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We theoretically study the control of a weak quantum light in a resonant three-level condensed medium
derived by a pair of resonant counterpropagating laser fields. We analytically demonstrate that the adiabatic
switching on of one of the control fields generates an entangled state of photon wave packets moving together
at subnormal slow velocity in the medium with relative amplitudes determined by the control laser fields. An
abrupt switching-off the control field makes the entangled wave packets propagate in the opposite direction
with temporally reversed profiles relative to each other. We have analyzed the quantum control of the entangle-
ment generation in terms of the adiabatic and nonadiabatic switching operations of the coupling laser pulse.
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Control of light velocity promises unique possibilities in
quantum manipulations of a weak quantum light, especially
for quantum information sciencef1g. Using electromagneti-
cally induced transparencysEITd f2g, extremely slow light
was observed experimentally in different resonant mediaf3g.
Usually such a slow light has only been realized experimen-
tally using macroscopic coherence between long-lived quan-
tum statesf4g, which provides a spectrally sensitive refrac-
tive index leading to a slow group velocity of the light. The
EIT effect has been successfully applied for giant Kerr non-
linearity f5g, quantum switchingf6g, and quantum memory
f7,8g. Recently the slow-light scheme has been suggested for
the effective generation of quantum entangled state of single
photon fieldsf9,10g. Such possibilities of controlling a weak
light interacting with medium are especially interesting for
applications in quantum computing and communications
f11–13g. In this paper we propose a scheme of entanglement
generation with photons using the properties of almost sta-
tionary slow light in a condensed medium. Our intention is to
study nonlinear perspectives of the photon entanglement
generation due to a lengthened interaction time using
standing-wave grating. The slow-light standing scheme has
been suggestedf14g and experimentally demonstrated re-
cently in a three-level atomic system associated with the
Doppler effectf15g. We propose that this technique can be
used to generate an entangled state of two-photon wave
packets with temporally reversed profiles due to the en-
hanced nondegenerated four-wave mixing processes based
on almost stationary light condition.

For quantum entanglement generation we use slow-light
dynamics in a three-levelL-type system of a condensed me-
dium derived by a pair of strong counterpropagating control
laser fieldsssee Fig. 1d. In Fig. 1 the interaction scheme
corresponds to Ref.f15g, where long-lived coherence is gen-
erated in the form of multiple spatial gratings with different
periods. The multiple gratings induce variable dynamics into
the slow-light and provide the split of the original pulse into
two spatially separated entangled quantum fields. We assume
that initially one weak probe quantum fieldE+ enters the
three-levelscondensedd medium with a resonant frequency to
the transitionu1l-u3l, v+=v31, and that the all atoms are in
the ground stateu1l. The probe field propagates in slow

group velocity through the medium under the influence of
one strong copropagating control laser fieldV+, which is
resonant to the transitionu2l-u3l: svc=v32d f3g. After the
probe pulse completely enters the medium, we adiabatically
switch on the second control fieldV−std, which propagates in
a backwards−zd direction with respect to the probe. The
counterpropagating control fields Rabi frequencies areV+
andV−std, respectively. The probe pulse will be almost sta-
tionary due to the intensive interference of the counterpropa-
gating control fields with different Rabi frequency ratio. Be-
low we study analytically the evolution of the stationary light
at the manipulation by the second control field intensity.

For analytical purposes we use two quantum operators

Ês=Î"v / s2«0VdAse−iv31st−sz/cd+H.c. for the weak fields

swhere Âs are slowly varying field operatorsf4g, s= + ,−
correspond to the forward and backward waves, the quanti-
zation volume being theV=1 value belowd. Ignoring the
inhomogeneous broadening we write the following Hamil-
tonian for the quantum field and atoms in the interaction
picture:

H = "go
j=1

fÂ+st,zjdeikzj + Â−st,zjde−ikzjgP31
j

− "o
j=1

hsV+eisKzj+w+d + V−e−isKzj+w−ddP32
j j + H.c., s1d

where Pnm
j are the atomic operators,n=1,2; g

=P31Îv31/ s2«0"Vd sV=1d is a coupling constant of photons

FIG. 1. The energy level diagram of quantum entanglement gen-
eration.E± are weak fields resonant to the transitionu1l-u3l. Two
control fieldsV± resonant to the transitionu2l-u3l. The “1” s“2” d
field propagates in the +z s−zd direction.
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with atoms andP31 is a dipole moment for the transition
u1l-u3l andK=v32/c,w+,− are the phases of the laser pulses.

Using the Hamiltonian we obtain the usual Heisenberg
equations for the atomic operatorsPnm

j ,

]

]t
P13 = − gP13 − igsÂ+eikz + Â−e−ikzd + isV+eisKz+w+d

+ V−e−isKz+w−ddP12, s2d

]

]t
P12 = − g2P12 + isV+e−isKz+w+d + V−eisKz+w−ddP13, s3d

and the following equations for the field operators:

S ]

c]t
+

]

]z
DÂ+st,zd = − isN0g/cdP+, s4d

S ]

c]t
−

]

]z
DÂ−st,zd = − isN0g/cdP−, s5d

where N0 is the atomic density; we have used the phase
matching condition in Eqs.s4d and s5d with the following
decomposition rates of the atomic operator:P13st ,zd
=P+st ,zdeikz+P−st ,zde−ikz+. . ., where the operatorsP+st ,zd
andP−st ,zd slowly vary in space and time. Equations for the
atomic operatorss2d and s3d take into account the fact that
the population of the excited state is negligible during the
interaction with a weak quantum probe field, soP11−P33
> P11>1 and P23! P13,P12 f4g. We have also introduced
one decay constantg for both transitions:u3l-u1l and u3l-u2l.
We note that the coherent atomic dynamics and the evolution
of the slow light are not affected by the typical Langeven
forces at the adiabatical interactionsf16g, where large tem-
poral durationdt of the pulses aregdt@1. In this case the
optical atomic coherenceP13 follows the pattern set by the
long-lived coherenceP12 and external optical fields:

P13 > − ig−1hgsÂ+eikz + Â−e−ikzd − sV+eisKz+w+d

+ V−e−isKz+w−ddP12j. s6d

Substituting Eq.s6d into Eq. s3d, we find the formal solution
for the long-lived coherenceP12:

P12sD,t,zd = P12sD,t0,zdexpS−E
t0

t

dt8GsD,t8,zdD
+E

t0

t

dt8 expH−E
t8

t

dt9GsD,t9,zdJFpst8,zd

= P12sD,t0,zdexph− f1sD,t,t0dj o
n=−`

`

s− 1dnI unu

3hf2f2sD,t,t0dgjcosnf2sk − k0dz+ fg

+E
t0

t

dt8Fpst8,zdexph− f1sD,t,t8dj o
n=−`

`

s− 1dnI unu

3hf2f2sD,t,t8dgjcosnf2sk − k0dz+ fg, s7d

whereIn=0,1,2,. . .fxg are the first-class Bessel functions of the

imaginary argumentf17g, P12sD ,t0,zd is an initial coherence
at t= t0, below t0→−`, and we assume that initially
P12sD ,t0,zd=0:

Fpst,zd = gsg + iDd−1hÂ+fV+stdeisk0z−w+d

+ V−stde2ikze−isk0z−w−dg + Â−fV−stde−isk0z−w−d

+ V+stde−2ikzeisk0z−w+dgj,

GsD,t,zd = G1sD,td + G2sD,tdfeif2sk−k0dz+fg + e−if2sk−k0dz+fgg,

G1sD,td = g2 + sg + iDd−1VS
2std,

G2sD,td = sg + iDd−1V+stdV−std,

f1,2sD,t,t8d =E
t8

t

dt9G1,2sD,t9d, VS
2std = V+

2std + V−
2std,

f = w+ + w−. s8d

Thus the long-lived atomic coherenceP12 between the levels
u1l-u2l includes the superposition of a number of the spatial
gratings

P12st,zd = o
n=0

`

b̂nst,zdcosnf2sk − k0dz+ fg,

whereb̂nst ,zd are the operators slowly varying in space and
time.

Using the decomposition rates7d of the long-lived coher-
ence in Eq.s6d, we find the valuesP+st ,zd and P−st ,zd in
Eqs.s4d ands5d, and then introducing the new field operators

â+st ,zd=Â+st ,zdexph−iw++ ik0zj, â−st ,zd=Â−st ,zdexphiw−

− ik0zj we obtain the following integral-differential equations
for these field operators:

S ]

c]t
− ik0 +

]

]z
Dâ+st,zd = − j0â+st,zd

+ sj0/gdE
−`

t

dt8hG1st,t8dâ+st8,zd

+ G2,−st,t8dâ−st8,zdj, s9d

S ]

c]t
− ik0 −

]

]z
Dâ−st,zd = − j0â−st,zd + sj0/gd

3E
−`

t

dt8hG1st,t8dâ−st8,zd

+ G2,+st,t8dâ+st8,zdj, s10d

where

G1st,t8d = expf− f1st,t8dghVS
2st,t8dI0f2f2st,t8dg − fV+stdV−st8d

+ V−stdV+st8dgI1f2f2st,t8dg, s11d
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G2,±st,t8d = expf− f1st,t8dghsV7stdV±st8dI0f2f2st,t8dg

+ V±stdV7st8dI2f2f2st,t8dg

− VS
2st,t8dI1f2f2st,t8dgj, s12d

where f1st ,t8d=g−1et8
t VS

2st9ddt9, f2st ,t8d=g−1et8
t V+st9d

3V−st9ddt9, VS
2st ,t8d=V+stdV+st8d+V−stdV−st8d, VS

2std
=V+

2std+V−
2std, k0=v21/c, andj0=sN0g

2/cgd is the absorp-
tion coefficient.

Equationss9d ands10d can be used for either the adiabatic
or nonadiabatic regime of the control laser fields’ switching
operations. The system includes all the orders of the nonlin-
ear interaction with the two strong laser fields and demon-
strates that the two weak fieldsâ+st ,zd and â−st ,zd are
coupled with each other due to the terms proportional to
G2,±st ,t8dÞ0 only if the two control laser fields are simulta-
neously applied. The slow-light dynamics in Eqs.s9d and
s10d depends on the parameters of the four gratings in the
long-lived atomic coherenceP12st ,zd f,exph±isk±Kdzjg
with the largest spatial periods in accordance with the phase-
matching conditions. We note that all these atomic gratings
are excited directly by the weak quantum fields in the pres-
ence of the two control laser fields. For comparison we note
that the two of these coherence gratingsf,exph±isk+Kdzjg
with spatial periodss,l /2d have a short lifetime and should
be negligible in hot gaseous systems due to fast Doppler
dephasing. In condensed media, however, we show that these
two gratings cause new properties of the coupled fields
propagation. Mathematically the grating amplitudes in Eqs.
s9d and s10d are expressed nonlinearly with the control field
in forms of Bessel functionsIn=0,1,2(f2st ,t8d), whereas the
Bessel functions withn.2 reflect the excitation of other
gratingsf,exph±isk±nKdzjg with smaller spatial periods due
to the higher nonlinearity of the atomic response to the ac-
tion of the two interfered control waves. We note that the
grating amplitudesbn decrease with increasing of the num-
ber n and the influence of the gratings withn@2 becomes
negligible in the slow-light dynamics.

We study the adiabatic switching on the second control
laser field with the conditions] /]tdV−! sVS

2 /gdV− ssee Fig.
2d. Given this condition we can assumeV−st8d>V−std
−§stdst− t8d, where§std=s] /]tdV−std is a small parameter in
the functionsGmst ,t8d sm=1;2+ ;2−d, which play a role of
the memory functions in the Eqs.s9d ands10d, have a sharp
temporal behavior with a maximum att= t8 compared with
the long weak pulsesa±st ,zd sVS

2dt /g@1d. Taking into ac-
count the influence of the switching operation in the first
order of the termzstd in the functionGmst ,t8d we can find the
decomposition rate

Gmst,t8d > Gmust,t8du§std=0 + §stdUF ]

]§std
Gmst,t8dGU

§std=0
.

Herewith together with the substitutiona±st8 ,zd>h1−st
− t8ds] /]tdja±st ,zd we obtain the formula for the integrals in
Eqs.s9d and s10d:

E
t1

t

dt8Gmst,t8dâ±st8,zd

> â±st,zdHUE
t1

t

dt8hGmst,t8djU
§=0

+ §U ]

]§
Gmst,t8dU

§=0
J

− F ]

]t
â±st,zdGE

t1

t

dt8st − t8dGmust,t8du§=0. s13d

We note that the numerical calculations show the increasing
of the temporal intervals where the integrals in Eq.s13d are
converged if the ratiox=V−/V+ becomes larger then 0.8.
The value 0.8 determines approximately the intervals0,x
,0.8d, where the memory functions in the integrals of Eqs.
s9d ands10d are at their maximum within the temporal inter-
val t− t8ø50gV+

−2. Substituting Eq.s13d into Eqs. s9d and
s10d we obtain the differential equations

S1

c

]

]t
+

]

]z
− ik0Dâ+st,zd = − j̇−stdhfb1sxdâ+ − b2,−sxdgâ−j

−
1

n1sxd
]

]t
â+st,zd +

1

n2sxd
]

]t
â−st,zd,

s14d

S1

c

]

]t
−

]

]z
− ik0Dâ−st,zd = − j̇−stdhb1sxdâ− − sb2,+sxdâ+dj

−
1

n1sxd
]

]t
â−st,zd +

1

n2sxd
]

]t
â+st,zd,

s15d

where the integrals from the exponent and Bessel functions
equal to the simple algebraic formulas

V+
3

g2E
−`

t

dt8UH ]

]§
G̃1st,t8dJU

§=0
= − b1sxd = −

x

s1 − x2d2 ,

s16d

V+
3

g2E
−`

t

dt8UH ]

]§
G̃m=2+,2−st,t8dJU

§=0
= bmsxd, s17d

where b2+=b2−+s1−x2d−1, b2−=x2/ s1−x2d2, j̇−std
=j0sg§ /V+

3d=j0sgV̇−/V+
3d= ẋn1

−1s0d, and n1
−1s0d=j0g /V+

2

=N0g
2/ scV+

2d is the initial velocity of the slow light before
the moment of switching on the second control field. We
have also found the relationug−1e−`

t dt8G2,±st ,t8du§=0= u1
−g−1e−`

t dt8G1st ,t8du§=0=asx(td)=0, where the absorption co-
efficients j0asxd equals zero for both weak lights, which
means the existence of the windows transparency for the

FIG. 2. Temporal scheme of the adiabaticsnonadiabaticd switch-
ing of the second control fieldV−std at t= t1 st= t2d, while keeping
the first control fieldV+std constant.
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weak fields; we have also introduced the new velocities
n1sxd andn2sxd:

sj0/gdUE
−`

t

dt8st − t8dG1st,t 8 dU
§=0

=
1

n1s0ds1 − x2d
= n1

−1sxd,

sj0/gdUE
−`

t

dt8st − t8dG2,±st,t 8 dU
§=0

= −
x

n1s0ds1 − x2d

= − n2
−1sxd.

The ratio between the introduced velocities coincides with
the ratio between the Rabi frequencies of the control fields
n1sxd /n2sxd=V−/V+=x. This interesting consequence of the
integrals with Bessel functions leads to a simple structure for
the system equationss14d and s15d. We note that Eqs.s14d
ands15d stay in a symmetrical form for the fieldsâ+st ,zd and
â−st ,zd with the constant control fields, whereas the switch-

ing procedure withj̇−stdÞ0 breaks the symmetry because of
the nonsymmetrical switching operation. If the switching is

slow enough,j̇−std!1, the relative field parameters can be
found using Eqs.s14d and s15d ignoring the terms propor-

tional to j̇−std and herewith we find the dispersion relation
for the fields to bev1,2skd=n1s0dhk0±Îsxk0d2+s1−x2dk2j.
Let us consider the case of a sufficiently small splitting be-
tween the two ground levels:

v21 !
c

n1s0dx
s1 − x2d1/2dv f <

c

n1s0d
dv f .

sdv f <dt−1 is a spectrum width of the slow light.d This con-
dition can be easily realized for typical experimental condi-
tions dv f <106c−1, c/n1s0d<106, v21!1012c−1, which was
observed in Ref.f3g. Therefore, we can ignore the band gap,
Dvb=2xn1s0dk0=2v21V−V+/ sNg2d!dv f, so the field equa-
tions fEqs.s14d and s15dg transform into the following:

1

n1

]

]t
â+st,zd +

]

]z
â+st,zd =

1

n2

]

]t
â−st,zd, s18d

1

n1

]

]t
â−st,zd −

]

]z
â−st,zd =

1

n2

]

]t
â+st,zd, s19d

with a linear dispersion relation for the coupled fields
v1,2skd= ±kng, whereng=n1

Î1−x2 is a their common group
velocity. Equationss18d and s19d have the following two
pairs of the fundamental solutionssa±

s1d and â±
s2dd for the two

waves propagated in the forward direction:â+
s1d

= â1fetngsxddt−zg and â−
s1d=mâ1fetngsxddt−zg, and for the

modes in the backward direction,â+
s2d=mâ2fe0

t ngsxddt+zg
and â−

s2d= â2fe0
t ngsxddt+zg fwhere msxd=x / s1+Î1−x2dg.

The first pair of the coupled fieldsâ±
s1d corresponds to our

initial condition for a nonzero probe fieldâ+st, t1,zdÞ0.
Thus the adiabatic switching on of the second control field
leads to the excitation of the new counterpropagating slow
light â−

s1d, which propagates together with the original for-
ward field â+

s1d, and the relative amplitude increases,â−
s1d

=mâ+
s1d, as V−std increases. The amplitudes of both fields

become mutually comparablesasymptotically in our ap-
proachd for x→1 whereâ−

s1d
x→1→ â+

s1d. In order to find the
absolute amplitude of the forward fieldâ+

s1d sandâ−
s1d, respec-

tivelyd we have to solve the complicated equationss14d and
s15d. However, taking into account that our field parameters
must be close to the adiabatic limit at very slow switching
speeds we can find the approximate solution using the fol-
lowing anzatz for the fields in Eq.s14d: â+st ,zd
> fsxdÂ+,infe0

t ngst8ddt8−zg, â−st ,zd>msxdâ+st ,zd. After sub-
stitution of these values into Eq.s14d we find

df/f =
H−

n1sxd
n1s0d

sb1 − mb2,−dÎ1 − x2 + mJ
s1 − x2d

dx =
s− x + md
s1 − x2d

dx

= −
s1 −Î1 − x2d

xÎ1 − x2
dx, s20d

with the solution

fsxd = 1
2s1 +Î1 − x2d, s21d

and the second field amplitudemsxdfsxd=x /2. Using the so-
lution fsxd we can evaluate the total electromagnetic energy
of these two fields:

W= W+ + W− =E
0

L

dzhka+
†a+st,z;xdl + ka−

†a−st,z;xdlj

> 1
2s1 +Î1 − x2dW+,in,

which does not equal zero in the point of the complete stop-
page of light,Wsx→1d= 1

2W+,in. This nonvanishing field can
stay macroscopically in the mediumsx=1d or move along

with the ultraslow velocityng=n1s0dÎ1−x2 without absorp-
tion. So we can manipulate with the ultraslow group velocity
within the spin decoherence timeg2

−1 of the second level. For
example, if we adiabatically switch off the second control
field fV−std→0g, the nearly stationary weak field resumes to
move as it was before without dissipative losses:â
= â+,instn1−z+dzd. At a certain time delayt=dz/n1=et1

t2sn1

−ngd(xstd)dt>et1
t2dtx2std / f1+x2stdg, the backward field dis-

appears: uâ−st ,zd=msxdâ+st ,zdux→0→0. The advantage of
this light stoppage with respect to the velocity control of the
usual slow light propagation is the possibility of controlling
the interaction time of this nonvanishinig stopped light with
chosen spatially localized atoms in the mediumf14,15g by
the variation of the light group velocityng. The two fields
â±st ,zd will be coupled indissociably to each other in this
evolution and the total state of these fields are expressed
through an entangled wave function. Using the obtained so-
lution for the field operators we can find the wave function
for the field and medium in the adiabatic limit where the
original probe pulse was a single-photon wave packet:
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uCa+fl > Sng

c
D1/2

fsxdu1lahuC+sngt − zdl f + msxde−if

3uC−sngt − zdl fj + o
j

P21
j sngt − z;xdu1lau0l f ,

where u1la=p j=1
N u1jl and u0l f are the ground states of the

atoms, and the field,uC±sngt−zdl f is the single-photon wave
packet of the fieldsa±st ,zd fwherekC±sngt−zd uC±sngt−zdl f

=1 andP21
j std=(P12

j s−td)+ fsee comment to Eq.s8d about the
properties of the operatorP21

j stdg. Excitation of the photon
component of the stateuCa+fl is much smaller than the com-
ponent with atomic excitation due to the small group velocity
ng, which takes place just before its emission from the me-
dium. We found that the fieldsa±st ,zd can be spatially sepa-
rated from each other before emission from the medium by
the nonadiabatic switching off of the second control field
ssee Fig. 2d. This nonadiabatic process influences the photon
component of the stateuCa+fl and the entanglement between
the two generated pulses, which begin to propagate in oppo-
site directions to each other.

We study this process using general Eqs.s9d ands10d and
assuming the control fieldV−st. t2d=0. In this case the
memory functions become proportional to the same expo-
nentional function G1;2,±st ,t8. t2d=C1;2,± expf−s1/gdV+

2st
− t8dg, where C1;2,± are constants withC2,±=0 for t8. t2.
Therefore we obtain

sj0/gdE
−`

t

dt8hG1st,t8dâ±st8,zd + G2,7st,t8dâ±st8,zdj

= − expH−
1

g
V+

2st − t2dJr̂±st2,zd + sj0V+
2/gd

3E
t2

t

dt8 expH−
1

g
V+

2st − t8dJâ±st8,zd, s22d

where

r̂±st2,zd = sj0V+
2/gdE

−`

t2

dt8hG1,0st2,t8dâ±st8,zd

+ G2,0,7st2,t8dâ7st8,zdj, s23d

G1,0st2 − t8d = expH−
1

g
VS

2st2dst2 − t8dJhI0f2f2st2,t8dg

− fV−st2d/V+gI1f2f2st2,t8dgj, s24d

G2,0,+st2 − t8d = − expH−
1

g
VS

2st2dst2 − t8dJhI1f2f2st2,t8dg

− fV−st2d/V+gI2f2f2st2,t8dgj, s25d

G2,0,−st2 − t8d = expH−
1

g
VS

2st2 − t8dJ
3hfV−st2d/V+gI0f2f2st2,t8dg − I1f2f2st2,t8dgj.

s26d

Using Eq. s22d we transform Eqs.s9d and s10d into the

equations for the counterpropagated field operatorsÂsst ,zd
= âs

s1dst ,zdexphssiwsdj sthe indexs=±d, which become de-
coupled from each other and have the form

S ]

c]t
+ s

]

]z
DÂsst,zd = − fj0Âsst,zd + r̂s,0st,zdg, s27d

where the new atomic operators

r̂sst,zd = r̂s,0st,zdexphs − iswsdj

satisfy the equations

]

]t
r̂s,0st,zd = −

1

g
V+

2hr̂s,0st,zd + j0Âsst,zdj. s28d

Using the decomposition, Eq.s13d, for Eq. s23d and the con-
dition for slow-light fields,

j0â±
s1d @

1

n1,2

]

]t2
a±

s1dst2,zd,

which takes place in the high-optical-density medium, and
taking into account Eqs.s24d–s26d we find

r̂+st2,zd = − j0â−
s1dst2,zdr̂−st2,zd

= − hj0fâ−
s1dst2,zd − xst2dâ+

s1dst2,zdgj.

Equationss27d ands28d reproduce the final stage of the field
reconstruction in the quantum memory technique studied re-
cently in f16g. The main difference between the present ar-
ticle and Ref.f16g is that the initial condition for fields is

Âsst2,zdÞ0 and the specific character of atomic excitation is
determined by the atomic excitationsr̂sst2,zd. Due to these
initial conditions, the solution of Eqs.s27d ands28d includes
both the forward and backward slow-light fields, which are
expressed via the usual Fourier transformation ink space:

r̂s,0st,zd = o
m=1

2 E
−`

`

dkhr̂s,k
smdjexphifvm,k

ssd st − t2d + kzgj,

s29d

Âsst,zd = o
m=1

2 E
−`

`

dkhÂs,k
smdjexphifvm,k

ssd st − t2d + kzgj,

s30d

where we have found the four eigenvalues of Eqs.s27d and
s28d in k space sm=1,2d: v1,2;k

s = 1
2Gs,kh1±Ss,kj with

Gs,k=fiscj0+V+
2 /gd−sckg, Ss,k=Î1+4isckV+

2 / sgGs,k
2 d; the

valuesr̂s,k
smd, Âs,k

smd are found using the spatial Fourier transfor-

mation for the initial conditions for the fieldsÂsst2,zd and
atomic operatorsr̂sst2,zd. Thus we have

Â+,k
s1d >

1

j0
hr̂+,k

s0d + j0Â+,k
s0dj = 0,

Â−,k
s1d >

1

j0
h− j0fm − xgÂ+,k

s0d + j0mÂ+,k
s0dj = xÂ+,k

s0d ,
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Â+,k
s2d > −

1

j0
r̂+,k

s0d > Â+,k
s0dst2d,

Â−,k
s2d > −

1

j0
r̂−,k

s0d > sm − xdÂ+,k
s0dst2d. s31d

After substitution of these values and eigenvalues into Eqs.
s29d and s30d we have found finally the following solution
for the field operator:

Âst,zd = Â+st,zd + Â−st,zd

= fsxdhÂ+,infn1st − td − zg − sx − mde−iw1

3Â+,infn1st − td + zgj, s32d

wheret is the temporal delay due to the staying of the slow-
light field. This solution describes that the two pulses move
opposite with the same velocity. We note that the nonadia-
batic switching off of the second control field changes the

backward field amplitude fromÂ−=mÂ+ to the valueÂ−

=sm−xdÂ+. The additional component −xÂ+ was generated

due to the atomic coherence gratings att= t2. The fieldÂ− has

the maximum amplitude forx=2−1/2<0.7 where we getÂ−

= 1
4Â+,in, where Â+= 1

4s2+Î2dÂ+,in; the amplitude ratio is

Â−/ Â+>0.3, and the total energy of both fields isW= u 1
2

s1
+Î1−x2− 1

2x4dW+,inux=2−1/2>sp /4dW+,in>0.79W+,in. It is
possible to assume that this loss of the total energy is con-
nected with the decreasing of the four long-lived coherence
grating amplitudes, which lead to the small value of the fac-
tor fsxd. Decreasing the four grating amplitudes correlates
with an existence of other gratingssn.2d after the abrupt
nonadiabatical switching off the second control field. The
present analytical approximation gives large transfer between
the forward and backward fields, to be comparable with the
recent copropagated schemef14g. An interesting new aspect
of the proposed technique is that the temporal profiles of the

fields Â− and Â+ are reversed with respect to each other,
which is a consequence of the FWM processes and cannot be
realized by using the usual mirrors. We have found the solu-
tion for fsxd in Eq. s14d without using the second equation of
Eqs.s15d, which points out the possibility of a higher value
for fsxd. Therefore, the possibility of a higher transformation
for the total field energy is interesting to studyfwhich can be
done numerically elsewhere using the general equationss9d
and s10dg generation of two temporally reversed pulses
whose stoppage should be controlled. Ignoring the small de-
crease in total energy of 0.79W+,in in the above analytical
results, we can analyze the specific quantum properties of the
generated pulse. If the initial probe field is an ideal single-
photon wave packet after emission, we get the following
state:

uCa+fst,z8dl > f uC+fcst − t − z/n1d − z8gl − sx − mdfe−iw1

3uC−hcft − t − sL − zd/n1g − z8jl, s33d

wherez is the position of the ultraslow light in the medium at
the point of switching off the second control field. The gen-

erated field is in the entangled state although maximum en-
tanglement is not achieved. It is principally possible to in-
crease the entanglement by repetition of this procedure using
only the new forward field. After two such procedures we get
the state

uCa+fst,z8dl < f2uC+fcst − t1d − zgl − sx − mdfhe−ifuC−fcst

− t2d + z8gl + fe−iw2uC−fcst − t3d + z8glj,

s34d

wheret1,2,3 are the relative time delays andw2 is the addi-
tional controllable phase. Performing such a procedure sev-
eral times we can change the spectral properties of the final
state and increase its entanglement. At the same time it
should be noted that the presented analytical approach pre-
dicts lower-energy transfer efficiency for the entangled states
than takes place mentioned above for the one procedure.
Principally the entangled states of the two temporally re-
versed fields can also be generated from the two-photon
quantum states as well as from the squeezed states of the
probe pulse. At the same time, if the initial quantum state is
the coherent stateuAinl=exph−1

2uAinu2+Ainak1

+ ju0l (whereak1

+

=e−`
` dvansv−v31dak1

+ svdfe−`
` dvuansv−v21du2=1g), we can

lead finally to the state,uAinl>exph−1
2uAinu2+ fAinfak1

+ −sx
−mdã−k1

+ gju0l, which is the product of the two coherent states
of the fields with temporally and spectrally reversed profiles,
where ã−k2

+ =eiwe−`
` dvansv31−vdeivst2−t1da−k2

+ svd, andw is a
controllable constant phase. The proposed scheme plays a
role of the semitransparent four-wave mirror with reversed
temporal profile, and entanglement of the coherent states
needs additional nonlinear interaction similar to the recent
work f10,12g, wherep phase shift can be easily achieved due
to lengthened interaction time between the coherent pulses.
From this point of view the presented scheme introduces a
new possibility of using standing or almost stationary light in
the media with four and more large number of active atomic
levels.

In conclusion we have demonstrated quantum control of a
weak quantum field for ultraslow and almost stationary light
in a three-level condensed medium not limited by Doppler
broadening. We have proposed a scheme of quantum en-
tangled photon generation based on a lengthened interaction
time and nonadiabatic manipulation with almost stationary
light phenomenon. Such a scheme can be realized in particu-
larly in a rare-earth-doped solids demonstrated already for an
ultraslow group velocity. We note that, owing to the temporal
reversibility of the entangled single-photon wave packets,
the proposed scheme can be similar to entanglement schemes
based on photon polarization. The quantum manipulations
and processing with the temporally reversed entangled states
represent an interesting subject for further research espe-
cially for the spectral engineering of the quantum states.
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