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Quantum polarization distributions via marginals of quadrature distributions
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We derive quantum polarization distributions on the Poincaré sphere for two-mode fields as suitable mar-
ginals of the standare-ordered quadrature distributions that include the Wigner function. We compare them
with previously introduced distributions directly defined on the sphere from first principles. We apply this
approach to some relevant field states such as coherent and number states.
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[. INTRODUCTION tion correlations are crucial for recently developed applica-
o o . ) ] tions of quantum theory11]. Marginals of suitable quadra-
Polarization is a crucial ingredient of light in both the tyre distributions have been used also to study phase
classical and quantum domains. However, quantum pO|ariZ€properties of one- and two-mode guantum field Stm
tion is mainly addressed in terms of the abstract Hilbert- |n this regard we may say that marginal distributions pro-
space logic in a finite-dimensional space. This is rather divide the most down-to-earth approach to quantum polariza-
vorced from the usual language used in the classical domaition distributions, since, by definition, they are to be obtained
in terms of the Stokes parameters and the Poincaré sphemxactly in the same way as polarization distributions are de-
Because of this, we think that it is worth developing andrived in classical optic§13]. This is in sharp contrast to
investigating formulations of quantum polarization as distri-SU(2) distributions whose definitions bear no definite rela-
butions on the Poincaré sphere. Such approaches are clodi@n with optics, being introduced specifically for the de-
to our common intuition about polarization phenomena, sccription of abstract angular momenta. o
they can be very helpful in understanding quantum polariza- Among the large family of quantum phase-space distribu-
tion properties. t!ons_known in phy3|cs, the—orde_red dIStI’IbUtIO!’IS are dis-
In this regard we can follow two different routes. On the tinguished by their good theoretical and experimental prop-

one hand, we have a direct approach by translating to polaP—hrties' Fgr eéampltz, in the dc.onygxt' of poIarizzfation we ha\l/e
ization previously introduced phase-space formalisms for anihal s-ordered quadrature distributions transtorm properly
under the transformations that represent action of standard

gular momentum and spin variablgs-7]. This is possible polarization changing devicd4]
because the Stokes parametghg basic variables describing From the experimental perspective:ordered distribu-

polarization are formally equivalent to an angular MOMEN" 4inns can be determined in practice by using diverse experi-

tum. For d_eflnlteness we focus_ on th_e proposals in Refsmental procedures, such as homodyne and heterodyne detec-

[1-5] referring to them as S@) d'Str'.bUt'onS' o ... tion, tomography, and atom-field interactions, to mention just
On the other hand, we can derive polarization distribu~s noqt nopular and repeatedly carried out experimentally

tions via suitable marginals of distributions for the complex[ls] As a matter of fact, most of these practical schemes are
amplitudes(or field quadraturgsby removing the degrees of o1y simple so that their operation can be understood even

freedom irrelevant for the specification of polarization. This, i0in o purely classical framework. Moreover, they are ro-

is the approach investigated in this work, and we refer 19, against experimental imperfections, such as detection

them as marglnal_d|str|butlons. More specmca!ly, W€ CONinefficiencies, that imply just a change of the value of ¢he
sider proper marginals af-ordered quadrature distributions parameter

that include distinguished particular examples such agthe This widespread measurability is not matched by any

P, .?Ed Wigner funct|?n$8]. . h i other family of phase-space distributions. This is also in
_There are several reasons supporting the expediency @}, congrast to the case of @Udistributions which, to the
this a_pproach to quantum polarlz_atlon._ Frpm a practlca_l P€'hest of our knowledge, have not been determined experimen-
spective, we have that po_Iar|zat|on dlstnbutpns prowde.qa"y yet. In any case, the theoretical proposals for their prac-
feasible approach to examine and measure diverse polanzat—:al determination are rather cumbersome and lack the

tion properties. This is the case of the degree of polarizatiorgimme and intuitive picture provided by schemes measuring
recently introduced as the distance between the polarizatiotrp1e s-ordered distribution$3,16].

d|s|tr|t_)ut:;)r|1_ ahndgthe%rllj_nlform S'Str'lbu“%n assouafte(rj] With un-— £in a1y s-ordered distributions provide a simple measure
polarized light[9]. IS can be also the case of the proper ¢ ,q degree of nonclassical behavior of quantum states
assessment of polarization correlations derived from th 7]

properties of the joint polarization distributi¢pb0]. Polariza- In Sec. Il we derive the main formulas establishing the

operator-function correspondence obtained after removing

from the quadrature distributions the variables not related to

*Electronic address: alluis@fis.ucm.es; URL: http://www.ucm.esthe polarization. In Secs. Il and IV we examine their main
info/gioq properties, comparing the marginal distributions with the
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SU(2) distributions. In Sec. V we apply this approach to UTaU =3, (2.9
some relevant examples of field states such as coherent and

number states. Finally, in Sec. VI we examine whether thig/ a unitary 2<2 complex matrix, and

approach can be used to measure the degree of polarization

of quantum fields. a= <a1>' a= (al)_ (2.9

a;
II. MARGINAL DISTRIBUTIONS FOR POLARIZATION 2 @

Our starting point is the s-ordered distributions Because of this property, we can always expuel;s) as

W(ay, ay;s) for quadrature variables: A(Q:s) = U(Q)A(9= 0:9)UT(Q) (2.10

Wlay,a2;9) = tlpT(e;9) @ T(a;s)], 2.9 U(Q) being the SP) transformation with

wherep is the two-mode density matrixy; and «, are the
complex amplitudes for each field mod&(«;;s) is the

0 .0
hd Zatid
phase-space point opera{@i, c052 sin 2e

+ U= 0 , (2.11
2 t_x [s+1\HY - T —gin—d¢ z
T(aj;9) = e%3 8] eYd 3 (2.2 sin-¢€ cos
(e:9) m(1-9) P (s—l) : i, (2.2) 2 2
anda; is the complex amplitude operator for the correspond-SO that
ing field mode. This definition is normalized so that i
uTa:( 0 ) (2.12

f dzaldzaZW(al,az;S) =1. (23)
From Eq.(2.10 we can focus without loss of generality on
This includes the function (s=-1), the P function (s=1),  the north poles=0:
and the Wigner functioris=0).
In order to remove the variables not entering into the idea
of polarization(i.e., total intensity and global phgsee per-

1 ] 2 )
A(0=0;s)=£—1f drr3f déT(a; =re'%;s) @ T(ay=0;9).
form the change of variables ° 0

(2.13
— ZAd — N Al Oal
=T cosze' v a=rsin 29' e, (24 This greatly simplifies the problem since now the removal of
. r and § is performed just on the mods.

with This removal is further simplified by evaluatind a; ;s)
1 on the quadrature coherent staf@s, with a;|8)=8/8). In

d?a,0Pa, = Zr?’drdﬁsin 6déde. (2.5  such a case,

:

In this parametrization?=|a,|>+|a,|? represents the total _ 2 _ s+1\af
intensity, § is a global phasep=arga,-arga; is the phase (BT(ar;9)|8) = (1 _s)<'8 | s—1 8= ay
difference, and tai®/2)=|a,|/|a,;| describes the relative

. : . . 2 2
amount of intensity carried by each field mode. = expl — ——[r2+ |82
The two variable€)=(0, ¢) are the parameters defining a m(1-9) 1-s

polarization state, which can be represented as a point on a

unit sphere: the Poincaré sphere. Our first objective is to - 2r|Blcog 5~ (p)]}, (2.19
derive fromT(a;;s) ® T(ay;s) a family of phase-space point

operatorsA({;s) for polarization by removing the other de- wherep=argB. The & integration gives

grees of freedoni.e.,r andd) irrelevant for the specification

of polarization state: 2m
e | ansirasio
A(Q;s):—j drrSJ déT(a;;s) ® T(ay;s). (2.6) 0
4 0 0 2 2 4|B|r
. B = —exp - —(r*+ (8" |lo| 7
This calculation simplifies if we use the good transforma- 1-s 1-s l-s
tion properties oW(ea;s) under SUY2) transformationgro- 4 5 * 1 (2 2K
tations on the Poincaré sphgfd4], - e p{— £ (r2+ |:3|2)}2 _( r|,8|> ,
1 1- o ki?\1-s

Wy,ut(a;s) =W, (U a;s), (2.7)

where the subscript ikV indicates the corresponding opera-
tor, U is the unitary operator representing the(8liransfor-  wherelg is the modified Bessel function of first kind and
mation, zero order. Finally, the integration gives
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A | _1_-8( 2 )
4f0 drr fo dXB(T(ay;9)]8) === 1+ T IAl

2
:_</3|( +_Salal>|,3> (2.19
Therefore,
t
1(s+1 azﬂz( 2 )
A(0=0;59=—| — 1+—ala|. (2.1
( 9 477(5—1) 1-sa) (217
Finally, since
t= cosZa, + &i¢ sin 2
Ua,U' =cos-a; +e'?sin-ay,
2 2
f_ 0 6o O
Ua,U —cosaaz—e smEal, (2.18

we get from Eq.2.10 that

(S-Q-S)/2
AQ:S) = 1<S+1> {1+1—ES(SO+Q-S) ,

-1
(2.19
whereQ is the three-dimensional real vector,
sin # cos¢
Q=(sindsing |, (2.20
cosé
and S, andS are the Stokes operators:
S=aja +ajay, S =i(ala -alay),
Sc=ala, +ala,, S,=ala,-ala,. (2.21)

IIl. PROPERTIES AND COMPARISON WITH SU(2)
DISTRIBUTIONS

PHYSICAL REVIEW A 71, 053801(2005

number statef,),|n,), and the eigenstatgjs m) of j2 andj:
li,m) = (3.2

The phase-space approach provided &Y)(Q;s) does
not coincide in general with previously introduced phase-
space formalisms for finite-dimensional systems. More spe-
cifically, we focus on the angular analogs of the quadrature
s-ordered distributions,

np=j+my®[n=j-m,.

W(Q;s) =t pAV(Q;9)], (3.3
with [1-3]
2] ¢
- —(j.k;€,mj,q)
ADQ; — V20 + 1
(9= V4 WEOm_E_equJ (4.,j;€,00j,j)°
XY m( @)}, K, al, (3.9

where (j;,m;j,,my|j,m) are the Clebsch-Gordan coeffi-
cients andY, ({2) the spherical harmonics. This definition is
normalized so that

fdQW(Q;s):trp, (3.5
with dQ =sin 6dod¢, as usual. We refer tBV({);s) as SU2)
distributions. Other phase-space approaches for finite-
dimensional systems can be found in R¢6&7].

The marginal distribution$2.19 and the SW2) distribu-
tions (3.4) only coincide fors=-1, since, in such a case,

AD©:- D =2200;- 1= 22X il 36
A7
so thatAD(Q:-1)=A@)(Q;-1) are given by projection on
the SU2) coherent statef5]. This is the definition of the
SU(2) Q function[5,9,10.

For s#-1 the discrepancy betweenAM(Q);s)
andAD(Q;s) is clearly revealed when comparing their spec-
tra. The spectra can be easily computed fier0 since in
such a case both™(0;s) and A¥(0;s) are diagonal in the
lj,m) basis,

It can be appreciated that the phase-space point operators
A(Q;9) in Eq. (2.19 commute with the total photon-number

i
20 = i i
operatorfA(Q);s),S]=0 so thatA(Q;s) leave invariant the AP(0;9= 2 Noli,mii,ml,

subspaces with fixed total number of photdwisTherefore i
we have i
- A= 2 Nli,mij,m, (3.7
AQ;5)= > ANQ;s), (3.1 ==
N=0 being
whereAMN(Q);s) is the restriction ofA(€);s) to subspaces of 1 . i-m
' j+m\/s+1
fixed total photon numbek. Am= —(1 + 2—)(—) ,
The operatorsA™(Q;s) provide a new phase-space for- Am 1-s/\s-1
mulation of quantum physics on the sphere for finite- X
dimensional systems of arbitrary dimensigs 1. The finite- ~ 12 (j,m; €,0j,m)
dimensional spaces are often regarded as describing an Am= E%(% + 1)<JJ€—0|JJ>S (3.9

arbitrary angular momenturp with j2=j(j+1) (in units in
which=1). The approach developed above can be recast im Fig. 1 we represent the spectra foj=2N=40 ands
this language simply by performing the replacemepts =0,+0.05. Note that they tend to be rather similar $etr0
=S/2 andj=S/2, along with the following relation between while they become very dissimilar fa=0.
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FIG. 1. Spectrum ofAN(Q;s) (squares and AD(Q;s) (tri-
angles$ for 2j=N=40 ands=0, +0.05.

The marginal distribution$2.19 inherit the good trans-
formation properties of the quadrature distributi¢®s) un-
der SU?2) transformations since

Wy,ut(Q;5) = W,(V'Q;s),

(3.9

where V! is the transpose of the matriX defined by the

relation

ufsu=vs. (3.10

This transformation law is also satisfied by the (3)distri-

butions[1-3].

There is another property that is not inherited. This is the
proportionality between phase-space averages and Hilberlt—

space traces. For quadrature distributions it holds[iBiat

ﬂ'zf Aoy P Wa( ey, ap; = S)\Wg(ay, az;s) = tr(AB),

(3.11

and equivalently for the S(@2) distributions[3],

PHYSICAL REVIEW A 71, 053801(2005

AT

2+ 1 dOWA(Q;=99Wg(Q;s) = tr(AB),

(3.12
which are valid for everys. However, this no longer holds
literally for the polarization marginals. There are two conse-
guences that can be derived from this fact. On the one hand,
it is possible to restore this property by introducing another

operator-function corresponden@Q\HA such that

f dOW,(Q; - We(€2;) = tr(AB). (3.13

This possibility is developed in Sec. IV. On the other hand,
there is the possibility of using the marginal Wigner function
to measure the degree of polarization of quantum states, as
discussed in Sec. VI.

IV. DUAL DISTRIBUTIONS

The strategy addressed in this work actually defines two
phase-space formalisms. In addition to the correspondence
defined aboveW(();s)=tr[AA({);s)] we can devise a dual

definition \7V(Q;s) that emerges when expressing every ob-
servableA commuting withS, as an expansion of the form

A= J dOW(Q; - 9)A(Q:S). (4.1

Assuming a linear relationship between operators and
functions,
W(Q;s) = t{ AA(Q;9)], (4.2

we have that the dual operato&(ﬂ;s) should be deter-
mined by the consistency condition
A= J dOtAA(Q;- 9TA(Q;9), (4.3

leading to

f dO(j, plAQ; = 9)[[, M), KA 5)[},6) = 8,q0mi

(4.4)

If these equations can be solved, then Ef1) holds for
every A commuting withS,. Moreover, given the explicit
symmetry in Eq.(4.4) betweenA and A, the fulfillment of
Eq. (4.4) also allows us to expregsin the form
A:fdQW(Q;—s)Z(Q;s). (4.5)
n the next section we will solve Eq$4.4) for j=1/2 and
i=1.
For quadrature and SP) distributions the direct and dual
definitions coincide: T(«a;s)=T(a;s) [8] and A(L;s)
=A(Q;s) [3]. However, we have found no general relation of
this kind betweenZ(Q;s) and A(Q);s) (leaving aside the

simplest two-dimensional casg=N/2=1/2 examined be-
low).

053801-4
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The fulfillment of Eq.(4.4) restores the relation between 15
phase-space averages and Hilbert-space traces—for example, WO
in the form € 1
0.5
tr(AB) = f dOW,(Q; - We(Q;s) = J dOW(Q; 0
B -0.5
- 9)WA(Q;9). (4.6)
" 0 05 1 15 2 25 3
Moreover, it also allows us to establish a link between the
distributions with different values & By using Eq.(4.5) for 9

A=p ands=-s' we get i ) o
FIG. 2. Plot of the Wigner functions=0)W(Q) (solid line) and

W(Q) (dotted ling, as functions of# for the number state
W(Q;s) =tr[pA(Q;s)] = f dQ'K(Q,Q";s,8 W' ;s"), |10)4|10)».
(4. n-1
) W(Q;s):i<1+isinzg)
with 47 s—-1 2
2n n+1 0
K(Q,0';58) =t{AQ;9A(Q;-s)]. (4.8 X(l‘:l 257 siv 5)- 5.3

This is the angular analog of the convolution relation be-On the other hand, the expression for the(BUlistribution

tween quadrature distributioi8]. A similar relation holds IS
for the SU2) distributions|[3,4]. 10
W(Q;s) = 4—2 (2€ + 1){n/2,n/2;€,0|n/2,n/2) P, (cosb),

V. EXAMPLES Te=0

5.4
Next we illustrate the results of the previous sections by ©4

particularizing them to S(2) coherent states, number states,whereP, are the Legendre polynomials.

and one-photon and two-photon states. In spite of the fact that these expressions are seemingly
very different, fors=0 they are practically indistinguishable
even for small photon numbers. The particular examples
=1,2 areexamined below.

For SU2) coherent states we can take advantage of the
SU(2) covariance by considering without loss of generality
the casen),|0), which corresponds to a §P) coherent state
centered at the north pole of the Poincaré sphere. The evalu- For general number statés ),|n,), the expression for the
ation of the distribution simplifies if we express Eg.19 in SU(2) distribution is

A. SU(2) coherent states

B. Number states

the form 5

W(Q;s) = iz (2¢ + 1)MP (cosb)

+1)B020 (2 T Anis Guse.oips
A(Q;9)=— —1 1 +—a1(Q a,(Q) 55

1)\ @20 2 being
- —(—1) o
_Mmtn _h—m
s+1 al(ay Q) I= 5 =7 (5.6)
( ) a,(Q), (5.1 ) .
Unfortunately we have found no simple closed expression

for the marginal distributions when;n, # 0. Nevertheless,
where a;(2)=Ua,U" and a,(2)=Ua,U" are given by Eq. numerical calculations are simple. In Fig. 2 we represent the
(2.18. The mean value ok(Q);s) in the statgn);|0), canbe  SU(2) (dotted line and marginal(solid line) Wigner func-
easily evaluated taking into account that moagis in  tions(s=0) for the number statgl0),|10),. It can be appre-

vacuum and using the general relation ciated that both distributions are very similar.
ala . (v—l)aTa.
vo=e N (5.2 C. One-photon states
where : : denotes normal order. The subspace with just one photon shared by two field
This leads to modes is spanned by the number states

053801-5
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1 0 1
|1)4/0), = (o)’ |0)1|2), = (1) (5.7) (£1]A(Q;9)| £ 1) = m[S(s— 2) ¥ 2(2s- 1)cos6
In this basis we get +3cog 4],
! 2 L
A= T\t ) (0 (©9]0)= ;———ls(s=2) +3- 6 cod ],

1 —
A(Q:s) = —(1+y31Q - o),
4ar

AQ;9) == (1+3—Q 0') (5.9

where o are the three Pauli matrices.
Every one-photon density matrix can be expressed as

1
P=§(1+v-0), (5.9
wherev is a real vector withv<1. For|v|=1 we get pure

states that are all them $2) coherent states. The associated
polarization distributions are

1 2
W(Q;S):;T( +1TQ v),

1 —
W(Q;s) = —(1+3°Q -v),
4ar

W(Q S) = = <1+3—Q v), (5.10

and in this last expression we have normalizkcn;s) SO
that

fdQVV(Q;s)= 1. (5.11)

In this particular case there is a simple relation between
the marginal and the S@) distributions in the form

2 2
A(Q);9)=AQ;s), §'= ﬁln_s_l (5.12

Furthermore, there is also a simple relation between marglnal
and dual distributions:

~ 4
A(Q;s) =27A(Q;S), 521_3(l+s)' (5.13

D. Two-photon states

47(s

1 .
(£1]A(Q;9)|0) = —=—"——=(1 - 25+ 3 cosh)sin ™ '?,
\!

2 EW(S— 1)?

(1AQ;9)|- 1) = 5 si? ge'?¢. (5.19

_ 3
4m(s—-1)
For the SW2) operatorsA({);s) we have
1 —r
*1A(Q;9)|£1) = ﬁ[z\ﬁ — 25561 + 6\2%c0s 0
N2

+ 3255 cod 4],

1
(0|A(Q2;9)|0) = 4—[1 +125715571 — 3257155+ o 4],
r

3\’/2_S
(£1]A(Q;9)|0) = 8—(1 + 551 cos f)sin g™ ?,
T

[os-1gstl

(AAQ;9)]-1) = 3‘8— sir? 67?4, (5.16)
aw

Concerning the dual distributions we have been able to

obtain the solution of Eq4.4) as

3-55(s+2)

~ 5
(*1A(Q;9)[ 1) = g s+ 1)2{ 15(s+ 1)?

+———cosfd+cos h|,
5(25+ 1)

(0]A(Q;9)|0) = %2[9 +5s(s+2) - 15(s+ 1)2 cog 4],

(+1|A(Q; s)|0>— _(s 1){ icos&}sin&eiiq’,

5(2s+1)

AAQ;9)- 1) = g(s+ 1)2sir? ge2¢.  (5.17)

Let us particularize to the Wigner functise0 for the

The subspace with two photons shared by two field modesumber staté2),|0), which is a SW2) coherent state,

is spanned by the number states
11)=12)1]0)2,  [0)=[D)1[1)p, |- 1) =[0)4[2),.
(5.19
In this basis we get the following matrix elements for the
marginal phase-space point operati(s);s):

053801-6
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FIG. 3. Plot of the Wigner functions=0) W();0) (solid line),

\7V(Q;O) (dashed ling andW(Q;0) (dotted ling, as functions o®
for the state2)4]0)..

~ 3
W(Q;0)=——(1+6cos#+5cogd), (5.18
32

where we have normalize®(();0) as in Eq.(5.11). We
have plotted these functions in Fig. 3 as functiong.of

On the other hand, for the stdtg4|1),, which is a SU2)
squeezed stat§9,18,19,

3
W(Q;0)=—(1-2cog 6),
47
1 [ ~
W(Q;0) = 8—(2 +110-3y10cog 6),
T

W(Q;O):%T(S—Scﬁ 0), (5.19

where we have normalizeﬁxl(Q;O) as in Eq.(5.11). We
have plotted these functions in Fig. 4 as function®.ofote

that in both examplesV/(();0) is intermediate between

W(Q;0) and \7V(Q :0).

VI. DEGREE OF POLARIZATION

PHYSICAL REVIEW A 71, 053801(2005

A
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o 60 G
40 LA
20 ‘A:.-"
0

FIG. 5. Plot of the degree of polarizatioB/, for the SU2)
coherent statgl),|0), (squaresand the number statés/ 2),|n/2),
(triangles as functions of the number of photoms,

light. For example, there are many quantum states for which
(S)=0 that are not unpolarized. This is the case of the num-
ber stategn),|n),. Moreover, the classical degree of polar-
ization depends only on second-order correlations of the field
amplitudes. However, in quantum optics higher-order corre-
lations can be crucial. This is the case of polarization squeez-
ing, which is defined in terms of the fluctuations of the
Stokes operators instead of their mean vali®%8,19.

To avoid these shortcomings of the classic definition we
have recently introduced a measure of polarization as the
distance between the polarization distribution and the uni-
form distribution associated with fully unpolarized light,
Winpof 2;8)=1/(4m) [9].

As a suitable polarization distribution we have considered
the marginalQ function [which is the only case that coin-
cides with the corresponding $2) distribution. We can
measure the distance to fully unpolarized light in the form

2
D:4wfdQ[W(Q;—1)—4i] :477Jd9vv2(9;—1)—1.

(6.1

In principle we might have considered another distribu-
tion, such as the S@) Wigner functionW({;0), for ex-
ample. However, this is not a suitable choice since, because
of property(3.12), the integration of the square of the Wigner

In classical optics the degree of polarization is measure@,nction only depends on the trace of the square of the den-

in terms of the Stokes parameters, being proportiongBSo.

sity matrix, so this is just a measure of purity rather than a

However, there are many situations where this does not réneasure of polarization. For example, it would take exactly
flect the polarization properties of the quantum states ofhe same value for all pure states, so it can hardly be related

0.2
0.1
W) o
0.1 -
02}

FIG. 4. Plot of the Wigner functions=0) W(Q);0) (solid line),

\7V(Q;O) (dashed ling andW(2;0) (dotted ling, as functions o®
for the statg1)4|1),.

to polarization properties.

In this work we have found another polarization Wigner
function W({2;0) that does not encounter this difficulty, as
discussed at the end of Sec. lll. In principle, this distribution
may be used in order to assess the degree of polarization in
the form

2
D’:47rfdQ{W(Q;O)—%r] :47rfdQW2(Q;O)—1.

(6.2

Next we examine this possibility.

In Fig. 5 we represenD’ for SU(2) coherent states
In)1|0), (squarels and number statels/2),/n/2), (triangles
as functions of the total number of photoms
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FIG. 6. Plot of the degree of polarizatiol, for the SU2)
coherent stately,|0), (squaresand the number statés/ 2),|n/2),
(triangles as functions of the number of photoms,

FIG. 7. Plot ofW({);-1) (dashed lineandW({;0) (solid line)
for the statdn/2),/n/2), with n=20 photons as functions

states with nonpositive Wigner functions. Therefore, we
think that the degree of polarization is better measured by
using theQ function since it is the only distribution that is
non-negative for all states, being closer to the usual under-
standing of polarization distribution.

It can be appreciated that the degree of polarization in
creases almost linearly with in both cases. The rate of
increase ofD’ is faster for the number statés/2),|n/2),.
This contradicts the result obtained when using @hé&unc-
tion which predicts

n2 (n+ 1)2n|4 VII. CONCLUSIONS
Dho=——, D =— 1. (6.3 . .

0T on+1 TY2Y2T (on+ 1)1(n/2)14 6.3 We have provided a route to define quantum phase-space
formalisms for polarization on the Poincaré sphere, as suit-

These functions are represented in Fig. 6 where it can bgy e arginals ofs-ordered operator-function correspon-

appreciated that the degree of polarizatidh, increases dences for quadrature variables

fas\t/sr fcr:r' tEehSl(JZ% coherent stateisi),|0),. . h . We have shown that this procedure defines polarization
e think that there are reasons supporting the conjectUrgisy i tions that are different from the approaches introduce
that the definition based on ti@function provides the right far (leaving aside the case of ti@ function). Neverthe-

re;ult. The equivalencg b_etween phase-space averages "’}Qgs, we have found that for all the cases examined the mar-
Hilbert-space traces satisfied by the quadrature Wigner funzlg—[I

o o . inal Wigner distribution is very similar to the $2) Wigner
tion imposes the condition that most states must have Wigne{,,tion
functions with negative valuesince the phase-space aver- '

£ h d £ orth | sin The results obtained in this work can have interesting ex-
age of the product of orthogonal states must vaniSince  perimental consequences. On the one hand, the marginals
the distributions are always normalized,

derived froms-ordered distributions provide simple acces-
sible experimental procedures for determining polarization
fdQW(Q;—l):fdQW(Q:O):l, (6.4 properties. For example, this includes recently introduced
measures of degree of polarization and polarization correla-
the negative values oV(();0) must be compensated for by tions[9,10]. In particular, polarization correlations provide a
larger positive values in order to preserve the normalizationfundamental example of experimentally generated entangle-
This implies strong oscillations that move the distributionment with applications in rapidly developing areas such as
away from the unpolarized constant valug4af). This in-  quantum computation and cryptograpfiyl]. Another prac-
creases the degree of polarization. On the other handQthe tical consequence of this approach to be elaborated else-
function does not experience this enlarged oscillation since ivhere is the study and detection of nonclassical properties of
remains always positive. field states, since they are generally expressed as negative
In Fig. 7 we represent/(Q);—1) andW(Q); 0) for the state  values fors-ordered distribution$17].
|n/2>1[n/2>2 with n=20 photons. This plot illustrates the ACKNOWLEDGMENT
negative values and strong oscillations of the Wigner func-
tion in comparison with th&) function. This work has been supported by Project No. FIS2004-
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