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We investigate the influence of two resonant laser beams on the mechanical properties of degenerate atomic
gases. The control and probe beams of light are considered to have orbital angular m@waéhiand act on
the three-level atoms in the electromagnetically induced transparency configuration. The theory is based on the
explicit analysis of the quantum dynamics of cold atoms coupled with two laser beams. Using the adiabatic
approximation, we obtain an effective equation of motion for the atoms driven to the dark state. The equation
contains a vector-potential-type interaction as well as an effective trapping potential. The effective magnetic
field is shown to be oriented along the propagation direction of the control and probe beams containing OAM.
Its spatial profile can be controlled by choosing proper laser beams. We demonstrate how to generate a constant
effective magnetic field, as well as a field exhibiting a radial distance dependence. The resulting effective
magnetic field can be concentrated within a region where the effective trapping potential holds the atoms. The
estimated magnetic length can be considerably smaller than the size of the atomic cloud.
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[. INTRODUCTION induced transparend¥IT) configuration. Here we present a
more complete account of the phenomenon. We demonstrate
During the last decade remarkable progress has been eyat if at least one of these beams contains an orbital angular
perie_nced in trapping and _cooli_ng atoms. In this respect thﬁqomemum(OAM), an effective magnetic field appears,
creation of atomic Bose-Einstein condensa®&Cs [1-4]  \yhich acts on the electrically neutral atoms. In other words,
and degenerate Fermi gasgS-7] has been the prime ho coupling between the light and the atoms will provide an

achievement. The atomic BECS anq Qegenerate Fermi 98SEfactive vector potential in the atomic equations of motion.
are systems where an atomic physicist often meets physic ompared to the rotating atomic gas, where only a constant

phenomena encountered in condensed-matter physics. F . o . . ) .
instance, atoms in optical lattices are often studied using th§ ective magnetic field is createfb—-11], using optical

Hubbard mode[8] familiar from solid-state physics. ][_nelgns will be badvar\]ntaggott;s s;]nce _the effective Ta?netg:
Atoms forming quantum gases are electrically neutral par-Ie can now bé shaped Dy choosing proper control an

ticles and there is no vector-potential-type coupling of thePrPe beams. Note that the appearance of our effective vec-

atoms with a magnetic field. Therefore a direct analogy pelor potential is a manifestation of the Berry connection which

tween the magnetic properties of degenerate atomic gas&sencountered in many different areas of phy$is-18.
and solid-state phenomena is not necessarily straightforward. 1he outline of the paper is as follows. In Sec. Il we define
It is possible to produce an effective magnetic field in a@ system of three level atoms in tie configuration and
cloud of electrically neutral atoms by rotating the systempresent the equations of motion for the atoms interacting
such that the vector potential will appear in the rotatingwith the control and probe beams of light. In doing this we
frame of referenc¢9-11]. This would correspond to a situ- allow the two beams to have orbital angular momenta along
ation where the atoms feel a uniform magnetic field. Yetthe propagation axig. In Sec. Ill we derive equations of
stirring an ultracold cloud of atoms in a controlled manner ismotion for the center of mass of atoms driven to the dark
a rather demanding task. state. The equations of motion contain the terms due to ef-
There have also been suggestions to take advantage offective vector and trapping potentials describing an effective
discrete periodic structure of an optical lattice to introducemagnetic field. In contrast to our previous papeb], the
asymmetric atomic transitions between the lattice siteemerging effective potentials are now fully Hermitian. Yet,
[12-14. Using this approach one can induce a nonvanishinghe two formulations are shown to give the same effective
phase for the atoms moving along a closed path on the lathagnetic field and hence are equivalent. In Secs. IV and V
tice, i.e., one can simulate a magnetic flit®-14. However, we analyze the effective magnetic field and effective trap-
such a way of creating the effective magnetic field is inapping potential in the case where at least one of the light
plicable to an atomic gas that does not constitute a lattice. beams contains an orbital angular momentum. We show that
A significant experimental advantage would be gained if ahe spatial profile of the effective magnetic field can be con-
more direct way could be used to induce an effective magtrolled by applying proper control and probe beams. The
netic field. In a previous papgt5], we have shown how this concluding Sec. VI summarizes the findings. Finally, the Ap-
can be done using two light beams in an electromagneticallpendix contains technical details of some of the derivations.
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(@) —~ P internal statej. A set of such operator;(r,t) obeys the
Qp - e Qc Bose-Einstein or Fermi-Dirac commutation relationships de-
W/\’:’W pending on the type of atoms involved. In what follows,
— P Wi(r,t) can be understood either as the three-component
n —@— atomic wave function or as the annihilation field operator. In
both cases the spatial and temporal variables will be kept
(b) Q,~ e implicit, ¥;(r,t)="¥,.

B. Initial equations of motion

Introducing the slowly varying atomic field operators

5 B, =V, 01, Dy=Wdrept and d,=W,d@rtep@dt and
adopting the rotating wave approximation, the equations of
- motion read
. #2 5
iD= — — V2D, + Vy ()P, + Q. Dg, 3
1 om 1+ Va(r)®; p¥3 3
Cloud of ultra-cold atoms
o h?
FIG. 1. (Color onling (a) The level scheme for tha-type at- ihdg=— EnVZCDg +[e51+ Va(r) @5+ 2 Q Py + 1 QD
oms interacting with the resonant probe be@mand control beam
Q.. (b) Schematic representation of the experimental setup with the (4)
two light beams incident on the cloud of atoms. The probe field is
of the form Qp~e"4’, where each probe photon carries an orbital o #2 ) .
angular momentunt¢ along the propagation axis i, =~ ?nv D, + €1+ Vo(r) Dy + 7O D3, (5)
Il. FORMULATION wherem is the atomic massy;(r) is the trapping potential

for an atom in the electronic statg e1=fi(wy—w;+ v,
—wp) and e5;=7% (w3~ w1~ w,) are, respectively, the energies
Let us consider a system of atoms characterized by twof the detuning from the two- and single-photon resonances
hyperfine ground levels 1 and 2, as well as an electronigvith %w; being the electronic energy of the atomic leyel
excited level 3. The atoms interact with two resonant laser The equations of motio(8)—(5) do not accommodate col-
beams in the EIT configuratiofsee Fig. 1)]. The first lisions between the ground-state atoms. This is a legitimate
beam(to be referred to as the control bepdrives the tran-  approximation for a degenerate Fermi gas in whsehave
sition |2) —|3), whereas the second bedthe probe beairis  scattering is forbidden and only wegkwave scattering is
coupled with the transitiofll) — |3); see Fig. 1a). The con-  present[5,21-23. On the other hand, if the atoms in the
trol laser has a frequenay,, a wave vectok., and a Rabi hyperfine ground states 1 and 2 form a BEC, collisions will
frequency().. The probe field, on the other hand, is charac-be present between these atoms. The collisional interaction
terized by a central frequeney,=ck,, a wave vectok,, and  can, however, be accommodated if E¢®. and (5) are re-
a Rabi frequency),,. Of special interest is the case where theplaced by the mean-fiel@Gross-PitaevsKiiequations for the
probe and control beams can carry OAM along the propagacondensate wave functions,
tion axisz. In that case, the spatial distributions of the beams

) h2 .
are(19,20 D, = (— S VAVA(D) + g0y 2+ glz|d>2|2)<b1 + 10y,
Qp — QE)O)ei(kpZHpgb) (1) (6)

A. The system

and
: . K2
Q= Q(co)e'(kcz+|°¢)a 2 ihd,= (‘ %szzl*' V(1) + gy P4 + 922|‘b2|2> @,

where 1'% and 0 are slowly varying amplitudes for the LD
probe and control fieldsil, and#l; are the corresponding ThlePs, )
orbital angular momenta per photon along the propagatiowhere g =4m%2a,/m, with a; the swave scattering length
axis z, and ¢ is the azimuthal angle. of the atoms in the electronic statpgindl, respectively. In

In first quantization, the quantum-mechanical state of thgarticulara;; is the length of the-wave scattering between a
atoms is described in terms of the three-component wavpair of atoms in the same electronic stéte 1, 2), whereas
function W;(r,t) representing the probability amplitude to a,,=a,, corresponds to collisions between atoms in different
find an atom in thgth electronic state and positionedrat  electronic states. Since the occupation of the excited atomic
with j=1, 2, 3. In second quantization, the one-particle wavedevel 3 is small, the atom-atom scattering is of little impor-
function W(r,t) is replaced by the operatdr;(r,t) for an-  tance for these atoms and H¢g) for ®; can therefore be left
nihilation of an atom positioned atand characterized by an unaltered.
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Ill. DARK STATE REPRESENTATION

1 ih{(-¢'¢
(B)(r) — 2 _t55° 66
A. Transformed equations of motion Verr (1) = 1+ |§|2[|§| Va(r) +Va(r) + e 2 1+|2
It is convenient to introduce the annihilation field opera- RVe.ve 1
tors for the atoms in the dark and bright states, + En(1+—|§|2)2 - En(Aé?f))z (17)
dp = %(@1 -{D,, (8)  are theeffective trapping potential®r the atoms in the dark
1+ and bright states, respectively. The operategg and Fgp
describing transitions between the dark and bright states in
1 Egs. (1) and (12) are explicitly defined in the Appendix.
Pg= V1+]| §|2(§q>l+q>2), © Note that the effective vector and trapping potentiag)
andV(e'?f)(r) are Hermitian.
where The effective magnetic field, corresponding to the effec-
) tive vector potentiah >, is
{= 59 (10 1
¢ Ber=V XAR =ii——= VX V¢ (19
is the ratio of the amplitudes of the control and probe fields. (1+[¢%
We shall be especially interested in a situation where the
atoms are driven to their dark states, described by the cre-
ation field operatoﬂ)},(r ,0) acting on the atomic vacuum B. Equation of motion under adiabatic approximation
lvag. If an atom is in the dark sta{®) ~|1)-¢[2), the reso- In what follows we shall restrict ourselves to thelia-

nant control and probe beams induce the absorption pathigytic case in which transitions between the dark and bright
2)—3) and|1)—[3) which interfere destructively, resulting  states are not important. In such a situation the Eggcan
in the electromagnetically induced transparefizg—27. In be neglected in Eq(11), so it is sufficient to consider a

fact, as one can see from Hd), the transitions to the upper gjngle equation describing the translational motion of the at-
atomic level 3 are then suppressed, so the atomic level 3 igys in the dark state:

weakly populated. This justifies the neglect of losses due to

o . . ' 1
;pgontaneous emissions by the excited atoms in(Eqfor i = En(iﬁv +Aé?f))2¢D+Vé?f)(r)®D- (19)
A transformed set of operatofs,, ®g, andd; obeys the ) ]
following equations of motiorisee the Appendjx Assuming that the control and probe fields are tuned to the
one- and two-photon resonancés, e;;<f(}), the adia-
- 1 batic approach holds if the matrix elements of the operators
iD= ——(in V +AR)2D, + VR (r)dp + Fpp(r)® alc app € op
#®p 2m(I eif)“Po * Vert (1) Pp + Fpg(r) P, Fpg andFgp are much smaller than the total Rabi frequency

(11) Q). This leads to the following requirement for the velocity-
dependent term ifrpg:

. 1 <
iD= —(ihV + A8 2D + VE(r)dg + QD F<0. (20
2m Here the velocity-dependent term
+ Fgp(r)®p, (12 1
F=——|V (¢ v 21
L g Ve (21)
; —_ L 2
L [ea+VaN)]Ps+ 20D, (13) g is the two-photon Doppler detuning. Note that the esti-
h mation (20) does not accommodate effects due to the decay
where of the excited atoms. The dissipation effects can be included
Q) = V’|Qp|2+ 102 (14) re_placmg the energy of the_ one-photon detunéggby ez,
—ifiys, where y; is the excited-state decay rate. In such a
is the total Rabi frequency, situation, the dark state can be shown to acquire a finite
- « lifetime,
A(D):_A(B):@M (15)
eff eff 2 1 + |§|2 D~ '}’;192/':2, (22)
is the effective vector potentiand which should be large compared to other characteristic times
o of the system. The adiabatic conditions will be further ana-
1 inl - lyzed in Sec. IV C.
(D)(r) = 2 2> 55
Verr (1) = 1+ |§|2{V1(r) ATV + exl) 2 1+ If the atoms in the hyperfine ground states 1 and 2 form a
b BEC, the atomic dynamics in these states is governed by the
+ﬁ_V§ V¢ i(A(m)z (16) mean-field equation$6) and (7). In such a situation, the

2m(1 +¢?)? ~om e equation of motion for the dark state atoms modifies as
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. 1 (D2 ) ) IV. EFFECTIVE POTENTIALS DUE TO LIGHT BEAMS
ihdp = En(lh V + A )*®p + Veif (1) p + gp | Pp[*Pp, WITH OAM
A. Representation in terms of the amplitude and phase
(23
N Separating the ratig into an amplitude and phase,
where _
(=00 =€’ (28)
1 . . . .
=—— (g +2 24074 24 the effective vector and _trapplng potentials given by Eqgs.
9 (L+[g>? Gua+ 20:2l4l" + 147900 (24 (15) and(16) can be rewritten as
. . . . 2
describes the interaction between the atoms in the dark state. AD = _7 1l Vs (29)
V<G
C. Relation to previous work and
In our previous papdr5] an effective equation of motion 2142 2 2 25 ¢
has been derived for the atoms in the hyperfine ground level Vg?f)(r) =V (1) + ﬁ_|§| (VS +§V;|g|) ] ﬁs+2521,
1. In doing this, the atoms were assumed to be driven to their 2 (1+¢1%) 1+
dark states by imposing the constraibj(r ,t)=—{D(r 1), (30)

which is equivalent to the requiremesiz(r ,t)=0. The re- h
sulting effective equation of motion fab,(r ,t) reads[15] where
_ Va(r) +[¢Valr)
1 , Veulr) = =2
iy = >[IV + APy + Ver(r) Py, (25) 1+|¢]
is the external trapping potentiafor the atoms in the dark
where the effective vector and trapping potentials are genestate. The effective magnetic field then takes the form

(31

ally non-Hermitian. For instance, the effective vector poten- (VY x V|
tial featured in Eq(25) is given by[15] Bet =55 (32
(1+[g2)
= _'ilii VE =AQ - iz ViIn(L+|PV2 (26 i.e., the strength of the effective m_agnetic field is de_termined
] by the cross product of the gradients of the amplitude and
phase(VS) X V|2
Non-Hermitian potentials appear because the atoms in the
electronic state 1 constitute an open subsystem. In fact, the
probe and control beams transfer reversibly atomic popula- B. Control and probe beams with OAM
tion from level 1 to level 2 by means of the two-photon f the co-propagating probe and control fields carry OAM,
Raman transition. their amplitudes2, and Q. are given by Egs(1) and (2).
Using the const.ranwz:—gd)l, one can express the dark- The phase of the ratig=0,/Q, then reads
state operatofby given by Eq.(8) in terms ofd, as
S=14¢, (33

— 21/2 2\1/
Op = Dy(L +[g) 17 = Drexlin(L +|27)17]. - (27) wherel =I,-I. Note that although both the control and probe

fields are generally allowed to have nonzero OAM by Egs.
(1) and(2), it is desirable that the OAM is zero for one of
these beams. In fact, if both, and |, were nonzero, the
Oémplitudesﬂp and . should simultaneously go to zero

. . A . along thez axis. In such a situation, the total Rabi frequency
intensity of the probe field is nonze(f| # 0). The transition Q:(Q§+Q§)1/2 would also vanish, leading to the violation

from the unitary equation of motion faby to the nonunitary of the adiabatic conditiof20) along thez axis
one for®, is accompanied by the non-Hermitian vector and Substituting Eq(33) into Eqs.(29) and(32), the effective

traéa ping potentialsAey and Vey. The Hermitian potential vector potential and magnetic field take the form
Aéﬁ) differs from its non-Hermitian counterpaft.; by a

Equation(27) represents a pseudogaug@®nunitary trans-
formation relating the effective equation of moti¢25) for
&, to the corresponding equation for the dark-state operat
®p. The transformation(27) is not unitary as long as the

gradient of the imaginary functioif In(1+||?)~%?, as one o_ B d*

can see from Eq(25). In a similar manner, the Hermitian eff =7 p 1+|§|2e¢’ (34)
trapping potential\/g?f)(r) can be shown to differ from the

non-Hermitian potentiaV/.«(r) by the time derivative of the 2l 1

imaginary function #: In(1+|£?)~Y2 In this way the two Befr = ;méd,x v, (35)

formulations are equivalent. Sin@ée?f) differs fromA.; by a
gradient, the effective magnetic figliq. (18)] acting on the ~ where p is the cylindrical radius an@, is the unit vector
dark-state atoms, is the same in both formulations. along the azimuthal anglé. In a similar manner, with the
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electronic two photon detuning put to zd©,=0), Eq. (30) The effective magnetic flux through a circle of the radius
reduces to po IS now given by
2 121¢%p? + (V]¢)? 1202
VO(r) =V (r) + ——————— > 36 o= éA(D>d|:—27Tﬁ ) 39
eff( ) ext( ) 2m (l+|§|2)2 ( ) eff 1+|§0|21 ( )

In what follows we shall assume that the intensity ratioyhere 277 is the Dirac flux quantum, and|? is the inten-
|{|* depends on theylindrical radiusp only. In that case the sty ratio at the radiup=p,. The flux ® reaches its maxi-

effective magnetic field is directed along thexis, mum of 27l if the ratio (/2> 1, i.e., if the intensity of the
Al 1 P probe field exceeds the control field at the selected ragjus
Bef = — € —|¢P. (37)  Since the winding number of light beams can currently be as

& 22
p (1+[d*%ap large as several hundreds, it is possible to induce a substan-

It is evident that the effective magnetic field is nonzero onlytial flux & in the atomic cloud. This might enable us to study
if the ratio {=0Q,/Q, contains a nonzero phagé=I,-I, phenomena related to filled Landau levels with a large num-
+0) and the amplitudéz| has a radial dependen¢sl¢|/gp ~ Per of atoms in the quantum gases.
#0).

A. The case whergl] ~p"

C. Adiabatic condition Let us consider the case where the probe beam containing
For light beams with OAM thewdiabatic conditiongiven ~ an OAM exhibits the power law behavidt|=ap". Under
by Eg. (20) can be rewritten as this condition, Eqs(36) and (37) take the form
1 Jd 2 [\2 ~ a,2p2n—2 A
1+[¢f2 \/(Up5_p|§|> * ("5'%;) <0 (39 Bor=— 20l " 2 7m 2 (40)

The above condition imposes requirements on the radial anand

azimuthal atomic velocities,, ar)dv(b:pwq;, wherew,, is an 2 112 + 12102022

angular frequency of the atomic motion. Note that condition VO(r) =V (r) + _—[ nJa’p (41)

(38) has no singularity due to the* term, since for the light eff ST 2m (1 +ap™)?

beams with OAM the ratigZ|=|Q,/ Q| typically goes agp' , , o

close to the origif20]. If the probg bgam is _charaqterlzed by a winding numiger
The condition (38) implies that the inverse Rabi fre- = the radial distribution typically goes@:a_p' for small

quencyQ-1 should be smaller than the time an atom travelsvalues ofp [20]. Therefore, forl >1, the effective magnetic

a characteristic length over which the amplitude or the phasfiéld goes to zero at the origin, whepe=0. It is desirable to

of the ratiog=0,/ Q) changes considerably. The latter length Qxclude this area by introducing a repulsive potential expel-

exceeds the optical wavelength, and the Rabi frequency cdifd the atoms for small values pf In what follows we shall

be of the order of 16-1¢° s [28]. Consequently, the adia- consider some other types of rad!al dependence which are

batic condition(38) should still hold for atomic velocities of T€levant for a larger cylindrical radiys

the order of tens of meters per second, i.e., up to extremely

large velocities in the context of ultracold atomic gases. The B. The case wherd{] is linear in p

allowed atomic velocities become lower if the spontaneous

decay of the excited atoms is taken into account. According It 1¢]=ap, we get

to Eq.(22), the atomic dark state accquires then a finite life- A 2

time 7 which is determined byy;* times the ratio?/F2. Befi=— 2|ﬁezw (42)

The atomic decay rates; is typically of the order 10s™. (1+a%p%)

Therefore in order to achieve long-lived dark states thegngd

atomic speed should not be too large. For instance, if the

atomic velocities are of the order of a centimeter per second O _ 72 [12+ 1]a?

(a typical speed of sound in a BEEGhe atoms should sur- Veit (1) = Veu(r) + %(1 +a?p?)?’ (43)

vive in their dark states up to a few seconds. This is compa-

rable to the typical lifetime of an atomic BEC. For sufficiently small distance§¢|=ap<1), Eq. (42) de-

scribes a constant magnetic field along thexis, in agree-

V. SPECIFIC CASES ment with Eq.(11) of Ref.[15]. Retaining terms up to qua-

dratic order inp, the effective trapping potential, E¢3),
Suppose the probe beam has an OAl0) and the  pacomes

control beam does n@t.=0). In this case the intensity of the
probe beantand hence the ratig]?=|Q,/QJ?) goes to zero
asp— 0. If the intensity of the control field changes slowly
within an atomic cloud, the dependence of the ratid| is
determined by the probe beam only. Assuming

h2
V(1) = Veulr) + o [P+ 1]a’(1 - 2207 (44)
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7 ' - ' ' - S trapping potential confines the atoms tighter compared to the

_|\§| (a) ’ case wherex=1, as one can see comparing Fig&)2and
6p| ! 2(b).

""" Ve Since the effective magnetic field is nearly constant only
Sr|---[Bey |/ 0t o l in a region wherg{|=ap<1, the effective magnetic flux
A ,o' ] over this region is much smaller than its maximum e,

T .,-':_,:“ as one can see from E9). In the next subsection we shalll
3t “eel _,/ | show how to produce a strictly constant magnetic field in the

RN case where(| is not necessarily small.
"
C. Constant effective magnetic field
If we choose
0 : : : : : : 2
0 02 04 06 08 1 12 14 (0! Pmay)
op |é’|2:—ma1 > (46)
1 - (plpmax)
7 T T T T NS T . . .

— (b) Jf the effective vector potential is
6| Text S 1 D) — -2 2

- V:(f j’_;‘; Aéﬁ) - ﬁlppma)ﬁ(ﬁ' (47)
5Bl /o ' 1 Consequently we arrive at a constant effective magnetic field

! s

4. | Be = = 20l priar: (48)
3 \\\ ' ] with the corresp_onding cyclotron frequen%ﬁZI/ mpfnaw

el S and the magnetic lengthg=\A/Mw.=pmad V2. The effec-
D I ‘\\;:\ ] tive trapping potential is now given by

‘\‘\‘ D) R? 1,
1r ST e 1 eff (1) = Vexl(r) + ————(I"d + 1/d), (49

p— T 2M proay
% o2 04 06 08 1 12 1.4 whered=1-(p/ pmay?. FOr p— pmax the intensity ratig¢|?
«p goes to infinity, so Eqs(46)—(49) have meaning only for

distances smaller tham,,,. Therefore Eq(46) can model an

FIG. 2. (Color onling Effective trapping potentiaV/ey and ef- actual intensity distribution of the control and probe beams

fective magnetic fieldBg for the case wher§] is linear inp and al ¢ rtain radi which is smaller th
the constants amn=f=1, «=0.2,1=10. The trapping potential; only up 10 a certain radiugo ch 1S smaller tharpmay

is chosen to be given by E@5), so that the quadratic term of the When the rad'USF_’O IS Clqse 0pmay the effective magnetic
effective trapping potential vanishes. The trapping potential for thdUX @Pproaches its maximum value ofrl.

atoms in the second hyperfine ground state is chosen (e

=kV4(r) with (a) k=1 and(b) k=7/3. 2

h
Vi(r) = ——— (2= D) (p/pman®, (50)
52 2MPmax
Vy(r) = EUZ +1]a’p? (45 andV,(r)=«V,(r), the external potential,,(r) given by Eq.

(31) compensates the quadratic term in E4P). Assuming

and V,(r)=«Vy(r), the external trapping potentiale,(r),  «=1, the overall effective trapping potentig{>(r) is flat
Eqg. (31), compensates the quadratic distance dependence §imost up to the large limiting radiys=pa, as one can see
the second term of EC{44) In such a situation, the overall from F|g aa) Figure gb) shows the situation where
effective potentialViy(r) is constant up to terms of the =7/3, sothat the atoms in hyperfine state 2 are trapped
fourth order inp. stronger. In this case, the effective trapping potential be-

Figure 2 shows the effective magnetic field and the trapcomes tighter. Consequently, the difference in trapping po-
ping potential for the whole range of distanges the case tentials for different hyperfine states can provide a natural
whereV,(r)=«V,(r), with k=1 [Fig. 2a)] and«=7/3[Fig.  container confining the trapped atoms within an area of a
2(b)]. The external trapping potential is defined here by Eqsconstant effective magnetic field.
(31) and(45). The overall trapping potential is seen to be flat  If the winding number of the probe beakyF| is of the
for small distancesap<1). In this area the magnetic field is order of 100, the magnetic lengtly = p,./ \I can be consid-
close to its maximum value. For larger distances an effectiverably smaller than the width of an atomic cloud. On the
trapping barrier is formed preventing the atoms to escape thether hand, the diameter of a pancake-shaped cloud is nor-
area where the magnetic field is contained, as seen in Fig. naly in the range of several tens of micrometers, and the
In other words, the atoms can be trapped in the area whematio #/m is of the order of 1um?/ms for alkali atoms.
the magnetic field is concentrated. Fex7/3 the efective  Therefore the cyclotron frequenczyczhl/mpzmax can be up
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trated in the area where the effective trapping potential holds
the atoms. In the case of a homogeneous effective magnetic
field it is important to realize that the corresponding cyclo-
tron frequencies and magnetic lengths can be similar to typi-
cal trap frequencies and oscillator lengths used when trap-
ping cold atoms in BECs and degenerate fermion gases. This
will require a high OAM for the light which is also readily
available with present technology.

The theory is based on the adiabatic approximation ac-
cording to which the atoms should remain in the dark state.
We have estimated that the adiabatic approximation should
hold for atomic velocities up to tens of meters per second,
i.e., up to extremely large velocities in the context of ultra-
cold atomic gases. Such an estimate is lowered if the spon-
taneous decay of the excited atoms is taken into account. The

P/ Prax atomic dark state accquires then a velocity-dependent life-
14 . time. For instance, if the atomic velocities are of the order of
—gl  |(®) a centimeter per second, the atoms should survive in their
12 [ Vex dark states up to a few seconds, which is comparable to a
== Vgt ) typical lifetime of an atomic BEC.
10} |- - -IB gl A Our proposed method of creating the effective magnetic

field has several advantages compared to a rotating system
where only a constant magnetic field is credi@el1]. In our
method the magnetic field is shaped and controlled by choos-
ing the proper control and probe beams. Furthermore, stir-
ring an ultracold cloud of atoms in a controlled manner is a
rather demanding task, whereas an optically induced vector
potential is expected to be highly controllable.

The theory has already been applied analyzing the de
Haas—van Alphen effect in a gas of electrically neutral atoms
[15]. It can also be applied to other intriguing phenomena
which intrinsically depend on the magnetic field. For in-
stance, the quantum Hall effect can now be studied using a

FIG. 3. (Color onling The effective trapping potentiale and  cold gas of electrically neutral atomic fermions. In addition,
the ratio|Z|=[Q,/ Q| corresponding to the case where the effectiveif the collisional interaction between the atoms is taken into
magnetic fieldBey; is constant. The external trapping potentialr)  account, we can study the magnetic properties of a superfluid
is given by Eq.(50) to compensate the quadratic term in E49).  atomic Fermi gas[29]. Recent advances in spatial light
The trapping potential for the atoms in the second hyperfine groun¢godulator technology enables us to consider rather exotic
state is chosen to bé(r)=«Va(r) with (&) «x=1 and(b) x=7/3. |ight beams[30]. This will allow us to study the effect of
The other constants are in both cases#=1, 1=10, andpna  different forms of vector potentials in quantum gases. Finally
=10. the combined dynamical system of light and matt8i]

could give an important insight into gauge theories in gen-
to several hundreds of Hz which is comparable to typicalera].

trapping frequencies.

0 0.2 0.4 0.6 0.8 1
p / pmax
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1 4
= RS- Al
‘ V1| & V1+[g? -

To obtain the equation fobp and ®g, let us take the time
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o 1
ifdp = ?n(_ i V- AL)2D, + V(1) dp + Fpg(r) D,

(A6)

derivative of Eqs(8) and(9) and make use of the original gnq

equations of motior3)—(5):

.o ﬁz * * * *
ifdy = - En(gcv%l —EVAD,+ VEV D - VE VD,

B s h2 s
+ %[Vzgc + & Va(r) @y - %{Vzgp +&len

+ V(1) [}y, (A2)
. %2
ifidbg = - En(fszqh +EVD,+ VE VD - VET D)

72 2 12 2
+ En[v Ept EVar)] P+ En{v &+ éden

+Vo(r) [} ;. (A3)
Using the inverse transformation
1
1= —=({ @5+ Pp) (Ad)
+|¢]
and
= b)), A5
2 \Tls“lz( 8~ {Pp) (AS)

the equations of motion can be represented as

.1
Dy =2 (ihV + ALY 2D+ VE(r)Dg + 1 OD,

+Fgp(r)®p, (A7)

where the effective vector and trapping potentials are explic-

itly defined by Eqs(15)—(17) of the main text. The operators

Fpg(r) andFgp(r) describe the transitions between the dark

and bright states:
ﬁZ
Foe(r)®g= [[Vl(r) Vo(r) = ézﬂ§c§p (f oV2E,

ﬁZ
- gcvzgp) + Ih(gcgp gpgc):|q)B (g \% éc

-£V &) Vg, (A8)
ﬁZ
I:BD(r)(I)D = |:[V1(r) - V2(r) - €2ﬂ§c§p + %(fcvzfp

. . h2
- gpvzgc) + iﬁ(épgc - gcfp):|q)D + E(gc \% fp

_gpv éc) : VCI)D- (A9)

Finally, substituting Eqs(A4) and (A5) into Eq. (4), one
arrives at Eq(13) for ®.
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