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In this work, we investigate how and to which extent a quantum system can be driven along a prescribed
path in Hilbert space by a suitably shaped laser pulse. To calculate the optimal, i.e., the variationally best pulse,
a properly defined functional is maximized. This leads to a monotonically convergent algorithm which is
computationally not more expensive than the standard optimal-control techniques to push a system, without
specifying the path, from a given initial to a given final state. The method is successfully applied to drive the
time-dependent density along a given trajectory in real space and to control the time-dependent occupation
numbers of a two-level system and of a one-dimensional model for the hydrogen atom.
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I. INTRODUCTION

Given a quantum-mechanical system, which laser pulse is
able to drive the system from state A to state B in a finite
time-interval? Which laser pulse maximizes the density in a
certain given region in space by the end of the pulse? Ques-
tions of this kind are addressed by optimal control theory
sOCTd in the context of nonrelativistic quantum mechanics.

OCT as a field of mathematics dates back to the late
1950s and is widely applied in engineering. One of the most
famous examples in engineering is the reentry problem of a
space vehicle into the earth’s atmospheressee, e.g.,f1gd. The
application of OCT to quantum mechanics started in the
1980sf2–5g. Due to the enormous progress in the shaping of
laser fieldsf6g, the control of chemical reactions became
within reach. Experiments using closed loop learningsCLLd
f7g delivered highly convincing resultsf8–11g.

Calculated pulse shapes may be employed directly in the
experimental setup, e.g., as an initial guess for CLL genetic
algorithms. Perhaps more important, the theory can be used
to decipher the control mechanism embedded in the experi-
mental pulse shapesf12g.

The optimal control schemesf13–15g employed so far in
theoretical simulations and the experimental applications
have been designed to reach a predefined target at the end of
a finite time-interval. Little is known about controlling the
path the quantum system takes to the desired target, i.e.,
controlling the trajectory in real space or in quantum number
space. To our knowledge, three methods have been proposed
so far: A fourth-order Euler-Lagrange equation to determine
the envelope of the control field has been derived in Ref.
f16g. This work, however, is restricted to very simple quan-
tum systems.

Another very elegant method, known as tracking, has
been proposed by the authors of Ref.f17g and Ref.f18g.
Despite its tremendous success, this method bears an intrin-
sic difficulty: One has to prescribe a path that is controllable,
otherwise singularities in the field appear, because of the
one-to-one correspondence between the control field and the
given trajectory. In practice, this may require a lot of intu-
ition.

The third method is an optimal control scheme for time-
dependent targetsf19g. Basically, it combines optimal con-

trol schemes for time-independent targetsf14,20g with an
extension to Liouville-spacef21g. The schemes are general-
ized by introducing two new parameters like in Ref.f15g and
then extended to include time-dependent targets. The new
method is monotonically convergent and, in contrast to
tracking, does not require a large amount of intuition, i.e.,
choosing controllable objectives. Furthermore, the method is
not restricted to two-level systems. While Ref.f19g presents
the monotonically convergent algorithm, the full power of
the method has not been exploited as yet. The challenge is
the control of a truly time-dependent target represented by a
positive-semidefinite, explicitly time-dependent operator. In
Sec. II, we describe the general theory along with some ex-
amples of such operators. In particular, we discuss the con-
trol of occupation numbers in time and the indirect optimi-
zation of the dipole operator. The iterative procedure and
some numerical details are explained in Sec. III. The results
are presented in Sec. IV.

II. THEORY

We consider an electron in an external potentialVsr d un-
der the influence of a laser field. Given an initial state
Csr ,0d=fsr d, the time evolution of the electron is described
by the time-dependent Schrödinger equation with the laser
field modeled in the dipole approximationslength gauged,

i
]

]t
Csr ,td = ĤCsr ,td, s1d

Ĥ = Ĥ0 − m̂estd, s2d

Ĥ0 = T̂ + V̂ s3d

satomic units are used throughout:"=m=e=1d. Here, m̂
=sm̂x,m̂y,m̂zd is the dipole operator and estd
=(exstd ,eystd ,ezstd) is the time-dependent electric field. The

kinetic energy operator isT̂=−¹2/2.
Our goal is to control the time evolution of the electron by

the external field in a way that the time-averaged expectation

value of the target operatorÔstd is maximized. Mathemati-
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cally, this goal corresponds to maximizing the functional

J1fCg =
1

T
E

0

T

dtkCstduÔstduCstdl, s4d

whereÔstd is assumed to be positive-semidefinite.

We want to keep the meaning of the operatorÔstd as
general as possible at this point. A few examples will be
discussed at the end of this section.

Let us define

Ôstd = Ô1std + 2Tdst − TdÔ2, s5d

so we can also include targets in our formulation that only
depend on the final timeT f4,14,20g.

The functionalJ1fCg will be maximized subject to a num-
ber of physical constraints. The idea is to cast also these
constraints in a suitable functional form and then calculate
the total variation. Subsequently, we set the total variation to
zero and find a set of coupled partial differential equations
f3,4g. The solution of these equations will yield the desired
laser fieldestd.

In more detail, optimizingJ1 may possibly lead to fields
with very high, or even infinite, total intensity. In order to
avoid these strong fields, we include an additional term in the
functional which penalizes the total energy of the field,

J2feg = − aE
0

T

dt e2std. s6d

The penalty factora is a positive parameter used to weight
this part of the functional against the other parts.

The constraint that the electron’s wave function has to
fulfill the time-dependent Schrödinger equation is expressed
by

J3fe,C,xg = − 2 ImE
0

T

dtkxstdusi]t − ĤduCstdl s7d

with a Lagrange multiplierxsr ,td. Csr ,td is the wave func-
tion driven by the laser fieldestd. The Lagrange functional
has the form

Jfx,C,eg = J1fCg + J2feg + J3fx,C,eg. s8d

Setting the variations of the functional with respect tox , C,
ande independently to zero yields

ae jstd = − Imkxstdum̂ juCstdl, j = x,y,z, s9d

0 = si]t − ĤdCsr ,td, s10d

Csr ,0d = fsr d, s11d

si]t − Ĥdxsr ,td +
i

T
Ô1stdCsr ,td

= ifxsr ,td − Ô2stdCsr ,tdgdst − Td. s12d

Equation s9d determines the field from the wave function
Csr ,td and the Lagrange multiplierxsr ,td.

Equations10d is a time-dependent Schrödinger equation
for Csr ,td starting from a given initial statefsr d and driven
by the fieldestd. If we require the Lagrange multiplierxsr ,td
to be continuous, we can solve the following two equations
instead of Eq.s12d:

si]t − Ĥdxsr ,td = −
i

T
Ô1stdCsr ,td, s13d

xsr ,Td = Ô2Csr ,Td, s14d

To show this we integrate over Eq.s12d,

lim
k→0

E
T−k

T+k

dtFsi]t − Ĥdxsr ,td +
i

T
Ô1stdCsr ,tdG

= lim
k→0

E
T−k

T+k

dt ifxsr ,td − Ô2stdCsr ,tdgdst − Td. s15d

The left-hand side of Eq.s15d is 0 because the integrand is a
continuous function. It follows that also the right side must
be 0, which implies Eq.s14d. From Eqs.s12d and s14d then
follows Eq. s13d.

Hence, the Lagrange multiplier satisfies an inhomoge-
neous Schrödinger equation with an initial condition att=T.
Its solution can be formally written as

xsr ,td = Ût0
t xsr ,t0d −

1

T
E

t0

t

dt Ût
t fÔ1stdCsr ,tdg, s16d

where Ut0
t is the time-evolution operator defined asUt0

t

=T expf−iet0
t dt8Ĥst8dg.

The set of equations that we need to solve is now com-
plete: Eqs.s9d, s10d, s11d, s13d, ands14d. To find an optimal
field estd from these equations we use an iterative algorithm,
which is discussed in the next section.

In principle, we are not restricted to a single particle. The
derivation and the algorithm can be generalized to many-
particle systems, but except for a few model systems the
numerical solution of the many-particle time-dependent
Schrödinger equation is not feasible.

We conclude this section with a few examples for the

target operatorÔstd.
a. Final-time control. Since our approach is a generaliza-

tion of the traditional optimal control formulation given in
f4,14,20g, we first observe that the latter is trivially recovered
as a limiting case by setting

Ô1std = 0, Ô2 = P̂ = uF flkF fu. s17d

HereF f represents the target final state which the propagated
wave functionCsr ,td is supposed to reach at timeT. In this
case, the target functional reduces tof4,14g

J1 = kCsTduP̂uCsTdl = zkCsTduF flz2. s18d

The target operator may also be local, as pointed out in Ref.

f20g. If we chooseÔ1std=0 and Ô2=dsr −r 0d sthe density
operatord, we can maximize the probability density inr 0 at
t=T,
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J1 =E dr kCsTduÔ2uCsTdl = nsr 0,Td. s19d

Numerically, thed function can be approximated by a sharp
Gaussian function.

b. Wave-function follower. The most ambitious goal is to
find the pulse that forces the system to follow a predefined
wave functionFsr ,td. If we choose

Ô1std = uFstdlkFstdu, s20d

Ô2 = 0, s21d

the maximization of the time-averaged expectation value of

Ôt
s1d with respect to the fieldestd becomes almost equivalent

to the inversion of the Schrödinger equation, i.e., for a given
function Fsr ,td we find the fieldestd so that the propagated
wave functionCsr ,td comes as close as possible to the target
Fsr ,td in the space of admissible control fields. We can ap-
ply this method to the control of time-dependent occupation
numbers, if we choose the time-dependent target to be

uFstdl = a0stde−iE0tu0l + a1stde−iE1tu1l + a2stde−iE2tu2l + ¯ ,

s22d

Ĥ0unl = Enunl, s23d

Ô1std = uFstdlkFstdu. s24d

The functionsua0stdu2, ua1stdu2, ua2stdu2, … are the predefined
time-dependent level occupations which the optimal laser
pulse will try to achieve. In general, the functions
a0std , a1std , a2std, … can be complex, but as demonstrated in
Sec. IV, real functions are sufficient in this case to control the
occupations in time. For example, if in a two-level-system
the occupation is supposed to oscillate with frequencyV, we
could choosea0std=cossVtd and, by normalization,a1std
=sinsVtd. This defines the time-dependent target operator
s24d.

c. Moving density. The operator used in Eq.s19d can be
generalized to

Ô1std = d„r − r 0std…, s25d

J1 =
1

T
E

0

T

dtkCstdud„r − r 0std…uCstdl =
1

T
E

0

T

dt n„r 0std,t….

s26d

J1 is maximal if the field is able to maximize the density
along the trajectoryr 0std.

III. ALGORITHM AND NUMERICAL DETAILS

Equipped with the control equationss9d, s10d, and s13d,
we have to a find an algorithm to solve these equations for
estd. In the following, we describe such a scheme which is
similar to Ref.f19g:

zeroth step: Cs1ds0d→
es1d

Cs1dsTd

kth step: fCskdsTd→
eskd

Cskds0dg

xskdsTd →
ẽskd,Cskd

xskds0d

fxskds0d →
ẽskd,Cskd

xskdsTdg

fCskds0d→
eskd

CskdsTdg

Csk+1ds0d →
esk+1d

Csk+1dsTd.

The laser fields used for the propagation are given by

ẽ j
skdstd = s1 − hde j

skdstd −
h

a
Imkxskdstdum̂ juCskdstdl, s27d

e j
sk+1dstd = s1 − gdẽ j

skdstd −
g

a
Imkxskdstdum̂ juCsk+1dstdl,

j = x,y,z. s28d

The initial conditions in every iteration step are

Csr ,0d = fsr d, s29d

xsr ,Td = Ô2Csr ,Td. s30d

The propagations in brackets are necessary only if one wants
to avoid the storage of the time-dependent wave function and
Lagrange multiplier. Note that the main difference between
this iteration and the schemes used inf15g is that one needs
to know the time-dependent wave functionCsr ,td to solve
the inhomogeneous equations16d for the Lagrange multiplier

xsr ,td. Depending on the operatorÔ1std, if the inhomogene-
ity is space- and time-dependent, this may require an addi-
tional time propagation.

The choice ofh andg completes the algorithm.g=1 and
h=1 correspond to the algorithm suggested inf20g, while the
choiceg=1 andh=0 is analogous to the method used inf4g
with a direct feedback ofCskdsr ,td. Further choices are dis-
cussed in Refs.f15,19g. In the following, we demonstrate the
application of our algorithm to two different kinds of time-
dependent targets, namely the control of occupation numbers
and the control of a local operator. The first example is a
two-level system consisting of statesu0l , u1l with a reso-
nance frequency ofv01=v0−v1=0.395 and the dipole ma-
trix elementP01=k1um̂u0l=1.05. The second system is a 1D
model for hydrogenf22g, that has a “soft” Coulomb poten-
tial,
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Vsxd = −
1

Îx2 + 1
. s31d

This type of potential has been used extensively to gain
qualitative insights in the behavior of atoms in strong laser
pulsesf23,24g.

The parametersv01 and P01 of the two-level system are
chosen to be identical with the lowest excitation energy and
the corresponding dipole matrix element of 1D hydrogen.

The solution of the optimal control Eqs.s9d, s10d, s13d,
and s14d requires the integration of the time-dependent
Schrödinger equation with and without inhomogeneity.

In the case of the two-level system, one may diagonalize
the Hamilton operator analytically and therefore calculate the
infinitesimal time-evolution operator directly.

The time-dependent Schrödinger equation for the 1D hy-
drogen model is solved on a grid, where the infinitesimal
time-evolution operator is approximated by the second order
split-operator techniquesSPOd f25g,

Ût
t+Dt = T expS− iE

t

t+Dt

dt8Ĥst8dD < expS−
i

2
T̂DtD

3expf− iV̂stdDtgexpS−
i

2
T̂DtD + OsDt3d. s32d

For the inhomogeneous Schrödinger equations14d, the in-
finitesimal time evolution ofxsx,td is given by

xsx,t + Dtd = Ût
t+DtSxsx,td −

1

T
E

t

t+Dt

dtÛt
t fÔ1stdCsx,tdgD

. Ût
t+DtSxsx,td − Dt

1

T
Ô1stdCsx,tdD ,

where we found the above, lowest-order approximation of
the integral to be sufficient.

Following the scheme described above, one needs five
propagations per iteration stepsif we want to avoid storage
of the wave functiond. Within the 2nd order split-operator
scheme each time step requires four fast Fourier transforms
sFFTd f26g, because we have to know the wave function and
the Lagrange multiplier in real space at every time step to be
able to evaluate the field from Eq.s9d. This sums up to 2
3106 FFTs per 105 time steps and iteration. In comparison,
optimal control methods for time-independent targetsf15g
require four propagations.

Since our hydrogen model can experience ionization, we
employ absorbing boundaries to take care of boundary ef-
fects sotherwise we will find the outgoing wave incoming
from the opposite boundary due to the periodic boundaries
introduced by the Fourier transformd. The real-space wave
function is multiplied with a mask function that falls off like
coss1/8d at the boundary in every time step.

IV. RESULTS

A. Occupation number control

First, we present the results for the two-level system. The
time-dependent target wave function is chosen asuFstdl

=a0stde−i«0tu0l+a1stde−i«1tu1l, where the coefficientsa0std and

a1std are real and satisfy a0
2std+a1

2std=1. Ô1

= uFstdlkFstdu , Ô2=0.
With the parametersDt=0.01,a=0.05, and the initial

guess fielde0std=10−4, the algorithm converges to a final
value ofJ1=0.9995 with a difference between two consecu-
tive values of the functionaldJsn,n+1dø10−8. Figure 1 shows
the numerical results for the time evolution of the occupation
numbersfFig. 1sadg and the optimized fieldfFig. 1sbdg. Fig-
ure 1scd illustrates the monotonic convergence of the func-
tional J1+J2. The agreement between the calculated occupa-
tion and the V-shaped target function, as shown in Fig. 1sad,
is quite remarkable. To illustrate the quality of results asso-
ciated with different values ofJ1, we have plotted the occu-

FIG. 1. Target function and calculated occupation numbers for
J1=0.90, 0.95, 0.99, 0.9995sad, optimal field J1=0.9995 and ex-
tracted envelopes forJ1=0.90, 0.95sbd, and the value of the func-
tional J1+J2 scd.
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pation curves corresponding toJ1=0.90, 0.95, 0.99 in Fig.
1sad. Somewhat surprisingly, even if we reachJ1=0.95, there
is still a sizable difference between the curves. Figure 1sbd
shows the envelopes extracted from the laser fields corre-
sponding toJ1=0.90, 0.95 as well as the optimal field corre-
sponding toJ1=0.9995. The resonance frequency of the sys-
tem is found within a few steps. Then the algorithm
improves the envelope. Figure 1scd shows the typical conver-
gence behavior: a rapid improvement of the functional in the
first few steps, implying that the difference between two con-
secutive fields is largesA12d, and a slower convergence for
the later steps, meaning that the differences between two
steps get smallerfsee Fig. 1sbdg.

The same problem was solved for the 1D hydrogen model
on a grid. We foundJ1=0.97 with dJsn,n+1dø10−5. The pa-
rameters wereDt=0.005,a=1.5, and the initial choice for
the field was againe0std=10−4. From our experience with the
two-level system, we expect that the correspondence be-
tween the target curve and the optimized curve will not be
perfect.

The corresponding numerical results are shown in Fig. 2.
Note that the occupation of higher levels is negligible and
that ionization is less than 0.2%. The field is in the weak
response regime.

Tracking versus optimal control. Zhu and Rabitz showed
f17g how the exact field necessary to follow a given trajec-
tory can be determined by means of Ehrenfest’s theorem.
The exact field, however, may have singularities, i.e., the
prescribed trajectory is not controllable with a smooth field.
If, like in the next example, the target occupation curves
b0

2std ,b1
2std consist of step functions, the exact field must

have d peaks and, as a consequence, the tracking method
cannot produce any useful results. The optimal control ap-
proach followed in this paper finds the best compromise be-
tween field energy and overlap with the target, yielding rea-
sonable results such as those shown in Fig. 3.

At times whereb0
2std becomes discontinuous, the field has

intense pulsesfsee Fig. 3sbdg consisting of only a few oscil-
lations with the resonance frequency.

The time-dependent occupation numbers in Fig. 3sad de-
viate slightly from the target curve. They are “washed out” at
the discontinuity points of the target curve. For larger values
of the penalty factor, we notice that this broadening of the
steps is even more pronouncedfsee Fig. 4sadg. In this case,
the width of the pulse envelope becomes broader and the
maximum field strength lowerfFig. 4sbdg.

B. Local operator

A very important quantity to control is the time-dependent
dipole moment. This quantity, however, cannot be accessed
directly because the dipole operator is not positive semidefi-
nite. As an alternative, we choose the time-dependent density
operator,

Ôstd = d„x − rstd… s33d

<Î4 s

p
e−fx − rstdg2s. s34d

Intuitively, the dipole moment will roughly follow the curve
described byrstd since rstd governs the movement of the
density.

In the actual computations, we approximate thed function
by a sharp Gaussians34d.

To test this idea, we first have to choose a reasonable
function rstd. For this purpose, we solve the time-dependent
Schrödinger equation for the 1D hydrogen model with a
given laser fieldestd. From the resulting wave function, we
calculate the time-dependent expectation valuerstd=kx̂lstd.
With the functionrstd we then build the target operators34d
and start our optimization with the initial guesse0std=10−4.

Figure 5sad shows that the expectation valuekx̂lopt calcu-
lated with the optimal fieldeoptstd follows the targetrstd

FIG. 2. Target curvesa0std , a1std and calculated occupation
numberssad, optimal fieldsbd, and the value ofJ1 andJ1+J2 scd.
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rather closely. We do not obtain a perfect correspondence
betweenkx̂lstd and rstd, but the results clearly demonstrate
that the algorithm also works for this type of target and,
hence, that the indirect approach to control the dipole mo-
ment is appropriate.

As proven in the Appendix, it is also possible to optimize
functionals of the type

Since our integrandI1 is ø1, the effect will be thatJ1 carries
less weight in the optimization, i.e., the algorithm will try to
decrease the field energy. Hence we expect the similarity
between the target trajectoryrstd and the calculated expecta-

FIG. 3. Target curvesb0std , b1std and calculated occupation
numberssad, optimized fieldsbd, and functionalJ1+J2 scd for a
=0.05.

FIG. 4. The influence of the penalty factora: occupation num-
berssad and optimal fieldssbd.

FIG. 5. kx̂l calculated with target and optimized wave function
sad and optimal fieldsbd safter 1000 iterationsd for parametersa
=0.5, Dt=0.005,e0=10−3.
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tion value kxlopt to be less for increasingn. The results for
n=2, 3, 4 are shown in Fig. 6. If we build a target functional
with the integrandI1ù1, we will find the opposite effect,
i.e., J1 will become more important than before. This dem-
onstrates that the parametern provides a new handlesin
addition to the penalty factorad to shift the relative impor-
tance ofJ1 versusJ2.

V. CONCLUSION

This work deals with the quantum control of time-
dependent targets. In Sec. II, we presented explicit examples
of positive-semidefinite target operators designed for the
control of time-dependent occupations and of the time-
dependent dipole moment. We then applied these operators
to control the time evolution of a simple two-level system
and of a grid models1D hydrogend. In each case, we find a
continuous increase of the value of the functionalJ1+J2. The
improvement in the first iteration steps is quite strong, while
it takes a large number of iterations to converge the last few
percentages. The results also show that a large number of
iterations is required to reach perfect agreement with the tar-
get trajectories. In the Appendix, we prove that by exponen-
tiating the integrand with a positive integern.1, the itera-
tion still converges monotonically. The functional
constructed in this way contains two parameters,a and n,
that allow one to fine-tune the relative importance ofJ1 and
J2. To summarize, we have demonstrated in this work that
the quantum control of genuinely time-dependent targets is
feasible. In particular, the successful control of the dipole
moment in time may open new avenues to optimize high-
harmonic generation, which is extremely important for shap-
ing attosecond laser pulses. Work along these lines is in
progress.
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APPENDIX

We want to show that the same iteration will converge
monotonically also for a functional of the type

J1 =E
0

T

dtkCstduÔstduCstdln,

wheren.1, nPN. The equation for the Lagrange multiplier
then has the form

si]t − Hdxsr ,td = − nikCstduÔstduCstdln−1ÔstdCsr ,td,

sA1d

xsr ,Td = 0. sA2d

Now considera andb as real positive numbers. Then

sA3d

Next we show thatA=an+sn−1dbn−nbn−1a is never nega-
tive. Defininga=b+d , dP f−b,`d, we distinguish between
two cases.

Case I:dP f0,`d,

an + sn − 1dbn − nbn−1a

=sb + ddn + sn − 1dbn − nbn−1sb + dd

=bn + nbn−1d + ¯ + ndn−1b+ dn + sn − 1dbn − nbn−1d

=
n!

sn − 2d ! 2!
bn−2d2 + ¯ + ndn−1b + dn ù 0. sA4d

Case II:dP f−b,0d,

sA5d

To evaluate Case II, we introducex=d /b, xP f−1,0d with

fsxd = s1 + xdn − nx− 1,

yª x + 1,

y P f0,1d,

fsyd = yn − ny+ n − 1,

fs0d = n − 1,

fs1d = 0,

Since f8syd,0, the functionf must decrease monotonically

FIG. 6. Comparison for the expectation valuekx̂l with the target
trajectoryssquaresd for different exponentsn.
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from n−1.0 to 0, so it cannot become negative. In conclu-
sion,

sA6d

The deviation inJ between two consecutive steps is

dJsk+1,kd = Jsk+1d − Jskd

=E
0

T

dthkCsk+1dstduÔstduCsk+1dstdln

− kCskdstduÔstduCskdstdln

+ afeskdstdg2 − afesk+1dstdg2j.

If we identify astd=kCsk+1dstduÔstduCsk+1dstdl and bstd
=kCskdstduÔstduCskdstdl and use Eq.sA6d,

dJsk+1,kd =E
0

T

dthAstd + afeskdstdg2 − afesk+1dstdg2

+ nkCskdstduÔstduCskdstdln−1

3fkCsk+1dstduÔstduCsk+1dstdl

− kCskdstduÔstduCskdstdlgj,

where we have separated the positive termAstd=anstd+sn
−1dbnstd−nbn−1stdastd. We define

Bstd = nkCskdstduÔstduCskdstdln−1

3kdCsk+1,kdstduÔstdudCsk+1,kdstdl ù 0

and rewritedJsk+1,kd as

dJsk+1,kd =E
0

T

dthAstd + Bstd + afeskdstdg2 − afesk+1dstdg2

+ nkCskdstduÔstduCskdstdln−1

3 2 RekCskdstduÔstdudCsk+1,kdstdlj,

where dCsk+1,kdsr ,td=Csk+1dsr ,td−Cskdsr ,td. We use the

equation for the Lagrange multipliersA1d and obtain

dJsk+1,kd =E
0

T

dthAstd + Bstd + afeskdstdg2 − afesk+1dstdg2

+ 2 Rek− s]t + iH̃ skddxskdstdudCsk+1,kdstdlj, sA7d

whereH̃skd=Ĥ0−m̂ẽskd,

sA8d

For the last term in Eq.sA8d we used the fact that
dCsk+1,kdsr ,0d=0 since the initial state for the wave function
is fixed andxsr ,Td=0 because of Eq.sA2d.

We use the time-dependent Schrödinger equations10d for

Cskd andCsk+1d, whereĤskd=Ĥ0−m̂eskd,

si]t − H̃skdddCsk+1,kdsr ,td

= si]t − H̃skddfCsk+1dsr ,td − Cskdsr ,tdg

= sĤsk+1d − H̃skddCsk+1dsr ,td− sĤskd − H̃skddCskdsr ,td

= − fesk+1dstd − ẽskdstdgm̂sr dCsk+1dsr ,td

+ feskdstd − ẽskdstdgm̂sr dCskdsr ,td. sA9d

Consequently, the change in the Lagrange functional be-
comes

dJsk+1,kd =E
0

T

dt„Astd + Bstd + kdCsk+1,kdstduÔstdudCsk+1,kdstdl

− ahfesk+1dg2 − feskdstdg2j

− 2 Imkxskdstdum̂uCsk+1dstdlfesk+1dstd − ẽskdstdg

+ 2 Imkxskdstdum̂uCskdstdlfeskdstd − ẽskdstdg…. sA10d

Finally, using Eqs.s27d and s28d, we find

dJsk+1,kd =E
0

T

dtHAstd + Bstd + kdCsk+1,kdstduÔstdudCsk+1,kdstdl− afesk+1dstdg2 + afeskdstdg2 + 2fesk+1dstd − s1 − gdẽskdstdg
a

g
fesk+1dstd

− ẽskdstdg − 2fẽskdstd − s1 − hdeskdstdg
a

h
feskdstd − ẽskdstdgJ sA11d

=E
0

T

dtFAstd + Bstd + kdCsk+1,kdstduÔstdudCsk+1,kdstdl + aS2

g
− 1Dfesk+1dstd − ẽskdstdg2 + aS 2

h
− 1Dfeskdstd − ẽskdstdg2G .

sA12d
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For h ,gP f0, 2g ssimilar to f15,19gd, the iteration converges
monotonically, i.e.,dJsk+1,kdù0. This iteration converges
monotonically and quadratically in terms of the field devia-
tions between two iterations.

We emphasize that this proof is true only if the solution of
the time-dependentsindhomogeneous Schrödinger equation

is exact in each step. Numerical implementations are of
course always approximate and, as a consequence, it may
happen that the value of the functionalJ decreases. This, on
the other hand, provides a test of the accuracy of the propa-
gation method.
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