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Entanglement and entropy in a spin-boson quantum phase transition
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We investigate the entanglement properties of an ensemble of atoms interacting with a single bosonic field
mode via the DickdsuperradiangeHamiltonian. The model exhibits a quantum phase transition and a well-
understood thermodynamic limit, allowing the identification of both quantum and semiclassical many-body
features in the behavior of the entanglement. We consider the entanglement between the atoms and the field, an
investigation initiated in Lambest al. [Phys. Rev. Lett92, 073602(2004]. In the thermodynamic limit, we
give exact results for all entanglement partitions and observe a logarithmic divergence of the atom-field
entanglement, and discontinuities in the average linear entropy.
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[. INTRODUCTION Going beyond one-dimensional spin chains, the authors of
gief. [9] studied a highly connected simplex, where each spin
interacts equally with all other spins, and the lattice spacing
no longer plays an important role. Importantly, because of
the symmetry, they find a maximum in the pairwise concur-

rence at the critical point, and determine scaling exponents

important part of quantum many-body theory. Since Iargéor the behavior of the concurrence with system _size. The
correlations and collective behavior are an intrinsic part ofc0mmon feature of all of these systems is maximum en-

critical systems, concepts and formalisms used to descrip@nglement and critical scaling of entanglement occuring
ound a critical point.

. r
entanglement are now pemg employeq_to _reveal the trul)? In this paper, we continue the investigation, begun in Ref.
quantum nature O.f certain aspects of criticality. . . [10], of the entanglement properties of the single-mode

_Investlgatlons into the entgnglement betvyeen interactingy, | Hamiltonian, which describes an ensembléNavo-
spin-1/2 systems on a one-dimensional chain have revealgg,e| a1oms coupled to a single-mode Bosonic field. This
so-called “critical entanglement,” in which an entanglementyoge| exhibits a “superradiant’” quantum phase transition
measure of the ground state exhibits universality, or scalmng-D in which the ground state undergoes a dramatic
behavior, around the critical poifi8]. This kind of behavior  change in character. We consider several aspects of the
indicates a deep relationship between quantum phase trangjround-state entanglement in this model and observe how
tions and entanglement. In particular, for the infilt¥ spin  they are affected by the QPT. We investigate entanglement
chains(and their Ising varianisit has been shown that en- between the atomic ensemble and the field mode via the von
tanglement between nearest and next-nearest neighbakeumann[11,12] and linear entropies of this bipartite de-
reaches a maximumear, but not at, the critical point3,4].  composition. We also calculate the average linear entropy of
Furthermore, Osterlolet al. [4] have observed scaling be- all the subsystems, which corresponds to a multipartite mea-
havior of the entanglement, showing that the derivative ofsure introduced by Meyer and Wallagh3]. In the thermo-
the concurrence diverges logarithmically near the criticaldynamic limit, the model is exactly soluble across the whole
point. They also found a logarithmic divergence of the de-coupling range, and we give exact results for these quantifi-
rivative as a function of system size. All of these features arers of the entanglement. For finitewe use perturbative and
indicators of critical entanglement. numerical methods.

Latorre, Vidal, and co-workergb,6] took a different ap- In summary, we find the atom-field entropy diverges at
proach and investigated the entanglement, via the von Neuhe phase transition alongside the traditional correlation
mann entropy, between a block lofspins and the rest of the length, with corresponding critical exponents, and may be
chain inXY and Heisenberg spin chains. They found a loga-ruitfully described by an effective “entanglement tempera-
rithmic scaling of the entropy with ; this time with a pre- ture.” As has been discussed previougsly,15, the QPT is
factor corresponding to the “central charge” of a 1+1 con-foreshadowed at finithl by various “precursors,” and in par-
tinuum quantum field theory of the same universality classticular, a transition from integrable to quantum chaotic be-
In effect, they found the same area law associated with thbavior near the critical point. This transition is characterized
geometric entropy studied by Srednidki]. In an effort to by a change in the energy-level statistics, and can be corre-
understand the nature of the scaling of entanglement, €rus lated with the change in the phase space of a classical Hamil-
al. [8] illustrate that the scaling of the entanglement at thetonian corresponding to the Dicke model. The phase transi-
critical point determines whether or not one could efficientlytion in the quantum model maps to a supercritical pitchfork
simulate the quantum system at this point on a classical conbifurcation in the classical model, and such bifurcations have
puter. recently been related to entanglement characterigstigd 7.

Understanding entanglement—the quantum correlation
impossible to mimic with local classical theories—is a fun-
damental goal of quantum information science. Similarly,
understanding complex modes of behavior, such as quantu
phase transitiongl] and quantum chadg], has become an

1050-2947/2005/15)/0538048)/$23.00 053804-1 ©2005 The American Physical Society



LAMBERT, EMARY, AND BRANDES PHYSICAL REVIEW A 71, 053804(2005

In addition, Fujisakiet al. have shown that the appearance = eiar(aTa+JZ+j), )
and strength of chaos can be linked to the production of

entanglemenf18]. Further work is required in clarifying the which commutes with the Hamiltonian. For finité, the
relation between entanglement in quantum systems an@round state has positive parity. In the thermodynamic limit
chaos in the corresponding classical model. However, therd — %« N—2, notation which we will use interchange-
is a conceptual connection between the divergence of traje@bly) the DH undergoes a QPT at a critical value of the
tories in classical chaos and the delocalization of the quaratom-field couplingh.=Vwwy/2 which breaks this symme-
tum ground state, which is, in general, indicative of entangletry.

ment. At finite N, we perform numerical diagonalizations using

The model considered here is of wider interest still, givena basign) [, m), where|n) are Fock states of the field, and
that the interaction of a charge or spin systems with a singléj,m) are the so-called Dicke states—eigenstates?o&nd
Bosonic mode is viewed as a mechanism for generation of,. We make use of the parity symmetry to simplify these
entanglement in many different situations such as quanturumerics.
cavity QED, quantum dotf19,2(, and ion traps. In addi- o
tion, many suggestions have been made to use the environ- B. Thermodynamic limit
ment, or Bosonic cavities, to share or mediate entanglement |n the thermodynamic limit, below the critical coupling
[19,21-23. In particular, Reslert al.[24] have shown that the system is in its normal phase in which the ground state is
there is a direct equivalence between the single mode Dickgirgely unexcited. Above., the superradiant phase, the
Hamiltonian and the infinitely coordinatedty model. ground state possesses a macroscopic excitation.

This paper has the following structure. In Sec. Il we rein-  As illustrated in Ref.[14], exact solutions may be ob-
troduce the Dicke Hamiltonian, and describe the quantuniained for both phases in the thermodynamic limit by em-
phase transition. In Sec. lll we consider the atom-field enploying a Holstein-Primakoff transformation of the angular
tanglement by recalling the finite numerical and exact thermomentum algebra. In this section, we briefly summarize
modynamic limit results for the von Neumann entropy con-this analysis, highlighting those features such as are required
sidered in Ref.[10], and, as mentioned, extending the here.
discussion with a calculation of the linear entropy, participa- The Holstein-Primakoff mapping expresses the angular
tion ratio, and the average linear entropy. We omit discussiomomentum in terms of a single boson mode,
of the pairwise entanglement covered in Ré0]. We con-

A Lt [P ———— .
clude with discussions in Sec. IV. J.=b"2j-b', J=v2j-b'bb, J,=bb-j, (3)
with [b,b']=1. In this representation, the DH transforms into
Il. DICKE MODEL a two mode Bosonic problem.
Generically, the Dicke HamiltoniatDH) describes the 1. Normal phase
dipole interaction betweefN atoms andn Bosonic field The normal phase is found by simply taking:« in the

modes. Here we shall only consider the single mode casBozonised Hamiltonian, which produces a linear two mode
with n=1. A standard approach to such quantum-opticsHamiltonian. This, as described in R€10], can be diago-
Hamiltonians is to make the rotating wave approximationnalized with a Bogoliubov transformation.
(RWA), rendering the model integrable. We do not make the To calculate the atom-field entanglement of the ground
RWA here, allowing the model to describe both weak- andstate, we require the reduced density mat®RDM) of the
strong-coupling regimes. atoms in the ground state. Summarizing our steps in Ref.
[10], the ground-state wave function is a product of two
GaussiansW(q;,9,)=G,(01)G_(q,), described by the co-
ordinates corresponding to the Bosonic operators of the di-
The single mode Dicke Hamiltonian is agonalized Hamiltonian. Inverting the Bogoliubov coordi-
nate rotations gives us the wave function in terms of the
N N . . coordinategx,y) corresponding to the physical fie(d) and
H=wpX s +wa'a+ > =@+ a)(sy +s) atom (y) modes. To obtain the RDM of the atomic system,

A. Hamiltonian

=1 =Y we integrate over the coordinate. We write the resulting
= oot walat N t 4 a)(d 4] 1 RDM in terms of a rescaleg coordinatey —y/« [writing
= WoS, T waa \"Ej(a A+ 1), (@) c=cosy?, ands=sin Y, tan2yY) =4\ wwy/ (0§— »?)],
. ' D (1) 1/2 2 +D
whereJ,=3>N & J,=>N d are collective angular momen- "= (L) exp(L
z |—1§z T ~i=12% g pc(y,y") 7_[_(6_02_4_ 6+52) 4K2(€_C2+ e+52)

tum operators for a pseudospin of lengthN/2. These op-

erators obey the usual angular momentum commutation re- D

lations, [J,,J,]=+J, and [J,,J_]=2J,. The frequencyw, X(y*+y'?) + myy'), (4)

describes the atomic level splitting, is the field frequency, (et es)

and\ the atom-field coupling strength. where D=(e_—¢,)%c?s%, and the excitation energies in this
There exists a conserved parity operator normal phase are
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1 [ [ [
€= =(w3+ 0’ £ V(05— 0?2+ 16\ °wwy). (5) X=X 2_a’ Y= Ryt 2~—B (10
2 w w w

We did not perform this rescaling in RdfL0]. As this res- where®w=(wg/2w)(1+u). In the displacedX,Y) frame the
caling is effected by a unitary transformation on the atomiowave functions have the same form as in the normal phase,
system alone, it will not affect the atom-field entanglement.but with different parameters and coefficients. In the original
It does, however, aid in the interpretation of our results as iframe (x,y) the wave functions are again the same but dis-
allows us to compensate for one mode squeezing and defingaced from the origin.
the bipartite entanglement in terms of an effective tempera-

ture as we show later. Note that the RDM for the field mode

3. Two lobes

is the same as above, except witland s interchanged. The two possible displacements lead to two Hamiltonians
with ground-state wave functions in they representation
2. Superradiant phase displaced from the origin in different directions. For large

In the following section, we describe in more detail the but finite N, the grou_nd state in the SR phase is a single
two-lobed wave function,

calculations and properties of this phase which were not cov-

ered in Ref.[10]. In the superradiantSR) phase(A>\.), S 1 2a
both atom and field degrees of freedom acquire macroscopic‘l’eR(va) N1~ E 2G| xzt e c

mean fields. We incorporate these mean fields by displacing

the two oscillator modes g 2B 2a
“A/ =y —]s|Gi | xxt\/— s
w [Os) w

al=c'+\a, b'=d' 73, (6)
wherea, B are of orderj. That there are two choices of sign + ?(yi A /2—'8)4 , (12)
here is significant, as the two choices lead to two different Q) o

Hamiltonians with degenerate solutions—an indication thaf . .~ . e the normalized Gaussians. This state has posi-

theBpa?r':)S/eor];i;he (;Sr}:(seteorp Phaes la)gg\r;eb rc?ilgelr;cl:grt:;tpsh?nst% thetive parity and can be used for comparison with our numeri-
y ung . ISpla .~ cal results at finiteN: since the displacements are of order

Holstein-Primakoff Bozonized Hamiltonian, and setting .

terms with overall powers gfin the denominator to zero, we WN, for N>1 the lobes have exponentially small overlap
; P 9 S . o whence the reduced density matrix becomes

obtain an exactly soluble Hamiltonian. Diagonalization re-

quires a_ specific choice for the displacementsy pSRy,y)

=@M o(j12)(1-w), VB=\i(1-w), with x=\2/\? and a

rotation of the coordinates 1 o, 12 o, 28
zEEPG( To(yi e N y'x\—1),
+ [ (O] w (O}

Q; =X cosy? - Y siny?,

N>1

(12
Q,=Xsiny? +Ycosy?, (@) wherepg is given by Eq.(4).
with angle of rotation given by lll. ATOM-FIELD ENTANGLEMENT
2n _ 2wwou? The RDMs of the atoms, Eq$4) and (12), are derived
tan(2y”) = w2 — 2o’ (8) from the pure ground states in the normal and SR phase,
0 respectively. The atom-field entanglement is therefore deter-
The excitation energies of the SR phase are mined by the von Neumann entropy
1] o2 2 2 S=-"Tr(p log,p) (13
=2 200 2 A 202 2]+ 4022 (9) _ N . :
&5 2 W= PE w W W with p the RDM of the atomgan identical result is obtained

with the field RDM. We first present numerical resulal-

and e_ is real only forA=\.. The effective Hamiltonians ready discussed in Ref10]) and a perturbative result for
derived with either choice of sign in E¢) do not commute finite N, and then recap our exact solutions in the thermody-
with the parity operatofl, and thus we see that this symme- namic limit.
try is broken in the SR phase. We diagonalize the DH in the Fock-Dicke basis, and ob-

As before, the ground state of the diagonalized Hamil-tain the RDM of the atoms. This is diagonalized and the von
tonian is the product of two Gaussians @ and Q,. To  Neumann entropy is obtained from
obtain the wave function in terms of the original atomic and
field co-ordinates, we must not only perform the rotation S(p) = = 2 pdogzpy, (14)
Q1,Q,— X,Y but also take into account the relationship be- K
tween the displaced and re-scaled coordinate¥ and the  wherep, are the eigenvalues of the RDM1]. In Fig. 1 we
original atom-field co-ordinates,y, plot the results of these numerical calculations.
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FIG. 2. Effective entanglement temperatufevs A/\. for N
— o, w=wp=1, from Eq.(16) with 8=1/T. The divergence at the
critical point causes the simultaneous divergence of the von Neu-
mann entropy, signalling “maximal mixing.” The second graph il-
lustrates the behavior of the squeezing parametes \/\; from
Eq. (17), which tends to 0 at the critical poink is dimensionless
whereasT has unitsw so that the ratid)/T is dimensionless.

FIG. 1. The von Neumann entroy between the atomic and
Bosonic modes for a range of system sizNs;8, N=32, andN
— oo, The divergence at/\.=1 can be clearly seen, as well as the
strong-couplingS=1 limit. The smaller graphs depict the linear
entropy S;, between the atomic and Bosonic modes &), and
the inverse participation rati® !, Eq. (30), of the ground-state
wave function. The linear entropy exhibits the similar behavior to
the von Neumann entropy, except the asymptotic limit changes with 5 5 222
N because of the normalization. The participation ratio drops to 0 at y) = (1 + $> -1 (&)
the critical point, indicating a massive delocalization of the ground (e.— €+ )ZCZS2 2K2(6_C2 + e+82) '
state. While both entropies are dimensionless the inverse participa- (17)
tion ratio has units ofv.

where B=1/kgT. We have two equations linking the four
A. Perturbative results parameters of the atomic RDM, wq, \, « [wherex is the

. o , . squeezing parameter we introduced in E] and the three
From Rayleigh-Schrodinger perturbation theory, we findggactive parameters of the thermal oscillajey Q, m. By

an N-independent result for the von Neumann entropy forsetting one energy scale of the original system such dat

low coupling[with o=)/(w+wo)] =1, and that of the thermal oscillator such that1, Q=o,
1 ) o2 we can uniquely define the correspondence between the two

1 a?
S=- Iogz( - Iog2< > (150  systems.
1+0° 1+0?) 140 1+0° The squeezing parameterintroduced into the RDM in

This matches the numerical data well far\.<0.4. Si- Ed. (4 compensates for the one-mode squeezing that the
milarly, following Refs.[25,26] for A — o, we can identify ~atomic ensemble undergoes as a function g15], allowing

the strong-coupling limit ground state d¥g9=(1/y2) Us to keep the frequency of the thermal oscillator constant.
X (V2] @, =j ) +|~V2iN @, ]y), where|£\2]\ o, Fj) is  With this relation between the parameters of the two RDMs,
a product of a coherent state for the field and an eigenstate g€ €ffective temperature becomes the parameter describing

J, for the atoms. As this is effectively a maximally entangled h€ degree of mixing in the RDM. In other words, the inter-
state of two two-level system§— 1 as\ — . action of the field with the atomic ensemble is such that,

from the point of the atoms alone, it is as if they were at a
finite temperature, with the temperature given by HA3).

The determination of this temperature is not unique, since
For N—x, the excitation energy diverges as.  there are more free parameters in EdS) than constraints,
x[\.=A|* and the characteristic length diverges Bs but the choice made here is physically appealing, with the
=1/\Ve_x|N—\ ™" with the exponentg=2 andv=1/4[14].  frequency of the thermal oscillator constant and the tempera-

We now use the thermodynamic limit RDMs found above toture varying withA.

obtain an exact analytical expression for the entr&sgs The behavior of the temperatufewith A is shown in Fig.
N— oo, This calculation proceeds via comparison with the2, and the divergence at the critical point is immediately
density matrix of a single harmonic oscillator of mass  obvious. We also plot the squeezing parametexhich van-
frequency() at temperaturel’ [10,27] with that of our re- ishes at\. in accordance with the delocalization of the sys-

B. Thermodynamic limit

duced atomic system in E¢4). We find tem here.
The entropy of a harmonic oscillator at finite temperature
Coshﬂﬂz(lJri) (16) is a standard result from statistical physi&7] (setting
(e.—e)%c’s)’ h=kg=1),
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Q Q [ Q 1 ([ 6M3* |\ 1
S:{E_coth(ﬁ)—In{ZsmI‘(Z—T)}}/In(Z). (18) S\chz{l—zln<—la\éiw4>—Z|n|)\c—)\|}/|n(2)

Note that this is independent & and thus the above dis- == %|ng|?\c— A| + const. (22

cussion does not affect the result @rSolving Eqs(17) for

the effective parameters, we obtain the von Neumann erfhe prefactor to the logarithmic divergence is identical to the

tropy of the atom-field system in the normal phase, which isexponent characterizing the divergence of the length scale

plotted in Fig. 1. We clearly see a divergence\at v=1/4.Thus we see that, as adjudged by the atom-field en-
Moving into the SR phase, if we calculate the entropy oftropy, the system is critically entangled.

a single displaced lobe, exactly the same calculation as in the

normal phase applies, except with the SR parameters instead C. Linear entropy, participation ratio,
of the normal phase ones. Around the critical point, the en- and the average linear entropy
tropy diverges and then falls to zero for large couplingt An alternative measure of entanglement is the linear en-

shown herg This is the correct scenario fot—c, where  tropy, given by
parity symmetry is broken and the system sits in either of the )
displaced lobes. L=71-Trp)], (23

The more interesting case occurs for large but fife \here , is the reduced density matrix of one part of our
where our numerical results indicate that for large COUP"T‘gbipartite system, andy is the normalizationy=1+(1/N)
the entropyS does not 'tend to zero, but rather tp a finite | hich gives the correct €L <1 behavio28]. While it is a
value. This can be easily understood by calculating the enyjiq monotonic entanglement measure, it lacks some of the
tropy of the positive-parity two-lobed SR RDM of EQL2), ¢, physical interpretation provided by the von Neumann

rather than the broken-parity single-lobe wave function a%ntropy[12,29]. Again, we calculate explicit analytical ex-
above. We recall that the two-lobe RDM fbi>1 formally yressions in the thermodynamic limit by employing our co-

turns out as a mixture of the density matrices representing,jinate space ground stateoting for D — . 7— 1
each lobe, cf. Eq(12). A standard resulf11] is that for a pace d 2 g —= =1,

density matrixp=\;p; +X;p,, Ny =0, the concave nature of x _ , .
the von Neumann entropy allows us to write the following 177 = | dxdXp(x,x")p(X",)
inequality:

- f dxa dydy gx.y) g Y)Y VX' Y).

Sp) = MS(p1) + X:S(p). (19
(24
The entropy of a mixture of density matrices is also boundeqp, the normal phase
from above by
L=1- (%) ((E_Sz +€,0%)?
S(p) < MiS(py) + AoSlp2) = Ml0g Ay = Alog A, (20) (eC+es)
~ (e.5°+ €,0%) (e — E+)2C232>_1/2 25
The final two terms are known as the mixing entrdfy], (e.C? + €,5°) '

and in the case that the ranges of fheand p, are pairwise T

orthogonal, this upper bound becomes an equality. Returning" 'ésonance whea=wy=1, c=s=1/y2 this simplifies to

to our positive-parity SR RDM, the entropy of each of the 2Ve e,

two lobes is identicaBS(p;) =S(p,) and they are weighted in L=1-

an equal superposition;=\,=1/2. Furthermore, the two

lobes are orthogonal, and thus from E¢9) and (20) we  which is zero at zero coupling, and unity at the critical point.

have In the SR phase we recall the ground stétm large but
finite N) is a superposition of two lobes, and the RDM is a

S(p) =S(py) + 1. (21) mixture, thus

1
wm%=jﬂw®+ﬂm9+2ﬂ@mm. (27

(e 20

We emphasize that the SR phase entropy plotted in Fig. 1 is

a consistent entanglement measure based on the underlyin% o

pure ground state Eq11), yielding the correct largét be- A bezfore, the two lobes are pairwise orthogonal(pr

havior for strong couplinga. =Tr(p5), and the cross term is zero. Therefore we need
From Eq.(18) we see the entropy depends only on the 1

ratio Q/T. In the limit A —\,, we haveQ/T~ Ve_. Since as L=1- ETr(pi)- (28)

N—\q, €—0, we see that the effective temperature di-

vergesT — o and so does the entropf§;— «. As discussed in  The explicit expression for this is the same as in the normal

Ref.[10], in the neighborhood of the critical point, we have phase, but with the above factor 1/2, and the appropriate SR
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parameters. In the large coupling limit, (ﬁf):l, and thus 1
the linear entropy tends to a constant 1/2. This function, anc
the finite numerics, are shown in one of the insets of Fig. 1.

0.8f
1. Inverse participation ratio

There is also a connection between the linear entropy, anc
the inverse participation rati®0], a measure of the delocal-
ization of a wave function. The un-normalized inverse par- Q 0 05
ticipation ratio is defined as

0.6

0.4

P‘lzfdxdwlf“(x,yﬂ. (29)
0.2
Typically, this is normalized over the volume of the co-
ordinate space, however, we work with the un-normalized
value for convenience?™*— 0 for a state delocalized across 0
the entire co-ordinate space, afd! remains finite for a
localized state, depending on the basis chosen.

We can interpret the participation ratio as a measure of the 15 3 The average linear entropy for system sikss8, N
spread of a wave function over a particular basis, akin to the 1 andN— o Eq. (32) which includes contributions from both
way the entropy is a measure of the spread of a densitie field and atomic modeq is dimensionless. Inset: the derivative
matrix over its diagonal basis. In the normal phase, we peryf the N— o limit.
form the Gaussian integrals with respect to the spin-boson
co-ordinates to obtain

entropy of one subsystem of a pure state is an entanglement
\Z monotone[31] (it does not increase under local operations
= (300  and clasical communicationand a valid entanglement mea-
sure, a concave function of the linear entropy is also an en-
Thus, in this representation, the participation ratio is equal téanglement monotone. The average linear entrQpys we
the Gaussian normalization factor of the ground state, tellingyave defined it here, is a concave function, and is thus itself

us the relative volume in co-ordinate space the state occin entanglement monotone.
pies. We can expres$y, the reduced density matrix of any

In the SR phase¥aH ne1= (L2 (i, + ), where Y, atom from the ensemble, in terms of the collective expecta-
represents the two possible displaced lobes. Again, using tHion values,

P—l

fact that there is no overlap between these lobes, we see 1 2(3,) (3
1 1 2( N )
P1= | dxdy- (¢7 4=fo|o| dxy), (31 = : 33
f xdy, (yi+ ) = | dxdy_yi(xy),  (31) P (3. 1(1+2<Jz>> %9
N 2 N

thus yet again we can use the normal phase result, with the

SR phase parameters. This analytical result is plotted in Figynq we find Tép2) = 2 +2(3,)2/ N2+ 2(J_)J,)/N2. Thus the
1, where the delocalization at the critical point is clearlyIinear entropy ofka sizngle ezxtom is

shown.

Le=1 - 4J,)%IN?, (34)

2. Average linear entropy In the thermodynamic limit,(J,)2=(b'b)2—N(b'b)+N?/4,

To conclude our discussion, we define the average lineand we havelyy*e,=0. In the superradiant phasél,)?

entropy overall subsystem¢N atoms and the field moglas ~ =(d'd)?~Nu(d'd)+N?u?/4, and thusLye.=(1-u?), (u
N-1 =\2/)\?). In both phases the contribution from the mode be-

Q= 1 S L+ L, | | = L+ L(Lb), comes negligible, ar)dgN._m:Lk. Numerical results for this
N+1\,5 N+1 N+1 guantity are plotted in Fig. 3.

] i It has been shown elsewhdr@2] that the average linear
where the sum is replaced because the Dicke states are syghtropy Q is related to a measure of multipartite entangle-

metric with respect to int_erchan_ge of atonhg.is the linear  ent proposed by Meyer and Wallagt3]. The concept of
entropy of atork, andLy, is the linear entropy of the mode tipartite entanglement is a difficult and open deeg.,
discussed earlier, Refs.[33-36), and while the average linear entropy is lim-
_ 2 - 2 ited in the multipartite states it can classif$l] it is both
L= 1= Tpi)) - Lo = el =Trpp)]. (32) easy to calculatg and has proved useful irﬁ? a]variety of con-
As before in Eq.(23), the quantitiesz,=2 and n1=1  texts context$28,32,37,38 For completeness, we provide a
+(1/N) provide the correct normalization. Since the lineardefinition of Meyer and Wallach’s measure in the Appendix.
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TABLE I. Entropy S, Eq.(18), concurrenceCg (from Ref.[10]),  ment measurg81] in a compact way, and perhaps gaining a
and the average linear entropy £84), in the Dicke model near the  clearer understanding of the behavior of multipartite en-

critical pointA — Ae. tanglement. Other avenues of future research may arise from
: investigating quantum phase transitions in other spin-boson
f(\) fN—= o) N scaling models[15,16. In particular, while the Dicke model has a

natural feature that allows infinite system sizes to be inves-

1/2
& |}‘°_M_l/4 tigated, there is no reason other spin-boson models with non-
- ‘1)‘6_)‘| N commuting energy and interaction terms which do not have
S —z|092|7\_—>\c| log,N(014:0.03 this integrable limit should not exhibit similar critical en-
Cr 1-2 N~0-25:0.01 tanglement, with chaotic transitions and level statistics.
s INe—N[722
IN
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final point, the derivative of) in the SR phase TD limit is
dQ/ IN=4N2/\5, which we plot as an inset in Fig. 3. In the
thermodynamic limit the average entanglement of all the
physical subsystems vanishes in the normal phase, but be- Here we include the definition of the Meyer-Wallach en-
comes nonzero in the superradiant phase. However, th@anglement measufd3], as originally intended for a system
maximum of Q is not at the critical point, contrary to the of N qubits, and show its connection to the average linear

APPENDIX: MEYER-WALLACH ENTANGLEMENT

bipartite partitions and the pairwise partitiofi]. entropy.
We can write the pure state oN qubits as |¢)
IV. DISCUSSION AND CONCLUSIONS =2p,....by8b,....oy P1s -+, BN Meyer and Wallach defined two

. interesting unnormalized stat¢8) and [v¥) as vectors in
Table | presents the most important results for the engan-1 \which are obtained by projecting the original stage

tanglement measures we have calculated kemel the con-  ontg the two possible subspaces spanned by the two possible
currence discussed in R¢1.0]), and where appropriate their giates of thekth qubit,

derivatives. In particular, we point out the importance of the
divergences at the critical point, and the finite-size scaling [) = |0) @ [T + |1y @ [T%). (A1)
exponents(not discussed heyeve calculated in Ref{10],
and which have been recently confirmed in Re#].

For the atom-boson partition, we calculated the entrop

In the Schmidt decomposition, these two subspaces are or-
)}hogonal(ﬁkwk):o. Q itself is defined as

exactly in the thermodynamic limit and numerically for finite 4 N

N. The entropy has a divergence around\., which fol- Q(y) = > D([T),[0%), (A2)
lows the power-law divergence of the correlation length Ni=1

| N=Ng 4

Wwhere D([W),[5%)=5i[UTK-TTH? is the generalized

There is also a correspondence between the divergence
wedge product.

the spin-boson entanglemgentropy and the delocalization .
P glemel by Brennen proved that each ternin the sum ofQ was

of the wave function. This is highlighted by our results for X . :
the behavior of the participation ratio, which shows that the2dual to the linear entropy of thieh qubit, and thuQ(|¢)) is

ground state of the Dicke model undergoes a massive del&duivalent to the average linear entropy of all the qubits,
calization at the critical point. Since delocalization is a com- N-1

mon property of wave functions in a quantum chaotic sys- Q) = 2[1 - 12 Tr(pﬁ)], (A3)
tem, our results help strengthen the understanding of the Ni=o

relationship between entanglement and the underlying inte- _ . . .
P g ying wherep, is the reduced density matrix of théh qubit. Thus

grable to chaotic transition present in the Dicke Hamiltonian has th - od i f tanal t
[15]. However, mosgenericfeatures of this relationship are Q has the required properties of an entanglement measure

still unknown. The future of this field lies in closer examina- 0=<Q(yy=1, Q(|'_f/’>):0 fgr product stat(_asQ(|_¢//>):1 fpr
tion of the underlying semiclassical behavior in quantumth® reduced density matrix of every qubit being maximally

systems, such as supercritical pitchfork bifurcatiphg] in ~ Mixed, andQ(|)) is invariant under local unitaries, both
co-ordinate space, or phase space. becauseD is invariant, and Tip?) is invariant.

Similarly, we calculated the average linear entropy, and Many pure states fulfil the requirement for maximal qubit
example of the Meyer-Wallach multipartite entanglement.mixing, and thus give a value d@=1. For example, the
Like our other measures, this displays a clear discontinuity afiree-qubit Greenberger-Home-Zeiling@HZ) state(|000
the critical point. There is obvious future research to be done-|111)/\2 gives Q=1, while the Werner state gives
in applying the many larger classes of multipartite entangIeQ((|100>+|010>+|001>)/\e’§):§.
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