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Sound propagation and oscillations of a superfluid Fermi gas in the presence
of a one-dimensional optical lattice
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We develop the hydrodynamic theory of Fermi superfluids in the presence of a periodic potential. The
relevant parameters governing the propagation of sgoohpressibility and effective masare calculated in
the weakly interacting BCS limit. The conditions of stability of the superfluid motion with respect to creation
of elementary excitations are discussed. We also evaluate the frequency of the center-of-mass oscillation when
the superfluid gas is additionally confined by a harmonic trap.
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It is well known that sound cannot propagate in a degen- h
erate noninteracting Fermi gas. In fact the sound velacity V= m Ve, 2

=vp/+3, calculated from the compressibility of the gas, is
smaller than the Fermi velocitye, so that sound is unstable wherem is the atomic mass ang is the phase of the order
toward decay into the continuum of particle-hole excitationsparameter defined through the anomalous mean value
In the presence of an attractive interaction, Cooper pairing{;\IfT(r)\Ifl(r»:|<‘I'T(r)‘1'l(r)>|e'¢(').
opens a gap at the Fermi level. As a result, sound waves with The hydrodynamic equations can be derived from a varia-
sufficiently low frequency can propagate in a neutral supertional principle, starting from an effective action describing
fluid. An important question is to understand how thesethe low-energy collective excitations over the ground state.
modes behave when the system is confined by a periodin the weak-coupling limit these excitations are known as the
potential. Bogoliubov-Anderson modes. The Lagrangian of the system
The propagation of sound in Bose gases trapped by atakes the general form
optical lattice has been already the object of extensive theo-
retical work [1]. Experimentg2] on the collective oscilla- L:f dr<e(n V) + Viyon + ni?) (3)
tions have confirmed that the low-energy dynamic behavior ’ at 2
of a Bose-Einstein condensed gas is well described by theh (n.v) is th it of vol B di
hydrodynamic equations of superfluid, where the coher- whereen, v) 1S the energy per unit oT voiume. By expanding
ent tunneling through the barriers generated by the periodigm’v) up to the terms quadratic W one finds
potential is taken into account by a proper renormalization of 1m2
the effective mass. e(n,v) =e(n,0) + 3nv2 + ET“U? (4)
In this paper we generalize the hydrodynamic equations m
of Fermi superfluids in order to investigate the propagationvhere fi(=m) is an effective mass accounting for the in-
of sound and the collective oscillations of a Fermi gas in thesreased inertia of the superfluid along the direction of the
presence of a one-dimension@dD) periodic potential gen- |aser. In generaf is density dependent. In E¢3) we have
erated by a laser field. assumed that the two spin species are equally populated

We consider an interacting two-component atomic Fermi:ZnT)_ Inserting Eq.(4) in the Lagrangian(3) yields the hy-
gas trapped by a potentid,,; given by the sum of a 3D drodynamic equations

harmonic trap and of a stationary 1D optical potential modu-

lated along the axis: on m
e L aw + o) + az(%nvz> =0, (5

Vext= Vio * SESIN0gZ, (1)
iv+1V (n+V +mv2+mv2+i(mn)n—102] =0
where Vyo=m(w? 1% +w?2) /2 and Eg=h?¢2/2m is the re-  at° m | MO 277 27 on\im 2
coil energy. Heregg is the Bragg momentum angl is a (6)
dimensionless parameter providing the intensity of the laser
beam. The optical potential has periodicily 7/qg along ~ whereu(n)=de/n is the chemical potential. Generalization
the z axis. to include 2D or 3D optical lattices is trivial.

The long-wavelength dynamic behavior of a neutral su- Let us first consider the propagation of sound in the ab-
perfluid is properly described by Landau’'s hydrodynamicsence of the harmonic potenti&V,o=0). We will include
theory. At T=0 the relevant variables are the dengityof  later the harmonic trap to investigate the oscillations of the
particles and the superfluid velocity cloud. If V,o=0 Egs.(5) and (6) admit linearized solutions
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around the equilibrium density, of the form n=ngy+dn, 1 [(9elok,)?8(e — e(k))dk/(2mh)3
with dn~ 927! and analogously fov,. This permits us to ﬁ_1 = n/2 (10
derive the phonon dispersian=c,q along the direction of
the optical lattice, with the sound velocity given by for the effective mass, holding for a dilute superfluid Fermi
gas at zero temperature. From E(®.and(10), we also see
ndu that the current density alormin the equation of continuity
%= \NFom: (7) " (5) corresponds tg,=(1/mV) 5E/ v,

From Eq.(10) we see that only the states near the Fermi

The presence of the periodic lattice enters Ef).through ~ Surface contribute to the effective mass. In genénatle-
both the renormalization ¢h and the change of the inverse PeNds on the Fermi energy or, equivalently, on the density.
compressibility nau/dn. Analogously, the sound velocity AN important exception occurs when the Bloch band is al-
along the transverse directions, where the gas is free, is giveROSt €mpty. In this case the oc%upled states obey an approxi-
by ci:(n/m) dulan. mate quadratic dispersiatk,) =ks/2m*, wherem* depends
Equations (5—(7) are very general and apply also to (znl): on _the I._ase_r intensity. From E¢LO) we then _f|ndm
strongly interacting superfluids. They permit to calculate the="""- This coincides with the result for the effective mass
low energy dynamics of the system once the equation of stata0!ding for a dilute Bose-Einstein condensed gas in the same
and the effective mass are known. In the following we will OPtical lattice[5]. Equation(10) also shows that the integra-
apply these equations to a dilute Fermi gas interacting witfjion along the transverse directions plays a crucial role in
negative scattering lengtlBCS limit). In this case the inter- K€€pingm finite as the Fermi energy crosses the Bloch band-
nal energy is fixed by the quantum pressure and therefore tpidth. In fact if we neglect the radlal dispersion and consider
chemical potential is equal to the Fermi enetgy=e). For & Pure 1D system, the effective magd)) would actually
simplicity we consider values of the Fermi energy such thafliVerge as the band is completely filled.
only the lowest Bloch band is populated at zero temperature, A S€cond crucial ingredient needed to calculate the_I/eIoc-
The single-particle energy spectrum can then be written aly Of sound[see Eq(7)] is the compressibilitynd./on)".
e(k)=ki/2m+e(kz) wheree(k,) is the dispersion relation of In a d|Iu_te Fermi gas at zero temperature this is simply cal-
the lowest Bloch band. The energy of the system at rest jgulated in terms of the density of states as
given by E=V [ e(k)ndk/(27h)3, wheren =20 (e-—e(k)) a1 _ 3
is the quasimomentum distribution of the noninteracting gas (n&—’u> = [ Hee = ek))dk/(2mh) .
[4], ©(x) being the usual step functioW, is the volume of an n/2

the system, and the integration owgis restricted to the first - thg gptical lattice modifies the compressibility with respect
Brillouin zone -mhi/d<k,<w#/d. The Fermi energ¥e is g the valueg(372)2/32n3/3m holding for a uniform gas. By

related to the atomic density by the normalization conditioninsertin Eas(10) and(11) into Eq. (7). we find the result
n=/nedk/(2mh)3. g Eqs(10) and(11) q.(7),

(11

Let us first assume that the gas moves with constant su- o, [ (9eldk)?S(e — e(k))dk
perfluid velocityv. The order parameter acquires the phase C;= [ oler - e(k))dk (12
¢=2mv-r/h [see Eq(2)] and, correspondingly, the field op- F
erator¥ ;. transforms according to for ¢2, which can be regarded as the average of the square of

the group velocityde/ ok, over the Fermi surface. Again it
should be noted that, due to the free dispersion in the trans-
verse direction, the sound velocit¥2) remains finite as
crosses the bandwidth. In a pure 1D system, (&8) would

Equation (8) is a gauge transformation which does not e : : ;
change the energy levels, but changes their classification. I\%redlctcz 0 when the band is completely filled, sincef ok,

particular the Bloch state of quasimomentilms mapped anishes at the edge of the Brillouin zone.

! . Let us point out that Eq(12) has been derived starting
into the statgk+mv land -hencee(k) into e(k +mv)]. The_ from the hydrodynamic equations but the same result can be
energy density of the moving system can therefore be writte

Bbtained by generalizing BCS theory through the inclusion
as of the interaction between Bogoliubov quasiparticles. This
can be achieved, for example, using time-dependent Hartree-
9) E:(ick theory[6] or the random-phase approximatiGRPA)
7].

If the laser intensity is sufficiently large one can work in
where the density dependence comes from the quasimomeffe tight-binding approximation where the dispersion of the
tum distributionn,. We can now expand E¢Q) in powers of ~lowest Bloch band takes the simple forra(k,)=4(1
v. The linear term vanishes by symmetry as required by the cogk,d/#%)), with & proportional to the tunneling rate be-
stability of the ground state. The first nonvanishing contribu-tween two consecutive wells. In this case the equation of
tion is the quadratic, diamagnetic term. Comparison with Eqgstate can be calculated analytically. For values of the Fermi
(4) then permits us to find, after an integration by parts, theenergy above the bandwidtfe->26) one findsn=m(ee
useful expression -8)/ mh?d and hencedn/du=m/#2d. For smaller values

U, (r) — W (r)emh, (8)
dk
(2mh)®

e(n,v):fe(k+mv)nk
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(ee<206) one instead finds1=[24y(1-y)+(2y—-1)arccosl Linearizing Egs.(14) and (15) with n(r)=ny+dn(z) and
-2y)Imé! 7?42d, yielding dn/du=(m/ w?h2d)arcco$l-2y),  v(r)=[k/m+dv(2)]z and looking for solutions of the form
wherey=¢/26. on, sv ~ €@V we find the dispersion relation

The effective mas$10) increases as the density of par- 2 e 2
ticles increases. For values of-<25 one finds m w=-25 q+ —6—€|q|_ (16)
=(2m2h*n/ £dm)[2(2y-1)\y(1-y) +arcco$l-2y)]! and anak an’ gk?

in the limit y<1, corresponding tax <26, M approaches pynamical instability occurs when the argument in the

the densﬁy-mdep_endent vallm*:h_/(Sd . Co_nversely, for_ square root of Eq(16) becomes negative. This leads to a

f':>2f the effectlvg mass scales Imearl_y Wlth the dens'ty:complex frequency and corresponds to an exponential

f=2#h%7n/mé?d. This result can be obtained in a BCS ap- growth of excitations wich destabilize the superfluid. Ener-

proach, following Ref[8]. _ getic instability instead takes place whenbecomes nega-
Let us now use Eq(7) to evaluate the behavior of the tye je. when the first term in Eq16) (accounting for the

sound velocity along the direction of the optical confinementpgppler shify is in modulus larger than the second one.

In the limit &> 26 one finds the density-independent value | the tight-binding limit the energy densit®) takes the

c?=82d?/2k2. This is simply understood by noticing that «;

7 ! simple form

del dk,=(8d/h)sin(k,d/A) and that the average of Sik,d/#)

over the first Brillouin zone gives the factor 1/2. Fer n.K) = e(n 0)+ﬂ(ﬁ)2<1_cos{k—d]) 17
<26, the longitudinal sound velocity is related to the Fermi ’ ’ m\d h

energy by the expression whereff is defined in Eq(10). Note that in the limit of small

2= (5_d)2[ (2y - D\y(1-y) . 1 13 k Eq. (17) reduces to Eq(4) with v, =0. By inserting Eq.
2=\ —arcco$l —2y) 5| (17) into Eq. (16) we find
2
In particular, fory<1, corresponding ta:<26, Eq. (13 w:i<g>f—isin<k—d>q+ \ /&_chos<k_d)|q|_ (18)
reduces toc2=2e:/3m*. It is important to notice that the an\im/d h an“m fi

continuous hydrodynamic approach along the direction o
the laser field requires that the phagef the order param- bility opens atk=/2d similar to what happens in Bose-

eter varies slowly between neighboring wells. Taking intoEinstein condensatd®]. One should notice that the results

account that the energy of the phonons must be small contm and(18), bein : ;
) . ; , g derived from hydrodynamic theory, hold
pared to the superfluid galp, we see that our theory is valid only for small values ofj [11]. There are, however, no re-

. ! " .
providedg, <min(A/#c,,d™) whereg, is the wave vector of strictions on the value of the stationary velocifm of the

the sound excitation. _ . fluid with respect to the lattice.
The propagation of sound in the transverse direction is .. <25, wheref=mr, the Doppler term is exactly

affected by the presence of the optical lattice only throughpe same as for Bose condensates. For higher values of the
the change of the compressibility. Forzvalues of the densmﬁensity, however, this term becomes smaller and vanishes
corresponding toer>24, one fmgis Ci;gEF_5)/m' FOr  identically for e- > 25, wheref is linear in the density. In
smaller vqlues2 ofe: one finds ¢ =7 dn/mParcco$l  this |imit the current becomes density independent while the
—2y), yielding c| =2e:/3m in the limit e<20. In the case  chemical potential no longer depends on the velocity of the
of transverse sound propagation, the hydrodynamic theory igyid.
valid under the usual assumptiogs<A/#c, . So far we have discussed the behavior of a superfluid gas
The hydrodynamic Eqg5) and(6) can be generalized to confined by a periodic potential. In the presence of the addi-
include a finite velocity of the gas with respect to the Optica|tiona| harmonic potentiayHo the |ow-energy oscillations ex-
lattice. This is important in order to study the conditions of hibit new features. Of particular importance is the center-of-
stability of the moving fluid with respect to the creation of mass oscillation along the direction of the optical lattice. In
elementary excitations. This problem has been recently adhe absence of the periodic potential, this mode would oscil-
dressed in the case of Bose-Einstein condensates, from boge exactly at the frequency of the harmonic trap. The pres-

(e see from Eq(18) that in the tight-binding limit an insta-

the theoretical9] and experimentdl10] points of view. ence of the periodic potential gives rise to additional inter-
Starting from the general fori(8) for the Lagrangian and esting features. In a recent work?] it has been shown that
settingVy0=0, one finds in a noninteracting Fermi gas with Fermi energy larger
an than the Bloch bandwidth& the center-of-mass cannot os-
i +Vijn,v) =0, (14 cillate around the bottom of the trap, but remains localized at

one side of the harmonic field. Inclusion of collisions in a
two-component gas favors the relaxation toward the equilib-
rium configuration. However, collisions cannot restore the
propagation of sound in the hydrodynamic regime as hap-
pens in the absence of the periodic potential. In fact, it was
wherej=(1/m)Jde/dv, u=deldn are, respectively, the cur- concluded in Ref[13] that, under the conditior: > 26, the
rent and the chemical potential of the gas whel@,v) is  center-of-mass oscillations of a nonsuperfluid gas are over-
defined in Eq.(9). damped in the collisional regime, due to umklapp processes.

ov
mE + V u(nv)=0, (15)
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As recently suggested by Woutegs al. [14], in the su- 12
perfluid regime the center-of-mass can instead oscillate and
the corresponding frequency can be calculated starting from
the hydrodynamic Eqg5) and(6). We will make the natural
ansatz

¢=a)z, n=ngz-a(t),r ], (19

for the phase and for the density distribution wheranda
are  functions of time and ny(r)=2fO(ex(r)
—e(k))dk/(27h)2 is the equilibrium density evaluated in the
local-density approximation witheg(r)=ex—Vyo(r). This o ] 5 3 4 5
ansatz corresponds to a rigid shift of the density in coordi- £p/28

nate space accompanied by a uniform velocity field

=hal/2m. By inserting the ansat£l9) into the Lagrangian FIG. 1. Functionf [see Eq.(23)] versus the parametey
(3) and retaining only the lowest-ordéquadrati¢ terms in ~ =e:/26 (solid ling). The asymptotic limit 5/8 is also shown
the functionsa and «, one can recast Ed3) in the form  (dashed ling
L(a, @,a) = mw2a?/2+a?/8mey+aal2, where we have in-

troduced the averaged effective mass]

f h(x)®%sir’xO[h(x)]dx
1 5

_ 1 f 1 _ 2 f 2 f=— (23)
= o2 Zpndr =2 | (elak)?8(ectr)
mey NJ @ EN o) St 2 J h(x)520[h(x)]dx

- e(k))dk dr/(27h)® (20)

dN= dr is the total ber of particles. The ab is a dimensionless function of the rgﬁp/Zéand the depen-
andN=/no(r)dr is the total number of particles. The above dence ofm*=#2/5d? on the laser intensitg is given, for

I&ﬁgrnir;glan describes a simple harmonic oscillator with fre-example, in Ref[5]. The functionh(x) is defined byh(x)

=ep/ 6—1+cosx. Here e is the Fermi energy which is re-

0 lated to the free value2=(3N)"%i(w %w,)? evaluated in
wem = wz\/E (21)  the absence of the periodic potential, by the equation
M

. 1/2 T
The result(21) for the frequency of the center-of-mass oscil- 0\3 — 1_6<E_R) f 512
lation can also be derived microscopically using a sum rule (eF) 572\ & 7 o h()=6thGldx, — (24)
approach, based on the ratio

which follows from the normalization conditionN
(hw)2= my (22)  =Ing(r)dr. In Fig. 1 we plotf as a function of the parameter
M.y y=¢p/26. In the limit <26, M does not deg)eng on the
i , .. density and one find§=1 and mgy=m*=7%</5d*. For
between the energy-weighted and |nverse-enﬁrgy-welghtqqgher values of the density, the frequency of the oscillation
moments[5] relative to the dipole operatdd=2_,z. The  pecomes smaller becausg,, increases with the density. In
energy-weighted moment can be calculated using the genergle [imit e>25, we find the asymptotic behaviof
expressionm;=(1/2)[D,[H,D]]) where() is the average =55/4¢- (see dashed line in Fig) Andmey =4%i2e-/5d262.
over the ground state and the effective Hamiltonidn As an example, we consider a two-component gasl of
=3;e(Kj) +ZVio(r ) + < Vo boaf [Nk =T ¢|) is the projection =165 potassium(*K) atoms with trap frequencies, =2
of the full Hamiltonian into the lowest Bloch band. One finds « 575 and w,=2mwX 24 Hz, corresponding to EE/kB
my=(1/2)(Z}L,Pel k), which is the analog of thé-sum =390 nK. For the optical lattice we assurse5 and period-
rule [16]. On the other hand the inverse-energy-weightedcity d=400 nm, corresponding tBz=9.26=374 nK. From
moment is easily related to the dipole static polarizabiity — Eq. (24) one finds €F:o_85fg and from the valueer/25
fixed by the harmonic potentiam ,=(1/2)ap=N/(2mw?).  =4.1, one finds(4.1)=0.17, yieldingmey,/m=10.94. Equa-
By evaluating the averagéE}\'zlaZe/&k? in the limit of a  tion (21) predicts a significant reductiofwcy=0.30w,) of
weakly interacting gas and inserting the resultsigrand  the frequency of the center-of-mass oscillation. Notice in-
m_, into Eq.(22), one recovers resu{2l) for the frequency deed that this reduction is larger than in the corresponding
of the center-of-mass oscillation. case of an oscillating Bose-Einstein condensate, where
Equations(20) and (21) hold for any value of the laser w¢cy=vm/m* w,=0.73w,.
intensity provided the system remains superfluid. In the In conclusion we have investigated the dynamic behavior
tight-binding limit the formalism becomes particularly of a superfluid Fermi gas in the presence of a 1D optical
simple. In fact in this case the effective ma@9) can be lattice. We have calculated the velocity of sound and studied
conveniently written as Iy =f/m*, where the conditions of stability(both energetic and dynamigal
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against the creation of elementary excitations when the fluidghtensities of the laser field and, consequently, to exhibit un-
moves with respect to the lattice. Moreover, we have calcudamped center-of-mass oscillations in the presence of har-
lated the frequency of the center-of-mass oscillationthe  monic trapping. In this case, however, the evaluation of the
BCS limit) when the gas is further confined by a harmoniceffective mass cannot be based on Ed€) and (20) and
trap. Our results might be useful for the identification of therequires a more complete many-body calculation.

superfluid phase of interacting Fermi gases. Near a Feshbach

resonance, where the scattering length becomes very large, This work was supported by the Ministero dell'Istruzione,
one still expects the sytem to remain superfluid for moderatélell’Universita’ e della RicercaMIUR).
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