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Generation of entangled lights with temporally reversed photon wave packets
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We theoretically study the control of a weak quantum light in a resonant three-level condensed medium
derived by a pair of resonant counterpropagating laser fields. We analytically demonstrate that the adiabatic
switching on of one of the control fields generates an entangled state of photon wave packets moving together
at subnormal slow velocity in the medium with relative amplitudes determined by the control laser fields. An
abrupt switching-off the control field makes the entangled wave packets propagate in the opposite direction
with temporally reversed profiles relative to each other. We have analyzed the quantum control of the entangle-
ment generation in terms of the adiabatic and nonadiabatic switching operations of the coupling laser pulse.
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Control of light velocity promises unique possibilities in group velocity through the medium under the influence of
guantum manipulations of a weak quantum light, especiallyone strong copropagating control laser figld, which is
for quantum information sciendd]. Using electromagneti- resonant to the transitiof2)-|3): (w.=ws,) [3]. After the
cally induced transparenc§EIT) [2], extremely slow light  probe pulse completely enters the medium, we adiabatically
was observed experimentally in different resonant mgglia  switch on the second control fiefdl_(t), which propagates in
Usually such a slow light has only been realized experimen backward(-2) direction with respect to the probe. The

tally using macroscopic coherence between long-lived quarg, nerpropagating control fields Rabi frequencies @re
tum stateg4], which provides a spectrally sensitive refrac- and Q_(1), respectively. The probe pulse will be almost sta-

tive index leading to a slow group velocity of the light. The i due 1o the intensive interf £ th i
EIT effect has been successfully applied for giant Kerr nonOnary due to the intensive interierénce of the counterpropa-
gating control fields with different Rabi frequency ratio. Be-

linearity [5], quantum switchind6], and quantum memory : ) ) .
[7,8]. Recently the slow-light scheme has been suggested fdPW We study analytically the evolution of the stationary light
the effective generation of quantum entangled state of singl@t the manipulation by the second control field intensity.
photon field§9,10]. Such possibilities of controlling a weak _ For analytical purposes we use two quantum operators
light interacting with medium are especially interesting for E,=\Aw/(28,V)A,e7@517979 +H.c. for the weak fields
applications in quantum computing and communication whereA(, are slowly varying field operatorf4], o=+ ,-

[11_13'."] thi_s papér we propose a schemg of entangleme orrespond to the forward and backward waves, the quanti-
generation with photons using the properties of almost Sta; _tion volume being the/=1 value below. Ignoring the

tionary slow light in a condensed medium. Our intention is to; homoaeneous broadening we write the following Hamil-
study nonlinear perspectives of the photon entangleme{fI 9 9 9

generation due to a lengthened interaction time usin qnian for the quantum field and atoms in the interaction
standing-wave grating. The slow-light standing scheme ha8!Cture:

been suggestefll4] and experimentally demonstrated re- A _ - _ .

cently in a three-level atomic system associated with the —H=#0> [A(t,z)e*4 + A_(t,z)e ™ 4]PY,

Doppler effect[15]. We propose that this technique can be i=1

used to generate an entangled state of two-photon wave — 5> {(Q,E%a7e) + 0_g KTl 4 H e (1)
packets with temporally reversed profiles due to the en- =1

hanced nondegenerated four-wave mixing processes based _

on almost stationary light condition. where P! are the atomic operators,n=1,2; g

For quantum entanglement generation we use slow-light P31 w31/ (2e0hV) (V=1) is a coupling constant of photons
dynamics in a three-level-type system of a condensed me-
dium derived by a pair of strong counterpropagating control

3>
laser fields(see Fig. 1 In Fig. 1 the interaction scheme !
corresponds to Ref15], where long-lived coherence is gen- ‘E- Eoa\\Q
erated in the form of multiple spatial gratings with different
periods. The multiple gratings induce variable dynamics into . | 2>

the slow-light and provide the split of the original pulse into (1>

two spatially separated entangled quantum fields. We assume

that initially one weak probe quantum field, enters the FIG. 1. The energy level diagram of quantum entanglement gen-
three-levelcondensedmedium with a resonant frequency to eration. E, are weak fields resonant to the transitidj/3). Two

the transition|1)-|3), w,=ws3;, and that the all atoms are in control fieldsQ., resonant to the transitiol)-|3). The “+" (“—")

the ground statdl). The probe field propagates in slow field propagates in thez{-z) direction.
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with atoms andP3, is a dipole moment for the transition imaginary argumentl7], P1x(A,ty,2) is an initial coherence

|1)-|3) andK=ws,/c, ¢, - are the phases of the laser pulses.at t=t,, below t,—-«, and we assume that initially
Using the Hamiltonian we obtain the usual HeisenbergP;,(A,ty,2)=0:

equations for the atomic operatde§,,, A .

Fo(t,2) = gy +iA) HA Q. (Hekores

90 (A Akzy A amikzy 4 i(Kz+o,)
atpl3_ YP13— ig(A€"+ A_e™) +i((.€ + Q_(t)eZikze—i(koz—¢_)]+ A_[Q_(t)e—i(koz-ev_)

+Q_e K e)p,,, 2 + 0, ()e 2k koo T},
0 : : - i[2(k-kpz+ o] 4 ail2(k-Kg)z+¢]
EP]_Z: _ 72P12+ i(Q+e—|(Kz+‘p+) + Q_e|(Kz+(p_)) P13, (3) F(A,I,Z) - Fl(A,t) + FZ(A,I)[e' kO z +e | kO z ]’
and the following equations for the field operators: Ty(A )=y + (y+iA) QL (),
J d\~ S
(— + —)A+(t,z) == i(Noglc)P,, (4) TH(A1) = (y+i8)QL(HQ(1),
cot oz
t
J d\~ N — " " 2 — 02 2
(a - &—Z)A_(t,z) =~ i(Neg/0)P_, (5 NAALD)= ft T2 A1), 50 =00+ 020,

where N, is the atomic density; we have used the phase _

matching condition in Egs(4) and (5) with the following =it o (8
decomposition rates of the atomic operatdPist,2)  Thus the long-lived atomic coherenBe, between the levels
=P.(t,2)€"*+P_(t,2€™*+..., where the operator®.(t,2)  |1)-]2) includes the superposition of a number of the spatial
andP_(t,z) slowly vary in space and time. Equations for the gratings

atomic operator$2) and (3) take into account the fact that

the population of the excited state is negligible during the “-

interaction with a weak quantum probe field, Bg;—Pg3 P1y(t,2) = X, B(t.2)cosn[2(k — ky)z+ ],

=P,;=1 and Py3<Py3,P1, [4]. We have also introduced n=0
one decay constant for both transitions{3)-|1) and|3)-|2). here s h lowl o q
We note that the coherent atomic dynamics and the evolutiotY ere/5q(t,2) are the operators slowly varying in space an
of the slow light are not affected by the typical Langevent'me' ) . .

forces at the adiabatical interactiofs], where large tem- Using the decomposition rai@) of the long-lived coher-
poral durationdt of the pulses are/dt> 1. In this case the ©€Nce in EQ.(6), we find the values,(t,2) and P_(t,2) in
optical atomic coherencBy, follows the pattern set by the EdS:-(4) and(5), and then introducing the new field operators

long-lived coherenc®;, and external optical fields: a,(t,2=A(t, 2expl-ig, +ikez),  A(t,2)=A(t,2)explie
. " . ) —ikoz} we obtain the following integral-differential equations
Pia=—iy Hg(A,"+ Ae™?) - (Q,K=es) for these field operators:
+Q gl Keteh)p ) (6) J J
Substituting Eq(6) into Eq.(3), we find the formal solution (ﬁ —iko+ &—Z>a+(t,z) =-&a(t,2)

for the long-lived coherencB;.:

t
p( t +(§o/7)f dt'{G(t,t")a,(t’,2)
P1x(A,t,2) = P1y(A,tg,2)€eX —f dt’F(A,t’,z)) —o0
to

t t
+f dt’ exp{—J dt”F(A,t”,z)}Fp(t’,z)
to t’

= P12(A1t012)exp{_ fl(A!t!tO)} E (_ 1)n||n| t
n=-o Xf dt'{G,(t,t")a_(t',2)
xX{[2f5(Atto) Jcosn[2(k — ko)z + ¢] -

+G, (t,t)a(t',2)}, 9)

(% —iky— &ﬁZ)é_(t,z) == &a(t,2) + (&)

t oc + G, (4 1)a(t',2)}, (10)
+ f dt'Fo(t’, 2expl— f1(A,4t)} 2 (= )"y
t

0 n=-=

where

x{[2f5(A,t,t") Jjcosn[2(k = ko)z + ¢], (7)  Gytt') =exd~ f1(t,t ) KOS (L)l [2f5(t,1)] - [Q.(HO(t')
wherel - ; ». [X] are the first-class Bessel functions of the +Q_()Q.(t")]11[2f5(t,1)], (17)
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Q.® [ 9 }
G (t,t') =G, (1,1 —ots(t) | —=G,(t,t/ .
leo o) = G (0o * ) | mGntt) ||
t ty t Herewith together with the substitution,(t’,z)={1-(t

—-t")(d/ dt)}a.(t,z) we obtain the formula for the integrals in

FIG. 2. Temporal scheme of the adiabdtionadiabaticswitch- Egs.(9) and (10):

ing of the second control fiel@_(t) at t=t; (t=t,), while keeping
the first control field(),(t) constant.

t
f dt' G(t,t)A.(t’,2)
t

Gaa(t.t') = expl~ (L) HQ (O QL () 26(t,1)] 1 t
+ L0 121540)] Eaﬁ“'z){ J avtonter | s Fonn }
~ S o=
Q226,01 (12 ; o - O
where  fi(t,t) =y L0320 dY,  fo(t,t) =y QL) _{Ea*(t’z)} Ldt'(t‘t')Gm(t,t’)lgzo- (13

XQ()dr,  03(L1)=0,(00,(t)+Q (A (1), Q)
=02(t)+QA(1), ky=wyy/c, and &=(Nog?/cy) is the absorp-
tion coefficient.

We note that the numerical calculations show the increasing
of the temporal intervals where the integrals in ELR) are

. . . ._converged if the ratiog=Q_/Q, becomes larger then 0.8.
Equationg9) and(10) can be used for either the adiabatic The value 0.8 determines approximately the intex@at y

or nonadiabatic regime of the control laser fields’ switching<0 8, where the memory functions in the integrals of Egs
operations. The system includes all the orders of the nonlin-_ ="’ mory 1t S 9 ' =S
ear interaction with the two strong laser fields and demon(g) and(10) are at their maximum within the temporal inter-

strates that the two weak fields,(t,z) and a_(t,z) are val t_t,$50.79;2' Sybstitu’ging Eq.(}3) into Egs. (9) and
coupled with each other due to the terms proportional to(lo) we obtain the differential equations

G, 4(t,t") #0 only if the two control laser fields are simulta- (159 5 = \._ : R R
neously applied. The slow-light dynamics in EqS) and | (5 * &_Z—lko a.(t,2) = - & W[ Bvas - B2 (v ]a}
(10) depends on the parameters of the four gratings in the

long-lived atomic coherenceP ,(t,2) [~exp{+i(k+K)z}] 1 9, )+ 1 9, ¢
with the largest spatial periods in accordance with the phase- vi(x) ata“‘( 2) vo(x) ﬁta_( ),
matching conditions. We note that all these atomic gratings (14)
are excited directly by the weak quantum fields in the pres-

ence of the two control laser fields. For comparison we note 19 4

that the two of these coherence gratingsexp{+i(k+K)z}] (__ _9 )A - A _ A

with spatial period¢~\/2) have a short lifetime and should \cdt 6z ko Ja-(t,2) EOBA-~ £2.(03)

be negligible in hot gaseous systems due to fast Doppler 1 9
dephasing. In condensed media, however, we show that these - —a(t,2 + —a,(t,2),
two gratings cause new properties of the coupled fields vi(x) vo(x) ot
propagation. Mathematically the grating amplitudes in Egs. (15)

(9) and (10) are expressed nonlinearly with the control field
in forms of Bessel functions, - ; {f,(t,t')), whereas the
Bessel functions witm>2 reflect the excitation of other

where the integrals from the exponent and Bessel functions
equal to the simple algebraic formulas

gratings] ~exp{+i(k+nK)z}] with smaller spatial periods due Q8 [t 9~ y
to the higher nonlinearity of the atomic response to the ac- 7J dt’ a_Gl(t’t,) =-Bx)=- 1= 22
tion of the two interfered control waves. We note that the - S s=0 X

grating amplitudeg3,, decrease with increasing of the num- (16)
ber n and the influence of the gratings witie>>2 becomes

=Bmlx), (A7)

s=0

negligible in the slow-light dynamics. 03 [t { 9~ }
We study the adiabatic switching on the second control —+f dt’ | =G+ 2(t,t")
laser field with the conditior(l&/at)Q_<(Q§/y)Q_ (see Fig. 7). s

2). Given this condition we can assum@_(t')=Q_(t) B . o - .
—s(t)(t-t"), wheres(t)=(a/)Q_(t) is a small parameter in Where  Bai=Bo+(1-x97%  Bo-=x"/(1-x9)% &

the functionsG(t,t') (m=1;2+:2-), which play a role of =&(¥s/Q3)=&(yQ-103)=x¥;%0), and v;%(0)=¢&y/Q2

the memory functions in the Eq) and(10), have a sharp =Nog?/(cQ?) is the initial velocity of the slow light before
temporal behavior with a maximum &tt’ compared with the moment of switching on the second control field. We
the long weak pulsea.(t,z) (Q348t/y>1). Taking into ac- have also found the relation Yy LAt Gy u(t, )] s0= 1
count the influence of the switching operation in the first—y 1/'..dt'Gy(t,t’)|.=o= a(x(t)) =0, where the absorption co-
order of the terni(t) in the functionG(t,t’) we can find the efficients &a(x) equals zero for both weak lights, which
decomposition rate means the existence of the windows transparency for the
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weak fields; we have also introduced the new velocitiedbecome mutually comparabl(easymptotically in our ap-
v1(x) and vy(x): proach for y—1 whered™, _,—4a\". In order to find the
t 1 absolute amplitude of the forward fleﬁf) (anda(l) respec-

(&) f dt’'(t-t")Gy(t,t s )‘ == 1 x), tively) we have to solve the complicated equatidh4) and
% <=0 v1(0)(1 - x%) (15). However, taking into account that our field parameters
must be close to the adiabatic limit at very slow switching

X speeds we can find the approximate solution using the fol-

t
(&/y) f dt'(t—t")Gpa(t,t 1 )‘ =- O lowing anzatz for the fields in Eq.(14): a.(t,2)
—% _ 1 ~ ~ ~
. 5=0 = (A inlJorg(t)dt =2], &(t,2) = u(x)a.(t,2). After sub-
=-v,(x)- stitution of these values into E¢14) we find
The ratio between the introduced velocities coincides with

the ratio between the Rabi frequencies of the control fields Y
vi(x) ! vo(x)=Q_1Q,=x. This interesting consequence of the

(Br= uBa INL =3P+ ,U«}

+
integrals with Bessel functions leads to a simple structure fordf/f = 11(0) > dy= - X 'g)d
the system equationd4) and (15). We note that Eqs(14) 1-x) 1-x)
and(15) stay in a symmetrical form for the fields(t,z) and (1-V1-x9
a_(t,2) with the constant control fields, whereas the switch- =" ﬁ X (20)

ing procedure withé_(t) # 0 breaks the symmetry because of

the nonsymmetrical switching operation. If the switching is

slow enough&_(t) <1, the relative field parameters can be

found using Eqgs(14) and (15) ignoring the terms propor- L R

tional to £(t) and herewith we find the dispersion relation f0) =31 +V1-x), (21

for the fields to bew; 5(K)=1(0){ko \(xKo)?+(1—x?)k}.

Let us consider the case of a sufficiently small splitting be-and the second field amplituge x)f(x)=x/2. Using the so-

tween the two ground levels: lution f(y) we can evaluate the total electromagnetic energy
of these two fields:

with the solution

c
Wy < ——(1 = Y)Y250; ~ —— Sw
21 (O) X f 1,(0) fe )
(Sws= St™L is a spectrum width of the slow lightThis con- W=W, +W_ =f dzZ{(ala,(t,z; x)) + (@'a(t,z; x))}
dition can be easily realized for typical experimental condi- 0
tions dw;=~10Pc™?, ¢/ v4(0) = 10°, w,;<10'c™?, which was 1 ry XYY
= 2(1+\1 XIWejin,

observed in Refl3]. Therefore, we can ignore the band gap,
Awy,=2xv1(0)Kg=2w,1Q_Q,/(NgP) < dwy, SO the field equa-

tions[Egs.(14) and (15)] transform into the following: which does not equal zero in the point of the complete stop-
page of Iight,W(X—>1):%W+,in. This nonvanishing field can
iﬁ&(t z)+i (t,2) = iﬁa_(t 2), (18)  Stay macroscopically in the mediufiy=1) or move along

with the ultraslow velocityvy=v,(0) V1 -x? without absorp-

tion. So we can manipulate with the ultraslow group velocity
iia_(t 2) - ia_(t 2)= l—a+(t 2), (19) within the spin decoherence tin“yg_l of the second level. For
vy ot Jz vy example, if we adiabatically switch off the second control
field [Q_(t) — 0], the nearly stationary weak field resumes to

with a linear dispersion relation for the coupled fields . . T ~
move as it was before without dissipative losses:

w1 oK)= kv, wherevy=v1/1-x? is a their common group _
velocity. Eqaatlons(lg) and (19 have the following two =8, jn(try - Z+8Ztl At2a certalg time delayr=6z/v,= ftz(vl
pairs of the fundamental solutioria,” anda'?) for the two ~ ~ (x(®)dt=JEdty“(1/[1+x*(1)], the backward field dis-
waves propagated |n the forward directiona’ ~ @ppears: a(t,2)= m(Ya(t,2)],_o—0. The advantage of
=4[ [t ve(Y)dt-2z] and e ,ual[ftvg(x)dt 7], and for the this light stoppage with respect to the ve_Io_qlty control of_the
modes in the backward dlrect|ora+ = gl [l (X)dt+z] usual slow _Ilght_propaga_tlon is the_ pqsalblhty of co_ntrollmg
@_ 9 — the interaction time of this nonvanishinig stopped light with
and a%=3,[[org(x)di+z] [where M(X) xI(1+V1-x9)] chosen spatially localized atoms in the medi[t,15 by
The first pair of the coupled fielda(” corresponds to our the variation of the light group velocity,. The two fields
initial condition for a nonzero probe fiele (t<t;,2)#0.  3,(t,2) will be coupled indissociably to each other in this
Thus the adiabatic switching on of the second control fieldsyolution and the total state of these fields are expressed
leads t0 the excitation of the new counterpropagating slowhrough an entangled wave function. Using the obtained so-
light & Wthh propagates together with the original for- |ution for the field operators we can find the wave function
ward fleld a , and the relative amplitude increases’ for the field and medium in the adiabatic limit where the
,uail), as Q_(t) increases. The amplitudes of both fields original probe pulse was a single-photon wave packet:
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equations for the counterpropagated field operaﬁq,t($,z)
=a'"(t,20exp dig,)} (the indexo=1), which become de-
coupled from each other and have the form

1/2
|q,a+f> = (ch) f(X)|1>a{|\P+(Vgt —2)+ M(X)e_i¢

X[W_(vgt = 2))i} + 2 Phy(wgt = 0| Dl Oy,
J

(i + ai)iw,z) =~ [EAt2) + oot D], (27)

where [1),=II}{,|1;) and |0); are the ground states of the cat oz

atoms, and the fieldW.(v4t-2))¢ is the single-photon wave
packet of the fields.(t,2) [where(W.(vgt—2) | V. (vgt—2))
=1 andP,(t) = (P}4(-1))* [see comment to E¢8) about the po(t,2) = pyo(t,2exp —ioe,)}
properties of the operatdp,(t)]. Excitation of the photon
component of the stat& ;) is much smaller than the com-
ponent with atomic excitation due to the small group velocity . 1., A

vg, Which takes place just before its emission from the me- Ep(,,o(t,z) =- ;/Qrf{po,o(tyz) +EA(L2)}. (29
dium. We found that the fielda,(t,z) can be spatially sepa-

rated from each other before emission from the medium by/sing the decomposition, E¢L3), for Eq. (23) and the con-
the nonadiabatic switching off of the second control fielddition for slow-light fields,

(see Fig. 2 This nonadiabatic process influences the photon

where the new atomic operators

satisfy the equations

1 0
component of the stal&,,;) and the entanglement between A > ——aV(t,,2),
the two generated pulses, which begin to propagate in oppo- V1,20t
site directions to each other. which takes place in the high-optical-density medium, and

We study this process using general E@.and(10) and  taking into account Eq€24)—(26) we find
assuming the control field)_(t>t,)=0. In this case the

memory functions become proportional to the same expo- paltr,2) = = £ (12, 2)p_(t,2)
nentional function Gy, ,(t,t' >1,)=Cy., cexd —(1/y)Q:(t _ A(1) A(1)
2% 2,k + =- a’(ty,z) — x(t 1,,2)] .
~t')], where C,,. are constants withC,.=0 for t'>t,. (&l 87 (22) ~ X137 (t2,2)]
Therefore we obtain Equations27) and(28) reproduce the final stage of the field
) reconstruction in the quantum memory technique studied re-
dt' {G(t,t)a,(t',2) + G, = (L)AL (', Z cently in[16]. The main difference between the present ar-
(50/7)f_x (G, + Go (L 1)a ' 2) ticle and Ref.[16] is that the initial condition for fields is

1 Ag(tz,z) # 0 and the specific character of atomic excitation is
=—exp| — —02(t—ty) (ps(tr,2) + (£,0%]y) determined by the atomic excitatiops(t,,z). Due to these
Y initial conditions, the solution of Eq$27) and(28) includes

t , 1., s both the forward and backward slow-light fields, which are
X | dt’ exp) - ;Q+(t—t ) (a(t',2), (22)  expressed via the usual Fourier transformatiok space:
t
2 )
where t Pooltiz)= >, f dk{p explilwl(t - t,) + Kz},
2 m=1J -
p+(t2,2) = (§oﬂf/v)f dt'{Gy o(tz,t")a.(t’,2) (29)
+ Gy 0z(tp,1)a=(t',2)}, (23)

2 %
At2=2 f dKA™ explifwZ)(t - t,) +kzl},
1 m=1 J =
Gy olt—t) = exp{— ;Qg(tz)(tz - t')}{|o[2fz(tzat,)] '

(30

—[Q(tp)/ Q15[ 25t 1) ]}, (24)  where we have found the four eigenvalues of H3) and

(28) in k space (m=1,2: w‘{’z;k:%l“mk{ltsmk} with

Goot—t')=- exp{— lQg(tz)(t2 - t’)}{ll[Zfz(tz,t’)] Fg,k=[i(c§otﬂf/ ¥)=0ck], Syu=\1+4iockQ3/(y17%)); the
Y valuesﬁfﬂz, Affmﬁ are found using the spatial Fourier transfor-

—[Q_(tp)/ Q]I 2f (15, 1) ]}, (25 mation for the initial conditions for the fielda,(t,,z) and

atomic operator$,(t,,z). Thus we have
1
Goo(tr—t") = exp{— ;Qg(tz - t')}
X{[Q_(t)/Q JIg[2f 5(tp,1") ] = 11[2f (15, ") I}
(26)
Using Eq.(22) we transform Eqs(9) and (10) into the

N 1 -
A= Z0+ &A% =0,
0

. 1 . . .
Al = é_o{_ £l = XIAG + EuAL} = XA,
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A 1 A erated field is in the entangled state although maximum en-
A(2) =_—70 ~ (0)(t ) . . . . . .
+k ¢ Pik K2, tanglement is not achieved. It is principally possible to in-
0 crease the entanglement by repetition of this procedure using
1 only the new forward field. After two such procedures we get
AQ = =50~ _ VA 31 the state
K P-k (e X)A+,k( 2). (31

&

After substitution of these values and eigenvalues into Eqgs. |W,.(t,2')) = f2|W.[c(t - 71) — Z]) - (x — w) e | W _[c(t
(29) and (30) we have found finally the following solution : , i B ,
for the field operator: )+ Z ]+ &Y et - 79 + 2]},

(34)

At,z2) = A.(t,2) + A_(t,2)
_ - i where 1, , ; are the relative time delays ang is the addi-

= fO{ Al nalt=7) = 2] = (x — e tional controllable phase. Performing such a procedure sev-
XA, [yt = 1) + 2]}, (32)  eral times we can change the spectral properties of the final
’ state and increase its entanglement. At the same time it
wherer is the temporal delay due to the staying of the slow-should be noted that the presented analytical approach pre-
light field. This solution describes that the two pulses movedicts lower-energy transfer efficiency for the entangled states
opposite with the same velocity. We note that the nonadiathan takes place mentioned above for the one procedure.

batic switching off of the second control field changes theprincipally the entangled states of the two temporally re-
backward field amplitude fromA_=uA, to the valueA_  versed fields can also be generated from the two-photon

=(u-x)A,. The additional componentyA, was generated duantum states as well as from the squeezed states of the

due to the atomic coherence aratinas=it.. The fieldA_ has probe pulse. At the same time, if the initial quantum state is
! _ ¢ co _g _1;29 2 : < the coherent statb!\ir,):exp[—%‘Ain‘2+Ama; o) (whereay

the maximum amplitude fogy=2""“=0.7 where we geA_ =1 dway(o- w5 (o), do] a(w-wy) 2=1]), we can

_lA‘ A_l —A . . . —OC. 1 -0 ’

j4pi+,"1 where A,=7(2+V2)An; the ampl?tude rimf( 'S" lead finally to the statelAin>Eexp{—%‘Am|2+fAin[a;l—(X

A-[A.=0.3, and the total energy of both fieldsWeé= 31 _ =+ 1110y which is the product of the two coherent states

VL= x 2= I XIW, ol yeor12= (7 B)W, ;= 0.7, ;. It s ; : :

possible t%) assalr%gihat this Ioss+E|)nf thé tote;lngnergy i COQC/)J the fields with temporally and spectrally reversed profiles,
-h 3t = -‘P et —_ -w(TZ_Tl) + i

nected with the decreasing of the four long-lived coherence erea, &/ _.dway(wg - w)e a‘kz(w)’ ande is a

grating amplitudes, which lead to the small value of the fac_controllable constant phase. The propos_ed scheme plays a
ole of the semitransparent four-wave mirror with reversed

tor f(x). Decreasing the four grating amplitudes correlated .
with an existence of other gratinga>2) after the abrupt temporal profile, and entanglement of the coherent states

. ; o ) needs additional nonlinear interaction similar to the recent
nonadiabatical switching off the second control field. TheWork [10,12], wheren phase shift can be easily achieved due
present analytical approximation gives large transfer b_etwee{b Iength,enéd interaction time between the coherent pulses.
the forward and backward fields, to be cor_nparable with thﬁzrom this point of view the presented scheme introduces a
recent copropagated scheifrigf]. An interesting new aspect

i . . new possibility of using standing or almost stationary light in
of the proposed technique is that the temporal profiles of th(ta‘ne media with four and more large number of active atomic

fields A_ and A, are reversed with respect to each other,jeyels.

which is a consequence of the FWM processes and cannot be |y conclusion we have demonstrated quantum control of a
realized by using the usual mirrors. We have found the soluyeak quantum field for ultraslow and almost stationary light
tion for f(x) in Eq. (14) without using the second equation of iy a three-level condensed medium not limited by Doppler
Egs. (15), which points out the possibility of a higher value broadening. We have proposed a scheme of quantum en-
for f(x). Therefore, the possibility of a higher transformation tangled photon generation based on a lengthened interaction
for the total field energy is interesting to studyhich can be  time and nonadiabatic manipulation with almost stationary
done numerically elsewhere using the general equati®ns light phenomenon. Such a scheme can be realized in particu-
and (10)] generation of two temporally reversed pulsesiarly in a rare-earth-doped solids demonstrated already for an
whose stoppage should be controlled. Ignoring the small desltraslow group velocity. We note that, owing to the temporal
crease in total energy of 0.V ;, in the above analytical reversibility of the entangled single-photon wave packets,
results, we can analyze the specific quantum properties of the proposed scheme can be similar to entanglement schemes
generated pulse. If the initial probe field is an ideal single-based on photon polarization. The quantum manipulations
photon wave packet after emission, we get the followingand processing with the temporally reversed entangled states
state: represent an interesting subject for further research espe-
Wi (6,2)) = HW.C(t = 7= 2vy) = 2] = (y = et cially for the spectral engineering of the quantum states.

X|W{c[t— 7= (L - 2/v] -2}, (33) The authors acknowledge that this work was supported by

Korea Research Foundation Grant No. KRF-2003-070-

wherez is the position of the ultraslow light in the medium at C00024 and the Quantum Cryptography Project by Korean
the point of switching off the second control field. The gen-Ministry of Science and Technology.
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