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In atom optics a material structure is commonly regarded as an amplitude mask for atom waves. However,
atomic diffraction patterns formed using material gratings indicate that material structures also operate as phase
masks. In this study a well collimated beam of sodium atoms is used to illuminate a silicon nitride grating with
a period of 100 nm. During passage through the grating slots atoms acquire a phase shift due to the van der
WaalssvdWd interaction with the grating walls. As a result the relative intensities of the matter-wave diffrac-
tion peaks deviate from those expected for a purely absorbing grating. Thus a complex transmission function
is required to explain the observed diffraction envelopes. An optics perspective to the theory of atomic
diffraction from material gratings is put forth in the hopes of providing a more intuitive picture concerning the
influence of the vdW potential. The van der Waals coefficientC3=2.7±0.8 meV nm3 is determined by fitting
a modified Fresnel optical theory to the experimental data. This value ofC3 is consistent with a van der Waals
interaction between atomic sodium and a silicon nitride surface.
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It is known that correlations of electromagnetic vacuum
field fluctuations over short distances can result in an attrac-
tive potential between atoms. For the case of an atom and a
surface the potential takes the form

Vsrd = −
C3

r3 , s1d

wherer is the atom-surface distance andC3 is a coefficient
which describes the strength of the van der WaalssvdWd
interactionf1g. Equations1d is often called thenonretarded
vdW potential and is valid over distances shorter than the
principle transition wavelength of the atoms involved. The
significance of this interaction is becoming more prevalent as
mechanical structures are being built on the nanometer scale.
The vdW potential also plays an important part in chemistry
and atomic force microscopy, and can be used to test quan-
tum electrodynamic theory.

Early experiments concerning the vdW interaction were
based on the deflection of atomic beams from surfaces. It
was demonstrated that the deflection of ground-state alkali
f2g and Rydbergf3g atom beams from a gold surface is com-
patible with Eq.s1d. Later measurements utilizing this tech-
nique were sufficiently accurate to distinguish between the
retardedV, r−4 and nonretardedV, r−3 forms f4g. More re-
cently atom optics techniques have been employed to mea-
sure the magnitude of the vdW coefficientC3. Various
ground-statef5g and excited noble gasf6g atom beams have
been diffracted using nanofabricated transmission gratings in
order to measureC3. The influence of the vdW potential has
also been observed for large molecules in a Talbot-Lau inter-
ferometer constructed with three gold gratingsf7g.

In this paper we present atomic diffraction of a thermal
sodium atom beam and show that the data cannot be de-
scribed by a purely absorbing grating. A diagram of the ex-

perimental apparatus is shown in Fig. 1. The supersonic
beam of sodium atoms passes through a 0.5-mm-diameter
skimmer and is collimated by two 10-mm slits separated by
,1 m. By changing the carrier gas the atom velocity can be
adjusted from 0.6 to 3 km/s withsv /v,0.1. The collimated
atom beam is used to illuminate a silicon nitride gratingf8g
with a period ofd=100 nm, thicknesst=150±5 nm, open
width w=50.5±1.5 nm, and grating bar wedge angleb
=5.25±0.75°. All of the grating parameters are measured
independently using scanning electron microscope images.
The diffraction pattern is measured by ionizing the sodium
atoms with a hot Re wire and then counting the ions with a
channel electron multiplier.

An optical description is helpful in gaining an intuitive
picture of how the vdW interaction modifies the atomic dif-
fraction pattern. To this end one should recall that the Schro-
edinger equation for a wave functionc can be written as

i"
]

]t
csr ,td = F− "2

2m
¹2 + Vsr dGcsr ,td, s2d

wherem is mass," is Planck’s constant, andV is the poten-
tial f9g. One can take the Fourier transform of Eq.s2d with

FIG. 1. A diagram of the experimental setup used.
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respect to time and use the fact that] /]t⇒−iv in the fre-
quency domain to obtain

F¹2 + S1 −
Vsr d
"v

Dko
2Gcsr ,vd = 0, s3d

where the dispersion relationv="ko
2/2m has been utilized.

Equations3d is usually referred to as the time-independent
Schroedinger equation. It is quite illuminating to recall that
the Helmholtz equationf10g for the electric fieldE is given
by

s¹2 + n2ko
2dEsr ,vd = 0, s4d

wheren is index of refraction. By inspection one can see that
Eqs.s3d ands4d are formally equivalent where the quantities
n and s1−V/"vd1/2 play analogous roles. Due to this fact
many wave propagation methods developed in optics can be
applied directly to matter wave propagation, being mindful
of the fact that in opticsv=cko.

While Eq. s3d can be formally solved using a Green’s-
function approach, approximate solutions used in physical
optics can lead to a better understanding of how the vdW
interaction affects atomic diffraction patterns. The Fresnel
and Fraunhofer approximations are commonly used in optics
and represent a useful tool when faced with propagating the
wave functionc from the grating to the detector plane. The
Fresnel or paraxial approximation is valid as long as the
propagation distancez satisfies the inequality

z@ ux − ju, s5d

wherej and x are the transverse spatial coordinates in the
grating and detector plane, respectively. This is certainly sat-
isfied for our experiment since the diffraction angles are less
than 10−3 radians and the orders are resolved. The Fraun-
hofer or far-field approximation goes beyond the Fresnel ap-
proximation by requiring that

z@
ko

2
jmax

2 =
p

ldB
jmax

2 , s6d

where ldB is the de Brolglie wavelength of the atoms and
jmax is the relevant extent in the aperture planef11g. For the
case of propagation from a uniformly illuminated grating of
periodd to the detector plane,jmax→d and Eq.s6d takes the
form z@pd2/ldB. For our experimental setupd=100 nm
andldB,10−11 m, so the inequalityz<2 m@p /1000 m is
met. However, our atom beam diameter is on the order of
10−5 m and sojmax→10−5 m implying that the inequality in
Eq. s6d is not met.

In light of the previous discussion it seems most appro-
priate to use the Fresnel approximation to model our experi-
ment. According to the Fresnel approximation the wave
function in the detector planecsxd is related to that just after
the gratingcsjd by a scaled spatial Fourier transform,

csxd ~ Fheiskoj2/2zodcsjdju fj=x/ldBzo
, s7d

whereFh j denotes a Fourier transform andfj is the Fourier
conjugate variable toj f11g. The quadratic phase factor in
Eq. s7d accounts for the fact that the phase fronts have a
parabolic shape before the far field is reached.

The wave function just after the gratingcsjd is given by

csjd = FTsjd p combS j

d
DGUsjd, s8d

where combsj /dd is an array of delta functions with spacing
d, the operatorp denotes a convolution, andUsjd is complex
function describing the atom beam amplitude in the plane of
the grating. The transmission function of a single grating
window Tsjd in Eq. s8d is defined as

Tsjd ; eifsjdrectS j

w
D , s9d

where rectsargd=1 when uarguø 1
2 and zero otherwise. The

phasefsjd accounts for the vdW interaction and its origin
will be discussed later. This description ofcsjd andTsjd in
terms of the functions combs d and rects d is standard Fourier
optics notation and convenient due to its modular nature
f11g.

Equations8d can then be substituted into Eq.s7d to obtain

csxd ~ o
j=−`

`

A jUSx − j
ldBzo

d
D , s10d

where the summation index corresponds to thej th diffraction
order, the diffraction amplitudeA j is defined as

A j ; FhTsjdju fj=j /d = FUHeifsjdrectS j

w
DJU

fj=j /d
, s11d

and the beam profile in the detector plane is given by

Usxd = Fheiskoj2/2zodUsjdju fj=x/ldBzo
. s12d

From Eq.s10d we can predict the atom intensity

Isxd ; ucsxdu2 s13d

in the detector plane which can also be interpreted as the
probability density for atom position. A distribution of atom
velocities can be incorporated by a weighted incoherent sum
of the intensity pattern for each atom velocityIsx;vd,

Isxd = o
v

PsvdIsx;vd; v =
h

mldB
, s14d

Psvd ~ v3expS−
msv − ud2

2kBT
D , s15d

where thePsvd is the probability distribution function of
velocities for a supersonic source,u is the average flow ve-
locity, kB is Boltzmann’s constant, andT is the longitudinal
temperature of the beam in the moving frame of the atoms
f12g.

One can see from Eq.s10d that the diffraction pattern
consists of replications of the beam shapeuUsxdu2 shifted by
integer multiples ofldBzo/d with relative intensities deter-
mined by the modulus squared of Eq.s11d. An important
feature to notice in Eq.s11d is that a diffraction order in the
detector plane corresponds to a spatial frequency in the grat-
ing plane through the relationfj= j /d. This highlights the
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connection between the spatially dependent phasefsjd in
Eq. s9d and the magnitude of the diffraction orders in Eq.
s10d.

The earlier assertion thatfsjd in Eq. s9d somehow incor-
porates the vdW interaction into the optical propagation
theory can be understood by recalling from Eq.s3d that the
index of refractionn and quantitys1−V/"vd1/2 play similar
roles in optics and atom optics, respectively. In optics one
calculates a phase shiftf induced by a glass plate by multi-
plying the wave number in the materialnko by the thickness
of the plateL si.e., f=nkoLd. Just as in the optics case one
can calculate the phase shiftfsjd accumulated by the wave
function passing through the grating windows,

fsjd =E swave number in potentialdsdifferential thicknessd

=E
−t

0

koS1 −
Vsj,zd

"v
D1/2

dz, s16d

where t is the thickness of the grating andVsj ,zd is the
potential the atoms experience between the grating bars due
to the vdW interaction. Thus the vdW interaction is analo-
gous to a glass plate with a spatially dependent index of
refraction, a kind of diverging lens that fills each grating
window. The result in Eq.s16d is consistent with the wave
function phase according to the WKB approximationf9g.

In arriving at Eq.s16d diffraction due to abrupt changes in
the potential Vsj ,zd has been ignored while the wave
function propagates through the grating windows. This is a
valid approximation due to the fact thatldB!w,
hs] /]jdfVsjd /"vgj−1 in the region of the potential that cor-
responds to the diffraction orders of interest. The relationship
between spatial regions of the potentialVsj ,zd and a given
diffraction order will be discussed in subsequent paragraphs.
It is also important to note that Eq.s16d assumes that the
potential Vsj ,zd exists only between the grating barsfi.e.,
Vsj ,zd=0 for z,−t or z.0g and neglects the fact that the
bars are not semi-infinite planes. Theoretical work done by
Spruch et al. f13g suggests that the vdW potential corre-
sponding to our,50-nm grating bar width is very similar to
that of a semi-infinite plane at the location of the slit walls.
Since the phasefsjd from Eq. s16d only depends on the
integral of the potential in thez direction one would also
expect that edge effects inVsj ,zd due to the finite grating
thicknesst are a small correction.

If the particle energy"v is much greater than the poten-
tial Vsj ,zd then Eq.s16d can be further simplified by Taylor
expanding the quantitys1−V/"vd1/2 and keeping only the
leading-order term inV/"v,

fsjd = tko −
1

"v
E

−t

0

Vsj,zddz; "v @ Vsj,zd, s17d

through the use of the dispersion relationv="ko
2/2m and p

=mv="ko. Equations17d is often called the Eikonal approxi-
mation. The termtko in Eq. s17d is independent ofj and of
no consequence in Eq.s11d so it can be neglected. One can
see from Eq.s17d that if Vsj ,zd→0 then Eq.s11d reduces to

the sinc diffraction envelope expected from a purely absorb-
ing grating. Furthermore, it is now clear from Eqs.s11d and
s17d that the relative heights of the diffraction orders are
altered in a way that depends onVsj ,zd as well as the atom
beam velocityv.

As a simple model one can represent the potential in Eq.
s17d as the sum of the potential due to the two interior walls
of the grating window,

fsjd = −
t

"v
fg−sbdV−sjd + g+sbdV+sjdg, s18d

where the functiong±sbd incorporates the influence of the
wedge angleb,

g±sbd ;

1 ±
t tanb

2Sj ±
w

2
D

11 ±
t tanb

Sj ±
w

2
D2

2 , s19d

and V±sjd;−C3uj±w/2u−3 is implied by Eq.s1d. Equations
s18d ands19d are arrived at by carrying out the integration in
Eq. s17d while assuming that the open grating widthw varies
in the propagation directionz aswszd=w+2z tanb. Since the
principle transition wavelength of Nas590 nmd is much
larger thanw/2 si.e., the maximum atom-surface distance of
,25 nmd the nonretarded form of the vdW potential is ap-
propriate.

It is not immediately obvious how the phase representa-
tion in Eq. s17d will affect the far-field diffraction pattern or
if the Eikonal approximation is appropriate in light of Eq.
s18d fi.e., V±sjd→−` as uju→w/2g. In order to address this
it is helpful to introduce the concept of aninstantaneous
spatial frequencyf14g,

fjsj jd ;
1

2p
U ]f

]j
U

j=j j

=
j

d
, s20d

where j j is the grating window location of the spatial fre-
quencyfj as in Eq.s11d. One could equivalently say thatj j
indicates the spatial location of the potential which influ-
ences diffraction of atoms into thej th order. For the limiting
case ofb→0 the geometry factorg±sbd→1 the higher-order
terms in Eq.s16d will become important whenj j →jc and
C3sjc−w/2d−3<"v. If Eq. s18d is inserted into Eq.s20d with
the previously mentioned limits one can solve for the diffrac-
tion order jc at which the approximation in Eq.s17d breaks
down,

jc <
3kot

4p

C3d

"vSjc −
w

2
D4 =

3kot

4p
Sd3"v

C3
D1/3

. s21d

For the present experiment 3kot /4p,104 and sd3"v /C3d1/3

,102 which implies thatjc=106. Thus the approximation in
Eq. s17d is appropriate since we typically concerned with
only the first ten diffraction orders. In fact, the paraxial ap-
proximation will become invalid before Eq.s17d becomes
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invalid due to the fact the diffraction order spacing is typi-
cally ldBzo/d,1 mm. It is also interesting to note that using
Eqs. s18d and s20d one can solve for the location of the
potentialj j in the grating window,

j j =
w

2
− S 3tC3d

2p j"v
D1/4

; j ù 1, s22d

corresponding to a particular diffraction orderj . For ex-
ample,j1<11.7 nm andj5<16.1 nm for typical parameters
in our experiment. Therefore the diffraction amplitude in Eq.
s11d depends on a small region of the potential nearj
<15 nm, which corresponds to an atom-surface distance of
,10 nm.

The experimental data for diffraction patterns of four dif-
ferent atom beam velocities are displayed in Fig. 2. One can
see from Fig. 2 that the second-order diffraction peak is al-
most completely suppressed for the faster atoms whereas it is
quite pronounced for the slower atoms. This velocity depen-

dence is a clear indication that a complex transmission func-
tion such as Eq.s9d si.e., C3Þ0d is required to explain the
data. A least-squares fit to Eqs.s10d and s14d is used to de-
termine the diffraction intensityuA ju2 and average velocity. It
is clear from Fig. 2 that the diffraction orders overlap to
some extent, hence the tails of the beam shape are important
when determininguA ju2. The broad tails of the beam shape
were not adequately described by a Gaussian so an empirical
shape using a fixed collimating geometry was derived from
the measured raw beam profile and used foruUsxdu2.

The diffraction intensitiesuA ju2 determined from Fig. 2
for the various velocities are displayed in Fig. 3. The vdW
coefficient C3=2.7 meV nm3 is determined by a least-
squares fit to this reduced data with the modulus squared of
Eq. s11d. All of the grating parameters are determined inde-
pendently, thereforeC3 is the only free parameter. Data from
each velocity are fit simultaneously with the sameC3. It is
clear that a purely absorbing gratingsi.e., C3=0d is inconsis-
tent with all of the observeduA ju2 especially at lower veloci-
ties for which the phasefsjd is much larger. Uncertainty in
the determination of the grating parameterw and the exact
shape of the potential in Eq.s17d may be responsible for the
slight deviation from theory evident in Fig. 3.

A study of the systematic errors in our experiment and
analysis suggest thatw is largest source of uncertainty when
calculatingC3. One can numerically calculate the function
C3swd, which is the best fitC3 as a function ofw, whose
linear dependence around the physical value ofw is found to
be ]C3/]wuw=50.5 nm=0.52 meV nm2. The error inC3 is ar-
rived at by taking the product of this slope and the 1.5 nm
uncertainty inw. After carrying out the previously described
analysis we obtain a value for the vdW coefficientC3
=2.7±0.8 meV nm3. The uncertainty determined this way is
considerably larger than the statistical uncertainty inC3 from

FIG. 2. Observed diffraction patterns of four different atom ve-
locities. The numbers next to the peaks indicate the diffraction or-
der. Molecular Na2 peaks are also visible between zeroth and first
orders for slower velocities. The relative intensities of the second
and third diffraction orders have a pronounced velocity dependence.

FIG. 3. Diffraction order intensitiessopen pointsd and best fit
envelope uA ju2 ssolidd which includes the vdW interaction. The
same value ofC3=2.7 meV nm3 is used for all the solid curves and
is the only free parameter in the fit. The vdW theory curves ap-
proach the theory for a purely absorbing gratingsdashedd as atom
velocity increases. The data are inconsistent with the dashed curve
especially forj =2, 4.
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the least-squares fitting procedure. The uncertainty due tow
is also larger than the systematic corrections due to the atom
beam profile or uncertainties due to imperfect knowledge of
the grating parameters:d, t, andb.

To compare our experimental measurement with theoreti-
cal predictions of the van der Waal potential strength, we
evaluate five different theoretical cases for sodium atoms and
various surfaces in Table I. The Lifshitz formulaf17g for C3
is

C3 =
"

4p
E

0

`

dvasivd
esivd − 1

esivd + 1
, s23d

whereasivd is the dynamic polarizability of the atom and
esivd is the permittivity of the surface material, both of
which are a function of complex frequency.

A single Lorentz oscillator model for an atomsi.e., ne-
glecting all but the valence electrond with no damping gives
an expression for polarizabilityf18g,

asivd =
as0d

1 +S v

v0
D2 . s24d

For sodium atoms as0d=24.1 Å3 f19g and v0

=2pc/ s590 nmd. Combining this with a perfect conductor
si.e., e=`d in Eq. s23d givesC3=6.29 meV nm3. This value
agrees well with the nonretarded limit calculated in Ref.f16g
for sodium atoms with a single valence electron.

For more accurately modeled sodium atoms and a perfect
conductor, Derevianko et al. f15g calculated C3
=7.60 meV nm3 and reported a range of values spanning
0.08 meV nm3 based on different many-body calculation
methods which all include the effect of core electrons. It is
noteworthy that 16% of this recommended value is due to
the core electronsf15g.

For a metal surface, the Drude model describesesivd in
terms of the plasma frequency and damping:

esivd = 1 +
vp

2

vsv + gd
. s25d

For sodium metal,"vp=5.8 eV and"g=23 meV, resulting
in C3=4.1 meV nm3 for a sodium atom and a bulk sodium
surface. Presumably this calculation also underestimatesC3

because the core electrons are neglected. However, the cal-
culation error is probably smaller than that of a perfect con-
ductor because the core electron excitations are at frequen-
cies comparable tovp.

For an insulating surface of silicon nitride, which is the
diffraction grating material, Bruhlet al. f6g used a model
with

esivd =
v2 + s1 + g0dv0

2

v2 + s1 − g0dv0
2 , s26d

where "v0;Es=13 eV andg0=0.588 is the material re-
sponse function at zero frequency. Using Eqs.s23d, s24d, and
s26d gives a value ofC3=3.2 meV nm3.

A multilayered surface makes a vdW potential that no
longer depends exactly onr−3, even in the nonretarded limit.
We used Equations4.10d from Ref.f13g to calculateVsrd for
thin films of sodium on a slab of silicon nitride. Because our
experiment is sensitive to atom-surface distances in the re-
gion 10 nm, we report the nominal value ofC3 from these
calculations usingC3=Vs10 nmd3 s10 nmd3. Evaluated this
way, isolated thin films make a smallerC3 as r increases.
Films on a substrate makeC3 vary from the value associated
with the bulk film material to the value associated with the
bulk substrate material asr increases.

As a final piece of discussion it is worth checking to see if
the data in Fig. 3 are consistent with any reasonable power-
law potential of the formVsrd=−Cnr

−n with nÞ3, possibly
indicating a force acting on the atoms other than thenon-
retardedvdW interaction. The existence of surface dipoles
would lead to an interaction energy withn=6. A least-
squares fit to the data withn=6 yielded ax2 which was fifty
percent larger than that ofn=3. A fairly good fit to the data
is obtained withn=4 corresponding to aretardedvdW inter-
action. However, the best fit value for interaction strength
C4=16 meV nm4 is roughly fifty times smaller than the pre-
dicted valuef20g. It is also interesting to note thatn=2
causedx2 to be three times larger than forn=3. The previous
findings indicate thatn=3 is the most appropriate potential
because it yields the best fitand agrees with the predicted
value forC3.

In conclusion an optics perspective to the theory of
atomic diffraction from a material grating has been put forth.
The results in Eqs.s11d, s17d, and s18d have been derived
using Fourier optics techniques and appear to be consistent
with the diffraction theory presented in Ref.f21g. Diffraction
data for a sodium atom beam at four different velocities
show clear evidence of atom-surface interactions with the
silicon nitride grating. A complex transmission function such
as that in Eq.s9d is required to explain the data. The mea-
sured value ofC3=2.7±0.8 meV nm3 is limited in precision
by uncertainty of the grating window sizew. Based on the
results in Table I for a single Lorentz oscillator, the measure-
ment ofC3 presented in this paper is consistent with a vdW
interaction between atomic sodium and a silicon nitride sur-
face. Our measurement is inconsistent with a perfectly con-
ducting surface and also a silicon nitride surface coated with
more than 1 nm of bulk sodium. This implies that atomic

TABLE I. Measured and calculated values ofC3.

Method C3smeV nm3d

This experiment 2.7±0.8

Na and perfect conductorf15g 7.60

Naa and perfect conductorf16–18g 6.29

Naa and Na surface 4.1

Naa and SiNx surface 3.2

Naa and SiNx with a 1-nm Na layerb 3.9

aIndicates a one-oscillator model for atomic polarizability.
bIndicatesC3 evaluated 10 nm from the first surface.
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diffraction from a material grating may provide a means to
test the theory of vdW interactions with a multilayered sur-
face f13g by using coated gratings.
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