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Using atomic diffraction of Na from material gratings to measure atom-surface interactions
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In atom optics a material structure is commonly regarded as an amplitude mask for atom waves. However,
atomic diffraction patterns formed using material gratings indicate that material structures also operate as phase
masks. In this study a well collimated beam of sodium atoms is used to illuminate a silicon nitride grating with
a period of 100 nm. During passage through the grating slots atoms acquire a phase shift due to the van der
Waals(vdW) interaction with the grating walls. As a result the relative intensities of the matter-wave diffrac-
tion peaks deviate from those expected for a purely absorbing grating. Thus a complex transmission function
is required to explain the observed diffraction envelopes. An optics perspective to the theory of atomic
diffraction from material gratings is put forth in the hopes of providing a more intuitive picture concerning the
influence of the vdW potential. The van der Waals coefficigst2.7+0.8 meV nriis determined by fitting
a modified Fresnel optical theory to the experimental data. This val@g i consistent with a van der Waals
interaction between atomic sodium and a silicon nitride surface.
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It is known that correlations of electromagnetic vacuumperimental apparatus is shown in Fig. 1. The supersonic
field fluctuations over short distances can result in an attradseam of sodium atoms passes through a 0.5-mm-diameter
tive potential between atoms. For the case of an atom and skimmer and is collimated by two 1@m slits separated by
surface the potential takes the form ~1 m. By changing the carrier gas the atom velocity can be
adjusted from 0.6 to 3 km/s with,/v ~0.1. The collimated
atom beam is used to illuminate a silicon nitride gratiBg
with a period ofd=100 nm, thicknes$=150+5 nm, open
width w=50.5+1.5 nm, and grating bar wedge angte
wherer is the atom-surface distance a@d is a coefficient =5.25+0.75°. All of the grating parameters are measured
which describes the strength of the van der Waatiw) independently using scanning electron microscope images.
interaction[1]. Equation(1) is often called thenonretarded The diffraction pattern is measured by ionizing the sodium
vdW potential and is valid over distances shorter than th@toms with a hot Re wire and then counting the ions with a
principle transition wavelength of the atoms involved. Thechannel electron multiplier.
significance of this interaction is becoming more prevalent as An optical description is helpful in gaining an intuitive
mechanical structures are being built on the nanometer scalpicture of how the vdW interaction modifies the atomic dif-
The vdW potential also plays an important part in chemistryfraction pattern. To this end one should recall that the Schro-
and atomic force microscopy, and can be used to test quadinger equation for a wave functighcan be written as
tum electrodynamic theory. )

Early experiments concerning the vdW interaction were 0 - 2
based on the deflection of atomic beams from surfaces. It 'ﬁﬁw(r’t) - [%V +V(r)}¢(r,t), (2)
was demonstrated that the deflection of ground-state alkali
[2] and Rydberd3] atom beams from a gold surface is com- wherem is massf: is Planck’s constant, and is the poten-
patible with Eq.(1). Later measurements utilizing this tech- tial [9]. One can take the Fourier transform of Ef) with
nigue were sufficiently accurate to distinguish between the
retardedV ~r~* and nonretardet ~ r~3 forms[4]. More re-

cently atom optics techniques have been employed to mea & X
sure the magnitude of the vdW coefficiel. Various 1‘_20_’1
l 1 | 4

V() =-—3 1

ground-statg¢5] and excited noble gd$] atom beams have
been diffracted using nanofabricated transmission gratings in N | L
1
- v

J\

order to measur€,;. The influence of the vdW potential has a |
also been observed for large molecules in a Talbot-Lau inter-

ferometer constructed with three gold gratifgé supersonic  0.5mm  10um 100 nm period 60 pm diamerter
In this paper we present atomic diffraction of a thermal 4"~ skimmer  colimaing dgfrr:t?:;n hot whe

sodium atom beam and show that the data cannot be de-

scribed by a purely absorbing grating. A diagram of the ex- FIG. 1. A diagram of the experimental setup used.
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respect to time and use the fact thdptd —iw in the fre- The wave function just after the grating¢) is given by
quency domain to obtain ¢
Vi (&) = [T(ﬁ) * comb(—) ] U, (8)
[V2+(1—#>k§]¢(r,w):0, 3 d
w

where comk¢/d) is an array of delta functions with spacing
where the dispersion relation=%k%/2m has been utilized. d, the operator denotes a convolution, and(£) is complex
Equation(3) is usually referred to as the time-independentsnction describing the atom beam amplitude in the plane of
Schroedinger equation. It is quite illuminating to recall thatype grating. The transmission function of a single grating
the Helmholtz equatiopl0] for the electric fieldE is given  indow T(¢) in Eq. (8) is defined as

by
(V2 +n?k2)E(r,w) =0, (4) T(¢) = ei¢(§)rec<\7i> , (9)

wheren is index of refraction. By inspection one can see that _ 1 i

Egs.(3) and(4) are formally equivalent where the quantities Where redtarg=1 whenjarg<3 and zero otherwise. The

n and (1-V/%w)Y2 play analogous roles. Due to this fact Phase#(£) accounts for the vdW interaction and its origin

many wave propagation methods developed in optics can baill be discussed later. This description #€£) andT(¢) in

applied directly to matter wave propagation, being mindfulterms of the functions confb and rect) is standard Fourier

of the fact that in opticgso=ck,. optics notation and convenient due to its modular nature
While Eg. (3) can be formally solved using a Green's- [11]. _ _ _

function approach, approximate solutions used in physical EQquation(8) can then be substituted into E@) to obtain

optics can lead to a better understanding of how the vdwW o N

interaction affects atomic diffraction patterns. The Fresnel VEDD AJU<x—jd—BZ°), (10)

and Fraunhofer approximations are commonly used in optics j=—oo d

and represent a useful tool when faced with propagating the L . . .

wave functiong from the grating to the detector plane. The where the sgmma}tlon mdgx corre;ponds tojthadifiraction

Fresnel or paraxial approximation is valid as long as theorder, the diffraction amplitudet; is defined as

propagation distance satisfies the inequality . é
Aj=FT (s za=F é”9rec W

, (11
z>[x-¢, 5 .

f=ild

where ¢ and x are the transverse spatial coordinates in theand the beam profile in the detector plane is given by
grating and detector plane, respectively. This is certainly sat- o,

isfied for our experiment since the diffraction angles are less U(x) = FLE DU (O}t mun (12)
than 10° radians and the orders are resolved. The Fraun- )

hofer or far-field approximation goes beyond the Fresnel apt ™M Ed.(10) we can predict the atom intensity

proximation by requiring that 1(x) = |[p(x)|? (13)
7> k_oéz - lgz (6) in the detector plane which can also be interpreted as the
27 Ngg probability density for atom position. A distribution of atom

velocities can be incorporated by a weighted incoherent sum

where \gg is the de Brolglie wavelength of the atoms and of the intensity pattern for each atom veloclty;v),

&max IS the relevant extent in the aperture plaa#]. For the

case of propagation from a uniformly illuminated grating of _ o _h

periodd to the detector plan&,,«— d and Eq.(6) takes the %) =2 P)I(xv); v= Mg’ (14)

form z> 7wd?/\gs. For our experimental setug=100 nm Y

and\gg~ 10 m, so the inequalitg~2 m> 7/1000 m is )

met. However, our atom beam diameter is on the order of P(v) o v3ex;<— m(:;_—u)) (15)

1075 m and soé,— 107 m implying that the inequality in 2kgT

EquEGI)| ":’]tng;[ tra:t. revious discussion it seems most a r0_where theP(v) is the probability distribution function of
n g P Do PPIOY elocities for a supersonic souragjs the average flow ve-

priate to use the Fresnel approximation to model our experi- . . ; ; L

. L locity, kg is Boltzmann’s constant, antl is the longitudinal
ment. According to the Fresnel approximation the wave

function in the detector plang¢(x) is related to that just after temperature of the beam in the moving frame of the atoms

_ : _ [12].
the gratingy(¢) by a scaled spatial Fourier transform, One can see from Eq10) that the diffraction pattern
s . o 2
(x) o Fle kot /2zo)¢(§)}| f g (7)  consists of replications of the beam shapéx)|? shifted by

integer multiples of\ygz,/d with relative intensities deter-
where A{ } denotes a Fourier transform afgis the Fourier mined by the modulus squared of E@1). An important
conjugate variable t& [11]. The quadratic phase factor in feature to notice in Eq.11) is that a diffraction order in the
Eq. (7) accounts for the fact that the phase fronts have aletector plane corresponds to a spatial frequency in the grat-
parabolic shape before the far field is reached. ing plane through the relatioh.=j/d. This highlights the
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connection between the spatially dependent pha&g in
Eqg. (9) and the magnitude of the diffraction orders in Eq.
(10).

The earlier assertion thafi(¢) in Eq. (9) somehow incor-
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the sinc diffraction envelope expected from a purely absorb-
ing grating. Furthermore, it is now clear from Eq1) and
(17) that the relative heights of the diffraction orders are
altered in a way that depends ®#¢,z) as well as the atom

porates the vdW interaction into the optical propagationbeam velocityy.

theory can be understood by recalling from E8). that the
index of refractionn and quantity(1-V/Aw)? play similar

As a simple model one can represent the potential in Eq.
(17) as the sum of the potential due to the two interior walls

roles in optics and atom optics, respectively. In optics onedf the grating window,

calculates a phase shiftinduced by a glass plate by multi-
plying the wave number in the materiak, by the thickness
of the plateL (i.e., ¢=nk,L). Just as in the optics case one
can calculate the phase shifté) accumulated by the wave
function passing through the grating windows,

(¢ = J (wave number in potentigldifferential thicknesps

0 1/2
= J ) dz,
-t

wheret is the thickness of the grating and¢,z) is the

V(¢,2)

hw (16

"

potential the atoms experience between the grating bars due
to the vdW interaction. Thus the vdW interaction is analo-

HO=- TG BV +a.AV:@],  (18)

where the functiorg.(B) incorporates the influence of the
wedge angles,

ttang

(19

and V. (&) =-C5éxw/ 273 is implied by Eq.(1). Equations

gous to a glass plate with a spatially dependent index of18) and(19) are arrived at by carrying out the integration in

refraction, a kind of diverging lens that fills each grating
window. The result in Eq(16) is consistent with the wave
function phase according to the WKB approximat[@n.

In arriving at Eq.(16) diffraction due to abrupt changes in
the potential V(£,z) has been ignored while the wave

Eq. (17) while assuming that the open grating widthvaries
in the propagation directionasw(z)=w+2ztan 3. Since the
principle transition wavelength of N&90 nnj is much
larger tharw/2 (i.e., the maximum atom-surface distance of
~25 nm the nonretarded form of the vdW potential is ap-

function propagates through the grating windows. This is gropriate.

valid approximation due to the fact thahgg<<w,
{(a198)[V(€) I hw]}™t in the region of the potential that cor-

It is not immediately obvious how the phase representa-
tion in Eq.(17) will affect the far-field diffraction pattern or

responds to the diffraction orders of interest. The relationshigf the Eikonal approximation is appropriate in light of Eq.

between spatial regions of the potenti&l¢,z) and a given

(19) [i.e., V(&) —— as|é—w/2]. In order to address this

diffraction order will be discussed in subsequent paragraphst is helpful to introduce the concept of @nstantaneous

It is also important to note that Eql6) assumes that the
potential V(£,2) exists only between the grating bdise.,
V(£,2)=0 for z<-t or z>0] and neglects the fact that the

bars are not semi-infinite planes. Theoretical work done by

Spruchet al. [13] suggests that the vdW potential corre-
sponding to our-50-nm grating bar width is very similar to
that of a semi-infinite plane at the location of the slit walls.
Since the phaseb(¢) from Eg. (16) only depends on the
integral of the potential in the direction one would also
expect that edge effects M(&,z) due to the finite grating
thicknesst are a small correction.

If the particle energyiw is much greater than the poten-
tial V(&,2) then Eq.(16) can be further simplified by Taylor
expanding the quantityl-V/%w)? and keeping only the
leading-order term iV/fiw,

1 O
¢(§)=tko-%J V(£,2dz, ho>V(é2), (17)
-t

through the use of the dispersion relatim:cﬁkg/Zm andp
=mwv =hk,. Equation(17) is often called the Eikonal approxi-
mation. The terntk, in Eq. (17) is independent of and of
no consequence in E@L1) so it can be neglected. One can
see from Eq(17) that if V(¢,z) — 0 then Eq.(11) reduces to

spatial frequencyl14],
1 96 ]

= 2

fe(&) =

where ¢; is the grating window location of the spatial fre-
quencyf, as in Eq.(11). One could equivalently say thdt
indicates the spatial location of the potential which influ-
ences diffraction of atoms into thjéh order. For the limiting
case of— 0 the geometry factay,(8) — 1 the higher-order
terms in Eq.(16) will become important wherg;— & and
Cs(é.-W/2)3~hw. If Eq. (18) is inserted into Eq(20) with
the previously mentioned limits one can solve for the diffrac-
tion orderj. at which the approximation in Eq17) breaks
41 ﬁw(§c—

down,
( )1/3
2

For the present experimenk3/4m~ 10* and (d®*%w/C3)3

~ 10? which implies thatj,=1C°. Thus the approximation in
Eq. (17) is appropriate since we typically concerned with
only the first ten diffraction orders. In fact, the paraxial ap-
proximation will become invalid before Eq17) becomes

cd 3t

3kt d*hw
W)4 T 4n

c, (21)

jo=
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g 1 LIS il g dW theory
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0 1 2 3 - 6]
Position [mm] g ]
0 £ 4]
by A
2100 i1 A © |
£ N v = 1091 m/s 2 2
3 SR
3 0faliai: 2 3 0.01 5
; AT AR f’hx "’\;, A S ° Py ! !
= 11 A ™ 4 T | T T |
; ! ! 0 1 2 3 4 5
Position [mm] Diffraction Order
. ,0\ 1 FIG. 3. Diffraction order intensitiesopen points and best fit
§ 1004 oA v=2219 mis envelope|A;j|? (solid) which includes the vdW interaction. The
S oot S “ same value 0€3=2.7 meV nni is used for all the solid curves and
§ 104 W 2 3 is the only free parameter in the fit. The vdW theory curves ap-
,:; "-.,/"‘»-._,e’/\\ 4 5 proach the theory for a purely absorbing gratidgshegl as atom
= i velocity increases. The data are inconsistent with the dashed curve
0.0 05 10 especially forj=2, 4.
Position [mm]
o dence is a clear indication that a complex transmission func-
- PN tion such as Eq(9) (i.e., C3#0) is required to explain the
R A A v=3171m/s data. A least-squares fit to Eq4.0) and (14) is used to de-
3 vy 3 termine the diffraction intensityélj|2 and average velocity. It
€ 10 L2 N 4 5 is clear from Fig. 2 that the diffraction orders overlap to
= - "w-—vw-’w..ﬂ._- some extent, hence the tails of the beam shape are important
= when determining.4;|2. The broad tails of the beam shape
0.0 05 were not adequately described by a Gaussian so an empirical
Position [mm] shape using a fixed collimating geometry was derived from

) _ _ the measured raw beam profile and used|hx)|?.

FIG. 2. Observed diffraction patterns of four different atom ve- The diffraction intensities}A-lZ determined from Fig. 2
locities. The numbers next to the pqus indicate the dlffractlon. OT%or the various velocities are displayed in Fig. 3. The vdw
der. Molecular Na peaks are also visible between zeroth and first oefficient C.=2.7 meV nm is determined bv a least-
orders for slower velocities. The relative intensities of the seconaC fit t St_h'- duced data with th d Iy d of
and third diffraction orders have a pronounced velocity dependenc quares it to this re u_ce ata wi € moau uslsque}re 0

g. (11). All of the grating parameters are determined inde-
, . ) ) o . pendently, therefor€; is the only free parameter. Data from
invalid due to the fact the diffraction order spacing is typi- gach velocity are fit simultaneously with the sa®g It is
cally AyggZ,/d~1 mm. It is also interesting to note that using jear that a purely absorbing gratifige., Cs=0) is inconsis-
Egs. (18) and (20) one can solve for the location of the et with all of the observefi4;|? especially at lower veloci-

potential¢; in the grating window, ties for which the phase(£) is much larger. Uncertainty in
w [ 3tCud \¥4 the determination of the grating parameterand the exact
&= 57 (2 o ) ;o 1=1, (22)  shape of the potential in E¢L7) may be responsible for the
mhv slight deviation from theory evident in Fig. 3.
corresponding to a particular diffraction ordgr For ex- A study of the systematic errors in our experiment and

ample,&;=~11.7 nm andés~16.1 nm for typical parameters analysis suggest that is largest source of uncertainty when
in our experiment. Therefore the diffraction amplitude in Eq.calculatingCs. One can numerically calculate the function
(11) depends on a small region of the potential ngar Cs(w), which is the best fitC; as a function ofw, whose
~15 nm, which corresponds to an atom-surface distance dinear dependence around the physical values & found to
~10 nm. be 9Cs/ M|y=s505 nni=0.52 meV nmM. The error inCs is ar-
The experimental data for diffraction patterns of four dif- rived at by taking the product of this slope and the 1.5 nm
ferent atom beam velocities are displayed in Fig. 2. One canncertainty inw. After carrying out the previously described
see from Fig. 2 that the second-order diffraction peak is alanalysis we obtain a value for the vdW coefficie@
most completely suppressed for the faster atoms whereas it #2.7+0.8 meV nri. The uncertainty determined this way is
quite pronounced for the slower atoms. This velocity depenconsiderably larger than the statistical uncertaintZirfrom
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TABLE |. Measured and calculated values @©f.

PHYSICAL REVIEW A 71, 053612(2005

because the core electrons are neglected. However, the cal-
culation error is probably smaller than that of a perfect con-

Method Cs(meV nn?) ductor because the core electron excitations are at frequen-
. . cies comparable ta,.

This experiment 2.740.8 For anpinsulatingpsurface of silicon nitride, which is the

Na and perfect conduct¢t5] 7.60 diffraction grating material, Bruhét al. [6] used a model

Na® and perfect conductdn6-1§ 6.29 with

Na® and Na surface 4.1

Na® and SiN, surface 3.2 _ w2+ (1 +gg) 2

Na® and SiN, with a 1-nm Na layét 3.9 eliw)=—F— — (26)

0?+(1-go)wg’

dndicates a one-oscillator model for atomic polarizability.

b, . .
IndicatesC; evaluated 10 nm from the first surface. where fwy=E,=13 eV andg,=0.588 is the material re-

sponse function at zero frequency. Using E@S), (24), and
the least-squares fitting procedure. The uncertainty dwe to (26) gives a value ofC;=3.2 meV nni.
is also larger than the systematic corrections due to the atom A multilayered surface makes a vdW potential that no
beam profile or uncertainties due to imperfect knowledge ofonger depends exactly an®, even in the nonretarded limit.
the grating parameters., t, and 5. We used Equatiof4.10 from Ref.[13] to calculateV(r) for

To compare our experimental measurement with theoretithin films of sodium on a slab of silicon nitride. Because our
cal predictions of the van der Waal potential strength, weexperiment is sensitive to atom-surface distances in the re-
evaluate five different theoretical cases for sodium atoms angion 10 nm, we report the nominal value 6f from these
yarious surfaces in Table I. The Lifshitz formyla7] for C4 calculations usingC;=V(10 nm X (10 nm?®. Evaluated this
IS way, isolated thin films make a small€; asr increases.

o , Films on a substrate maka; vary from the value associated
Cs= L 6(""_)_1 (23)  with the bulk film material to the value associated with the
4wl eliw) +1 bulk substrate material asincreases.

As a final piece of discussion it is worth checking to see if
where afiw) is the dynamic polarizability of the atom and the data in Fig. 3 are consistent with any reasonable power-
e(iw) is the permittivity of the surface material, both of |aw potential of the form\(r)=-C,r™ with n# 3, possibly
which are a function of complex frequency. indicating a force acting on the atoms other than rioa-

A single Lorentz oscillator model for an atothe., ne-  retardedvdW interaction. The existence of surface dipoles
glecting all but the valence electrowith no damping gives would lead to an interaction energy with=6. A least-
an expression for polarizabilityl 8], squares fit to the data with=6 yielded ay? which was fifty

percent larger than that @f=3. A fairly good fit to the data

dwa(iow)

i) = ﬂ is obtained withhn=4 corresponding to eetardedvdW inter-
a(iw) 5 (24) ) X ; .
1+ w action. However, the best fit value for interaction strength
Wy C,=16 meV nni is roughly fifty times smaller than the pre-
dicted value[20]. It is also interesting to note that=2
For sodium atoms a(0)=24.1 A [19] and wy causedy? to be three times larger than for 3. The previous

=27c/(590 nm. Combining this with a perfect conductor findings indicate thah=3 is the most appropriate potential
(i.e., e=) in EqQ. (23) givesC3=6.29 meV nm. This value  because it yields the best find agrees with the predicted
agrees well with the nonretarded limit calculated in R&6]  value forCas.
for sodium atoms with a single valence electron. In conclusion an optics perspective to the theory of
For more accurately modeled sodium atoms and a perfe@tomic diffraction from a material grating has been put forth.
conductor, Derevianko et al. [15] calculated C;  The results in Egs(1l), (17), and (18) have been derived
=7.60 meV nm and reported a range of values spanningusing Fourier optics techniques and appear to be consistent
0.08 meV nmi based on different many-body calculation with the diffraction theory presented in Rg21]. Diffraction
methods which all include the effect of core electrons. It isdata for a sodium atom beam at four different velocities
noteworthy that 16% of this recommended value is due tshow clear evidence of atom-surface interactions with the
the core electrongl5]. silicon nitride grating. A complex transmission function such
For a metal surface, the Drude model describ@®) in as that in Eq(9) is required to explain the data. The mea-
terms of the plasma frequency and damping: sured value ofC3=2.7+0.8 meV nris limited in precision
by uncertainty of the grating window size. Based on the
results in Table | for a single Lorentz oscillator, the measure-
ment of C; presented in this paper is consistent with a vdW
interaction between atomic sodium and a silicon nitride sur-
For sodium metalfiw,=5.8 eV anday=23 meV, resulting face. Our measurement is inconsistent with a perfectly con-
in C3=4.1 meV nni for a sodium atom and a bulk sodium ducting surface and also a silicon nitride surface coated with
surface. Presumably this calculation also underestinfajes more than 1 nm of bulk sodium. This implies that atomic

2
e(iw):1+w(—:f$. (25)
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diffraction from a material grating may provide a means to  The authors would like to thank Hermann Uys for techni-
test the theory of vdW interactions with a multilayered sur-cal assistance. This research was supported by grants from
face[13] by using coated gratings. Research Corporation and the National Science Foundation.
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