theory can be used

to decipher the control mechanism embedded in the experi- Il. THEORY
mental pulse shapg4?2].
The optimal control schemd43-15 employed so far in We consider an electron in an external potent@l) un-

theoretical simulations and the experimental applicationsler the influence of a laser field. Given an initial state
have been designed to reach a predefined target at the endWfr,0)=¢(r), the time evolution of the electron is described
a finite time-interval. Little is known about controlling the by the time-dependent Schrédinger equation with the laser
path the quantum system takes to the desired target, i.€ield modeled in the dipole approximatidlength gaugg
controlling the trajectory in real space or in quantum number
space. To our knowledge, three methods have been proposed iﬁ\lf(r,t) = I:I\If(r,t), (1)
so far: A fourth-order Euler-Lagrange equation to determine ot
the envelope of the control field has been derived in Ref.
ElG]. This work, however, is restricted to very simple quan- A =Hy- fre(t), 2)
um systems.

Another very elegant method, known as tracking, has N A
been proposed by the authors of REF7] and Ref.[18]. Ho=T+V 3
Despite its tremendous success, this method bears an imriﬂitomic units are used throughoudt=m=e=1). Here, jt
sic difficulty: One has to prescribe a path that is controllable,_, ~ '~ - ;
otherwise singularities in the field appear, because of thé(ﬂxj[“y”?) tIS . tthhe " dlpgle (()jpe;atcl)r t_a'}fj Ig(t)Th
one-to-one correspondence between the control field and th_e(GX( ) &0, €(D) s the time-dependent electric field. The

given trajectory. In practice, this may require a lot of intu- Kinetic energy operator i§:—'V2/2_ .
ition. Our goal is to control the time evolution of the electron by

The third method is an optimal control scheme for time-the external field in a way that the time-averaged expectation
dependent targefsl9]. Basically, it combines optimal con- value of the target operat@®(t) is maximized. Mathemati-
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cally, this goal corresponds to maximizing the functional Equation(10) is a time-dependent Schrédinger equation
T for W(r,t) starting from a given initial stateb(r) and driven
J[¥]= EJ di(W(1)|O(t)[¥(1)), (4) by the fielde(t). If we require the Lagrange multiplie(r ,t)

TJo to be continuous, we can solve the following two equations

- instead of Eq(12):
whereQO(t) is assumed to be positive-semidefinite. _
We want to keep the meaning of the opera@it) as (ia,— H)x(r,b) :—I—é)l(t)\lf(r’t), (13)
general as possible at this point. A few examples will be T
discussed at the end of this section. A
Let us define X(r, 1) =0,%(r,T), (14)

O(t) = O4(t) + 2T8(t - T)O,, (5)  To show this we integrate over E(L2),

so we can also include targets in our formulation that only
depend on the final tim& [4,14,20.

The functionall,[ W] will be maximized subject to a num-
ber of physical constraints. The idea is to cast also these
constraints in a suitable functional form and then calculate
the total variation. Subsequently, we set the total variation to
zero and find a set of coupled partial differential equationsThe left-hand side of Eq15) is 0 because the integrand is a
[3,4]. The solution of these equations will yield the desiredcontinuous function. It follows that also the right side must
laser fielde(t). be 0, which implies Eq(14). From Egs.(12) and (14) then

In more detail, optimizing); may possibly lead to fields follows Eg.(13).
with very high, or even infinite, total intensity. In order to ~ Hence, the Lagrange multiplier satisfies an inhomoge-
avoid these strong fields, we include an additional term in théeous Schrddinger equation with an initial conditiort=T.
functional which penalizes the total energy of the field, ~ Its solution can be formally written as

T+k :
lim f dt{(iat— F)x(r.t) + 1‘—_(51(t)\lf(r,t)

k—0JT.

T+k
= lim J dti[x(r,t) - O,()W(r,H]8t-T). (15)

k—0J T

T R 1t SR

Jlel=-a f dt €(t). (6) x(r,H= Uiox(r to) = T f drUO,(DW(r, D], (16)
0 t

The penalty factow is a positive parameter used to weight where Uy is the time-evolution operator defined &k

this part of the functional against the other parts. :Texp[—iﬁ dt’I:|(t’)].
The constraint that the electron’s wave function has to The set °0f equations that we need to solve is now com-

fulfill the time-dependent Schrédinger equation is expresse&ete: Eqgs(9), (10), (11), (13), and(14). To find an optimal
by field e(t) from these equations we use an iterative algorithm,

T . which is discussed in the next section.
Jile,V,x]=-2 |mf dt(x(®)|(ig, - H[W@®) () In principle, we are not restricted to a single particle. The
0 derivation and the algorithm can be generalized to many-
with a Lagrange multiplien(r ,t). ¥(r ,t) is the wave func- Pparticle systems, but except for a few model systems the
tion driven by the laser field(t). The Lagrange functional Numerical solution of the many-particle time-dependent

has the form Schradinger equati_on is not fea_sible.
We conclude this section with a few examples for the
I W, €] = 3[W] + Jole] + g x, W, ]. (8 target operatoO(t).
Setting the variations of the functional with respecito¥, a. Final-time contral Since our approach is a generaliza-
and e independently to zero yields tion of the traditional optimal control formulation given in
. _ [4,14,20, we first observe that the latter is trivially recovered
ag(t) = - Im{x (O] gV O), j=xV.z, (9)  as a limiting case by setting
0=(i¢ - I:|)\If(r,t), (10) O4(t) =0, Op=P=|DXDy. 17
Here®d; represents the target final state which the propagated
W(r,0) = ¢(r), (11  wave functionW(r,t) is supposed to reach at tinTe In this

case, the target functional reduced4g14]

(ig - H)x(r,b) + I?CA)l(t)\If(r,t) 3y = (U(D|PW(T)) = [(¥(T)|dp)2. (18)

. - The target operator may also be local, as pointed out in Ref.
=ilx(r.t) - O(W(r,n]at-T). (12) [20]. If we chooseO;(t)=0 and O,=48(r —ry) (the density
Equation (9) determines the field from the wave function operatoy, we can maximize the probability density iig at
W(r,t) and the Lagrange multipliey(r ,t). t=T,
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D
J = f dr(W(T)|O,|W(T)) =n(ro,T). (19 zeroth step: ¥P(0)—¥I(T)
Numerically, thes function can be approximated by a sharp K
Gaussian functhn. N _ kth step: [TH(T)—¥H(0)]
b. Wave-function followefThe most ambitious goal is to
find the pulse that forces the system to follow a predefined 20 g0
wave function®d(r ,t). If we choose YT = x¥(0)
O4(t) = [ D ()X D (1)), 20
1(D) = [POXD ()] (20 20,90
A ®(O) — O
0,=0, (21) (X (0) XH(T)]
the maximization of the time-averaged expectation value of P
O with respect to the field(t) becomes almost equivalent [wH(0)—wH(T)]
to the inversion of the Schrédinger equation, i.e., for a given
function ®(r ,t) we find the fielde(t) so that the propagated e+
wave function®(r ,t) comes as close as possible to the target plD(Q) — Pk,

d(r,t) in the space of admissible control fields. We can ap- ] . )
ply this method to the control of time-dependent occupation! N€ laser fields used for the propagation are given by
numbers, if we choose the time-dependent target to be

(1)) = ag()e"E0(0) + ay (e CH|L) + ap(t)e 22 + - 0= 1= me’0 - TmG O] [vO0), (27)

(22
Flolny = £,Jn), (29 1) = (1= 770 = ZIm( (v <o),
Ou(t) = [D(OXP()]. (24) i=xy.z. 28

The functiongag(t)?, [ay(t)|?, [ax(t)[?, ... are the predefined The initial conditions in every iteration step are
time-dependent level occupations which the optimal laser

pulse will try to achieve. In general, the functions W(r,0) = ¢(r), (29
ay(t), ay(t), as(t), ... can be complex, but as demonstrated in

Sec. IV, real functions are sufficient in this case to control the A

occupations in time. For example, if in a two-level-system X(r,T)=0,%(r,T). (30)

the occupation is supposed to oscillate with frequeficyve . . .
could chooseay(t)=cogQt) and, by normalizationa,(t) The propagations in bracke_ts are necessary only if one wants
=sin(Qt). This defines the time-dependent target operatof_o avoid the storage of the time-dependent wave function and
(24) agrange multiplier. Note that the main difference between
c. Moving densityThe operator used in E19) can be this iteration and the schemes used 18] is that one needs
genéralized to to know the time-dependent wave functidf(r,t) to solve
the inhomogeneous equati¢tb) for the Lagrange multiplier

él(t) = 8(r —ro(t), (25)  x(r,t). Depending on the operat@(t), if the inhomogene-
ity is space- and time-dependent, this may require an addi-
1 (7 1 (T tional time propagation.
J; = ?J dt(W(t)[(r —ro(t)| W () = ?J dt n(ry(t),t). The choice ofp and y completes the algorithmy=1 and
0 0 7=1 correspond to the algorithm suggeste{i2@], while the

(26)  choicey=1 and»=0 is analogous to the method used 4
with a direct feedback o®(r ,t). Further choices are dis-
cussed in Refd15,19. In the following, we demonstrate the
application of our algorithm to two different kinds of time-
dependent targets, namely the control of occupation numbers
and the control of a local operator. The first example is a
two-level system consisting of staté®, |1) with a reso-

Equipped with the control equatiort9), (10), and (13), nance frequency ofgy;=wy—w1=0.395 and the dipole ma-
we have to a find an algorithm to solve these equations fotrix elementPy;=(1|x|0)=1.05. The second system is a 1D
€(t). In the following, we describe such a scheme which ismodel for hydrogen22], that has a “soft” Coulomb poten-
similar to Ref.[19]: tial,

J; is maximal if the field is able to maximize the density
along the trajectory o(t).

IIl. ALGORITHM AND NUMERICAL DETAILS
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1 1 T T
. o target level 1
V(X) == ’2—1' (3 1) — level 1 (99.95%)
X5+ S - level 1 (99%)
v 0.8r / - Jevel 1 (95%)
- level 1 (90%)

This type of potential has been used extensively to gain

qualitative insights in the behavior of atoms in strong laser § 0.6f q
pulses[23,24. &
The parametersgy; and Py; of the two-level system are S04t .

chosen to be identical with the lowest excitation energy and
the corresponding dipole matrix element of 1D hydrogen.

The solution of the optimal control Eq$9), (10), (13),
and (14) requires the integration of the time-dependent
Schrédinger equation with and without inhomogeneity.

In the case of the two-level system, one may diagonalize
the Hamilton operator analytically and therefore calculate the
infinitesimal time-evolution operator directly.

The time-dependent Schrédinger equation for the 1D hy- |!
drogen model is solved on a grid, where the infinitesimal |‘ et
time-evolution operator is approximated by the second order l '”“m ” l“” ’ !Ill “
split-operator techniquéSPQ [25], l e !’,“ |
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Xexd - iV(t)At]exp(— —TAt) +O(At%). (32 b 0 200 400 600 800 1000
2 (b) time (a.u.)
For the inhomogeneous Schrédinger equatib), the in- 1 ————rrr————
finitesimal time evolution ofy(x,t) is given by
. thAt 09 q
XOGt+At) = U{*“(x(x,t) -3 f drU [0y (D)W (x, r)])
‘ 0.8+ .
()]
= 0““( X060 = At O (W (x t)) E
! ’ Tt ) Toar 1

where we found the above, lowest-order approximation of

the integral to be sufficient. 0.6r 1
Following the scheme described above, one needs five r 1

propagations per iteration stéfp we want to avoid storage

of the wave function Within the 2nd order split-operator

scheme each time step requires four fast Fourier transforms

(FFT) [26], because we have to know the wave function and FIG. 1. Target function and calculated occupation numbers for

the Lagrange multiplier in real space at every time step to bd1=0.90, 0.95, 0.99, 0.999&), optimal field J;=0.9995 and ex-

able to evaluate the field from E¢9). This sums up to 2 t_racted envelopes fal;=0.90, 0.95(b), and the value of the func-

X 10° FFTs per 1B time steps and iteration. In comparison, fional Ji+J; (¢).

fg’;‘&’i‘g‘ f‘;ﬁ?t{,?l,g;i}?odni_f‘” time-independent targelS]  _ . ) ciewi0) +.a,(t)e¢1]1), where the coefficientay(t) and
Since our hydrogen model can experience ionization, weu(t) ~are real and satisfy aj(t+ai()=1. O

employ absorbing boundaries to take care of boundary ef=|d(t))(d(t)|, 62:0_

fects (otherwise we will find the outgoing wave incoming  jth the parameters\t=0.01,2=0.05, and the initial

from the opposite boundary due to the periodic boundarieguess fielde,(t)=1074, the algorithm converges to a final

introduced by the Fourier transfoymThe real-space wave yajye ofJ;=0.9995 with a difference between two consecu-
funCtiOI’l iS multlplled W|th a maSk funCtion that fa||S Off I|ke tive Va'ues Of the functionaﬁ\](n,n‘*l)g 10‘8 Figure 1 ShOWS

n Lol n vl ) Lol
(c) 100 1000 10000
number of iterations

cos'® at the boundary in every time step. the numerical results for the time evolution of the occupation
numberg Fig. 1(a)] and the optimized fieldFig. 1(b)]. Fig-
IV. RESULTS ure 1(c) illustrates the monotonic convergence of the func-

tional J; +J,. The agreement between the calculated occupa-

tion and the V-shaped target function, as shown in Fig),1
First, we present the results for the two-level system. Thés quite remarkable. To illustrate the quality of results asso-

time-dependent target wave function is chosen|®&))  ciated with different values aof;, we have plotted the occu-

A. Occupation number control
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pation curves corresponding t9=0.90, 0.95, 0.99 in Fig. I
1(a). Somewhat surprisingly, even if we reath=0.95, there k
is still a sizable difference between the curves. Figui® 1

shows the envelopes extracted from the laser fields corre-

T 5% [ levelo T
& % | level l

% | o target level 0

£ > targetlevel 1

o
o

o
o]

T
u”uu

.G
. %
R

o

=]
sponding taJ;=0.90, 0.95 as well as the optimal field corre- g 0.6 i
sponding taJ;=0.9995. The resonance frequency of the sys- )
tem is found within a few steps. Then the algorithm g 04ar |
improves the envelope. Figurécl shows the typical conver- o0zl o
gence behavior: a rapid improvement of the functional in the ’ j . "~°-'zo%
first few steps, implying that the difference between two con- SO g ‘ 4
secutive fields is largéA12), and a slower convergence for @ ° 200400 (a.lf.()’o 800 1000

the later steps, meaning that the differences between two
steps get smalldisee Fig. 1b)]. T T T

The same problem was solved for the 1D hydrogen model o
on a grid. We found);=0.97 with 8J*™V<10°. The pa-
rameters weré\t=0.005,a=1.5, and the initial choice for
the field was agaimey(t)=10"% From our experience with the
two-level system, we expect that the correspondence be-
tween the target curve and the optimized curve will not be
perfect.

The corresponding numerical results are shown in Fig. 2. S
Note that the occupation of higher levels is negligible and L
that ionization is less than 0.2%. The field is in the weak (b) 0 200 49]9ne (aggo 800 1000
response regime. o

Tracking versus optimal controZhu and Rabitz showed 1 ————
[17] how the exact field necessary to follow a given trajec-
tory can be determined by means of Ehrenfest's theorem. 0.9+
The exact field, however, may have singularities, i.e., the
prescribed trajectory is not controllable with a smooth field.
If, like in the next example, the target occupation curves
b3(t),b2(t) consist of step functions, the exact field must
have § peaks and, as a consequence, the tracking method
cannot produce any useful results. The optimal control ap-
proach followed in this paper finds the best compromise be-
tween field energy and overlap with the target, yielding rea-

laser field (a.u.)
¢ o
%, o

functional
ot
%

e
<

<
o

0.5 r

sonable results such as those shown in Fig. 3. © 1 0 100
At times whereb(t) becomes discontinuous, the field has number of iterations
intense pulsefsee Fig. 8)] consisting of only a few oscil- FIG. 2. Target curvesy(t), a;(t) and calculated occupation
lations with the resonance frequency. numbers(a), optimal field(b), and the value 08; andJ;+J, (c).
The time-dependent occupation numbers in Fig) 8e-
viate slightly from the target curve. They are “washed out” at 4
the discontinuity points of the target curve. For larger values ~ \/Ee—[x— 1o (34)
of the penalty factor, we notice that this broadening of the ™

steps is even more pronounckske Fig. 4a)]. In this case, - _ _
the width of the pulse envelope becomes broader and thituitively, the dipole moment will roughly follow the curve

maximum field strength lowdiFig. 4(b)]. described byr(t) sincer(t) governs the movement of the
density.
In the actual computations, we approximate &ifenction
B. Local operator by a sharp Gaussia34).

To test this idea, we first have to choose a reasonable
Avery important quantity to control is the time-dependentfunctionr(t). For this purpose, we solve the time-dependent
dipole moment. This quantity, however, cannot be accessegchrédinger equation for the 1D hydrogen model with a
directly because the dipole operator is not positive semidefigiven laser fielde(t). From the resulting wave function, we
nite. As an alternative, we choose the time-dependent densialculate the time-dependent expectation vai(ig=(X)(t).
operator, With the functionr(t) we then build the target operat(34)
and start our optimization with the initial guesg(t)=10".
. Figure 5a) shows that the expectation val(,, calcu-
O(t) = 8(x—r(t)) (33 lated with the optimal fielde,,(t) follows the targetr(t)
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©
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number of iterations

FIG. 3. Target curvedy(t), by(t) and calculated occupation
numbers(a), optimized field(b), and functionalJ;+J, (c) for «

=0.05.

rather closely. We do not obtain a perfect correspondence
between(X)(t) andr(t), but the results clearly demonstrate
that the algorithm also works for this type of target and,
hence, that the indirect approach to control the dipole mo-
ment is appropriate.

As proven in the Appendix, it is also possible to optimize
functionals of the type

T
J = f dl{T ()0 ¥ ()", n> 1.
AU LA kA )

Iy

Since our integrand, is <1, the effect will be thad, carries
less weight in the optimization, i.e., the algorithm will try to

053810-6
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o target level O
— level 0 (¢=0.05)
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time (a.u.)
T T T
0=0.5
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FIG. 4. The influence of the penalty factar occupation num-

bers(a) and optimal fieldgb).
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FIG. 5. (X) calculated with target and optimized wave function
decrease the field energy. Hence we expect the similaritya) and optimal field(b) (after 1000 iterationsfor parametersx
between the target trajector{t) and the calculated expecta- =0.5,At=0.005,¢,=10"3.
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0.2k ' ' o ' nta‘rgct i APPENDIX
° —n=2

n=i We want to show that the same iteration will converge
he

0.1 monotonically also for a functional of the type
3 T i
T 0 VE f dt(W (H)[O(t)| W (t)",
$ 0
0.1 y 3 wheren>1, n e N. The equation for the Lagrange multiplier
= ~ then has the form
0.2r : . R R
50 100 150 200 250 300 (id = H)x(r,t) = = ni{P (0] OV ¥ ()" O W (r 1),
time (a.u.) (Al)

FIG. 6. Comparison for the expectation val@ with the target
trajectory(squaresfor different exponents. x(r,T)=0. (A2)

_ . . Now considera andb as real positive numbers. Then
tion value(x), to be less for increasing. The results for

n=2, 3, 4 are shown in Fig. 6. If we build a target functional a'=b"=nb"a-b)+a" +(n-1b" —nb"'a. (A3)
with the integrand;=1, we will find the opposite effect, =A

i.e., J; will become more important than before. This dem-Next we show thati=a"+(n-1)b"-nb"1a is never nega-
onstrates that the parameterprovides a new handlén (e Defininga=h+4, se[-b,=), we distinguish between
addition to the penalty factar) to shift the relative impor- 1, cases.

tance ofJ; versusd,. Case 1:6¢[0,%),

a"+(n-1)b"-nb"ta

=(b+&"+(n-1)b"-nb" b+ o)

This work deals with the quantum control of time- i oy -1 NN -1
dependent targets. In Sec. Il, we presented explicit examples =B+ e+ +né™ ot 8+ (n- Db - nbS
of positive-semidefinite target operators designed for the B n! 5 1
control of time-dependent occupations and of the time- —(n_z)!Z!b” F+ - +nd o+ 5" =0. (A4)
dependent dipole moment. We then applied these operators
to control the time evolution of a simple two-level system Case Il:6e[-Db,0),
and of a grid mode(1D hydrogen. In each case, we find a n v el
continuous increase of the value of the functiohatJ,. The (b+ 8"+ (n=Db" = nb"" (b + §)
improvement in the first iteration steps is quite strong, while _pl (1 (2% ) 3
it takes a large number of iterations to converge the last few B Y AR & (A5)
percentages. The results also show that a large number of
iterations is required to reach perfect agreement with the tarfo evaluate Case Il, we introduce 6/b, xe[-1,0) with
get trajectories. In the Appendix, we prove that by exponen-
tiating the integrand with a positive integer>1, the itera-
tion still converges monotonically. The functional

V. CONCLUSION

fx)=(1+x)"-nx-1,

constructed in this way contains two parametersand n, y:=x+1,
that allow one to fine-tune the relative importancelpfind
J,. To summarize, we have demonstrated in this work that y € [0,1),
the quantum control of genuinely time-dependent targets is
feasible. In particular, the successful control of the dipole fly)=y"-ny+n-1,
moment in time may open new avenues to optimize high-
harmonic generation, which is extremely important for shap- f(0)=n-1,
ing attosecond laser pulses. Work along these lines is in
progress. f(1)=0,
ACKNOWLEDGMENTS f»=nG""-1)
<0
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fromn-1>0 to 0O, so it cannot become negative. In conclu-equation for the Lagrange multipli€A1) and obtain

sion,

a'=b"=nb" N a-b)+da" +(n- )b —nb"a.
A>0

(AB)
The deviation inJ between two consecutive steps is
5‘](k+l,k) - J(k+1) _ J(k)

.
= f dt{(w () [O(t) Wk ()"
0

= (WM (1) Ot WM (b)"
+ o V(P - a4V (1)

If we identify a(t)=(¥*t)|OM)| T I(t)) and bit)
=W ()| 0| T (1)) and use Eq(AB),
T
SYKFLR = J d{A®1) + o[ €¥(1)]? - of €V ()]?
0

+n(w® (1) Ot WK (b))
X[(@ D) O WD 1)
—(WwRb)|OMwR®)]},

where we have separated the positive tekth)=a"(t)+(n
- 1)b"(t)-nb™Yt)a(t). We define

B(t) = (P (0)]O(t)[ P (t)"?
X<5\P(k+l,k)(t)|é(t)|N(k+l,k)(t)> =0

and rewritesJ**1K as
T
SJHHR = f dtfA®t) + B(t) + o ¥ (1)]2 - o V()]
0
+ (W R ()] O [wH (1)

x 2 RgWM(1)|O(t)| w14 (1))},
where ST L0 ) =Pk t)-PW®(r t). We use the

.
SNtk = f dt{A(t) + B(t) + a[ () - o V(1)
0

+2 Re- (g +IHO) WO sv )}, (A7)
whereH®=H - jie®),
S ELE = fo ' dt{A(1) + B(r) A8
+aleV(0)P - al V()]
+2 Im(x®(0)|(id, - H®)| 5% 10 (1))}
+2 Re(x(1)| s 0 (1)) [

For the last term in (iEq.(AS) we used the fact that
S¥k+1R(r 0)=0 since the initial state for the wave function
is fixed andy(r,T)=0 because of EqA2).

We use the time-dependent Schrédinger equdti®n for

VW and P whereH®=Hy—- e,
(id,— H®) Wt )
= (ig, = HO[wED(r 1) - w®(r 1)]
- (|:|(k+l) _ ﬁ(k))«y(kﬂ)(r - (|:|(k) _ ﬁ(k))‘lf(k)(r )
=~ [e* D) €O 1) TEI(r 1)
+[e®(t) =€) 1) P, b). (A9)

Consequently, the change in the Lagrange functional be-
comes

.
SJNEIH = f dt(A() + B() + (8 H0(1)|O(t) | % *+19(1))
0

- of[“ VP - [XD]Y

= 2 Im( ()| | WD )L V() - ()]

+ 2 Im( (O] YOO Xt €N D] (AL0)
Finally, using Eqs(27) and(28), we find

:
= f dt{A(U +B(t) + (S DO S (1)~ ol V()] + al X ()] + 2L V(D) - (1 7)?<k>(t)]$[e<k+”(t)
0

—€9n]- 2L - (1- n)e(k)(t)]%[e(k)(t) -”“‘)(t)]}

(A11)

.
= f dt[A(t) +B(t) + (Y * )| O(t) | sw R (1) + a(% - 1>[e<k*1>(t) €N+ a(% - 1)[e<k>(t) —Ts<k>(t)]2] .
0

(A12)
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For 5, ye [0, 2] (similar to[15,19), the iteration converges is exact in each step. Numerical implementations are of
monotonically, i.e.,8J%9=0. This iteration converges course always approximate and, as a consequence, it may
monotonically and quadratically in terms of the field devia-happen that the value of the functionktlecreases. This, on

tions between two iterations. the other hand, provides a test of the accuracy of the propa-
We emphasize that this proof is true only if the solution of gation method.
the time-dependentin)homogeneous Schrédinger equation
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