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We derive quantum polarization distributions on the Poincaré sphere for two-mode fields as suitable mar-
ginals of the standards-ordered quadrature distributions that include the Wigner function. We compare them
with previously introduced distributions directly defined on the sphere from first principles. We apply this
approach to some relevant field states such as coherent and number states.
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I. INTRODUCTION

Polarization is a crucial ingredient of light in both the
classical and quantum domains. However, quantum polariza-
tion is mainly addressed in terms of the abstract Hilbert-
space logic in a finite-dimensional space. This is rather di-
vorced from the usual language used in the classical domain
in terms of the Stokes parameters and the Poincaré sphere.
Because of this, we think that it is worth developing and
investigating formulations of quantum polarization as distri-
butions on the Poincaré sphere. Such approaches are closer
to our common intuition about polarization phenomena, so
they can be very helpful in understanding quantum polariza-
tion properties.

In this regard we can follow two different routes. On the
one hand, we have a direct approach by translating to polar-
ization previously introduced phase-space formalisms for an-
gular momentum and spin variablesf1–7g. This is possible
because the Stokes parameterssthe basic variables describing
polarizationd are formally equivalent to an angular momen-
tum. For definiteness we focus on the proposals in Refs.
f1–5g referring to them as SUs2d distributions.

On the other hand, we can derive polarization distribu-
tions via suitable marginals of distributions for the complex
amplitudessor field quadraturesd by removing the degrees of
freedom irrelevant for the specification of polarization. This
is the approach investigated in this work, and we refer to
them as marginal distributions. More specifically, we con-
sider proper marginals ofs-ordered quadrature distributions
that include distinguished particular examples such as theQ,
P, and Wigner functionsf8g.

There are several reasons supporting the expediency of
this approach to quantum polarization. From a practical per-
spective, we have that polarization distributions provide a
feasible approach to examine and measure diverse polariza-
tion properties. This is the case of the degree of polarization
recently introduced as the distance between the polarization
distribution and the uniform distribution associated with un-
polarized lightf9g. This can be also the case of the proper
assessment of polarization correlations derived from the
properties of the joint polarization distributionf10g. Polariza-

tion correlations are crucial for recently developed applica-
tions of quantum theoryf11g. Marginals of suitable quadra-
ture distributions have been used also to study phase
properties of one- and two-mode quantum field statesf12g.

In this regard we may say that marginal distributions pro-
vide the most down-to-earth approach to quantum polariza-
tion distributions, since, by definition, they are to be obtained
exactly in the same way as polarization distributions are de-
rived in classical opticsf13g. This is in sharp contrast to
SUs2d distributions whose definitions bear no definite rela-
tion with optics, being introduced specifically for the de-
scription of abstract angular momenta.

Among the large family of quantum phase-space distribu-
tions known in physics, thes-ordered distributions are dis-
tinguished by their good theoretical and experimental prop-
erties. For example, in the context of polarization we have
that s-ordered quadrature distributions transform properly
under the transformations that represent action of standard
polarization changing devicesf14g.

From the experimental perspective,s-ordered distribu-
tions can be determined in practice by using diverse experi-
mental procedures, such as homodyne and heterodyne detec-
tion, tomography, and atom-field interactions, to mention just
the most popular and repeatedly carried out experimentally
f15g. As a matter of fact, most of these practical schemes are
very simple so that their operation can be understood even
within a purely classical framework. Moreover, they are ro-
bust against experimental imperfections, such as detection
inefficiencies, that imply just a change of the value of thes
parameter.

This widespread measurability is not matched by any
other family of phase-space distributions. This is also in
sharp contrast to the case of SUs2d distributions which, to the
best of our knowledge, have not been determined experimen-
tally yet. In any case, the theoretical proposals for their prac-
tical determination are rather cumbersome and lack the
simple and intuitive picture provided by schemes measuring
the s-ordered distributionsf3,16g.

Finally, s-ordered distributions provide a simple measure
of the degree of nonclassical behavior of quantum states
f17g.

In Sec. II we derive the main formulas establishing the
operator-function correspondence obtained after removing
from the quadrature distributions the variables not related to
the polarization. In Secs. III and IV we examine their main
properties, comparing the marginal distributions with the
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SUs2d distributions. In Sec. V we apply this approach to
some relevant examples of field states such as coherent and
number states. Finally, in Sec. VI we examine whether this
approach can be used to measure the degree of polarization
of quantum fields.

II. MARGINAL DISTRIBUTIONS FOR POLARIZATION

Our starting point is the s-ordered distributions
Wsa1,a2;sd for quadrature variables:

Wsa1,a2;sd = trfrTsa1;sd ^ Tsa2;sdg, s2.1d

wherer is the two-mode density matrix,a1 and a2 are the
complex amplitudes for each field mode,Tsa j ;sd is the
phase-space point operatorf8g,

Tsa j ;sd =
2

ps1 − sd
ea jaj

†−a j
*ajSs+ 1

s− 1
Daj

†aj

ea j
*aj−a jaj

†
, s2.2d

andaj is the complex amplitude operator for the correspond-
ing field mode. This definition is normalized so that

E d2a1d
2a2Wsa1,a2;sd = 1. s2.3d

This includes theQ function ss=−1d, the P function ss=1d,
and the Wigner functionss=0d.

In order to remove the variables not entering into the idea
of polarizationsi.e., total intensity and global phased we per-
form the change of variables

a1 = r cos
u

2
eid, a2 = r sin

u

2
eideif, s2.4d

with

d2a1d
2a2 =

1

4
r3drdd sinududf. s2.5d

In this parametrizationr2= ua1u2+ ua2u2 represents the total
intensity,d is a global phase,f=arga2−arga1 is the phase
difference, and tansu /2d= ua2u / ua1u describes the relative
amount of intensity carried by each field mode.

The two variablesV=su ,fd are the parameters defining a
polarization state, which can be represented as a point on a
unit sphere: the Poincaré sphere. Our first objective is to
derive fromTsa1;sd ^ Tsa2;sd a family of phase-space point
operatorsDsV ;sd for polarization by removing the other de-
grees of freedomsi.e., r anddd irrelevant for the specification
of polarization state:

DsV;sd =
1

4
E

0

`

drr3E
0

2p

ddTsa1;sd ^ Tsa2;sd. s2.6d

This calculation simplifies if we use the good transforma-
tion properties ofWsa ;sd under SUs2d transformationssro-
tations on the Poincaré sphered f14g,

WUrU†sa;sd = WrsU†a;sd, s2.7d

where the subscript inW indicates the corresponding opera-
tor, U is the unitary operator representing the SUs2d transfor-
mation,

U†aU = Ua, s2.8d

U a unitary 232 complex matrix, and

a = Sa1

a2
D, a = Sa1

a2
D . s2.9d

Because of this property, we can always expressDsV ;sd as

DsV;sd = UsVdDsu = 0;sdU†sVd, s2.10d

UsVd being the SUs2d transformation with

U† =1 cos
u

2
sin

u

2
e−if

− sin
u

2
eif cos

u

2
2 , s2.11d

so that

U†a = Sreid

0
D . s2.12d

From Eq.s2.10d we can focus without loss of generality on
the north poleu=0:

Dsu = 0;sd =
1

4
E

0

`

drr3E
0

2p

ddTsa1 = reid;sd ^ Tsa2 = 0;sd.

s2.13d

This greatly simplifies the problem since now the removal of
r andd is performed just on the modea1.

This removal is further simplified by evaluatingTsa1;sd
on the quadrature coherent statesubl, with a1ubl=bubl. In
such a case,

kbuTsa1;sdubl =
2

ps1 − sd
kb − a1uSs+ 1

s− 1
Da1

†a1

ub − a1l

=
2

ps1 − sd
expH−

2

1 − s
fr2 + ubu2

− 2r ubucossd − wdgJ , s2.14d

wherew=argb. The d integration gives

E
0

2p

ddkbuTsa1;sdubl

=
4

1 − s
expF−

2

1 − s
sr2 + ubu2dGI0S4ubur

1 − s
D

=
4

1 − s
expF−

2

1 − s
sr2 + ubu2dGo

k=0

`
1

k!2S2r ubu
1 − s

D2k

,

s2.15d

where I0 is the modified Bessel function of first kind and
zero order. Finally, ther integration gives
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1

4
E

0

`

drr3E
0

2p

ddkbuTsa1;sdubl =
1 − s

8
S1 +

2

1 − s
ubu2D

=
1 − s

8
kbuS1 +

2

1 − s
a1

†a1Dubl. s2.16d

Therefore,

Dsu = 0;sd =
1

4p
Ss+ 1

s− 1
Da2

†a2S1 +
2

1 − s
a1

†a1D . s2.17d

Finally, since

Ua1U
† = cos

u

2
a1 + e−if sin

u

2
a2,

Ua2U
† = cos

u

2
a2 − eif sin

u

2
a1, s2.18d

we get from Eq.s2.10d that

DsV;sd =
1

4p
Ss+ 1

s− 1
DsS0−V·Sd/2F1 +

1

1 − s
sS0 + V ·SdG ,

s2.19d

whereV is the three-dimensional real vector,

V = 1sinu cosf

sinu sinf

cosu
2 , s2.20d

andS0 andS are the Stokes operators:

S0 = a1
†a1 + a2

†a2, Sy = isa2
†a1 − a1

†a2d,

Sx = a2
†a1 + a1

†a2, Sz = a1
†a1 − a2

†a2. s2.21d

III. PROPERTIES AND COMPARISON WITH SU(2)
DISTRIBUTIONS

It can be appreciated that the phase-space point operators
DsV ;sd in Eq. s2.19d commute with the total photon-number
operatorfDsV ;sd ,S0g=0 so thatDsV ;sd leave invariant the
subspaces with fixed total number of photonsN. Therefore
we have

DsV;sd = o
N=0

`

DsNdsV;sd, s3.1d

whereDsNdsV ;sd is the restriction ofDsV ;sd to subspaces of
fixed total photon numberN.

The operatorsDsNdsV ;sd provide a new phase-space for-
mulation of quantum physics on the sphere for finite-
dimensional systems of arbitrary dimensionN+1. The finite-
dimensional spaces are often regarded as describing an
arbitrary angular momentumj with j 2= js j +1d sin units in
which "=1d. The approach developed above can be recast in
this language simply by performing the replacementsj
=S0/2 andj =S/2, along with the following relation between

number statesun1l1un2l2 and the eigenstatesu j ,ml of j 2 and jz:

u j ,ml = un1 = j + ml1 ^ un2 = j − ml2. s3.2d

The phase-space approach provided byDsNdsV ;sd does
not coincide in general with previously introduced phase-
space formalisms for finite-dimensional systems. More spe-
cifically, we focus on the angular analogs of the quadrature
s-ordered distributions,

WsV;sd = trfrLs jdsV;sdg, s3.3d

with f1–3g

Ls jdsV;sd =
1

Î4p
o
,=0

2j

o
m=−,

,

o
k,q=−j

j

Î2, + 1
k j ,k;,,mu j ,ql
k j , j ;,,0u j , jls

3Y,,msVdu j ,klk j ,qu, s3.4d

where k j1,m1; j2,m2u j ,ml are the Clebsch-Gordan coeffi-
cients andY,,msVd the spherical harmonics. This definition is
normalized so that

E dVWsV;sd = trr, s3.5d

with dV=sinududf, as usual. We refer toWsV ;sd as SUs2d
distributions. Other phase-space approaches for finite-
dimensional systems can be found in Refs.f6,7g.

The marginal distributionss2.19d and the SUs2d distribu-
tions s3.4d only coincide fors=−1, since, in such a case,

Ls jds0;− 1d = Ds2jds0;− 1d =
2j + 1

4p
u j , jlk j , j u, s3.6d

so thatLs jdsV ;−1d=Ds2jdsV ;−1d are given by projection on
the SUs2d coherent statesf5g. This is the definition of the
SUs2d Q function f5,9,10g.

For sÞ−1 the discrepancy betweenDsNdsV ;sd
andLs jdsV ;sd is clearly revealed when comparing their spec-
tra. The spectra can be easily computed foru=0 since in
such a case bothDsNds0;sd andLs jds0;sd are diagonal in the
u j ,ml basis,

Ds2jds0;sd = o
m=−j

j

lmu j ,mlk j ,mu,

Ls jd = o
m=−j

j

l̃mu j ,mlk j ,mu, s3.7d

being

lm =
1

4p
S1 + 2

j + m

1 − s
DSs+ 1

s− 1
D j−m

,

l̃m =
1

4p
o
,=0

2j

s2, + 1d
k j ,m;,,0u j ,ml
k j , j ;,,0u j , jls . s3.8d

In Fig. 1 we represent the spectra for 2j =N=40 and s
=0, ±0.05. Note that they tend to be rather similar fors,0
while they become very dissimilar forsù0.
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The marginal distributionss2.19d inherit the good trans-
formation properties of the quadrature distributionss2.7d un-
der SUs2d transformations since

WUrU†sV;sd = WrsVtV;sd, s3.9d

where Vt is the transpose of the matrixV defined by the
relation

U†SU = VS. s3.10d

This transformation law is also satisfied by the SUs2d distri-
butionsf1–3g.

There is another property that is not inherited. This is the
proportionality between phase-space averages and Hilbert-
space traces. For quadrature distributions it holds thatf8g

p2E d2a1d
2a2WAsa1,a2;− sdWBsa1,a2;sd = trsABd,

s3.11d

and equivalently for the SUs2d distributionsf3g,

4p

2j + 1
E dVWAsV;− sdWBsV;sd = trsABd, s3.12d

which are valid for everys. However, this no longer holds
literally for the polarization marginals. There are two conse-
quences that can be derived from this fact. On the one hand,
it is possible to restore this property by introducing another

operator-function correspondenceW̃A↔A such that

E dVW̃AsV;− sdWBsV;sd = trsABd. s3.13d

This possibility is developed in Sec. IV. On the other hand,
there is the possibility of using the marginal Wigner function
to measure the degree of polarization of quantum states, as
discussed in Sec. VI.

IV. DUAL DISTRIBUTIONS

The strategy addressed in this work actually defines two
phase-space formalisms. In addition to the correspondence
defined above,WsV ;sd=trfADsV ;sdg we can devise a dual

definition W̃sV ;sd that emerges when expressing every ob-
servableA commuting withS0 as an expansion of the form

A =E dVW̃sV;− sdDsV;sd. s4.1d

Assuming a linear relationship between operators and
functions,

W̃sV;sd = trfAD̃sV;sdg, s4.2d

we have that the dual operatorsD̃sV ;sd should be deter-
mined by the consistency condition

A =E dVtrfAD̃sV;− sdgDsV;sd, s4.3d

leading to

E dVk j ,puD̃sV;− sdu j ,mlk j ,kuDsV;sdu j ,ql = dp,qdm,k.

s4.4d

If these equations can be solved, then Eq.s4.1d holds for
every A commuting withS0. Moreover, given the explicit

symmetry in Eq.s4.4d betweenD and D̃, the fulfillment of
Eq. s4.4d also allows us to expressA in the form

A =E dVWsV;− sdD̃sV;sd. s4.5d

In the next section we will solve Eqs.s4.4d for j =1/2 and
j =1.

For quadrature and SUs2d distributions the direct and dual

definitions coincide: T̃sa ;sd=Tsa ;sd f8g and L̃sV ;sd
=LsV ;sd f3g. However, we have found no general relation of

this kind betweenD̃sV ;sd and DsV ;sd sleaving aside the
simplest two-dimensional casej =N/2=1/2 examined be-
lowd.

FIG. 1. Spectrum ofDsNdsV ;sd ssquaresd and Ls jdsV ;sd stri-
anglesd for 2j =N=40 ands=0, ±0.05.
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The fulfillment of Eq.s4.4d restores the relation between
phase-space averages and Hilbert-space traces—for example,
in the form

trsABd =E dVWAsV;− sdW̃BsV;sd =E dVWBsV;

− sdW̃AsV;sd. s4.6d

Moreover, it also allows us to establish a link between the
distributions with different values ofs. By using Eq.s4.5d for
A=r ands=−s8 we get

WsV;sd = trfrDsV;sdg =E dV8KsV,V8;s,s8dWsV8;s8d,

s4.7d

with

KsV,V8;s,s8d = trfDsV;sdD̃sV8;− s8dg. s4.8d

This is the angular analog of the convolution relation be-
tween quadrature distributionsf8g. A similar relation holds
for the SUs2d distributionsf3,4g.

V. EXAMPLES

Next we illustrate the results of the previous sections by
particularizing them to SUs2d coherent states, number states,
and one-photon and two-photon states.

A. SU(2) coherent states

For SUs2d coherent states we can take advantage of the
SUs2d covariance by considering without loss of generality
the caseunl1u0l2 which corresponds to a SUs2d coherent state
centered at the north pole of the Poincaré sphere. The evalu-
ation of the distribution simplifies if we express Eq.s2.19d in
the form

DsV;sd =
1

4p
Ss+ 1

s− 1
Da2

†sVda2sVdS1 +
2

1 − s
a1

†sVda1sVdD
=

1

4p
Ss+ 1

s− 1
Da2

†sVda2sVd

+
1

4p

2

1 − s
a1

†sVd

3Ss+ 1

s− 1
Da2

†sVda2sVd

a1sVd, s5.1d

where a1sVd=Ua1U
† and a2sVd=Ua2U

† are given by Eq.
s2.18d. The mean value ofDsV ;sd in the stateunl1u0l2 can be
easily evaluated taking into account that modea2 is in
vacuum and using the general relation

na†a
¬ esn−1da†a:, s5.2d

where : : denotes normal order.
This leads to

WsV;sd =
1

4p
S1 +

2

s− 1
sin2 u

2
Dn−1

3S1 −
2n

s− 1
+ 2

n + 1

s− 1
sin2 u

2
D . s5.3d

On the other hand, the expression for the SUs2d distribution
is

WsV;sd =
1

4p
o
,=0

n

s2, + 1dkn/2,n/2;,,0un/2,n/2l1−sP,scosud,

s5.4d

whereP, are the Legendre polynomials.
In spite of the fact that these expressions are seemingly

very different, fors=0 they are practically indistinguishable
even for small photon numbers. The particular examplesn
=1,2 areexamined below.

B. Number states

For general number statesun1l1un2l2 the expression for the
SUs2d distribution is

WsV;sd =
1

4p
o
,=0

2j

s2, + 1d
k j ,m;,,0u j ,ml
k j , j ;,,0u j , jls P,scosud,

s5.5d

being

j =
n1 + n2

2
, m=

n1 − n2

2
. s5.6d

Unfortunately we have found no simple closed expression
for the marginal distributions whenn1n2Þ0. Nevertheless,
numerical calculations are simple. In Fig. 2 we represent the
SUs2d sdotted lined and marginalssolid lined Wigner func-
tions ss=0d for the number stateu10l1u10l2. It can be appre-
ciated that both distributions are very similar.

C. One-photon states

The subspace with just one photon shared by two field
modes is spanned by the number states

FIG. 2. Plot of the Wigner functionsss=0dWsVd ssolid lined and
WsVd sdotted lined, as functions of u for the number state
u10l1u10l2.
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u1l1u0l2 = S1

0
D, u0l1u1l2 = S0

1
D . s5.7d

In this basis we get

DsV;sd =
1

4p
S1 +

2

1 − s
V · sD ,

LsV;sd =
1

4p
s1 +Î3s+1V · sd,

D̃sV;sd =
1

2
S1 + 3

s+ 1

2
V · sD , s5.8d

wheres are the three Pauli matrices.
Every one-photon density matrix can be expressed as

r =
1

2
s1 + v · sd, s5.9d

wherev is a real vector withvø1. For uvu=1 we get pure
states that are all them SUs2d coherent states. The associated
polarization distributions are

WsV;sd =
1

4p
S1 +

2

1 − s
V ·vD ,

WsV;sd =
1

4p
s1 +Î31+sV ·vd,

W̃sV;sd =
1

4p
S1 + 3

s+ 1

2
V ·vD , s5.10d

and in this last expression we have normalizedW̃sV ;sd so
that

E dVW̃sV;sd = 1. s5.11d

In this particular case there is a simple relation between
the marginal and the SUs2d distributions in the form

DsV;sd = LsV;s8d, s8 =
2

ln 3
ln

2

1 − s
− 1. s5.12d

Furthermore, there is also a simple relation between marginal
and dual distributions:

D̃sV;sd = 2pDsV;s8d, s8 = 1 −
4

3s1 + sd
. s5.13d

D. Two-photon states

The subspace with two photons shared by two field modes
is spanned by the number states

u1l = u2l1u0l2, u0l = u1l1u1l2, u− 1l = u0l1u2l2.

s5.14d

In this basis we get the following matrix elements for the
marginal phase-space point operatorsDsV ;sd:

k±1uDsV;sdu ± 1l =
1

4pss− 1d2fsss− 2d 7 2s2s− 1dcosu

+ 3 cos2 ug,

k0uDsV;sdu0l =
1

4pss− 1d2fsss− 2d + 3 − 6 cos2 ug,

k±1uDsV;sdu0l =
1

2Î2pss− 1d2
s1 − 2s± 3 cosudsinue7if,

k1uDsV;sdu− 1l =
3

4pss− 1d2 sin2 ue−i2f. s5.15d

For the SUs2d operatorsLsV ;sd we have

k±1uLsV;sdu ± 1l =
1

8Î2p
f2Î2 −Î2s5ss+1d ± 6Î2scosu

+ 3Î2s5s+1 cos2 ug,

k0uLsV;sdu0l =
1

4p
f1 +Î2s−15s+1 − 3Î2s−15s+1 cos2 ug,

k±1uLsV;sdu0l =
3Î2s

8p
s1 ± Î5s+1 cosudsinue7if,

k1uLsV;sdu− 1l =
3Î2s−15s+1

8p
sin2 ue−i2f. s5.16d

Concerning the dual distributions we have been able to
obtain the solution of Eq.s4.4d as

k±1uD̃sV;sdu ± 1l =
5

8
ss+ 1d2F3 − 5sss+ 2d

15ss+ 1d2

±
6

5s2s+ 1d
cosu + cos2 uG ,

k0uD̃sV;sdu0l =
1

12
f9 + 5sss+ 2d − 15ss+ 1d2 cos2 ug,

k±1uD̃sV;sdu0l =
5

4Î2
ss+ 1d2F 3

5s2s+ 1d
± cosuGsinue7if,

k1uD̃sV;sdu− 1l =
5

8
ss+ 1d2 sin2 ue−2if. s5.17d

Let us particularize to the Wigner functions=0 for the
number stateu2l1u0l2 which is a SUs2d coherent state,

WsV;0d =
1

4p
s2 cosu + 3 cos2 ud,

WsV;0d =
1

32p
s8 − 2Î10 + 12Î2 cosu + 6Î10 cos2 ud,
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W̃sV;0d =
3

32p
s1 + 6 cosu + 5 cos2 ud, s5.18d

where we have normalizedW̃sV ;0d as in Eq. s5.11d. We
have plotted these functions in Fig. 3 as functions ofu.

On the other hand, for the stateu1l1u1l2, which is a SUs2d
squeezed state,f9,18,19g,

WsV;0d =
3

4p
s1 − 2 cos2 ud,

WsV;0d =
1

8p
s2 +Î10 − 3Î10 cos2 ud,

W̃sV;0d =
3

16p
s3 − 5 cos2 ud, s5.19d

where we have normalizedW̃sV ;0d as in Eq. s5.11d. We
have plotted these functions in Fig. 4 as functions ofu. Note
that in both examplesWsV ;0d is intermediate between

WsV ;0d andW̃sV ;0d.

VI. DEGREE OF POLARIZATION

In classical optics the degree of polarization is measured
in terms of the Stokes parameters, being proportional toukSlu.
However, there are many situations where this does not re-
flect the polarization properties of the quantum states of

light. For example, there are many quantum states for which
kSl=0 that are not unpolarized. This is the case of the num-
ber statesunl1unl2. Moreover, the classical degree of polar-
ization depends only on second-order correlations of the field
amplitudes. However, in quantum optics higher-order corre-
lations can be crucial. This is the case of polarization squeez-
ing, which is defined in terms of the fluctuations of the
Stokes operators instead of their mean valuesf9,18,19g.

To avoid these shortcomings of the classic definition we
have recently introduced a measure of polarization as the
distance between the polarization distribution and the uni-
form distribution associated with fully unpolarized light,
WunpolsV ;sd=1/s4pd f9g.

As a suitable polarization distribution we have considered
the marginalQ function fwhich is the only case that coin-
cides with the corresponding SUs2d distributiong. We can
measure the distance to fully unpolarized light in the form

D = 4pE dVFWsV;− 1d −
1

4p
G2

= 4pE dVW2sV;− 1d − 1.

s6.1d

In principle we might have considered another distribu-
tion, such as the SUs2d Wigner functionWsV ;0d, for ex-
ample. However, this is not a suitable choice since, because
of propertys3.12d, the integration of the square of the Wigner
function only depends on the trace of the square of the den-
sity matrix, so this is just a measure of purity rather than a
measure of polarization. For example, it would take exactly
the same value for all pure states, so it can hardly be related
to polarization properties.

In this work we have found another polarization Wigner
function WsV ;0d that does not encounter this difficulty, as
discussed at the end of Sec. III. In principle, this distribution
may be used in order to assess the degree of polarization in
the form

D8 = 4pE dVFWsV;0d −
1

4p
G2

= 4pE dVW2sV;0d − 1.

s6.2d

Next we examine this possibility.
In Fig. 5 we representD8 for SUs2d coherent states

unl1u0l2 ssquaresd and number statesun/2l1un/2l2 strianglesd
as functions of the total number of photonsn.

FIG. 3. Plot of the Wigner functionsss=0d WsV ;0d ssolid lined,
W̃sV ;0d sdashed lined, andWsV ;0d sdotted lined, as functions ofu
for the stateu2l1u0l2.

FIG. 4. Plot of the Wigner functionsss=0d WsV ;0d ssolid lined,
W̃sV ;0d sdashed lined, andWsV ;0d sdotted lined, as functions ofu
for the stateu1l1u1l2.

FIG. 5. Plot of the degree of polarization,D8, for the SUs2d
coherent statesunl1u0l2 ssquaresd and the number statesun/2l1un/2l2

strianglesd as functions of the number of photons,n.
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It can be appreciated that the degree of polarization in-
creases almost linearly withn in both cases. The rate of
increase ofD8 is faster for the number statesun/2l1un/2l2.
This contradicts the result obtained when using theQ func-
tion which predicts

Dn,0 =
n2

2n + 1
, Dn/2,n/2 =

sn + 1d2n!4

s2n + 1d!sn/2d!4 − 1. s6.3d

These functions are represented in Fig. 6 where it can be
appreciated that the degree of polarization,D, increases
faster for the SUs2d coherent statesunl1u0l2.

We think that there are reasons supporting the conjecture
that the definition based on theQ function provides the right
result. The equivalence between phase-space averages and
Hilbert-space traces satisfied by the quadrature Wigner func-
tion imposes the condition that most states must have Wigner
functions with negative valuesssince the phase-space aver-
age of the product of orthogonal states must vanishd. Since
the distributions are always normalized,

E dVWsV;− 1d =E dVWsV;0d = 1, s6.4d

the negative values ofWsV ;0d must be compensated for by
larger positive values in order to preserve the normalization.
This implies strong oscillations that move the distribution
away from the unpolarized constant value 1/s4pd. This in-
creases the degree of polarization. On the other hand, theQ
function does not experience this enlarged oscillation since it
remains always positive.

In Fig. 7 we representWsV ;−1d andWsV ;0d for the state
un/2l1un/2l2 with n=20 photons. This plot illustrates the
negative values and strong oscillations of the Wigner func-
tion in comparison with theQ function.

Therefore, the structural properties of the Wigner func-
tions would artificially increase the degree of polarization of

states with nonpositive Wigner functions. Therefore, we
think that the degree of polarization is better measured by
using theQ function since it is the only distribution that is
non-negative for all states, being closer to the usual under-
standing of polarization distribution.

VII. CONCLUSIONS

We have provided a route to define quantum phase-space
formalisms for polarization on the Poincaré sphere, as suit-
able marginals ofs-ordered operator-function correspon-
dences for quadrature variables.

We have shown that this procedure defines polarization
distributions that are different from the approaches introduce
so far sleaving aside the case of theQ functiond. Neverthe-
less, we have found that for all the cases examined the mar-
ginal Wigner distribution is very similar to the SUs2d Wigner
function.

The results obtained in this work can have interesting ex-
perimental consequences. On the one hand, the marginals
derived froms-ordered distributions provide simple acces-
sible experimental procedures for determining polarization
properties. For example, this includes recently introduced
measures of degree of polarization and polarization correla-
tions f9,10g. In particular, polarization correlations provide a
fundamental example of experimentally generated entangle-
ment with applications in rapidly developing areas such as
quantum computation and cryptographyf11g. Another prac-
tical consequence of this approach to be elaborated else-
where is the study and detection of nonclassical properties of
field states, since they are generally expressed as negative
values fors-ordered distributionsf17g.
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FIG. 6. Plot of the degree of polarization,D, for the SUs2d
coherent statesunl1u0l2 ssquaresd and the number statesun/2l1un/2l2

strianglesd as functions of the number of photons,n.

FIG. 7. Plot ofWsV ;−1d sdashed lined andWsV ;0d ssolid lined
for the stateun/2l1un/2l2 with n=20 photons as functions ofu.
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