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A passively mode-locked fiber laser is theoretically investigated. The mode locking is achieved using the
nonlinear polarization technique. We consider the practical case of the ytterbium-doped fiber laser operating in
the normal dispersion regime. The effect of the phase plates is explicitly taken into account. The resulting
model reduces to one iterative equation for the optical Kerr nonlinearity, the phase plates and the polarizer, and
one partial differential equation for the gain and the dispersion. Numerical simulations allow us to describe
several features observed in passively mode-locked fiber lasers such as bistability between the mode lock and
the continuous regime, multiple pulse behavior, hysteresis phenomena. The dynamics of the number of pulses
as a function of the pumping power is also reported. Pump power hysteresis is demonstrated.
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I. Introduction

Self-started, passively mode-locked fiber lasers are very
attractive from the dynamical point of view because they
exhibit a large variety of behaviors. Indeed, in addition to the
regular mode-locking regime which has been reported in dif-
ferent optical configurations, many regimes involving several
pulses by cavity round trip have been observed or theoreti-
cally predicted. Experimental results were obtained with
erbium-doped figure eight lasersf1–6g. Bunches of pulses
were observed, pulses randomly spaced but well separated
and also harmonic mode-locking, where the pulses are
equally separated along the cavity. Other features such as
Q-switch operation and bistability between the continuous
and mode-lock regimes were also reportedf4,5g. The evolu-
tion of the number of pulses as a function of the pump power
was investigated in Ref.f5g where the authors showed that
the pulses disappear one by one when the pump was de-
creased. Mode locking using the figure eight geometry has
also been reported with praseodymiumf7g and ytterbiumf8g
doped fibers. Bunches of pulses were also observedf7g. The
possibility of exploiting the nonlinear polarization rotation to
obtain passive mode locking was proposed by Mollenauer
and a theoretical description was given in Ref.f9g. Experi-
mental demonstration of mode locking through nonlinear po-
larization rotation was then demonstratedf10–12g. Here
again, multiple pulsing was also observed although the basic
principle of mode locking was different from the one of
figure-8 lasers. In order to increase the energy per pulse the
stretched-pulse configuration, which also allows reducing the
pulse duration, was proposedf13g. This configuration leads
to various dynamical behaviors such as bistability between
the continuoussCWd and the mode-locksML d regime, har-
monic mode locking, and multiple pulsingf13–16g. In par-
ticular, it was shown in Ref.f16g that a large bistability do-
main exists between the CW and the ML operating regimes.

The evolution of the number of pulses versus the pumping
power was deeply investigated and it was demonstrated that
the pulses were created and annihilated one by one and also
that a large hysteresis occurred when pump power was var-
ied. Pulse splitting and multiple pulse operation have also
been observed experimentallyf17,18g and theoretically
f19–21g in Ti-sapphire lasers. In the nonlinear polarization
rotation based mode-locked lasers, additional behaviors such
as bound states or pulse fragmentation can be observed by
simply rotating one of the phase plates used in the polariza-
tion controller setf22–28g. Bound solitons have been also
reported in figure-8 fiber lasersf29,30g. From the nonexhaus-
tive review presented just abovescomplete reviews can be
found in Refs.f31,32gd, it appears that multiple pulsing, bi-
stability between the CW and the ML regimes,Q switching,
and locked pulses are common features in fiber lasers inde-
pendently of the exact optical configuration. In addition,
most of these operating regimes can be obtained by a simple
rotation of a phase plate in the cavity.

From the theoretical point of view, first models were
based on master equations which had the advantage to be
simple but which did not allow us to take into account the
essential role played by the phase platesf33–37g. The models
consisted in writing a phenomenological scalar equation as-
suming that all effects per pass were small. They included
the group-velocity dispersionsGVDd, the optical Kerr non-
linearity, and a gain medium. The mode-locking properties of
a fiber laser can be well described through this approach for
positive and negative GVD. The effects of the phase plates
cannot be described in this way. Other approaches based on
two-coupled nonlinear equations have been also used
f38,39g. More recently, a scalar model has been proposed for
the mode-locking properties of the ytterbium-doped ring fi-
ber laser passively mode locked through nonlinear polariza-
tion rotation f40g and it has been further extended to both
negative GVD regimef41g and stretched-pulse regimef42g.
This model includes the GVD, the birefringence, the optical
Kerr nonlinearity, and linear gainsi.e., gain saturation effects
were neglectedd. The master equation is of a complex cubic
Ginzburg-Landau type and the coefficients explicitly take
into account the orientation angles of the phase plates. The
biggest advantage of this model is that it leads to analytical
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results for the mode-locking solutions and that the stability
of the ML solutions can be studied as a function of the ori-
entation of the phase plates. Its major drawback is that it is
not possible to investigate the effect of the pumping power.
Bound states were predicted from a complex Ginzbug-
Landau equationf43,44g. More realistic models based on the
experiment have been developed recently for the bound-state
regimes f45g. In spite of the great amount of theoretical
work, there is no model, to the best of our knowledge, re-
lated to the multiple pulse dynamics of a fiber laser.

The aim of this paper is to develop a simple theoretical
model allowing us to describe the dynamics of multiple puls-
ing in a typical passively mode-locked fiber laser. The model
is presented in Sec. II and considers the real case of an
ytterbium-doped fiber ring laser passively mode locked
through nonlinear polarization rotation and operating in the
normal dispersion regime. It takes into account the optical
Kerr nonlinearity, the GVD, the saturating gain, and the ori-
entation of the phase plates. The final model consists in one
algebraic equation accounting for the Kerr nonlinearity for
the phase plates and for the polarizer, and a differential equa-
tion which includes the gain and the GVD. Numerical simu-
lations are given in Sec. III. Bistability between the ML and
the CW operating regimes is first demonstrated. We then
demonstrate that in the ML regime, for a fixed position of the
phase plates, new pulses can be generated one by one when
the pump parameter is increased. Pump power hysteresis is
shown in both normal and anomalous dispersion regimes.
These results are in very good agreement with the corre-
sponding experimental data of Ref.f16g.

II. MODEL

A. Basic principles of the model

We consider an ytterbium-doped fiber ring laser operating
in the normal dispersion regime and passively mode locked
through nonlinear polarization rotation. The setup is shown
in Fig. 1 f46g. For isotropic fibers this scheme involves all
necessary elements for control of nonlinear losses. After the
polarizing isolator the electric field has a linear polarization.
Such a state of polarization does not experience polarization
rotation in the fiber because the rotation angle is proportional

to the area of the polarization ellipse. Consequently, it is
necessary to place a quarter wave plate 3sa3 represents the
orientation angle of one eigenaxis of the plate with respect to
the laboratory framed. The rotation of the polarization ellipse
resulting from the optical Kerr nonlinearity is proportional to
the light intensity, the area of the polarization ellipse, and the
fiber lengthf47g. At the output of the fiber, the direction of
the elliptical polarization of the central part of the pulse can
be rotated towards the passing axis of the polarizer by the
half wave plate 2sthe orientation angle isa2d. Then this
elliptical polarization can be transformed into a linear one by
the quarter wave plate 1sthe orientation angle isa1d. In this
situation the losses for the central part of the pulse are mini-
mum while the wings undergo strong losses. In the follow-
ing, we model the setup of Fig. 1 as follows. The fiber is
assumed to have GVD, optical Kerr nonlinearity, and satu-
rable gain. Linear birefringence is not taken into account in
our model since it is not required for mode locking or for
multiple pulsing. In a first step we solve the equations for a
field propagating in a Kerr medium and take into account the
three phase plates and the polarizer. After that, we write a
scalar equation of a wave propagating in a saturable ampli-
fying medium with GVD. The resulting model assumes a
localized effect for the nonlinear loss due to the Kerr nonlin-
earity and the phase plates and distributed gain and GVD.

B. Nonlinear polarization rotation and the phase plates

Let us consider a wave packet propagating along thez
axis in a fiber exhibiting Kerr nonlinearity and without linear
birefringence. For large peak powers, the nonlinear effects
are large enough, so that the effect of the amplification and
the frequency gain filtering together with the GVD on one
round trip can be neglected in a first approximation. They
will be taken into account in a second step, as perturbations
which have an essential effect on a large number of round
trips. With this assumption, the propagation equations for the
electric field components in the laboratory frame are the
same as for a plane wave, i.e., Refs.f40,47g:

]u

]z
= igsuuu2u + Aunu2u + Bn2u*d,

FIG. 1. Schematic representa-
tion of an ytterbium-doped fiber
ring laser passively mode locked
through nonlinear polarization
rotation.

KOMAROV, LEBLOND, AND SANCHEZ PHYSICAL REVIEW A 71, 053809s2005d

053809-2



]n

]z
= igsunu2n + Auuu2n + Bu2n*d, s1d

whereg sW−1 m−1d is the nonlinear coefficient related to the
nonlinear index coefficientn2, and A=2/3 andB=1/3 for
silicate fibersf47g.

Systems1d admits two conserved quantities:

I = uuszdu2 + unszdu2 = uus0du2 + uns0du2, s2d

J = Imfuszdn*szdg = Imfus0dn*s0dg. s3d

Relations2d stands for the conservation of the energyI along
the fiber while relations3d shows the conservation of the area
J of the polarization ellipse during the propagation along the
fiber. Relations3d is valid under the assumption thatA+B
=1, which is satisfied in silicate fibers.

With the help of conservation relationss2d and s3d, the
solutions of Eq.s1d can be straightforwardly calculated, as

Suszd
nszd

D = eigIzS cosVz sinVz

− sinVz cosVz
DSus0d

ns0d
D = WSus0d

ns0d
D ,

s4d

where V=2gBJ is a constant. Relations4d shows that the
polarization ellipse is rotated with a constant velocityV
without any change of its shape during the propagation along
the fiber.V is proportional to the ellipse areaJ, which de-
pends on both the polarization state and the light intensity.
For example,V=0 for a linear incident polarization, in
which case the fiber does not lead to nonlinear losses.

The phase plates are treated with the help of the Jones
matrix formalism. In the framework of their eigenaxis, the
Jones matrices of a half wave and a quarter wave plates are,
respectively,

Wl/2 = S− i 0

0 i
D, Wl/4 =

1
Î2

S1 − i 0

0 1 + i
D . s5d

Let Mk the Jones matrix of the phase plate number
k sk=1,2,3d in the laboratory frame,

Mk = RsakdWkRs− akd, s6d

where

Rsad = Scosa − sina

sina cosa
D s7d

is the rotation matrix of anglea and Wk stands forWl/2 or
Wl/4 depending on the phase plate under consideration.

Without loss of generality, the passing axis of the polar-
izer is assumed to be parallel to thex axis. Its Jones matrix is

MP = Sb 0

0 0
D , s8d

whereb is the transmission coefficient of the polarizer.
Just after the polarizer the electric field is polarized along

the x axis and can be written

S fnstd
0

D .

The amplitude of the electric field at thesn+1dth round trip,
fn+1, can then be easily calculated as a function of its ampli-
tude at thenth round trip through the relation

S fn+1std
0

D = MPM1M2WM3S fnstd
0

D . s9d

For a fiber of lengthL, we obtainV=gBufnu2sin 2a3 and

fn+1std = − beigufnu2LfcossVL + adcossa1 − a3d

+ i sinsVL + adsinsa1 + a3dgfnstd, s10d

wherea=2a2−a1−a3.
Relation s10d stands for the fast saturable absorption re-

sulting from the combination of the nonlinear polarization
rotation and the polarizer. In other words, Eq.s10d can be
viewed as a nonlinear loss term.

C. Positive feedback and wave plate orientation

For the discussion it is convenient to use

In+1 = b2bcos2spIn + adcos2sa1 − a3d

+ sin2spIn + adsin2sa1 + a3dcIn, s11d

which is deduced from relations10d, settingIn=gLufnu2 and
p=B sin 2a3. The nonlinear losses are due to the terms in-
volving spIn+ad. This dependency vanishes if cos2sa1−a3d
=sin2sa1+a3d, that is, if cos 2a1cos 2a3=0. This condition is
fulfilled if a1= ±p /4 or a3= ±p /4. On the other hand, the
maximum transmission coefficient is obtained when

cos2spIn + adcos2sa1 − a3d + sin2spIn + adsin2sa1 + a3d = 1.

s12d

If cos2spIn+adÞ0 and sin2spIn+adÞ0, the maximum of the
transmission is realized when both cos2sa1−a3d and
sin2sa1+a3d reach their maximum value equal to 1. Unfor-
tunately, in this case the nonlinear dependence on the inten-
sity is absent. Thus, for the more contrast dependence of the
transmission versus the intensity, it is necessary that either
cos2sa1−a3d or sin2sa1+a3d is equal to zero. These condi-
tions are fulfilled in the following cases:

fn+1std = − beigufnu2LcosspgLufnu2 + adcossa1 − a3dfnstd,

a1 + a3 = 0, ±p, s13d

fn+1std = − ibeigufnu2LsinspgLufnu2 + adsinsa1 + a3dfnstd,

a1 − a3 = ± p/2. s14d

Let us consider, for example, the casea1+a3=0, and assume
that p is positive, i.e., 0,a3,p /2 or −p,a3,−p /2. In
the ranges −p /2,pIn+a,0 and p /2,pIn+a,p, the
nonlinear transmission works as a positive feedback: the
greater intensity produces the lower losses. On the other
hand, in the ranges 0,pIn+a,p /2 and −p,pIn+a
,−p /2, the nonlinear transmission acts as a negative feed-
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back, i.e., the highest intensity creates the highest losses. The
results are inverted ifp,0. Of course, the mode locking
requires a positive feedback. The positive feedback is con-
trolled by changing eithera2=a /2 or a3, which modifiesp.

D. Dispersion and gain

The nonlinear losses are taken into account with relation
s10d, while the effect of dispersion, gain, and spectral gain
filtering has be neglected. It can be treated as a perturbation
on a single round trip, the effect of which on a large number
of round trips can be written as a differential equation for the
amplitudef of the electric field immediately after the polar-
izer f40g. This equation is formally the same as the propaga-
tion equation of the electric-field amplitude in a dispersive
fiber with saturable gain and no Kerr nonlinearity. In the
frame moving at the group velocity, the latter isf47g

] f

]z
= Sr − i

b2

2
D ]2f

]t2
+ gf , s15d

whereb2 sps2 m−1d is the second-order GVD. The saturated
gain g sm−1d has the expression

g =
g0

1 +
1

PsatTa
E uf u2dt

, s16d

in which Ta=L /c ssd is the photon round trip time,g0 sm−1d
is the unsaturated gain, andPsat sWd is the saturating power.
Psat=shyp r2d / ssT1d, where hy sJd is the photon energy,
s sm2d is the stimulated emission cross section,T1 ssd is the
lifetime of the upper level of the lasing transition, andr smd
is the radius of the fiber core. The spectral filtering isr
=g/vg

2+rc, where vg ss−1d is the spectral gain bandwidth.
Here, in addition to the spectral gain filteringg/vg

2, we in-
troduce phenomenologically the termrc, which describes the
frequency dispersion for the transmission due to both addi-
tional spectrally selective elements for control of a radiation
spectrum or uncontrolled spectrally selective losses related
with intracavity elements. This additional term is needed to
obtain multiple pulsing regimes.

E. Normalization and numerical procedure

We introduce dimensionless variables related to the physi-
cal quantities through

E =
f

ÎIr

, z =
z

L
, t =

t

dt
, s17d

where Ir =1/gL and dt=Îub2uL /2. Using the dimensionless
variables, Eq.s10d becomes

En+1std = − beiI nfcosspIn + adcossa1 − a3d

+ i sinspIn + adsinsa1 + a3dgEnstd, s18d

where In= uEnu2 and p=B sin 2a3, as above. Equations15d
takes the form

]E
]z

= sDr + iDid
]2E
]t2 +

a

1 + bE Idt

E, s19d

where Di =−sgnsb2d sin the normal dispersion regime
Di =−1, and in the anomalous dispersion regimeDi = +1d,
Dr =2r / ub2u, b= Irdt / sPsatTad, anda=g0L is the pumping pa-
rameter.

The exponential factor in Eq.s18d is related to a nonlinear
phase shift. The other factor describes the nonlinear trans-
mission of the system involving the fiber, the phase plates,
and the polarizing isolator. We remove this nonlinear phase
shift from Eq.s18d and introduce it in the propagation equa-
tion in a gain and dispersive medium using the transform

E = EeiezIdz8. s20d

Relations19d becomes

]E

]z
= sDr + iDid

]2E

]t2 + sG + i uEu2dE, s21d

where we have set for shorteningG=a/ s1+be Idtd. Then
Dr =GDr

0+dr, with Dr
0=2/sub2uLvg

2d anddr =2rc/ ub2u. Equa-
tion s21d includes the nonlinear phase shift. Making the ap-
proximation ezn

zn+1Idz8< Inszn+1−znd= In, which is consistent
with the previous ones, relations18d is transformed into

En+1std = − bfcosspIn + adcossa1 − a3d

+ i sinspIn + adsinsa1 + a3dgEnstd. s22d

The numerical procedure starts from the evaluation of the
electric field after passing through the Kerr medium, the
phase plates and the polarizer, using Eq.s22d. The resulting
electric field is then used as the input field to solve Eq.s21d
over a distanceL, using a standard split-step Fourier algo-
rithm. The computed output field is used as the new input for
Eq. s22d. This iterative procedure is repeated until a steady
state is achieved.

III. NUMERICAL SIMULATIONS

For the numerical simulations we consider the case of an
ytterbium-doped fiber laser operating in the normal disper-
sion regime. The values of the different parameters are
g=3310−3 W−1 m−1 f47g, L=9 m, c=33108 ms−1, b2
=0.026 ps2 m−1 f46g, vg=1013 s−1 f46g, r =5310−6 m, s
=2.5310−24 m2, T1=8310−4 s, andb=0.95.

A. Effect of the nonlinear feedback

It has been shown in Sec. II C that mode locking requires
a positive nonlinear feedback: the greater intensity produces
the lower losses. From Eq.s11d we obtain the nonlinear
transmission coefficienth= In+1/ In, as

h = b2bcos2sa1 − a3d − cos 2a1cos 2a3sin2

3spIn + 2a2 − a1 − a3dc. s23d

Recall thatp=B sin 2a3. A variation of intensitydI = I − I0
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produces a variation of the transmissiondh=h8dI with

h8 =
1

2
Bb2sin 4a3cos 2a1sin 2spI0 + 2a2 − a1 − a3d.

s24d

The nonlinear transmissionh8 depends on the orientation
anglesa1, a2, a3, and on the intensityI0. For h8,0 the
negative feedback is realized, the passive mode locking is
not possible, and continuous operation occurs. The condition
h8.0 is necessary for passive mode lockingsbut it is not
sufficientd. The zone map for positive and negative values of
h8 is presented in Fig. 2.

The boundaries of the zone are straight linesa1=p /4
+kp /2 anda2=a1/2+kp /4+a3/2−pI0/2, wherek is an in-
teger. For large intensities, the boundaries are considerably
shifted, thus the condition for realization of passive mode
locking is different for small and large intensities. A direct
consequence is the existence of bistability between the con-
tinuous operation and the mode-locked regime. The nonlin-
ear refractive index produces a frequency chirp proportional
to the peak intensity of the pulse, and its spectrum is broad-
ened. As a result, the efficiency of the amplification in the
active medium decreases because of the finite spectral gain
bandwidth. Thus there occurs the mechanism of negative
feedback: the greater intensity produces the less amplifica-
tion. For passive mode locking the net feedback must be
positive. As a consequence, the sizes of the regions where
mode locking occurs are smaller than the grey regions in
Fig. 2.

The competition between the positive transmission feed-
back and the negative phase modulation feedback produces
an additional mechanism of bistability between mode lock-
ing and CW operation, multiple pulse operation, and hyster-
esis phenomena.

For efficient operation, mode locking also requires a con-
trasted feedback. We consider the case corresponding to re-
lation s13d with a1+a3=0, a3=−a1=0.2. The remaining
phase plate allows us to control the value ofa, which is
taken equal to −0.7. These values completely fix the optical

cavity and, in particular, the laser threshold that isath=0.4.
Figure 3 shows the transient evolution of an initial pulse in
the fiber laserfFig. 3sadg together with the evolution of the
corresponding optical spectrumfFig. 3sbdg. The pump pa-
rameter isa=0.6 and the spectrally selective losses aredr
=0. In this figure,z represents the number of round trips of
the pulse in the cavity. The pulse duration isT=12.9 ps
while the pulsewidth–spectral bandwidth product is 2.5. The
peak power reachesP0=48 W, and the pulse energy in the
resonator isE=0.6 nJ. The optimization of the pulse duration
is obtained withdr Þ0. The wings of the pulse have consid-
erable detuning from the center frequency of the gain. The
additional spectrally selective element suppresses detuning
spectral components, cuts off the wings, and shortens the
pulse. With this term, we obtain pulses as short as 1 ps.

When the pump parameter is increased, the peak intensity
of the pulse increases and reaches the critical value such that
puEu2+a=0 for which the positive nonlinear feedback be-
comes negative. As a consequence, the increase of the peak
intensity versusa is stopped and the pulse begins to
lengthen. This behavior is presented in Fig. 4.

B. Bistability between the mode-locked and the continuous
regimes

We consider here the possibility to obtain bistability be-
tween the passive mode locking and the continuous opera-
tion. The results of the numerical simulations are given in
Fig. 5. The same parameters are used for both cases except-

FIG. 2. Regions of positivesgreyd and negativeswhited nonlin-
ear feedback as a function of orientation anglesa1 and a2. The
parameters used area3=0.2 andI0=0.

FIG. 3. Transient evolution of the field in the fiber laser.sad
Time distribution of the intensityI versus the round-trip numberz,
sbd spectral distribution of the field. The parameters used area
=0.6, a3=−a1=0.2, a=−0.7, anddr =0.
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ing the initial data. When using parameters for small peak
intensity the nonlinear loss works as the negative feedback,
all pulses decrease, and the continuous operation is estab-
lished after transient evolutionfFig. 5sbdg. With powerful

initial conditions the positive feedback is achieved and mode
locking with single pulse occursfFig. 5sadg. These results are
in good agreement with experimental results observed in
passively mode-locked fiber lasersf4,5,13,16g.

C. Multistability and hysteresis phenomena in the multiple
pulses regime

The sensitivity to the initial conditions suggests the exis-
tence of several attractors for a given set of parameters. In
this section we are interested in multiple pulse operation of
the laser and in the dynamics versus the pumping parameter.
In the framework of our model, multiple pulsing requires
additional spectrally selective losses, i.e.,dr Þ0. Figure 6
shows an example of multiple pulses consisting in a bunch of
three pulses. The pumping parameter isa=1.2. At this stage,
it is interesting to investigate the evolution of the operating
regime when the pumping parameter is varied. It is conve-
nient to represent the results in a diagram which gives the
number of pulsesN for increasing and decreasing values of
the pumping parameter. Results of the simulations are given
in Fig. 7 in the normal dispersion regime. The pump param-
eter at lasing threshold isath=0.68. Several interesting fea-
tures can be seen in this diagram. For increasing pumping,
the laser is first continuous and then directly falls in a mul-
tiple pulsing regimesN=3d for a pump parameteraML =2.1.
If the pump parameter is further increased, the number of
pulses increases. The dynamics is different if now the pump
is decreased. Indeed, the number of pulses disappears one by

FIG. 4. Spatialsad and spectralsbd distributions of the electric
field for steady-state operation as a function of the pumping param-
etera. The parameters used are the same as in Fig. 2.

FIG. 5. Bistable operation:sad passive mode locking vssbd con-
tinuous operation. The parameters used area=2, a=1.3, a1=0,
a3=0.2, anddr =0.2.

FIG. 6. Multiple pulse operation. The parameters used area
=1.2, dr =0.2. The other parameters are the same as in Fig. 3.

FIG. 7. Hysteresis dependence of the lasing regime and of the
numberN of pulses in steady-state operation on pumpinga in the
normal dispersion regimesDi =−1d. The parameters used area
=0.2, a1=−1.9,a3=0.2, anddr =0.2.
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one for particular values ofa. This occurs until the laser
becomes continuous again, for a value of the pump param-
eter close to its threshold valueath. Moreover, when the laser
is in theN-pulse mode-locked regime, the value of the pump
parameter for which one additional pulse appears by increas-
ing a is different from those obtained whena is decreased.
Hence the formation and annihilation of each pulse show
pump power hysteresis. The more pulses exist in the cavity,
the bigger the hysteresis. Similar results are obtained in the
anomalous dispersion regime as shown in Fig. 8.

In the case of the bistability between passive mode-
locking and CW operation which is presented in Fig. 7, the
nonlinear loss works as the positive feedback for both small
and large intensities. Therefore the positive feedback in-
creases with increasing intensity. However, with regard to
the negative phase-modulation feedback, the net feedback is
negative for small intensities and positive for large ones. As
a result, at small intensity level, all ultrashort pulses in the
cavity are suppressed and the CW operation is realized. On
the contrary, at high intensity level, the net positive feedback
selects the most powerful pulse and passive mode locking is
established. An analogous bistability due to the change of the
sign for the feedback with increasing intensity because of
parasitic frequency-dependent loss was thoroughly studied in
Ref. f48g.

D. A qualitative explanation of multistability and hysteresis

At sufficiently high intensity level the nonlinear transmis-
sion h acts as the negative feedback: the greater intensity
produces the less transmission. The transient evolution and
steady-state operation are determined by a competition of
pulses with different peak intensities. At the final stage of the
transient process these pulses have equilibrium frequency
chirp and duration, which are determined by the nonlinear-
dispersion parameters of the laser and by the peak intensity
of the pulses.

The differenceL=l−G between the gain coefficient or
growth ratel for such equilibrium pulses and the linear gain
G has the qualitative evolution shown in Fig. 9. This depen-
dence corresponds to the dependence of the feedback on
peak intensity of pulses: for small intensities the net feed-
back is negative, for greater intensity it is positive, and for

higher intensity it is again negative. The dependence shown
in Fig. 9 gives an insight into the properties of steady-state
operation presented in Fig. 7f20g. For self-starting of passive
mode locking the peak intensityI0 of one pulse must be
greater thanIcr1. In the opposite case the pulses with small
amplitudes will grow up from spontaneous emission, the
laser cavity is filled by radiation and CW operation is
established.

In the case of passive mode-locking operation with in-
creasing pump power, the number of pulses in the steady-
state operation will be increased. More precisely, for peak
intensitiesIcr3. I0. Icr2, the pulse with the greatest intensity
is less amplified than the less powerful one; thus the ampli-
tudes of these pulses are equalized as it is shown in Fig. 3.
Furthermore, with increasing pump power the common peak
intensity of the steady-state pulses increase. When it be-
comes greater thanIcr3, then L becomes negative, which
means that the pulses are less amplified than the CW back-
ground. Therefore a new pulse arises from the background
instability. As this takes place, the peak intensities of the
steady-state pulses become less thanIcr3 because of energy
balance. With further increasing pump power the peak inten-
sities of these pulses increase and reach again the levelIcr3,
and then next pulse arises in generation, and so on. This
process explains the lower stepwise curve in Fig. 7.

In the case of multiple pulse operation with decreasing
pump power the peak intensities of all pulses are the same
and decrease. As long as their peak intensities are greater
than Icr2, the number of these pulses does not change. This
process is described by horizontal lines in Fig. 7. When the
peak intensities of pulses reach the valueIcr2 then, because of
perturbations, the peak intensity of one of them becomes less
than Icr2 and enters the domain of net positive feedback: the
pulse with the lowest intensity undergoes less amplification,
and therefore this pulse is suppressed. Then the peak inten-
sities of the remaining pulses become greater thanIcr2 be-
cause of energy balance. With further decreasing pump
power the peak intensities of these pulses decrease and reach
again the levelIcr2 and then successive pulse is suppressed,
and so on. This process explains the upper stepwise curve in
Fig. 7.

Multiple pulse operation, multistability, and hysteresis
were previously described and investigated in Kerr-lens
mode-locked Ti:sapphire lasersf17–21g. Our theoretical re-
sults are in very good agreement with experimental data ob-
tained in passively mode-locked fiber lasersf2–5,10,11,16g.

FIG. 8. Hysteresis dependence of the lasing regime and of the
number of pulses in steady-state operation on pumpinga in the
anomalous dispersion regimesDi = +0.5d. The parameters used are
a=0.3, a1=−1.9,a3=0.2, anddr =0.2.

FIG. 9. Dependence of the amplification coefficientL due to
nonlinear-dispersion laser parameters for pulses with equilibrium
duration and frequency chirp on their peak intensityI0 under com-
petition pulses during the transient evolution.
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IV. CONCLUSIONS

In this paper we have developed a theoretical model to
describe several behaviors which are usually observed in
passively mode-locked fiber lasers. The model is based on a
fiber exhibiting optical Kerr nonlinearity, group velocity dis-
persion, and saturable gain. The cavity includes three phase
plates and a polarizer in order to mode lock the laser through
the nonlinear polarization rotation technique. The final form
of the model consists in an iterative equation taking into
account the Kerr nonlinearity, the phase plates, and the po-
larizer, and a partial differential equation related to the gain
and the GVD. We have also included additional frequency
selective losses which are necessary to model multiple puls-
ing regimes and hysteresis phenomena. Gain saturation as
well as orientation of the phase plates is explicitly included.
The model is simple and is not computer time consuming.
The role of the nonlinear losses in the mode-locking proper-

ties has been established. Positive nonlinear feedback is re-
quired to obtain passive mode locking. We have then dem-
onstrated that bistability occurs between the passive mode-
locking regime and the continuous regime. Multiple pulse
operation has been pointed out. The evolution of the number
of pulses as a function of the pumping parameter has been
carefully investigated. In particular, we have shown that the
pulses appear one by one when the pump is increased and
that large pump power hysteresis exists. These different be-
haviors have been explained as a consequence of the compe-
tition between the positive nonlinear feedback and the nega-
tive phase modulation effect.

Although our results are in good agreement with experi-
mental data reported in the literature, it remains additional
work to describe the main behaviors experimentally ob-
served in passively mode-locked fiber lasers.Q switching
and other hysteresis phenomena are yet to be theoretically
investigated. These problems are actually under study.
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