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We develop the hydrodynamic theory of Fermi superfluids in the presence of a periodic potential. The
relevant parameters governing the propagation of soundscompressibility and effective massd are calculated in
the weakly interacting BCS limit. The conditions of stability of the superfluid motion with respect to creation
of elementary excitations are discussed. We also evaluate the frequency of the center-of-mass oscillation when
the superfluid gas is additionally confined by a harmonic trap.
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It is well known that sound cannot propagate in a degen-
erate noninteracting Fermi gas. In fact the sound velocityc
=vF /Î3, calculated from the compressibility of the gas, is
smaller than the Fermi velocityvF, so that sound is unstable
toward decay into the continuum of particle-hole excitations.
In the presence of an attractive interaction, Cooper pairing
opens a gap at the Fermi level. As a result, sound waves with
sufficiently low frequency can propagate in a neutral super-
fluid. An important question is to understand how these
modes behave when the system is confined by a periodic
potential.

The propagation of sound in Bose gases trapped by an
optical lattice has been already the object of extensive theo-
retical work f1g. Experimentsf2g on the collective oscilla-
tions have confirmed that the low-energy dynamic behavior
of a Bose-Einstein condensed gas is well described by the
hydrodynamic equations of superfluidsf3g, where the coher-
ent tunneling through the barriers generated by the periodic
potential is taken into account by a proper renormalization of
the effective mass.

In this paper we generalize the hydrodynamic equations
of Fermi superfluids in order to investigate the propagation
of sound and the collective oscillations of a Fermi gas in the
presence of a one-dimensionals1Dd periodic potential gen-
erated by a laser field.

We consider an interacting two-component atomic Fermi
gas trapped by a potentialVext given by the sum of a 3D
harmonic trap and of a stationary 1D optical potential modu-
lated along thez axis:

Vext = VHO + sERsin2qBz, s1d

whereVHO=msv'
2 r'

2 +vz
2z2d /2 andER="2qB

2 /2m is the re-
coil energy. HereqB is the Bragg momentum ands is a
dimensionless parameter providing the intensity of the laser
beam. The optical potential has periodicityd=p /qB along
the z axis.

The long-wavelength dynamic behavior of a neutral su-
perfluid is properly described by Landau’s hydrodynamic
theory. At T=0 the relevant variables are the densityn of
particles and the superfluid velocity

v =
"

2m
= f, s2d

wherem is the atomic mass andf is the phase of the order
parameter defined through the anomalous mean value
kC↑sr dC↓sr dl= zkC↑sr dC↓sr dlzeifsr d.

The hydrodynamic equations can be derived from a varia-
tional principle, starting from an effective action describing
the low-energy collective excitations over the ground state.
In the weak-coupling limit these excitations are known as the
Bogoliubov-Anderson modes. The Lagrangian of the system
takes the general form

L =E drSesn,vd + VHOn + n
]

]t

f

2
D s3d

whereesn,vd is the energy per unit of volume. By expanding
esn,vd up to the terms quadratic inv one finds

esn,vd = esn,0d + 1
2nv'

2 +
1

2

m2

m̃
nvz

2 s4d

where m̃sùmd is an effective mass accounting for the in-
creased inertia of the superfluid along the direction of the
laser. In generalm̃ is density dependent. In Eq.s3d we have
assumed that the two spin species are equally populatedsn
=2n↑d. Inserting Eq.s4d in the Lagrangians3d yields the hy-
drodynamic equations

]n

]t
+ ]xsnvxd + ]ysnvyd + ]zSm

m̃
nvzD = 0, s5d

]

]t
v +

1

m
= Fmsnd + VHO +

m

2
vx

2 +
m

2
vy

2 +
]

]n
Sm

m̃
nDm

2
vz

2G = 0,

s6d

wheremsnd=]e/]n is the chemical potential. Generalization
to include 2D or 3D optical lattices is trivial.

Let us first consider the propagation of sound in the ab-
sence of the harmonic potentialsVHO=0d. We will include
later the harmonic trap to investigate the oscillations of the
cloud. If VHO=0 Eqs.s5d and s6d admit linearized solutions
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around the equilibrium densityn0 of the form n=n0+dn,
with dn,eiqz−ivt and analogously forvz. This permits us to
derive the phonon dispersionv=czq along the direction of
the optical lattice, with the sound velocity given by

cz =Î n

m̃

]m

]n
. s7d

The presence of the periodic lattice enters Eq.s7d through
both the renormalization ofm̃ and the change of the inverse
compressibility n]m /]n. Analogously, the sound velocity
along the transverse directions, where the gas is free, is given
by c'

2 =sn/md]m /]n.
Equations s5d–s7d are very general and apply also to

strongly interacting superfluids. They permit to calculate the
low energy dynamics of the system once the equation of state
and the effective mass are known. In the following we will
apply these equations to a dilute Fermi gas interacting with
negative scattering lengthsBCS limitd. In this case the inter-
nal energy is fixed by the quantum pressure and therefore the
chemical potential is equal to the Fermi energysm=eFd. For
simplicity we consider values of the Fermi energy such that
only the lowest Bloch band is populated at zero temperature.
The single-particle energy spectrum can then be written as
eskd=k'

2 /2m+eskzd whereeskzd is the dispersion relation of
the lowest Bloch band. The energy of the system at rest is
given by E=Veeskdnkdk / s2p"d3, wherenk=2Q(eF−eskd)
is the quasimomentum distribution of the noninteracting gas
f4g, Qsxd being the usual step function,V is the volume of
the system, and the integration overkz is restricted to the first
Brillouin zone −p" /døkz,p" /d. The Fermi energyeF is
related to the atomic density by the normalization condition
n=enkdk / s2p"d3.

Let us first assume that the gas moves with constant su-
perfluid velocityv. The order parameter acquires the phase
f=2mv ·r /" fsee Eq.s2dg and, correspondingly, the field op-

eratorĈs transforms according to

Ĉssr d → Ĉssr deimv·r /". s8d

Equation s8d is a gauge transformation which does not
change the energy levels, but changes their classification. In
particular the Bloch state of quasimomentumk is mapped
into the statek +mv fand henceeskd into esk +mvdg. The
energy density of the moving system can therefore be written
as

esn,vd =E esk + mvdnk
dk

s2p"d3 s9d

where the density dependence comes from the quasimomen-
tum distributionnk. We can now expand Eq.s9d in powers of
v. The linear term vanishes by symmetry as required by the
stability of the ground state. The first nonvanishing contribu-
tion is the quadratic, diamagnetic term. Comparison with Eq.
s4d then permits us to find, after an integration by parts, the
useful expression

1

m̃
=

e s]e/]kzd2d„eF − eskd…dk/s2p"d3

n/2
s10d

for the effective mass, holding for a dilute superfluid Fermi
gas at zero temperature. From Eqs.s9d ands10d, we also see
that the current density alongz in the equation of continuity
s5d corresponds tojz=s1/mVddE/dvz.

From Eq.s10d we see that only the states near the Fermi
surface contribute to the effective mass. In generalm̃ de-
pends on the Fermi energy or, equivalently, on the density.
An important exception occurs when the Bloch band is al-
most empty. In this case the occupied states obey an approxi-
mate quadratic dispersioneskzd=kz

2/2m*, wherem* depends
only on the laser intensity. From Eq.s10d we then findm̃
=m*. This coincides with the result for the effective mass
holding for a dilute Bose-Einstein condensed gas in the same
optical latticef5g. Equations10d also shows that the integra-
tion along the transverse directions plays a crucial role in
keepingm̃ finite as the Fermi energy crosses the Bloch band-
width. In fact if we neglect the radial dispersion and consider
a pure 1D system, the effective masss10d would actually
diverge as the band is completely filled.

A second crucial ingredient needed to calculate the veloc-
ity of soundfsee Eq.s7dg is the compressibilitysn]m /]nd−1.
In a dilute Fermi gas at zero temperature this is simply cal-
culated in terms of the density of states as

Sn
]m

]n
D−1

=
e d„eF − eskd…dk/s2p"d3

n/2
. s11d

The optical lattice modifies the compressibility with respect
to the values3p2d2/3"2n2/3/3m holding for a uniform gas. By
inserting Eqs.s10d and s11d into Eq. s7d, we find the result

cz
2 =

e s]e/]kzd2d„eF − eskd…dk

e d„eF − eskd…dk
s12d

for cz
2, which can be regarded as the average of the square of

the group velocity]e /]kz over the Fermi surface. Again it
should be noted that, due to the free dispersion in the trans-
verse direction, the sound velocitys12d remains finite aseF
crosses the bandwidth. In a pure 1D system, Eq.s12d would
predictcz=0 when the band is completely filled, since]e /]kz
vanishes at the edge of the Brillouin zone.

Let us point out that Eq.s12d has been derived starting
from the hydrodynamic equations but the same result can be
obtained by generalizing BCS theory through the inclusion
of the interaction between Bogoliubov quasiparticles. This
can be achieved, for example, using time-dependent Hartree-
Fock theoryf6g or the random-phase approximationsRPAd
f7g.

If the laser intensity is sufficiently large one can work in
the tight-binding approximation where the dispersion of the
lowest Bloch band takes the simple formeskzd=d(1
−cosskzd/"d), with d proportional to the tunneling rate be-
tween two consecutive wells. In this case the equation of
state can be calculated analytically. For values of the Fermi
energy above the bandwidthseF.2dd one findsn=mseF

−dd /p"2d and hencedn/dm=m/p"2d. For smaller values
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seFø2dd one instead findsn=f2Îys1−yd+s2y−1darccoss1
−2ydgmd /p2"2d, yielding dn/dm=sm/p2"2ddarccoss1−2yd,
wherey=eF /2d.

The effective masss10d increases as the density of par-
ticles increases. For values ofeF,2d one finds m̃
=s2p2"4n/d2dmdf2s2y−1dÎys1−yd+arccoss1−2ydg−1 and
in the limit y!1, corresponding toeF!2d, m̃ approaches
the density-independent valuem* = "2/dd2. Conversely, for
eF.2d the effective mass scales linearly with the density:
m̃=2"4pn/md2d. This result can be obtained in a BCS ap-
proach, following Ref.f8g.

Let us now use Eq.s7d to evaluate the behavior of the
sound velocity along the direction of the optical confinement.
In the limit eF.2d one finds the density-independent value
cz

2=d2d2/2"2. This is simply understood by noticing that
]e /]kz=sdd/"dsinskzd/"d and that the average of sin2skzd/"d
over the first Brillouin zone gives the factor 1/2. ForeF
,2d, the longitudinal sound velocity is related to the Fermi
energy by the expression

cz
2 = Sdd

"
D2F s2y − 1dÎys1 − yd

arccoss1 − 2yd
+

1

2
G . s13d

In particular, fory!1, corresponding toeF!2d, Eq. s13d
reduces tocz

2=2eF /3m*. It is important to notice that the
continuous hydrodynamic approach along the direction of
the laser field requires that the phasef of the order param-
eter varies slowly between neighboring wells. Taking into
account that the energy of the phonons must be small com-
pared to the superfluid gapD, we see that our theory is valid
providedqz!minsD /"cz,d

−1d whereqz is the wave vector of
the sound excitation.

The propagation of sound in the transverse direction is
affected by the presence of the optical lattice only through
the change of the compressibility. For values of the density
corresponding toeF.2d, one finds c'

2 =seF−dd /m. For
smaller values ofeF one finds c'

2 =p2"2dn/m2arccoss1
−2yd, yielding c'

2 =2eF /3m in the limit eF!2d. In the case
of transverse sound propagation, the hydrodynamic theory is
valid under the usual assumptionsq'!D /"c'.

The hydrodynamic Eqs.s5d ands6d can be generalized to
include a finite velocity of the gas with respect to the optical
lattice. This is important in order to study the conditions of
stability of the moving fluid with respect to the creation of
elementary excitations. This problem has been recently ad-
dressed in the case of Bose-Einstein condensates, from both
the theoreticalf9g and experimentalf10g points of view.

Starting from the general forms3d for the Lagrangian and
settingVHO=0, one finds

]n

]t
+ = j sn,vd = 0, s14d

m
]v

]t
+ = msn,vd = 0, s15d

where j =s1/md]e/]v, m=]e/]n are, respectively, the cur-
rent and the chemical potential of the gas whileesn,vd is
defined in Eq.s9d.

Linearizing Eqs.s14d and s15d with nsr d=n0+dnszd and
vsr d=fk/m+dvszdgẑ and looking for solutions of the form
dn,dv,eisqz−vtd, we find the dispersion relation

v =
]2e

]n ] k
q +Î ]2e

]n2

]2e

]k2uqu. s16d

Dynamical instability occurs when the argument in the
square root of Eq.s16d becomes negative. This leads to a
complex frequency and corresponds to an exponential
growth of excitations wich destabilize the superfluid. Ener-
getic instability instead takes place whenv becomes nega-
tive, i.e., when the first term in Eq.s16d saccounting for the
Doppler shiftd is in modulus larger than the second one.

In the tight-binding limit the energy densitys9d takes the
simple form

esn,kd = esn,0d +
n

m̃
S"

d
D2S1 − cosFkd

"
GD s17d

wherem̃ is defined in Eq.s10d. Note that in the limit of small
k Eq. s17d reduces to Eq.s4d with v'=0. By inserting Eq.
s17d into Eq. s16d we find

v =
]

]n
S n

m̃
D"

d
sinSkd

"
Dq +Î ]2e

]n2

n

m̃
cosSkd

"
Duqu. s18d

We see from Eq.s18d that in the tight-binding limit an insta-
bility opens atk=p" /2d similar to what happens in Bose-
Einstein condensatesf9g. One should notice that the results
s17d ands18d, being derived from hydrodynamic theory, hold
only for small values ofq f11g. There are, however, no re-
strictions on the value of the stationary velocityk/m of the
fluid with respect to the lattice.

For eF!2d, wherem̃=m*, the Doppler term is exactly
the same as for Bose condensates. For higher values of the
density, however, this term becomes smaller and vanishes
identically for eF.2d, wherem̃ is linear in the densityn. In
this limit the current becomes density independent while the
chemical potential no longer depends on the velocity of the
fluid.

So far we have discussed the behavior of a superfluid gas
confined by a periodic potential. In the presence of the addi-
tional harmonic potentialVHO the low-energy oscillations ex-
hibit new features. Of particular importance is the center-of-
mass oscillation along the direction of the optical lattice. In
the absence of the periodic potential, this mode would oscil-
late exactly at the frequency of the harmonic trap. The pres-
ence of the periodic potential gives rise to additional inter-
esting features. In a recent workf12g it has been shown that
in a noninteracting Fermi gas with Fermi energyeF larger
than the Bloch bandwidth 2d, the center-of-mass cannot os-
cillate around the bottom of the trap, but remains localized at
one side of the harmonic field. Inclusion of collisions in a
two-component gas favors the relaxation toward the equilib-
rium configuration. However, collisions cannot restore the
propagation of sound in the hydrodynamic regime as hap-
pens in the absence of the periodic potential. In fact, it was
concluded in Ref.f13g that, under the conditioneF.2d, the
center-of-mass oscillations of a nonsuperfluid gas are over-
damped in the collisional regime, due to umklapp processes.

SOUND PROPAGATION AND OSCILLATIONS OF A… PHYSICAL REVIEW A 71, 053602s2005d

053602-3



As recently suggested by Wouterset al. f14g, in the su-
perfluid regime the center-of-mass can instead oscillate and
the corresponding frequency can be calculated starting from
the hydrodynamic Eqs.s5d ands6d. We will make the natural
ansatz

f = astdz, n = n0fz− astd,r 'g, s19d

for the phase and for the density distribution wherea anda
are functions of time and n0sr d=2eU(eFsr d
−eskd)dk / s2p"d3 is the equilibrium density evaluated in the
local-density approximation witheFsr d=eF−VHOsr d. This
ansatz corresponds to a rigid shift of the density in coordi-
nate space accompanied by a uniform velocity fieldvz
="a /2m. By inserting the ansatzs19d into the Lagrangian
s3d and retaining only the lowest-ordersquadraticd terms in
the functionsa and a, one can recast Eq.s3d in the form
Lsa ,ȧ ,ad~mvz

2a2/2+a2/8mCM+aȧ /2, where we have in-
troduced the averaged effective massf15g

1

mCM
=

1

N
E 1

m̃
n0sr ddr =

2

N
E s]e/]kzd2d„eFsr d

− eskd…dk dr /s2p"d3 s20d

andN=en0sr ddr is the total number of particles. The above
Lagrangian describes a simple harmonic oscillator with fre-
quency

vCM = vzÎ m

mCM
. s21d

The results21d for the frequency of the center-of-mass oscil-
lation can also be derived microscopically using a sum rule
approach, based on the ratio

s"vd2 =
m1

m−1
s22d

between the energy-weighted and inverse-energy-weighted
momentsf5g relative to the dipole operatorD=o j=1

N zj. The
energy-weighted moment can be calculated using the general
expressionm1=s1/2dk[D ,fH ,Dg]l where kl is the average
over the ground state and the effective HamiltonianH
=o jesk jd+o jVHOsr jd+o j,,Vtwo bodysur k−r ,ud is the projection
of the full Hamiltonian into the lowest Bloch band. One finds
m1=s1/2dko j=1

N ]2e /]kzj

2 l, which is the analog of thef-sum
rule f16g. On the other hand the inverse-energy-weighted
moment is easily related to the dipole static polarizabilityaD,
fixed by the harmonic potential:m−1=s1/2daD=N/ s2mvz

2d.
By evaluating the averageko j=1

N ]2e /]kzj

2 l in the limit of a
weakly interacting gas and inserting the results form1 and
m−1 into Eq. s22d, one recovers results21d for the frequency
of the center-of-mass oscillation.

Equationss20d and s21d hold for any value of the laser
intensity provided the system remains superfluid. In the
tight-binding limit the formalism becomes particularly
simple. In fact in this case the effective masss20d can be
conveniently written as 1/mCM= f /m*, where

f =
5

2

E hsxd3/2sin2xUfhsxdgdx

E hsxd5/2Ufhsxdgdx

s23d

is a dimensionless function of the ratioeF /2d and the depen-
dence ofm* = "2/dd2 on the laser intensitys is given, for
example, in Ref.f5g. The functionhsxd is defined byhsxd
=eF /d−1+cosx. Here eF is the Fermi energy which is re-
lated to the free valueeF

0 =s3Nd1/3"sv'
2vzd1/3 evaluated in

the absence of the periodic potential, by the equation

seF
0d3 =

16

5p2SER

d
D1/2

d3E
−p

p

hsxd5/2Ufhsxdgdx, s24d

which follows from the normalization conditionN
=en0sr ddr . In Fig. 1 we plotf as a function of the parameter
y=eF /2d. In the limit eF!2d, m̃ does not depend on the
density and one findsf =1 and mCM=m* = "2/dd2. For
higher values of the density, the frequency of the oscillation
becomes smaller becausemCM increases with the density. In
the limit eF@2d, we find the asymptotic behaviorf
=5d /4eF ssee dashed line in Fig. 1d andmCM=4"2eF /5d2d2.

As an example, we consider a two-component gas ofN
=105 potassiums40Kd atoms with trap frequenciesv'=2p
3275 and vz=2p324 Hz, corresponding to eF

0 /kB
=390 nK. For the optical lattice we assumes=5 and period-
icity d=400 nm, corresponding toER=9.2d=374 nK. From
Eq. s24d one findseF=0.85eF

0 and from the valueeF /2d
=4.1, one findsfs4.1d=0.17, yieldingmCM/m=10.94. Equa-
tion s21d predicts a significant reductionsvCM=0.30vzd of
the frequency of the center-of-mass oscillation. Notice in-
deed that this reduction is larger than in the corresponding
case of an oscillating Bose-Einstein condensate, where
vCM=Îm/m*vz=0.73vz.

In conclusion we have investigated the dynamic behavior
of a superfluid Fermi gas in the presence of a 1D optical
lattice. We have calculated the velocity of sound and studied
the conditions of stabilitysboth energetic and dynamicald

FIG. 1. Function f fsee Eq. s23dg versus the parametery
=eF /2d ssolid lined. The asymptotic limit 5 /8y is also shown
sdashed lined.
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against the creation of elementary excitations when the fluid
moves with respect to the lattice. Moreover, we have calcu-
lated the frequency of the center-of-mass oscillationsin the
BCS limitd when the gas is further confined by a harmonic
trap. Our results might be useful for the identification of the
superfluid phase of interacting Fermi gases. Near a Feshbach
resonance, where the scattering length becomes very large,
one still expects the sytem to remain superfluid for moderate

intensities of the laser field and, consequently, to exhibit un-
damped center-of-mass oscillations in the presence of har-
monic trapping. In this case, however, the evaluation of the
effective mass cannot be based on Eqs.s10d and s20d and
requires a more complete many-body calculation.
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