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We investigate the influence of two resonant laser beams on the mechanical properties of degenerate atomic
gases. The control and probe beams of light are considered to have orbital angular momentasOAMd and act on
the three-level atoms in the electromagnetically induced transparency configuration. The theory is based on the
explicit analysis of the quantum dynamics of cold atoms coupled with two laser beams. Using the adiabatic
approximation, we obtain an effective equation of motion for the atoms driven to the dark state. The equation
contains a vector-potential-type interaction as well as an effective trapping potential. The effective magnetic
field is shown to be oriented along the propagation direction of the control and probe beams containing OAM.
Its spatial profile can be controlled by choosing proper laser beams. We demonstrate how to generate a constant
effective magnetic field, as well as a field exhibiting a radial distance dependence. The resulting effective
magnetic field can be concentrated within a region where the effective trapping potential holds the atoms. The
estimated magnetic length can be considerably smaller than the size of the atomic cloud.
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I. INTRODUCTION

During the last decade remarkable progress has been ex-
perienced in trapping and cooling atoms. In this respect the
creation of atomic Bose-Einstein condensatessBECsd f1–4g
and degenerate Fermi gasesf5–7g has been the prime
achievement. The atomic BECs and degenerate Fermi gases
are systems where an atomic physicist often meets physical
phenomena encountered in condensed-matter physics. For
instance, atoms in optical lattices are often studied using the
Hubbard modelf8g familiar from solid-state physics.

Atoms forming quantum gases are electrically neutral par-
ticles and there is no vector-potential-type coupling of the
atoms with a magnetic field. Therefore a direct analogy be-
tween the magnetic properties of degenerate atomic gases
and solid-state phenomena is not necessarily straightforward.
It is possible to produce an effective magnetic field in a
cloud of electrically neutral atoms by rotating the system
such that the vector potential will appear in the rotating
frame of referencef9–11g. This would correspond to a situ-
ation where the atoms feel a uniform magnetic field. Yet
stirring an ultracold cloud of atoms in a controlled manner is
a rather demanding task.

There have also been suggestions to take advantage of a
discrete periodic structure of an optical lattice to introduce
asymmetric atomic transitions between the lattice sites
f12–14g. Using this approach one can induce a nonvanishing
phase for the atoms moving along a closed path on the lat-
tice, i.e., one can simulate a magnetic fluxf12–14g. However,
such a way of creating the effective magnetic field is inap-
plicable to an atomic gas that does not constitute a lattice.

A significant experimental advantage would be gained if a
more direct way could be used to induce an effective mag-
netic field. In a previous paperf15g, we have shown how this
can be done using two light beams in an electromagnetically

induced transparencysEITd configuration. Here we present a
more complete account of the phenomenon. We demonstrate
that if at least one of these beams contains an orbital angular
momentum sOAMd, an effective magnetic field appears,
which acts on the electrically neutral atoms. In other words,
the coupling between the light and the atoms will provide an
effective vector potential in the atomic equations of motion.
Compared to the rotating atomic gas, where only a constant
effective magnetic field is createdf9–11g, using optical
means will be advantageous since the effective magnetic
field can now be shaped by choosing proper control and
probe beams. Note that the appearance of our effective vec-
tor potential is a manifestation of the Berry connection which
is encountered in many different areas of physicsf16–18g.

The outline of the paper is as follows. In Sec. II we define
a system of three level atoms in theL configuration and
present the equations of motion for the atoms interacting
with the control and probe beams of light. In doing this we
allow the two beams to have orbital angular momenta along
the propagation axisz. In Sec. III we derive equations of
motion for the center of mass of atoms driven to the dark
state. The equations of motion contain the terms due to ef-
fective vector and trapping potentials describing an effective
magnetic field. In contrast to our previous paperf15g, the
emerging effective potentials are now fully Hermitian. Yet,
the two formulations are shown to give the same effective
magnetic field and hence are equivalent. In Secs. IV and V
we analyze the effective magnetic field and effective trap-
ping potential in the case where at least one of the light
beams contains an orbital angular momentum. We show that
the spatial profile of the effective magnetic field can be con-
trolled by applying proper control and probe beams. The
concluding Sec. VI summarizes the findings. Finally, the Ap-
pendix contains technical details of some of the derivations.
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II. FORMULATION

A. The system

Let us consider a system of atoms characterized by two
hyperfine ground levels 1 and 2, as well as an electronic
excited level 3. The atoms interact with two resonant laser
beams in the EIT configurationfsee Fig. 1sbdg. The first
beamsto be referred to as the control beamd drives the tran-
sition u2l→ u3l, whereas the second beamsthe probe beamd is
coupled with the transitionu1l→ u3l; see Fig. 1sad. The con-
trol laser has a frequencyvc, a wave vectorkc, and a Rabi
frequencyVc. The probe field, on the other hand, is charac-
terized by a central frequencyvp=ckp, a wave vectorkp, and
a Rabi frequencyVp. Of special interest is the case where the
probe and control beams can carry OAM along the propaga-
tion axisz. In that case, the spatial distributions of the beams
are f19,20g

Vp = Vp
s0deiskpz+lpfd s1d

and

Vc = Vc
s0deiskcz+lcfd, s2d

whereVp
s0d and Vc

s0d are slowly varying amplitudes for the
probe and control fields,"lp and "lc are the corresponding
orbital angular momenta per photon along the propagation
axis z, andf is the azimuthal angle.

In first quantization, the quantum-mechanical state of the
atoms is described in terms of the three-component wave
function C jsr ,td representing the probability amplitude to
find an atom in thej th electronic state and positioned atr ,
with j =1, 2, 3. In second quantization, the one-particle wave
function C jsr ,td is replaced by the operatorC jsr ,td for an-
nihilation of an atom positioned atr and characterized by an

internal statej . A set of such operatorsC jsr ,td obeys the
Bose-Einstein or Fermi-Dirac commutation relationships de-
pending on the type of atoms involved. In what follows,
C jsr ,td can be understood either as the three-component
atomic wave function or as the annihilation field operator. In
both cases the spatial and temporal variables will be kept
implicit, C jsr ,td;C j.

B. Initial equations of motion

Introducing the slowly varying atomic field operators
F1=C1e

iv1t, F3=C3e
isv1+vpdt, and F2=C2e

isv1+vp−vcdt and
adopting the rotating wave approximation, the equations of
motion read

i"Ḟ1 = −
"2

2m
¹2F1 + V1sr dF1 + "Vp

*F3, s3d

i"Ḟ3 = −
"2

2m
¹2F3 + fe31 + V3sr dgF3 + "VcF2 + "VpF1,

s4d

i"Ḟ2 = −
"2

2m
¹2F2 + fe21 + V2sr dgF2 + "Vc

*F3, s5d

wherem is the atomic mass,Vjsr d is the trapping potential
for an atom in the electronic statej , e21="sv2−v1+vc

−vpd and e31="sv3−v1−vpd are, respectively, the energies
of the detuning from the two- and single-photon resonances
with "v j being the electronic energy of the atomic levelj .

The equations of motions3d–s5d do not accommodate col-
lisions between the ground-state atoms. This is a legitimate
approximation for a degenerate Fermi gas in whichs-wave
scattering is forbidden and only weakp-wave scattering is
presentf5,21–23g. On the other hand, if the atoms in the
hyperfine ground states 1 and 2 form a BEC, collisions will
be present between these atoms. The collisional interaction
can, however, be accommodated if Eqs.s3d and s5d are re-
placed by the mean-fieldsGross-Pitaevskiid equations for the
condensate wave functions,

i"Ḟ1 = S−
"2

2m
¹2V1sr d + g11uF1u2 + g12uF2u2DF1 + "Vp

*F3,

s6d

i"Ḟ2 = S−
"2

2m
¹2e21 + V2sr d + g12uF1u2 + g22uF2u2DF2

+ "Vc
*F3, s7d

wheregjl =4p"2ajl /m, with ajl the s-wave scattering length
of the atoms in the electronic statesj and l, respectively. In
particularajj is the length of thes-wave scattering between a
pair of atoms in the same electronic statesj =1, 2d, whereas
a12=a21 corresponds to collisions between atoms in different
electronic states. Since the occupation of the excited atomic
level 3 is small, the atom-atom scattering is of little impor-
tance for these atoms and Eq.s4d for F3 can therefore be left
unaltered.

FIG. 1. sColor onlined sad The level scheme for theL-type at-
oms interacting with the resonant probe beamVp and control beam
Vc. sbd Schematic representation of the experimental setup with the
two light beams incident on the cloud of atoms. The probe field is
of the form Vp,ei,f, where each probe photon carries an orbital
angular momentum", along the propagation axisz.
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III. DARK STATE REPRESENTATION

A. Transformed equations of motion

It is convenient to introduce the annihilation field opera-
tors for the atoms in the dark and bright states,

FD =
1

Î1 + uzu2
sF1 − z*F2d, s8d

FB =
1

Î1 + uzu2
szF1 + F2d, s9d

where

z =
Vp

Vc
s10d

is the ratio of the amplitudes of the control and probe fields.
We shall be especially interested in a situation where the

atoms are driven to their dark states, described by the cre-
ation field operatorFD

† sr ,0d acting on the atomic vacuum
uvacl. If an atom is in the dark stateuDl,u1l−zu2l, the reso-
nant control and probe beams induce the absorption paths
u2l→ u3l andu1l→ u3l which interfere destructively, resulting
in the electromagnetically induced transparencyf24–27g. In
fact, as one can see from Eq.s4d, the transitions to the upper
atomic level 3 are then suppressed, so the atomic level 3 is
weakly populated. This justifies the neglect of losses due to
spontaneous emissions by the excited atoms in Eq.s4d for
F3.

A transformed set of operatorsFD, FB, andF3 obeys the
following equations of motionssee the Appendixd:

i"ḞD =
1

2m
si" = + Aeff

sDdd2FD + Veff
sDdsr dFD + FDBsr dFB,

s11d

i"ḞB =
1

2m
si" = + Aeff

sBdd2FB + Veff
sBdsr dFB + "VF3

+ FBDsr dFD, s12d

i"Ḟ3 = −
"2

2m
¹2F3 + fe31 + V3sr dgF3 + "VFB, s13d

where

Vsr d = ÎuVpu2 + uVcu2 s14d

is the total Rabi frequency,

Aeff
sDd = − Aeff

sBd =
i"

2

z* = z − z = z*

1 + uzu2
s15d

is theeffective vector potentialand

Veff
sDdsr d =

1

1 + uzu2
hV1sr d + uzu2fV2sr d + e21gj −

i"

2

z* ż − zż*

1 + uzu2

+
"2

2m

=z* · = z

s1 + uzu2d2 −
1

2m
sAeff

sDdd2, s16d

Veff
sBdsr d =

1

1 + uzu2
fuzu2V1sr d + V2sr d + e21g −

i"

2

ż*z − z* ż

1 + uzu2

+
"2

2m

=z* · = z

s1 + uzu2d2 −
1

2m
sAeff

sBdd2 s17d

are theeffective trapping potentialsfor the atoms in the dark
and bright states, respectively. The operatorsFDB and FBD
describing transitions between the dark and bright states in
Eqs. s11d and s12d are explicitly defined in the Appendix.
Note that the effective vector and trapping potentialsAeff

sDd

andVeff
sDdsr d are Hermitian.

The effective magnetic field, corresponding to the effec-
tive vector potentialAeff

sDd, is

Beff = ¹ 3 Aeff
sDd = i"

1

s1 + uzu2d2 ¹ z* 3 ¹ z. s18d

B. Equation of motion under adiabatic approximation

In what follows we shall restrict ourselves to theadia-
batic case in which transitions between the dark and bright
states are not important. In such a situation the termFDB can
be neglected in Eq.s11d, so it is sufficient to consider a
single equation describing the translational motion of the at-
oms in the dark state:

i"ḞD =
1

2m
si" = + Aeff

sDdd2FD + Veff
sDdsr dFD. s19d

Assuming that the control and probe fields are tuned to the
one- and two-photon resonancesse31,e21!"Vd, the adia-
batic approach holds if the matrix elements of the operators
FDB andFBD are much smaller than the total Rabi frequency
V. This leads to the following requirement for the velocity-
dependent term inFDB:

F ! V. s20d

Here the velocity-dependent term

F =
1

1 + uzu2
u = z ·vu s21d

reflects the two-photon Doppler detuning. Note that the esti-
mation s20d does not accommodate effects due to the decay
of the excited atoms. The dissipation effects can be included
replacing the energy of the one-photon detuninge31 by e31
− i"g3, whereg3 is the excited-state decay rate. In such a
situation, the dark state can be shown to acquire a finite
lifetime,

tD , g3
−1V2/F2, s22d

which should be large compared to other characteristic times
of the system. The adiabatic conditions will be further ana-
lyzed in Sec. IV C.

If the atoms in the hyperfine ground states 1 and 2 form a
BEC, the atomic dynamics in these states is governed by the
mean-field equationss6d and s7d. In such a situation, the
equation of motion for the dark state atoms modifies as
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i"ḞD =
1

2m
si" = + Aeff

sDdd2FD + Veff
sDdsr dFD + gDuFDu2FD,

s23d

where

gD =
1

s1 + uzu2d2sg11 + 2g12uzu2 + uzu4g22d s24d

describes the interaction between the atoms in the dark state.

C. Relation to previous work

In our previous paperf15g an effective equation of motion
has been derived for the atoms in the hyperfine ground level
1. In doing this, the atoms were assumed to be driven to their
dark states by imposing the constraintF2sr ,td=−zF1sr ,td,
which is equivalent to the requirementFBsr ,td=0. The re-
sulting effective equation of motion forF1sr ,td readsf15g

i"Ḟ1 =
1

2m
fi" = + Aeffg2F1 + Veffsr dF1, s25d

where the effective vector and trapping potentials are gener-
ally non-Hermitian. For instance, the effective vector poten-
tial featured in Eq.s25d is given byf15g

Aeff =
i"z* = z

1 + uzu2
; Aeff

sDd − i" = lns1 + uzu2d−1/2. s26d

Non-Hermitian potentials appear because the atoms in the
electronic state 1 constitute an open subsystem. In fact, the
probe and control beams transfer reversibly atomic popula-
tion from level 1 to level 2 by means of the two-photon
Raman transition.

Using the constraintF2=−zF1, one can express the dark-
state operatorFD given by Eq.s8d in terms ofF1 as

FD = F1s1 + uzu2d1/2 ; F1expflns1 + uzu2d1/2g. s27d

Equations27d represents a pseudogaugesnonunitaryd trans-
formation relating the effective equation of motions25d for
F1 to the corresponding equation for the dark-state operator
FD. The transformations27d is not unitary as long as the
intensity of the probe field is nonzerosuzuÞ0d. The transition
from the unitary equation of motion forFD to the nonunitary
one forF1 is accompanied by the non-Hermitian vector and
trapping potentialsAeff and Veff. The Hermitian potential
Aeff

sDd differs from its non-Hermitian counterpartAeff by a
gradient of the imaginary functioni" lns1+uzu2d−1/2, as one
can see from Eq.s25d. In a similar manner, the Hermitian
trapping potentialVeff

sDdsr d can be shown to differ from the
non-Hermitian potentialVeffsr d by the time derivative of the
imaginary function −i" lns1+uzu2d−1/2. In this way the two
formulations are equivalent. SinceAeff

sDd differs fromAeff by a
gradient, the effective magnetic fieldfEq. s18dg acting on the
dark-state atoms, is the same in both formulations.

IV. EFFECTIVE POTENTIALS DUE TO LIGHT BEAMS
WITH OAM

A. Representation in terms of the amplitude and phase

Separating the ratioz into an amplitude and phase,

z = Vp/Vc = uzueiS, s28d

the effective vector and trapping potentials given by Eqs.
s15d and s16d can be rewritten as

Aeff
sDd = − "

uzu2

1 + uzu2
= S s29d

and

Veff
sDdsr d = Vextsr d +

"2

2m

uzu2s=Sd2 + s= uzud2

s1 + uzu2d2 +
uzu2"Ṡ+ e21

1 + uzu2
,

s30d

where

Vextsr d =
V1sr d + uzu2V2sr d

1 + uzu2
s31d

is the external trapping potentialfor the atoms in the dark
state. The effective magnetic field then takes the form

Beff = "
s=Sd 3 = uzu2

s1 + uzu2d2 , s32d

i.e., the strength of the effective magnetic field is determined
by the cross product of the gradients of the amplitude and
phases=Sd3 = uzu2.

B. Control and probe beams with OAM

If the co-propagating probe and control fields carry OAM,
their amplitudesVp and Vc are given by Eqs.s1d and s2d.
The phase of the ratioz=Vp/Vc then reads

S= lf, s33d

wherel = lp− lc. Note that although both the control and probe
fields are generally allowed to have nonzero OAM by Eqs.
s1d and s2d, it is desirable that the OAM is zero for one of
these beams. In fact, if bothlp and lc were nonzero, the
amplitudesVp and Vc should simultaneously go to zero
along thez axis. In such a situation, the total Rabi frequency
V=sVp

2+Vc
2d1/2 would also vanish, leading to the violation

of the adiabatic conditions20d along thez axis.
Substituting Eq.s33d into Eqs.s29d ands32d, the effective

vector potential and magnetic field take the form

Aeff
sDd = −

"l

r

uzu2

1 + uzu2
êf, s34d

Beff =
"l

r

1

s1 + uzu2d2êf 3 = uzu2, s35d

where r is the cylindrical radius andêf is the unit vector
along the azimuthal anglef. In a similar manner, with the
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electronic two photon detuning put to zerose21=0d, Eq. s30d
reduces to

Veff
sDdsr d = Vextsr d +

"2

2m

l2uzu2/r2 + s= uzud2

s1 + uzu2d2 . s36d

In what follows we shall assume that the intensity ratio
uzu2 depends on thecylindrical radiusr only. In that case the
effective magnetic field is directed along thez axis,

Beff = − êz
"l

r

1

s1 + uzu2d2

]

]r
uzu2. s37d

It is evident that the effective magnetic field is nonzero only
if the ratio z=Vp/Vc contains a nonzero phasesl = lp− lc
Þ0d and the amplitudeuzu has a radial dependences]uzu /]r
Þ0d.

C. Adiabatic condition

For light beams with OAM theadiabatic conditiongiven
by Eq. s20d can be rewritten as

1

1 + uzu2
ÎSvr

]

]r
uzuD2

+ Suzuvf

l

r
D2

! V. s38d

The above condition imposes requirements on the radial and
azimuthal atomic velocitiesvr andvf=rvf, wherevf is an
angular frequency of the atomic motion. Note that condition
s38d has no singularity due to ther−1 term, since for the light
beams with OAM the ratiouzu= uVp/Vcu typically goes asrl

close to the originf20g.
The condition s38d implies that the inverse Rabi fre-

quencyV−1 should be smaller than the time an atom travels
a characteristic length over which the amplitude or the phase
of the ratioz=Vp/Vc changes considerably. The latter length
exceeds the optical wavelength, and the Rabi frequency can
be of the order of 107–108 s−1 f28g. Consequently, the adia-
batic conditions38d should still hold for atomic velocities of
the order of tens of meters per second, i.e., up to extremely
large velocities in the context of ultracold atomic gases. The
allowed atomic velocities become lower if the spontaneous
decay of the excited atoms is taken into account. According
to Eq. s22d, the atomic dark state accquires then a finite life-
time tD which is determined byg3

−1 times the ratioV2/F2.
The atomic decay rateg3 is typically of the order 107 s−1.
Therefore in order to achieve long-lived dark states the
atomic speed should not be too large. For instance, if the
atomic velocities are of the order of a centimeter per second
sa typical speed of sound in a BECd, the atoms should sur-
vive in their dark states up to a few seconds. This is compa-
rable to the typical lifetime of an atomic BEC.

V. SPECIFIC CASES

Suppose the probe beam has an OAMslpÞ0d and the
control beam does notslc=0d. In this case the intensity of the
probe beamsand hence the ratiouzu2= uVp/Vcu2d goes to zero
asr→0. If the intensity of the control field changes slowly
within an atomic cloud, ther dependence of the ratiouzu is
determined by the probe beam only.

The effective magnetic flux through a circle of the radius
r0 is now given by

F = R Aeff
sDddl = − 2p"

l uz0u2

1 + uz0u2
, s39d

where 2p" is the Dirac flux quantum, anduz0u2 is the inten-
sity ratio at the radiusr=r0. The flux F reaches its maxi-
mum of 2p"l if the ratio uz0u2@1, i.e., if the intensity of the
probe field exceeds the control field at the selected radiusr0.
Since the winding number of light beams can currently be as
large as several hundreds, it is possible to induce a substan-
tial flux F in the atomic cloud. This might enable us to study
phenomena related to filled Landau levels with a large num-
ber of atoms in the quantum gases.

A. The case wherezzzÈrn

Let us consider the case where the probe beam containing
an OAM exhibits the power law behavioruzu=arn. Under
this condition, Eqs.s36d and s37d take the form

Beff = − 2nl"
a2r2n−2

s1 + a2r2nd2êz s40d

and

Veff
sDdsr d = Vextsr d +

"2

2m

fl2 + n2ga2r2n−2

s1 + a2r2nd2 . s41d

If the probe beam is characterized by a winding numberlp
= l, the radial distribution typically goes asuzu=arl for small
values ofr f20g. Therefore, forl .1, the effective magnetic
field goes to zero at the origin, wherer=0. It is desirable to
exclude this area by introducing a repulsive potential expel-
ling the atoms for small values ofr. In what follows we shall
consider some other types of radial dependence which are
relevant for a larger cylindrical radiusr.

B. The case wherezzz is linear in r

If uzu=ar, we get

Beff = − 2l"êz
a2

s1 + a2r2d2 s42d

and

Veff
sDdsr d = Vextsr d +

"2

2m

fl2 + 1ga2

s1 + a2r2d2 . s43d

For sufficiently small distancessuzu=ar!1d, Eq. s42d de-
scribes a constant magnetic field along thez axis, in agree-
ment with Eq.s11d of Ref. f15g. Retaining terms up to qua-
dratic order inr, the effective trapping potential, Eq.s43d,
becomes

Veff
sDdsr d < Vextsr d +

"2

2m
fl2 + 1ga2s1 − 2a2r2d. s44d

Assuming
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V1sr d =
"2

m
fl2 + 1ga4r2 s45d

and V2sr d=kV1sr d, the external trapping potentialVextsr d,
Eq. s31d, compensates the quadratic distance dependence in
the second term of Eq.s44d. In such a situation, the overall
effective potentialVeff

sDdsr d is constant up to terms of the
fourth order inr.

Figure 2 shows the effective magnetic field and the trap-
ping potential for the whole range of distancesr in the case
whereV2sr d=kV1sr d, with k=1 fFig. 2sadg andk=7/3 fFig.
2sbdg. The external trapping potential is defined here by Eqs.
s31d ands45d. The overall trapping potential is seen to be flat
for small distancessar!1d. In this area the magnetic field is
close to its maximum value. For larger distances an effective
trapping barrier is formed preventing the atoms to escape the
area where the magnetic field is contained, as seen in Fig. 2.
In other words, the atoms can be trapped in the area where
the magnetic field is concentrated. Fork=7/3 the effective

trapping potential confines the atoms tighter compared to the
case wherek=1, as one can see comparing Figs. 2sad and
2sbd.

Since the effective magnetic field is nearly constant only
in a region whereuzu=ar!1, the effective magnetic flux
over this region is much smaller than its maximum of 2p"l,
as one can see from Eq.s39d. In the next subsection we shall
show how to produce a strictly constant magnetic field in the
case whereuzu is not necessarily small.

C. Constant effective magnetic field

If we choose

uzu2 =
sr/rmaxd2

1 − sr/rmaxd2 , s46d

the effective vector potential is

Aeff
sDd = − "lrrmax

−2 êf. s47d

Consequently we arrive at a constant effective magnetic field

Beff = − 2"lrmax
−2 êz, s48d

with the corresponding cyclotron frequencyvc="2l /mrmax
2 ,

and the magnetic length,B=Î" /mvc=rmax/Î2l. The effec-
tive trapping potential is now given by

Veff
sDdsr d = Vextsr d +

"2

2m

1

rmax
2 sl2d + 1/dd, s49d

whered=1−sr /rmaxd2. For r→rmax, the intensity ratiouzu2
goes to infinity, so Eqs.s46d–s49d have meaning only for
distances smaller thanrmax. Therefore Eq.s46d can model an
actual intensity distribution of the control and probe beams
only up to a certain radiusr0 which is smaller thanrmax.
When the radiusr0 is close tormax, the effective magnetic
flux approaches its maximum value of 2p"l.

If

V1sr d =
"2

2mrmax
2 sl2 − 1dsr/rmaxd2, s50d

andV2sr d=kV1sr d, the external potentialVextsr d given by Eq.
s31d compensates the quadratic term in Eq.s49d. Assuming
k=1, the overall effective trapping potentialVeff

sDdsr d is flat
almost up to the large limiting radiusr=rmax, as one can see
from Fig. 3sad. Figure 3sbd shows the situation wherek
=7/3, so that the atoms in hyperfine state 2 are trapped
stronger. In this case, the effective trapping potential be-
comes tighter. Consequently, the difference in trapping po-
tentials for different hyperfine states can provide a natural
container confining the trapped atoms within an area of a
constant effective magnetic field.

If the winding number of the probe beamlp= l is of the
order of 100, the magnetic length,B=rmax/Îl can be consid-
erably smaller than the width of an atomic cloud. On the
other hand, the diameter of a pancake-shaped cloud is nor-
maly in the range of several tens of micrometers, and the
ratio " /m is of the order of 1mm2/ms for alkali atoms.
Therefore the cyclotron frequencyvc="l /mrmax

2 can be up

FIG. 2. sColor onlined Effective trapping potentialVeff and ef-
fective magnetic fieldBeff for the case whereuzu is linear inr and
the constants arem="=1, a=0.2, l =10. The trapping potentialV1

is chosen to be given by Eq.s45d, so that the quadratic term of the
effective trapping potential vanishes. The trapping potential for the
atoms in the second hyperfine ground state is chosen to beV2sr d
=kV1sr d with sad k=1 andsbd k=7/3.
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to several hundreds of Hz which is comparable to typical
trapping frequencies.

VI. CONCLUSIONS

We have considered the influence of two beams of light
with orbital angular momenta on a degenerate gas of electri-
cally neutral atomssfermions or bosonsd. The theory is based
on the EIT. We have derived an equation of motion for atoms
driven to a dark state. The equation contains a vector-
potential-type interaction as well as an effective trapping po-
tential. We have analyzed the effective vector and trapping
potentials in the case where at least one of the light beams
contains an orbital angular momentum. We have shown how
to generate a constant effective magnetic field, as well as a
field exhibiting a radial distance dependence. We have dem-
onstrated that the effective magnetic field can be concen-

trated in the area where the effective trapping potential holds
the atoms. In the case of a homogeneous effective magnetic
field it is important to realize that the corresponding cyclo-
tron frequencies and magnetic lengths can be similar to typi-
cal trap frequencies and oscillator lengths used when trap-
ping cold atoms in BECs and degenerate fermion gases. This
will require a high OAM for the light which is also readily
available with present technology.

The theory is based on the adiabatic approximation ac-
cording to which the atoms should remain in the dark state.
We have estimated that the adiabatic approximation should
hold for atomic velocities up to tens of meters per second,
i.e., up to extremely large velocities in the context of ultra-
cold atomic gases. Such an estimate is lowered if the spon-
taneous decay of the excited atoms is taken into account. The
atomic dark state accquires then a velocity-dependent life-
time. For instance, if the atomic velocities are of the order of
a centimeter per second, the atoms should survive in their
dark states up to a few seconds, which is comparable to a
typical lifetime of an atomic BEC.

Our proposed method of creating the effective magnetic
field has several advantages compared to a rotating system
where only a constant magnetic field is createdf9–11g. In our
method the magnetic field is shaped and controlled by choos-
ing the proper control and probe beams. Furthermore, stir-
ring an ultracold cloud of atoms in a controlled manner is a
rather demanding task, whereas an optically induced vector
potential is expected to be highly controllable.

The theory has already been applied analyzing the de
Haas–van Alphen effect in a gas of electrically neutral atoms
f15g. It can also be applied to other intriguing phenomena
which intrinsically depend on the magnetic field. For in-
stance, the quantum Hall effect can now be studied using a
cold gas of electrically neutral atomic fermions. In addition,
if the collisional interaction between the atoms is taken into
account, we can study the magnetic properties of a superfluid
atomic Fermi gasf29g. Recent advances in spatial light
modulator technology enables us to consider rather exotic
light beamsf30g. This will allow us to study the effect of
different forms of vector potentials in quantum gases. Finally
the combined dynamical system of light and matterf31g
could give an important insight into gauge theories in gen-
eral.
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APPENDIX: EQUATIONS OF MOTION FOR FD AND FB

For derivation of the equations of motion for the dark and
bright statesFD and FB it is convenient to introduce the
notation

FIG. 3. sColor onlined The effective trapping potentialVeff and
the ratiouzu= uVp/Vcu corresponding to the case where the effective
magnetic fieldBeff is constant. The external trapping potentialV1sr d
is given by Eq.s50d to compensate the quadratic term in Eq.s49d.
The trapping potential for the atoms in the second hyperfine ground
state is chosen to beV2sr d=kV1sr d with sad k=1 andsbd k=7/3.
The other constants are in both casesm="=1, l =10, andrmax

2

=10.
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jc =
1

Î1 + uzu2
, jp =

z

Î1 + uzu2
. sA1d

To obtain the equation forFD and FB, let us take the time
derivative of Eqs.s8d and s9d and make use of the original
equations of motions3d–s5d:

i"ḞD = −
"2

2m
sjc

*¹2F1 − jp
*¹2F2 + ¹ jc

* ¹ F1 − ¹ jp
* ¹ F2d

+
"2

2m
f¹2jc

* + jc
*V1sr dgF1 −

"2

2m
h¹2jp

* + jp
* fe21

+ V2sr dgjF2, sA2d

i"ḞB = −
"2

2m
sjp¹

2F1 + jc¹
2F2 + ¹ jp ¹ F1 − ¹ jc ¹ F2d

+
"2

2m
f¹2jp + jpV1sr dgF1 +

"2

2m
h¹2jc + jcfe21

+ V2sr dgjF2. sA3d

Using the inverse transformation

F1 =
1

Î1 + uzu2
sz*FB + FDd sA4d

and

F2 =
1

Î1 + uzu2
sFB − zFDd, sA5d

the equations of motion can be represented as

i"ḞD =
1

2m
s− i" = − Aeff

sDdd2FD + Veff
sDdsr dFD + FDBsr dFB,

sA6d

and

i"ḞB =
1

2m
s− i" = + Aeff

sDdd2FB + Veff
sBdsr dFB + "VF3

+ FBDsr dFD, sA7d

where the effective vector and trapping potentials are explic-
itly defined by Eqs.s15d–s17d of the main text. The operators
FDBsr d andFBDsr d describe the transitions between the dark
and bright states:

FDBsr dFB = FfV1sr d − V2sr d − e21gjc
*jp

* +
"2

2m
sjp

*¹2jc
*

− jc
*¹2jp

* d + i"sj̇c
*jp

* − j̇p
*jc

*dGFB +
"2

m
sjp

* ¹ jc
*

− jc
* ¹ jp

* d · = FB, sA8d

FBDsr dFD = FfV1sr d − V2sr d − e21gjcjp +
"2

2m
sjc¹

2jp

− jp¹
2jcd + i"sj̇pjc − j̇cjpdGFD +

"2

m
sjc ¹ jp

− jp ¹ jcd · = FD. sA9d

Finally, substituting Eqs.sA4d and sA5d into Eq. s4d, one
arrives at Eq.s13d for F3.
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