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We investigate the entanglement properties of an ensemble of atoms interacting with a single bosonic field
mode via the Dickessuperradianced Hamiltonian. The model exhibits a quantum phase transition and a well-
understood thermodynamic limit, allowing the identification of both quantum and semiclassical many-body
features in the behavior of the entanglement. We consider the entanglement between the atoms and the field, an
investigation initiated in Lambertet al. fPhys. Rev. Lett.92, 073602s2004dg. In the thermodynamic limit, we
give exact results for all entanglement partitions and observe a logarithmic divergence of the atom-field
entanglement, and discontinuities in the average linear entropy.
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I. INTRODUCTION

Understanding entanglement—the quantum correlations
impossible to mimic with local classical theories—is a fun-
damental goal of quantum information science. Similarly,
understanding complex modes of behavior, such as quantum
phase transitionsf1g and quantum chaosf2g, has become an
important part of quantum many-body theory. Since large
correlations and collective behavior are an intrinsic part of
critical systems, concepts and formalisms used to describe
entanglement are now being employed to reveal the truly
quantum nature of certain aspects of criticality.

Investigations into the entanglement between interacting
spin-1/2 systems on a one-dimensional chain have revealed
so-called “critical entanglement,” in which an entanglement
measure of the ground state exhibits universality, or scaling
behavior, around the critical pointf3g. This kind of behavior
indicates a deep relationship between quantum phase transi-
tions and entanglement. In particular, for the infiniteXY spin
chainssand their Ising variantsd, it has been shown that en-
tanglement between nearest and next-nearest neighbors
reaches a maximumnear, but not at, the critical pointf3,4g.
Furthermore, Osterlohet al. f4g have observed scaling be-
havior of the entanglement, showing that the derivative of
the concurrence diverges logarithmically near the critical
point. They also found a logarithmic divergence of the de-
rivative as a function of system size. All of these features are
indicators of critical entanglement.

Latorre, Vidal, and co-workersf5,6g took a different ap-
proach and investigated the entanglement, via the von Neu-
mann entropy, between a block ofL spins and the rest of the
chain inXY and Heisenberg spin chains. They found a loga-
rithmic scaling of the entropy withL; this time with a pre-
factor corresponding to the “central charge” of a 1+1 con-
tinuum quantum field theory of the same universality class.
In effect, they found the same area law associated with the
geometric entropy studied by Srednickif7g. In an effort to
understand the nature of the scaling of entanglement, Orúset
al. f8g illustrate that the scaling of the entanglement at the
critical point determines whether or not one could efficiently
simulate the quantum system at this point on a classical com-
puter.

Going beyond one-dimensional spin chains, the authors of
Ref. f9g studied a highly connected simplex, where each spin
interacts equally with all other spins, and the lattice spacing
no longer plays an important role. Importantly, because of
the symmetry, they find a maximum in the pairwise concur-
rence at the critical point, and determine scaling exponents
for the behavior of the concurrence with system size. The
common feature of all of these systems is maximum en-
tanglement and critical scaling of entanglement occuring
around a critical point.

In this paper, we continue the investigation, begun in Ref.
f10g, of the entanglement properties of the single-mode
Dicke Hamiltonian, which describes an ensemble ofN two-
level atoms coupled to a single-mode Bosonic field. This
model exhibits a “superradiant” quantum phase transition
sQPTd in which the ground state undergoes a dramatic
change in character. We consider several aspects of the
ground-state entanglement in this model and observe how
they are affected by the QPT. We investigate entanglement
between the atomic ensemble and the field mode via the von
Neumannf11,12g and linear entropies of this bipartite de-
composition. We also calculate the average linear entropy of
all the subsystems, which corresponds to a multipartite mea-
sure introduced by Meyer and Wallachf13g. In the thermo-
dynamic limit, the model is exactly soluble across the whole
coupling range, and we give exact results for these quantifi-
ers of the entanglement. For finiteN we use perturbative and
numerical methods.

In summary, we find the atom-field entropy diverges at
the phase transition alongside the traditional correlation
length, with corresponding critical exponents, and may be
fruitfully described by an effective “entanglement tempera-
ture.” As has been discussed previouslyf14,15g, the QPT is
foreshadowed at finiteN by various “precursors,” and in par-
ticular, a transition from integrable to quantum chaotic be-
havior near the critical point. This transition is characterized
by a change in the energy-level statistics, and can be corre-
lated with the change in the phase space of a classical Hamil-
tonian corresponding to the Dicke model. The phase transi-
tion in the quantum model maps to a supercritical pitchfork
bifurcation in the classical model, and such bifurcations have
recently been related to entanglement characteristicsf16,17g.
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In addition, Fujisakiet al. have shown that the appearance
and strength of chaos can be linked to the production of
entanglementf18g. Further work is required in clarifying the
relation between entanglement in quantum systems and
chaos in the corresponding classical model. However, there
is a conceptual connection between the divergence of trajec-
tories in classical chaos and the delocalization of the quan-
tum ground state, which is, in general, indicative of entangle-
ment.

The model considered here is of wider interest still, given
that the interaction of a charge or spin systems with a single
Bosonic mode is viewed as a mechanism for generation of
entanglement in many different situations such as quantum
cavity QED, quantum dotsf19,20g, and ion traps. In addi-
tion, many suggestions have been made to use the environ-
ment, or Bosonic cavities, to share or mediate entanglement
f19,21–23g. In particular, Reslenet al. f24g have shown that
there is a direct equivalence between the single mode Dicke
Hamiltonian and the infinitely coordinatedXY model.

This paper has the following structure. In Sec. II we rein-
troduce the Dicke Hamiltonian, and describe the quantum
phase transition. In Sec. III we consider the atom-field en-
tanglement by recalling the finite numerical and exact ther-
modynamic limit results for the von Neumann entropy con-
sidered in Ref. f10g, and, as mentioned, extending the
discussion with a calculation of the linear entropy, participa-
tion ratio, and the average linear entropy. We omit discussion
of the pairwise entanglement covered in Ref.f10g. We con-
clude with discussions in Sec. IV.

II. DICKE MODEL

Generically, the Dicke HamiltoniansDHd describes the
dipole interaction betweenN atoms andn Bosonic field
modes. Here we shall only consider the single mode case
with n=1. A standard approach to such quantum-optics
Hamiltonians is to make the rotating wave approximation
sRWAd, rendering the model integrable. We do not make the
RWA here, allowing the model to describe both weak- and
strong-coupling regimes.

A. Hamiltonian

The single mode Dicke Hamiltonian is

H = v0o
i=1

N

sz
sid + va†a + o

i=1

N
l

ÎN
sa† + adss+

sid + s−
sidd

= v0Jz + va†a +
l

Î2j
sa† + adsJ+ + J−d, s1d

whereJz=oi=1
N sz

i , J±=oi=1
N s±

i are collective angular momen-
tum operators for a pseudospin of lengthj =N/2. These op-
erators obey the usual angular momentum commutation re-
lations, fJz,J±g= ±J± and fJ+,J−g=2Jz. The frequencyv0

describes the atomic level splitting,v is the field frequency,
andl the atom-field coupling strength.

There exists a conserved parity operator

P = eipsa†a+Jz+jd, s2d

which commutes with the Hamiltonian. For finiteN, the
ground state has positive parity. In the thermodynamic limit
sj →`↔N→`, notation which we will use interchange-
ablyd the DH undergoes a QPT at a critical value of the
atom-field couplinglc=Îvv0/2 which breaks this symme-
try.

At finite N, we perform numerical diagonalizations using
a basisunl ^ u j ,ml, whereunl are Fock states of the field, and
u j ,ml are the so-called Dicke states—eigenstates ofJ2 and
Jz. We make use of the parity symmetry to simplify these
numerics.

B. Thermodynamic limit

In the thermodynamic limit, below the critical couplinglc
the system is in its normal phase in which the ground state is
largely unexcited. Abovelc, the superradiant phase, the
ground state possesses a macroscopic excitation.

As illustrated in Ref.f14g, exact solutions may be ob-
tained for both phases in the thermodynamic limit by em-
ploying a Holstein-Primakoff transformation of the angular
momentum algebra. In this section, we briefly summarize
this analysis, highlighting those features such as are required
here.

The Holstein-Primakoff mapping expresses the angular
momentum in terms of a single boson mode,

J+ = b†Î2j − b†b, J− = Î2j − b†bb, Jz = b†b − j , s3d

with fb,b†g=1. In this representation, the DH transforms into
a two mode Bosonic problem.

1. Normal phase

The normal phase is found by simply takingj →` in the
Bozonised Hamiltonian, which produces a linear two mode
Hamiltonian. This, as described in Ref.f10g, can be diago-
nalized with a Bogoliubov transformation.

To calculate the atom-field entanglement of the ground
state, we require the reduced density matrixsRDMd of the
atoms in the ground state. Summarizing our steps in Ref.
f10g, the ground-state wave function is a product of two
Gaussians,Csq1,q2d=G+sq1dG−sq2d, described by the co-
ordinates corresponding to the Bosonic operators of the di-
agonalized Hamiltonian. Inverting the Bogoliubov coordi-
nate rotations gives us the wave function in terms of the
coordinatessx,yd corresponding to the physical fieldsxd and
atom syd modes. To obtain the RDM of the atomic system,
we integrate over thex coordinate. We write the resulting
RDM in terms of a rescaledy coordinatey→y/k fwriting
c=cosgs1d, ands=sings1d , tans2gs1dd=4lÎvv0/ sv0

2−v2dg,

rGsy,y8d = S e+
s1de−

s1d

pse−c2 + e+s2d
D1/2

expS 2e−e+ + D

4k2se−c2 + e+s2d

3sy2 + y82d +
D

2k2se−c2 + e+s2d
yy8D , s4d

where D=se−−e+d2c2s2, and the excitation energies in this
normal phase are
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e±
2 =

1

2
sv0

2 + v2 ± Îsv0
2 − v2d2 + 16l2vv0d. s5d

We did not perform this rescaling in Ref.f10g. As this res-
caling is effected by a unitary transformation on the atomic
system alone, it will not affect the atom-field entanglement.
It does, however, aid in the interpretation of our results as it
allows us to compensate for one mode squeezing and define
the bipartite entanglement in terms of an effective tempera-
ture as we show later. Note that the RDM for the field mode
is the same as above, except withc ands interchanged.

2. Superradiant phase

In the following section, we describe in more detail the
calculations and properties of this phase which were not cov-
ered in Ref.f10g. In the superradiantsSRd phasesl.lcd,
both atom and field degrees of freedom acquire macroscopic
mean fields. We incorporate these mean fields by displacing
the two oscillator modes

a† = c† ± Îa, b† = d† 7 Îb, s6d

wherea , b are of orderj . That there are two choices of sign
here is significant, as the two choices lead to two different
Hamiltonians with degenerate solutions—an indication that
the parity of the system has been broken in this phase.

By inserting one of the above displacements into the
Holstein-Primakoff Bozonized Hamiltonian, and setting
terms with overall powers ofj in the denominator to zero, we
obtain an exactly soluble Hamiltonian. Diagonalization re-
quires a specific choice for the displacementsÎa
=s2l /vdÎs j /2ds1−md , Îb=Îjs1−md, with m=lc

2/l2, and a
rotation of the coordinates

Q1 = X cosgs2d − Y sings2d,

Q2 = X sings2d + Y cosgs2d, s7d

with angle of rotation given by

tans2gs2dd =
2vv0m2

v0
2 − m2v2 . s8d

The excitation energies of the SR phase are

e±
2 =

1

2
Fv0

2

m2 + v2 ±ÎSv0
2

m2 − v2D2

+ 4v2v0
2G s9d

and e− is real only for lùlc. The effective Hamiltonians
derived with either choice of sign in Eq.s6d do not commute
with the parity operatorP, and thus we see that this symme-
try is broken in the SR phase.

As before, the ground state of the diagonalized Hamil-
tonian is the product of two Gaussians inQ1 and Q2. To
obtain the wave function in terms of the original atomic and
field co-ordinates, we must not only perform the rotation
Q1,Q2→X,Y but also take into account the relationship be-
tween the displaced and re-scaled coordinatesX,Y and the
original atom-field co-ordinatesx,y,

X = x 7Î2a

v
, Y =Îv0

ṽ
y ±Î2b

ṽ
, s10d

whereṽ=sv0/2mds1+md. In the displacedsX,Yd frame the
wave functions have the same form as in the normal phase,
but with different parameters and coefficients. In the original
frame sx,yd the wave functions are again the same but dis-
placed from the origin.

3. Two lobes

The two possible displacements lead to two Hamiltonians
with ground-state wave functions in thex,y representation
displaced from the origin in different directions. For large
but finite N, the ground state in the SR phase is a single
two-lobed wave function,

uCG
SRsx,yduN@1 <

1
Î2
Ho

±
G−FSx ±Î2a

v
Dc

−Îv0

ṽ
Sy ±Î2b

v0
DsGG+FSx ±Î2a

v
Ds

+Îv0

ṽ
Sy ±Î2b

v0
DcGJ , s11d

whereG± are the normalized Gaussians. This state has posi-
tive parity and can be used for comparison with our numeri-
cal results at finiteN: since the displacements are of order
ÎN, for N@1 the lobes have exponentially small overlap
whence the reduced density matrix becomes

urSRsy,y8duN@1

<
1

2o
±

rGXÎv0

ṽ
Sy ±Î2b

v0
D,Îv0

ṽ
Sy8 ±Î2b

v0
DC ,

s12d

whererG is given by Eq.s4d.

III. ATOM-FIELD ENTANGLEMENT

The RDMs of the atoms, Eqs.s4d and s12d, are derived
from the pure ground states in the normal and SR phase,
respectively. The atom-field entanglement is therefore deter-
mined by the von Neumann entropy

S= − Trsr log2rd s13d

with r the RDM of the atomssan identical result is obtained
with the field RDMd. We first present numerical resultssal-
ready discussed in Ref.f10gd and a perturbative result for
finite N, and then recap our exact solutions in the thermody-
namic limit.

We diagonalize the DH in the Fock-Dicke basis, and ob-
tain the RDM of the atoms. This is diagonalized and the von
Neumann entropy is obtained from

Ssrd = − o
k

pklog2pk, s14d

wherepk are the eigenvalues of the RDMf11g. In Fig. 1 we
plot the results of these numerical calculations.

ENTANGLEMENT AND ENTROPY IN A SPIN-BOSON… PHYSICAL REVIEW A 71, 053804s2005d

053804-3



A. Perturbative results

From Rayleigh-Schrödinger perturbation theory, we find
an N-independent result for the von Neumann entropy for
low coupling fwith s=l / sv+v0dg

S= −
1

1 + s2log2S 1

1 + s2D −
s2

1 + s2log2S s2

1 + s2D . s15d

This matches the numerical data well forl /lc&0.4. Si-
milarly, following Refs. f25,26g for l→`, we can identify
the strong-coupling limit ground state asuCGSl=s1/Î2d
3suÎ2jl /v ,−jxl+ u−Î2jl /v , jxld, where u±Î2jl /v , 7 jxl is
a product of a coherent state for the field and an eigenstate of
Jx for the atoms. As this is effectively a maximally entangled
state of two two-level systems,S→1 asl→`.

B. Thermodynamic limit

For N→`, the excitation energy diverges ase−
~ ulc−luzn and the characteristic length diverges asl−
=1/Îe−~ ul−lcu−n with the exponentsz=2 andn=1/4 f14g.
We now use the thermodynamic limit RDMs found above to
obtain an exact analytical expression for the entropyS as
N→`. This calculation proceeds via comparison with the
density matrix of a single harmonic oscillator of massm,
frequencyV at temperatureT f10,27g with that of our re-
duced atomic system in Eq.s4d. We find

coshbV = S1 +
2e−e+

se− − e+d2c2s2D , s16d

mV =ÎS1 +
2e−e+

se− − e + d2c2s2D2

− 1 3 S se− − e+d2c2s2

2k2se−c2 + e+s2dD ,

s17d

where b=1/kBT. We have two equations linking the four
parameters of the atomic RDMv , v0, l , k fwherek is the
squeezing parameter we introduced in Eq.s4dg and the three
effective parameters of the thermal oscillatorb , V , m. By
setting one energy scale of the original system such thatv0
=1, and that of the thermal oscillator such thatm=1, V=v,
we can uniquely define the correspondence between the two
systems.

The squeezing parameterk introduced into the RDM in
Eq. s4d compensates for the one-mode squeezing that the
atomic ensemble undergoes as a function ofl f15g, allowing
us to keep the frequency of the thermal oscillator constant.
With this relation between the parameters of the two RDMs,
the effective temperature becomes the parameter describing
the degree of mixing in the RDM. In other words, the inter-
action of the field with the atomic ensemble is such that,
from the point of the atoms alone, it is as if they were at a
finite temperature, with the temperature given by Eqs.s17d.
The determination of this temperature is not unique, since
there are more free parameters in Eqs.s17d than constraints,
but the choice made here is physically appealing, with the
frequency of the thermal oscillator constant and the tempera-
ture varying withl.

The behavior of the temperatureT with l is shown in Fig.
2, and the divergence at the critical point is immediately
obvious. We also plot the squeezing parameterk, which van-
ishes atlc in accordance with the delocalization of the sys-
tem here.

The entropy of a harmonic oscillator at finite temperature
is a standard result from statistical physicsf27g ssetting
"=kB=1d,

FIG. 1. The von Neumann entropyS between the atomic and
Bosonic modes for a range of system sizes,N=8, N=32, andN
→`. The divergence atl /lc=1 can be clearly seen, as well as the
strong-couplingS=1 limit. The smaller graphs depict the linear
entropySlin between the atomic and Bosonic modes Eq.s26d, and
the inverse participation ratioP−1, Eq. s30d, of the ground-state
wave function. The linear entropy exhibits the similar behavior to
the von Neumann entropy, except the asymptotic limit changes with
N because of the normalization. The participation ratio drops to 0 at
the critical point, indicating a massive delocalization of the ground
state. While both entropies are dimensionless the inverse participa-
tion ratio has units ofv.

FIG. 2. Effective entanglement temperatureT vs l /lc for N
→` ,v=v0=1, from Eq.s16d with b=1/T. The divergence at the
critical point causes the simultaneous divergence of the von Neu-
mann entropy, signalling “maximal mixing.” The second graph il-
lustrates the behavior of the squeezing parameterk vs l /lc from
Eq. s17d, which tends to 0 at the critical point.k is dimensionless
whereasT has unitsv so that the ratioV /T is dimensionless.
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S= H V

2T
cothS V

2T
D − lnF2 sinhS V

2T
DGJY lns2d. s18d

Note that this is independent ofk, and thus the above dis-
cussion does not affect the result forS. Solving Eqs.s17d for
the effective parameters, we obtain the von Neumann en-
tropy of the atom-field system in the normal phase, which is
plotted in Fig. 1. We clearly see a divergence atlc.

Moving into the SR phase, if we calculate the entropy of
a single displaced lobe, exactly the same calculation as in the
normal phase applies, except with the SR parameters instead
of the normal phase ones. Around the critical point, the en-
tropy diverges and then falls to zero for large couplingsnot
shown hered. This is the correct scenario forN→`, where
parity symmetry is broken and the system sits in either of the
displaced lobes.

The more interesting case occurs for large but finiteN
where our numerical results indicate that for large coupling,
the entropyS does not tend to zero, but rather to a finite
value. This can be easily understood by calculating the en-
tropy of the positive-parity two-lobed SR RDM of Eq.s12d,
rather than the broken-parity single-lobe wave function as
above. We recall that the two-lobe RDM forN@1 formally
turns out as a mixture of the density matrices representing
each lobe, cf. Eq.s12d. A standard resultf11g is that for a
density matrixr=l1r1+l2r2, l1,2ù0, the concave nature of
the von Neumann entropy allows us to write the following
inequality:

Ssrd ù l1Ssr1d + l2Ssr2d. s19d

The entropy of a mixture of density matrices is also bounded
from above by

Ssrd ø l1Ssr1d + l2Ssr2d − l1log l1 − l2log l2. s20d

The final two terms are known as the mixing entropyf11g,
and in the case that the ranges of ther1 andr2 are pairwise
orthogonal, this upper bound becomes an equality. Returning
to our positive-parity SR RDM, the entropy of each of the
two lobes is identicalSsr1d=Ssr2d and they are weighted in
an equal superpositionl1=l2=1/2. Furthermore, the two
lobes are orthogonal, and thus from Eqs.s19d and s20d we
have

Ssrd = Ssr1d + 1. s21d

We emphasize that the SR phase entropy plotted in Fig. 1 is
a consistent entanglement measure based on the underlying
pure ground state Eq.s11d, yielding the correct large-N be-
havior for strong couplingsl.

From Eq. s18d we see the entropy depends only on the
ratio V /T. In the limit l→lc, we haveV /T,Îe−. Since as
l→lc, e−→0, we see that the effective temperature di-
vergesT→` and so does the entropy,S→`. As discussed in
Ref. f10g, in the neighborhood of the critical point, we have

Sl→lc
= F1 −

1

4
lnS 64lc

3v4

16lc
4 + v4D −

1

4
lnulc − luGY lns2d

= −
1

4
log2ulc − lu + const. s22d

The prefactor to the logarithmic divergence is identical to the
exponent characterizing the divergence of the length scale
n=1/4. Thus we see that, as adjudged by the atom-field en-
tropy, the system is critically entangled.

C. Linear entropy, participation ratio,
and the average linear entropy

An alternative measure of entanglement is the linear en-
tropy, given by

L = hf1 – Trsr2dg, s23d

where r is the reduced density matrix of one part of our
bipartite system, andh is the normalizationh=1+s1/Nd
which gives the correct 0øLø1 behaviorf28g. While it is a
valid monotonic entanglement measure, it lacks some of the
full physical interpretation provided by the von Neumann
entropy f12,29g. Again, we calculate explicit analytical ex-
pressions in the thermodynamic limit by employing our co-
ordinate space ground statesnoting for D→` , h→1d,

Trsr2d =E dxdx8rsx,x8drsx8,xd

=E dxdx8dydy8csx,ydcsx8,ydcsx,y8dcsx8,y8d.

s24d

In the normal phase

L = 1 −S e−e+

se−c2 + e+s2dDSse−s2 + e+c2d2

−
se−s2 + e+c2dse− − e+d2c2s2

se−c2 + e+s2d D−1/2

. s25d

On resonance whenv=v0=1, c=s=1/Î2 this simplifies to

L = 1 −
2Îe−e+

se− + e+d
, s26d

which is zero at zero coupling, and unity at the critical point.
In the SR phase we recall the ground statesfor large but
finite Nd is a superposition of two lobes, and the RDM is a
mixture, thus

Trsr2d =
1

4
fTrsr1

2d + Trsr2
2d + 2 Trsr1r2dg. s27d

As before, the two lobes are pairwise orthogonal, Trsr1
2d

=Trsr2
2d, and the cross term is zero. Therefore we need

L = 1 −
1

2
Trsr1

2d. s28d

The explicit expression for this is the same as in the normal
phase, but with the above factor 1/2, and the appropriate SR
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parameters. In the large coupling limit, Trsr1
2d=1, and thus

the linear entropy tends to a constant 1/2. This function, and
the finite numerics, are shown in one of the insets of Fig. 1.

1. Inverse participation ratio

There is also a connection between the linear entropy, and
the inverse participation ratiof30g, a measure of the delocal-
ization of a wave function. The un-normalized inverse par-
ticipation ratio is defined as

P−1 =E dxdyuC4sx,ydu. s29d

Typically, this is normalized over the volume of the co-
ordinate space, however, we work with the un-normalized
value for convenience.P−1→0 for a state delocalized across
the entire co-ordinate space, andP−1 remains finite for a
localized state, depending on the basis chosen.

We can interpret the participation ratio as a measure of the
spread of a wave function over a particular basis, akin to the
way the entropy is a measure of the spread of a density
matrix over its diagonal basis. In the normal phase, we per-
form the Gaussian integrals with respect to the spin-boson
co-ordinates to obtain

P−1 =
Îe−e+

2p
. s30d

Thus, in this representation, the participation ratio is equal to
the Gaussian normalization factor of the ground state, telling
us the relative volume in co-ordinate space the state occu-
pies.

In the SR phase,CG
SRuN@1=s1/Î2dsc1+c2d, where c1,2

represents the two possible displaced lobes. Again, using the
fact that there is no overlap between these lobes, we see

P−1 =E dxdy
1

4
sc1

4 + c2
4d =E dxdy

1

2
c1

4sx,yd, s31d

thus yet again we can use the normal phase result, with the
SR phase parameters. This analytical result is plotted in Fig.
1, where the delocalization at the critical point is clearly
shown.

2. Average linear entropy

To conclude our discussion, we define the average linear
entropy overall subsystemssN atoms and the field moded as

Q ;F 1

N + 1
So

k=0

N−1

Lk + LbDG =
N

N + 1
Lk +

1

N + 1
sLbd,

where the sum is replaced because the Dicke states are sym-
metric with respect to interchange of atoms.Lk is the linear
entropy of atomk, andLb is the linear entropy of the mode
discussed earlier,

Lk = h2f1 − Trsrk
2dg, Lb = hN+1f1 − Trsrb

2dg. s32d

As before in Eq.s23d, the quantitiesh2=2 and hN+1=1
+s1/Nd provide the correct normalization. Since the linear

entropy of one subsystem of a pure state is an entanglement
monotonef31g sit does not increase under local operations
and clasical communicationd, and a valid entanglement mea-
sure, a concave function of the linear entropy is also an en-
tanglement monotone. The average linear entropyQ, as we
have defined it here, is a concave function, and is thus itself
an entanglement monotone.

We can expressrk, the reduced density matrix of any
atom from the ensemble, in terms of the collective expecta-
tion values,

rk = 3
1

2
S1 −

2kJzl
N

D kJ−l
N

kJ+l
N

1

2
S1 +

2kJzl
N

D 4 , s33d

and we find Trsrk
2d= 1

2 +2kJzl2/N2+2kJ−lkJ+l /N2. Thus the
linear entropy of a single atom is

Lk = 1 − 4kJzl2/N2. s34d

In the thermodynamic limit,kJzl2=kb†bl2−Nkb†bl+N2/4,
and we haveLk,N→`

l,lc =0. In the superradiant phase,kJzl2

=kd†dl2−Nmkd†dl+N2m2/4, and thusLk,N→`
l.lc =s1−m2d , sm

=lc
2/l2d. In both phases the contribution from the mode be-

comes negligible, andQN→`=Lk. Numerical results for this
quantity are plotted in Fig. 3.

It has been shown elsewheref32g that the average linear
entropyQ is related to a measure of multipartite entangle-
ment proposed by Meyer and Wallachf13g. The concept of
multipartite entanglement is a difficult and open onese.g.,
Refs.f33–36gd, and while the average linear entropy is lim-
ited in the multipartite states it can classifyf31g it is both
easy to calculate and has proved useful in a variety of con-
texts contextsf28,32,37,38g. For completeness, we provide a
definition of Meyer and Wallach’s measure in the Appendix.

FIG. 3. The average linear entropy for system sizesN=8, N
=16, andN→` Eq. s32d which includes contributions from both
the field and atomic modes.Q is dimensionless. Inset: the derivative
of the N→` limit.
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In our results Fig. 3, we see a clear discontinuity inQ
between the two phases. This follows directly from the dis-
continuity of the atomic inversion at the critical pointf15g,
and the simple nature of our symmetric atomic states. As a
final point, the derivative ofQ in the SR phase TD limit is
]Q/]l=4lc

4/l5, which we plot as an inset in Fig. 3. In the
thermodynamic limit the average entanglement of all the
physical subsystems vanishes in the normal phase, but be-
comes nonzero in the superradiant phase. However, the
maximum of Q is not at the critical point, contrary to the
bipartite partitions and the pairwise partitionsf10g.

IV. DISCUSSION AND CONCLUSIONS

Table I presents the most important results for the en-
tanglement measures we have calculated heresand the con-
currence discussed in Ref.f10gd, and where appropriate their
derivatives. In particular, we point out the importance of the
divergences at the critical point, and the finite-size scaling
exponentssnot discussed hered we calculated in Ref.f10g,
and which have been recently confirmed in Ref.f24g.

For the atom-boson partition, we calculated the entropy
exactly in the thermodynamic limit and numerically for finite
N. The entropy has a divergence aroundl=lc, which fol-
lows the power-law divergence of the correlation lengthl−
~ ul−lcu−1/4.

There is also a correspondence between the divergence of
the spin-boson entanglementsentropyd and the delocalization
of the wave function. This is highlighted by our results for
the behavior of the participation ratio, which shows that the
ground state of the Dicke model undergoes a massive delo-
calization at the critical point. Since delocalization is a com-
mon property of wave functions in a quantum chaotic sys-
tem, our results help strengthen the understanding of the
relationship between entanglement and the underlying inte-
grable to chaotic transition present in the Dicke Hamiltonian
f15g. However, mostgenericfeatures of this relationship are
still unknown. The future of this field lies in closer examina-
tion of the underlying semiclassical behavior in quantum
systems, such as supercritical pitchfork bifurcationsf16g in
co-ordinate space, or phase space.

Similarly, we calculated the average linear entropy, and
example of the Meyer-Wallach multipartite entanglement.
Like our other measures, this displays a clear discontinuity at
the critical point. There is obvious future research to be done
in applying the many larger classes of multipartite entangle-

ment measuresf31g in a compact way, and perhaps gaining a
clearer understanding of the behavior of multipartite en-
tanglement. Other avenues of future research may arise from
investigating quantum phase transitions in other spin-boson
modelsf15,16g. In particular, while the Dicke model has a
natural feature that allows infinite system sizes to be inves-
tigated, there is no reason other spin-boson models with non-
commuting energy and interaction terms which do not have
this integrable limit should not exhibit similar critical en-
tanglement, with chaotic transitions and level statistics.
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APPENDIX: MEYER-WALLACH ENTANGLEMENT

Here we include the definition of the Meyer-Wallach en-
tanglement measuref13g, as originally intended for a system
of N qubits, and show its connection to the average linear
entropy.

We can write the pure state ofN qubits as ucl
=ob1,…,bN

ab1,…,bN
ub1,… ,bNl. Meyer and Wallach defined two

interesting unnormalized statesuũkl and uṽkl as vectors in
C2N−1 which are obtained by projecting the original stateucl
onto the two possible subspaces spanned by the two possible
states of thekth qubit,

ucl = u0lk ^ uũkl + u1lk ^ uṽkl. sA1d

In the Schmidt decomposition, these two subspaces are or-
thogonalkũku ṽkl=0. Q itself is defined as

Qsucld =
4

N
o
k=1

N

Dsuũkl,uṽkld, sA2d

where Dsuũkl , uṽkld=oiø juũi
kṽ j

k− ũj
kṽi

ku2 is the generalized
wedge product.

Brennen proved that each termD in the sum ofQ was
equal to the linear entropy of thekth qubit, and thusQsucld is
equivalent to the average linear entropy of all the qubits,

Qsucld = 2F1 −
1

N
o
k=0

N−1

Trsrk
2dG , sA3d

whererk is the reduced density matrix of thekth qubit. Thus
Q has the required properties of an entanglement measure
0øQsucldø1, Qsucld=0 for product states,Qsucld=1 for
the reduced density matrix of every qubit being maximally
mixed, andQsucld is invariant under local unitaries, both
becauseD is invariant, and Trsrk

2d is invariant.
Many pure states fulfil the requirement for maximal qubit

mixing, and thus give a value ofQ=1. For example, the
three-qubit Greenberger-Horne-ZeilingersGHZd statesu000l
+ u111ld /Î2 gives Q=1, while the Werner state gives
Qssu100l+ u010l+ u001ld /Î3d= 8

9.

TABLE I. EntropyS, Eq.s18d, concurrenceCR sfrom Ref.f10gd,
and the average linear entropy Eq.s34d, in the Dicke model near the
critical point l→lc.

fsld fsl→lcd N scaling

e− ulc−lu1/2

l− ulc−lu−1/4

S −1
4log2ul−lcu log2N

s0.14±0.01d

CR 1−
Î2
2

N−0.25±0.01

]CR

]l
ulc−lu−1/2
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