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Three-dimensional time-profile analysis of high-order harmonic generation in molecules:
Nuclear interferences in H;
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We describe a numerical method used previolifligys. Rev. A70, 011404R) (2004)] for solving the
three-dimensional time-dependent Schrédinger equation for(with fixed nucle) in interaction with an
intense, arbitrary oriented laser pulse. In this approach, we use the prolate spheroidal coordinate system, and
expand the time-dependent wave function in a complex basis of Laguerre polynomials and Legendre functions.
Our results indicate that ionization, excitation, and harmonic generation are strongly influenced by the orien-
tation of the molecular axis with respect to the laser polarization axis. We evaluate the contribution of each
nucleus to harmonic generation, as this permits a quantitative and nonambiguous assessment of interference
effects as a function of molecular orientation. A time-profile analysis, using a Gabor transform of the harmonic
spectrum around certain harmonics, shows that every half-cycle high-order harmonics are emétath by
nucleuswhen the electron wave packet returns for a recollision with the molecular core, thus confirming the
strong field recollision model in molecules. In general, each nucleus emits both odd and even harmonics, but
even harmonics are destroyed by interferences between contributions of each nucleus. These interferences are
shown to be maximum at certain harmonic orders as a function of molecular orientation. A comparison of
acceleration and dipole formulations of the harmonic emission process is made in order to assess the use of
high-order harmonic generation for electron wave-function imaging.
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[. INTRODUCTION The semiclassical recollision model predicts furthermore
] that under the influence of the laser field, the ionized electron
Current laser technology has opened up a new field Ofeturns to the parent ion near the zero of the electric field,

study, the nonlinear nonperturbative response of matter tgssuming that the electron ionizes with zero initial velocity
intense ultrashort laser pulsgl. In the case of atomic sys- via tunnelling. The recollision model has now been con-
tems, this has led to the discovery of many new nonlineafirmed experimentally for BI[10] and D} [11]. These experi-
nonperturbative optical phenomena and processes such afents confirm that ultrashort time scales are characteristic of
above threshold ionizatiofATl), tunnelling ionization, and  electron recollision and depend on the laser frequency only.
high-order harmonic generatidlOHG). The latter has be- This suggests that Born-Oppenheimge., fixed nuclei
come the main source for the generation of subfemtosecondimulations of molecular HOHG should be useful in explor-
i.e., attosecond puls¢g,3]. ing the effect of laser-induced electron diffracti¢blED)

The interaction of molecules with intense ultrashort lase12], and the concomitant interferences arising from rescat-
pulses introduces new challenges due to the presence @dring of the recolliding electron wave packet with different
nuclear motion, i.e., extra degrees of freedom, and due tauclei observed recently in a molecular simulation of ATI
additional time scalep4]. Previous studies of HOHG based [13].
on the numerical solution of the time-dependent Schrddinger Molecular HOHG offers another variation upon the
equation (TDSE) for H; with both static (Born-  atomic case, the orientation dependence of this nonlinear re-
Oppenheimegrand moving(non-Born-Oppenheimgmuclei  sponse to short intense pulsgst], whose orientation de-
[5] have confirmed the applicability of the quasistatic atomicpends on laser intensiti¢$5]. Experiments have also shown
model of recollision of the ionized electron with the parentthat HOHG in molecules is enhanced when molecules are
ion, or with neighboring ion$6,7] as the main mechanism prealigned, and that there is a high sensitivity of the effi-
for HOHG. This semiclassical recollision mechanism pre-ciency of the HOHG spectrum with the relative orientation
dicts a maximum harmonic ordak,, giving rise to the cutoff  of the molecule and the laser pulse polarizafib6]. Recent

law [8,9] H; and H, reduced model calculatiorfd7,18§ confirm the
importance of interference contributions to HOHG from
Nmwo =15+ 3.1, (1) various regions within a molecule as in previous calculations
of LIED [12] and molecular ATI[13].
where |, is the ionization potential, antﬂp:l/4w§ is the In this paper, we present an exact numerical solution of

ponderomotive energy of the electron in a laser field of in-the three-dimension&BD) Born-Oppenheime(static nuclei
tensity | and frequencyw,. The recollision of an ionized TDSE for the interaction of Ewith a laser pulse having an
electron with neighboring ions in extended molecular sys-arbitrary oriented linear polarization. We investigate the in-
tems can lead to even higher cutoffs or equivalently highefluence of molecular orientation on ionization and harmonic
harmonic ordeN,, [7]. generation. The contribution of each nucleus to the harmonic

1050-2947/2005/75)/05340719)/$23.00 053407-1 ©2005 The American Physical Society



G. L. KAMTAAND A. D. BANDRAUK PHYSICAL REVIEW A 71, 053407(2005

spectrum is evaluated separately, so that interferences of the 9

two contributions are assessed unambiguogshgliminary 'E‘I’(m) =[H+D®]¥(r,1), (4)
results have been reported in an earlier communic4fiép.

A time-frequency analysis of the generation of harmonics isyhere the Hamiltonial(t) for the interaction of the electron
performed using a Gabor transform technid@®,21, so  \yith the laser field iD, (t)=E(t)-r in the length gauge, and
that the magnitude of relevant interferences and their eng Dy(t)=—iA(1)-V in the velocity gauge. The vector poten-

hancement or suppression are identified in time. Furthert—I | A(t) of the laser field isA(t) = Aof (t)sin(wgt)
. = ot)e, whereA,
more, we examine the usefulness of a Frank-Condon mod 'fthe maximum amplitudei(t) is the pulse envelopey, is

of HOHG intensities and their orientation dependence, as e laser frequency. anglis the unit vector along the laser
direct transition from a continuum electron wave function to olarization gxis 'Iyﬁe electric field of the Iaserg Ulse is de-
the ground-state electron wave function. This usually occurﬁved from A(t) as E(t)=—(a/ A1) P

in continuum molecular Raman transitipp2] or harmonic . . . .
For convenience, we make the following choices, which

interference ionization spectf23]. Dipole and acceleration 0 not impose any physical restriction on the systéinThe
formulations[ 24] of the photoemission process are compareod pose any phy o a y
molecular axis is aligned along tzeaxis, i.e.,R=Re,, where

in order to establish a valid theoretical description of thee_ denotes the unit vector along tieaxis. (i) The laser
interference effects. The sensitivity of HOHG intensities to ] ~~ "™ == = : 9 : .
%olanzatlon is chosen in thgz plane, so thake=sin(x)e,

the molecular orientation have recently been proposed as+cos()()ez. Therefore, D, (t)=E(b)][(sin y)y+(cosy)z] and

new tool for tomographic reconstruction of molecular elec- A ) _
tronic orbitals[25]. The present results provide guidelines Pv(t)==IAML(sINx)(d/dy)+(cosx)(9/dz)]. Since the mol-

for such an inversion procedure based on HOHG spectra, £°ul€ is aligned along theaxis, theny is the angle between
we provide a rigorous derivation of analytical formulas for {h€z axis and the laser polarization direction.
the interference in the harmonic spectra of two-center mol- 1he €lectronic angular momentum operdtéiand its pro-
ecules. jection L, along thez axis satisfy the relationgL?,H]#0
This paper is organized as follows. In Sec. II, we describend [Lz,H]=0. This means that in the absence of external
the complex basis in which the time-dependent wave funcfield, a two-center molecule does not have spherical symme-
tion is expanded. The solution of the TDSE is presented iy, but does have axial symmetry. Consequently, the projec-
Sec. Ill, where we also discuss the advantages of the methdtpn m of the electronic angular momentum along the inter-
used. Results for ionization and excitation are given in Seciuclear axis is conserved. In the presence of a laser field
IV. The contribution of each nucleus to the harmonic speclinearly polarized along the molecular axise., x=0), the
trum of H} is analyzed in Sec. V. Section VI is devoted to aaxial symmetry is preserved. In this case, the solution of the
study of interference effects in the harmonic generation ofesulting TDSE is in essence a two-dimensio(2i) prob-
H3. We compare the acceleration and dipole formulations ofém due to this axial symmetry. However, for an arbitrary
the harmonic photoemission in Sec. VII. After a conclusionoriented laser polarization, as considered in this work, the
in Sec. VIII, we present in two appendices the evaluation ofXistence of a component of the electric field perpendicular
matrix elements involved in the solution of the TDSE. Un-to the molecular axis breaks the axial symmetry, so that the

less stated otherwise, atomic unigsu) are used throughout @ngular momentum projectiom is no longer conserved.
this paper. Solving the TDSE for this case is by all means a fully 3D

problem.

Prolate spheroidal coordinates are well established as the
most adequate coordinate system for investigating the mo-
In the Born-Oppenheimer approximatidfixed nucle), lecular structure of two-center moleculg6]. These coordi-

the electronic Hamiltonian for a system consisting of two"ates(é, 7, ¢) are defined by
nuclei having identical chargg, and one active electron is
E=(rp+1IR, 7=(ri—r)lR, ©)

(2)  where ¢ is the azimuthal angle, € é<+x, —1< < +1,
and O< ¢ < 2. Expressions in spheroidal coordinates of the
HamiltonianH, the coordinate$x,y,z), and their derivatives
(a1 9x,dl 9y, a1 9z) can be found in Refl.27].

II. THE WAVE-FUNCTION EXPANSION

1 z2
H=-ZVZ+V(r)+—,
2 © R

whereR is the internuclear distance, and

7 7 For a two-center molecule, the stationary Schrodinger
V(r) =Va(r) +Vo(r) == — = — (3)  equationH¥=EV is separable in spheroidal coordinates.
i T2 Due to this separability, it is suitable to expand the time-

is the Coulomb potential experienced by the electron due tgependent wave function in a discrete basis as follows:
both nuclei.r;=r +R/2 andr,=r —R/2 are the position vec- gmo
tors of the electron relative to the nucleus 1 and relative to V(g bt = D, A, DUV () —=, (6)
the nucleus 2, respectively. is the position vector of the m,,v N2
electron relative to the geometric center of the molecule.

The interaction of the above system with a laser field iswhere a,,,,(t) are time-dependent coefficients. The basis
described by the TDSE functionsU7\(¢) andV}(7) are given by
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U™(&) = NMg (e (&2 - 1)\m|/2L2|_T\ [2a(6-D] (1) As mentioned above, for the case of a laser field linearly
" ’ im polarized along the axis,mis conserved. This means that if
and the initial state is the ground state of ffor whichm=0, one
e mem can setm=0 in the basis expansid@). If there is a compo-
V() =M PL(m), (8) nent of the laser field perpendicular to the internuclear axis,

where a=pR and 8 is a real or complex parameter to be One has to include highen values in the expansioff).
discussed latet.%(x) denotes the Laguerre polynomials, and _ Throughout the time evolution of the exact solution
Pi(x) is the associated Legendre functi@r spherical func- (€ 7, ¢,1), the quantity(W(t)|W(1)), which represents the
tion) of the first kind[28]. m is the electron’s angular mo- probability for finding the electron somewhere in the whole
mentum projection onto the axis. It takes the valuem  SPace, remains constant and equal to unity. The computation

=0,+1,£2, ..., 4M,. The two other indices take the val- of (W(t)|¥(t)) requires an integration over all the space. In
ues w=|m[,|m[+1, ... |m+uma and v=|m[,|m[+1, ... |m| practice, however, due to limitations in computer resources,
+ Vmax Mmax Mmae aNd Pmay are cutoff parameters used to the expansiori6) should be truncated. Therefore, the result-
control the basis size. ing approximate wave function only describes a restricted
We use the following normalization conditions for the ba- region of space, say, a sphere of some characteristic radius.
sis functions: As long as the system remains in this sphere over the time
. - interval of interest, the_ trur_lcat_ed basis is_ adequatg. But if the
f Um(§)<§_—l> UM(@dé=1 9) system b_reaks up during its time evolution, as it is the case
1 E+1 v when ionization occurs, one or more fragments of the system
may leave this sphere. Nevertheless, if the basis functions
and U"(¢) are real, the norm{W(t)|W(t)) computed with the
+1 truncated wave-function expansion remains constant equal to
f Vi(nVi(mpdn=1, (100 unity throughout the time evolutidr32]. This means that the
-1

probability of finding the complete system inside the sphere
is always unity on a real basis. Therefore, if the system
breaks up with one of its fractions reaching the surface of the

m 2‘mm(y—|m|)[ sphere over the time interval under interest, the fact that
N'= 4/ (2a) m (1D (Ww(t)|w(t))=1 with a real basis means that this fragment
' must reflect from the surface and return to the interior of the

which lead to

and sphere.
D\ (=) These reflections are unphysical and must be prevented by
M™M= ( + _>L. (12)  absorbing the outgoing flux at the boundary of the sphere.
” 2/ (u+m)! This may be achieved by imposing strictly outgoing wave

boundary conditions on the wave function itself. It has been
shown[33] that complex scaling34] in the solution of the
TDSE analytically prevents reflection of outgoing wave

addition, the resulting normalization constati; and M, ackets. In prolate spheroidal coordinates, complex scalin
are crucial in preventing the basis functidat3(¢) andvf(n) Fc)an be.impFI)ementecE)35] by making the ’transfzrmation ’

from taking very large values with increasing Such large (el - o9 )
values lead to numerical instabilities. Finally, the basis func—f)g’ 7r7n’:k)in (?h(f’t?érﬁf(;?njzgoéamlg?iig‘iHogr eq;)lviiliggy,
tion V(7) inherits interesting properties such a@m(n) y g 7 7

—(_ m M N = (_1)(wmy/m wave function, where is the complex scaling “angle.” For
(STL";ZFE ;7()77?2%% (717)_ 77(2 ) 33zfdm,\é*;7(m ?F-, () [26], it ap. [ DasIS expansic6), the complex scaling rr|1e|thogd amounts
o ; : M ’ to using a complex nonlinear parametgr|Ble”” (0< 6
pears that the basis functiobg() andVM(n) depend on the </2), and the resulting basis functiohf](¢) behave as-

factors (£-1) ™" and(l_”)‘mllz.’ respegtwe]y. This fealture- mptotically as outgoing waves. This asymptotic outgoing
has been shown to removes singularities in the Hamiltoniaggpavior prevents reflections at the boundaries of the region
H [26.5.]' In addmon,_a semianalytic SOIU.I'On. Qf the stationary yegcriped by the truncated wave-function expansion.
Schrodinger equation for His greatly simplified by writing
the wave function of H in terms of Laguerre polynomials
and associated Legendre functig@§]. These functions per-  lll. THE PROPAGATION OF THE TIME-DEPENDENT
mit to recover the well-known hydrogenlike wave functions SCHRODINGER EQUATION

in the united-atom limi{i.e., R— 0). Basis expansions simi-
lar to (6) have been used successfully for molecular structur
[29] and multiphoton ionization rate calculations fo} [27],

as well as for time-dependent calculations ih With laser 9 .
pulses linearly polarized along the internuclear #88. It is 'ES‘I’ =[H +g(t)(sinyDy + cosyD,)J¥, (13
worth mentioning that the basis expansi@) mimics the

Sturmian basis used for the spherically symmetric case oivhere W represents the vector representation of the wave
hydrogen[31]. function, andS is the overlap matrixH, Dy, andD, denote,

The normalization condition®) and(10) are interesting be-
cause they lead to analytical expressionsNgrand M7 In

In order to solve the TDSE4), we project it onto the
Basis expansiofb) to obtain its matrix representation
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respectively, the matrix elements of the electronic Hamil-Our results in Fig. 1 are plotted together with dipole matrix
tonian, and those of thg and z components of the dipole element formuld37] obtained using a linear combination of
operator(length or velocity gaugesg(t) is a scalar function atomic orbitals(LCAO). As expected, as small internuclear
that equal€(t) in the length gauge, and equalgAft) in the  distances where LCAO wave functions are known to be quite
velocity gauge. inaccurate, there are substantial differences between the ap-
Details on the evaluation of the matrix elementsSoH, proximate LCAO results and our exact results. However,
Dy, andD, are given in Appendices A and B. Thanks to the with increasing internuclear distance the LCAO approxima-
separability of spheroidal coordinates, all these matrix eletion becomes increasingly valid, and one can see that LCAO
ments can be expressed as products of one-dimensional inteesults get closer to our exact results.
grals, many of which are obtained in closed analytical forms. Equation(13) is a system of first-order partial differential
Those integrals that could not be obtained analytically argquations(PDES, which can be solved using standard nu-
evaluated numerically using Gauss-Laguerre and Gaussnerical procedures. However, for reasons described below,
Legendre quadratures, which are very stable and accurate we project it into the basis of electronic eigenstdies, the
As shown in these appendices, the basis expan@pn so-called eigenstate ba$38,39) where it becomes
yields interesting selection rule§, H, and D, matrix ele- 3
ments are subjected to the selection mife=m, wherea, i—® =[h +g(t)(sin YW, + cosyW,) |®, (15)
matrix elements are subjected i =mz+1. In other words, ot

.thez.component of the dipole cqup[es only states that haveare ®(1)=PW (1), and where the exponentdenote the
identical angular momentum projections, whereasythem- transposed of the corresponding mattix.is the diagonal

ponent .Of t_he dip_ole COUPI‘?S states whose angula_lr MOMEAatrix of eigenvalues of (electronic energigs P is the
tum projections dlﬁer_by unity. Due to these selection rUIeS’orthogonaI matrix of eigenvectors df (electronic wave
all matrices involved in Eq(13) are very sparset, S, and functions, i.e.,h=P'HP. W;=P'D,P is the matrix of dipole
D, are bloc diagonal, whereds, is bloc tridiagonal. Here, couplings between all electronic eigenstat¢sy,z). The

Y 2 ) ’
gzg‘ bt:l)occs ;?g?ﬁgggt?‘zrt\?vricgr:vtﬁg :c,rgl)egt{?lcl)rﬁ ?L?ii;hri gr?g projected wave functiomP(t) in the eigenstate basis repre-
: sents a linear superposition of all electronic eigenstates re-

m’'=m+1 hold. . . . . .
In order to obtain the initial state for time propagation of sulting from solving the eigenvalue equatiet¥), i.e.,

the TDSE (13), we solve the the stationary Schrodinger o= C. (P 16
equation, which is equivalent to solving the eigenvalue prob- ® % ma(D P (16
lem

where @, is the electronic eigenstate of ener§y and
HW =ESW, (14 angular momentum projectiam, andC,(t) is its probabil-

whereE denotes the requested eigenvalues. Note that, due t§ @mplitude.n labels both bound states and the discretized
complex scalingH andS are complex symmetric, so that the continuum. Note thaW(t) can be easily deduced frodh(t)
eigenvaluesE are complex. However, bound state energied?y the matrix vector produc¥(t) =P®(t). This last transfor-
are independent of the complex scaling anglewhereas Mmation permits us to move back and forth between the eigen-
continuum states are rotated downward in the lower half oftate representatiod of the wave function and its coordi-
the complex plane, making an angl® @ith the real axis hate representatioW.
[34]. In other words, bound states are unchanged by complex Besides the selection rules =mandm=mz1 mentioned
rotation. earlier for the matrix elements of the dipole operator, the fact
Solving the generalized eigenvalue probléh#) yields that we are dealing with an homonuclear molecule gives rise
not only the initial state, but also a set of bound states anéP another selection rule: the dipole operator couples only
discretized continuum states. The number and the accura@jgenstates having different parity. In other words, the dipole
of such bound and continuum states depend on the numbé&puples only gerade states with ungerade states, so that in the
of terms in the basis expansion. The accuracy of these statéépole matrixW; in the eigenstate representation, all ele-
also depends on the nonlinear paramgkersed[36]. There- ~ ments coupling only gerade states vanish, as well as those
fore, the solution of the eigenvalue equatidd) provides an  coupling only ungerade states. Therefore, one can arrange
insight into the accuracy of the basis expansien by com-  the component&, (t) of ®(t) in increasingm values such
parison of the energies obtained with reference data. Tablethat for eachm, all components corresponding to gerddg
shows energies of the first ten energies gf(ith the nuclei ~ states are arranged sequentially, followed by all those corre-
repulsion 1R excluded for various angular momentum pro- sponding to ungerade states. Consequently, for each nonzero
jectionsm up to |m|=12. Energies given in this table are (m’,m) bloc of the matrixD;, the corresponding bloc in the
accurate up to all digits shown. This high accuracy achievednatrix W; is split into four nearly equal sub-blocs, among
for eigenstate energies suggests that the basis expaf@gion which two are zero. The increased sparsity\i), combined
is very suitable for describing H with the fact thath is diagonal indicates clearly that the
Another insight into the accuracy of the wave-function TDSE (15) in the eigenstate representation is much sparser
expansion6) can be gained through dipole matrix elements.that its analod13). As discussed below, this is an interesting
Figure 1 shows the dipole matrix elements obtained for theeomputational advantage for the eigenstate representation.
1soy— 2s0, transition for various internuclear distances. Another advantage of this representation is fieat(1)]% is
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TABLE I. Absolute values of energigsiuclei repulsion 1R excluded of the first ten bound states of;H
for various values of the electron’s angular momentum projectiaip to |m/=11. The equilibrium internu-
clear distancdR=2 a.u. is used. The superscripand u specifies the symmetry gerade or ungerade of the

eigenstate. Energies are given in atomic units.

m=0 m==1 m=x+2 m=%3
1.102634214% 0.42877181990 0.21273268181 0.12312550080
0.66753439220 0.22669962664 0.12496254294 0.07986919551
0.3608648753% 0.20086482991 0.1210194627% 0.07904328586
0.25541316509 0.1267101306% 0.08014600689 0.05556674393
0.235777628838 0.12619892053 0.07997419943 0.0554793889%7
0.17768104518 0.11591529004 0.07796553506 0.05500270852
0.13731292428 0.0808348993% 0.05563963169 0.04083181867
0.13079187763 0.08061122322 0.05562458478 0.04082330650
0.12664387015 0.0803160757% 0.05553856586 0.04076818295
0.10544230119 0.07532056626 0.0543787019L 0.04046842876
m=z4 m=x5 m=+6 m=x7
0.07949446119 0.05538472492 0.04074836414 0.03121946244
0.05548654454 0.04078221208 0.03123251806 0.02468193050
0.05526340422 0.04070881742 0.03120448535 0.02466991435
0.04081006084 0.03124359578 0.0246868277 0.01999701269
0.04077281964 0.03122713998 0.02467907910 0.0199931272%
0.0406324860%7 0.03117800508 0.02465939838 0.01998436945
0.03125268028 0.02469097684 0.01999905547 0.0165280441%
0.03124579038 0.02468685749 0.019996696 7% 0.01652668104
0.03122083254 0.02467529964 0.01999104822 0.01652376198
0.0311268944% 0.02464080593 0.01997670464 0.01651718314
m=+8 m=+9 m=+10 m==11
0.02467628832 0.019991990441 0.016524404477 0.013886206 7
0.01999465741 0.01652575980 0.013886937819 0.01183307502
0.01998901532 0.01652290828 0.013885406600 0.01183220998
0.01652697314 0.01388759952 0.011833453668 0.01020348925
0.01652491168 0.01388645048 0.0118327849710 0.01020308522
0.01652067327 0.01388425422 0.011831580695 0.01020239264
0.01388819175 0.01183379632 0.010203695398 0.00888860431
0.013887384%1 0.01183330539 0.010203388373 0.00888840726
0.01388579714 0.01183240162 0.010202852988 0.0088880787
0.01388253282 0.01183067436 0.010201888822 0.00888751570

the projection of the time-dependent wave function onto thequirement of a smaller and smaller time step to maintain the
electronic state of enerdy, and angular momentum projec- stability of the integration, even though accuracy require-
tion m. This means that the evolution of each electronic statenents allow for a much larger stepsize. The simplest cure for
can be traced throughout the laser excitation. this problem is to use an implicit methgdi0] that is stable in

Our numerical experiments, as well as previous similamprinciple for all stepsizes. The penalty is that implicit meth-
work on the H aton}31], indicate that the system of nonlin- ods require matrix inversions at each step. On the other hand,
ear PDE(13) is stiff [40] due to different scales in the matrix explicit methods require only matrix-vector products neces-
elements ofS, H, Dy, and D,. Working in the eigenstate sary to compute the time derivative, i.e., right-hand side of
representatior{15) attenuates this stiffness. However, with Egs.(13) or (15). With the large basis size involved in this
increasing laser intensity and basis size the stiffness becomesork, the computation time and memory costs of inverting
increasingly serious even in the eigenstate representatiolarge complex matrices far outweigh the smaller stepsizes
When an explicit method such as Runge-Kuy#8] is used required by explicit methods. This is particularly true in this
to propagate the TDSE, the stiffness translates into the rework because the matricés W,, and W, in Eq. (15) are
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at time tgnq (the end of laser excitationis given by Py,
=|Cmn(tend|? Thus, the total ionization probability at the end
of the laser pulse is

Pion =1- 2 |Cm,n(tend)|21 (17)

m,E,<0

where the summation spans adland all bound states, which
are characterized b, < 0. The ionization probability of B
obtained in the length and velocity gauges, is plotted versus
the orientation angley in Fig. 2. For the two laser peak
intensities (1=3x 10'* W/cn? and 1=5X10" W/cn?)
shown, there is a strong dependence of the ionization on the
orientation of H relative to the laser polarization axis. The
ionization probability is maximum fox=0 (parallel orienta-
tion of the moleculg and decreases with increasingto
reach a minimum foy =7 (perpendicular orientation of the
moleculg. This pattern appears to be independent of the
peak intensity of the laser, and of the gauge used for the

Dipole matrix element (a.u.)

computation.
O S Yy e T e Results in Fig. 2 show that there is a good agreement
Internuclear distance R (a.u.) between results from the length and velocity gauges, which

. . o is another illustration of the accuracy and stability of our
_FIG. 1. Dipole matrix elements for thesdy — 1soy, transitionin - cajculations. Our numerical simulations indicate that conver-
H5 f_or various mtern_uclt_aar distances. Results_ from our exa_ct ”“'gence of results is easier to achieve in the velocity gauge
mgrlcal approachsolid I_|ne5) are compared with those obtained than in the length gauge, as the latter requires more angular
using LCAO wave functiongdashed lings[37]. momenta(i.e., a largenuma,andmy,,,) in the basis expansion
for convergence. This agrees with previous numerical experi-
very sparse. Consequently, the computation of the right-hanghents in atomg42]. For the intensityl =3x 10" W/cn?
side of Eq.(15) is very fast, provided that one exploits this [see Fig. 23)], results from the two gauges agree very well,
sparsity. In this perspective, the eigenstate representatiagith the largest percentage difference of 6.5% occurring at
(15 has an advantage over the original representdtl@  the parallel orientation. At the higher intensity=5
because the higher sparsity of matrices in the former casg 1014 W/cn? [see Fig. )], both gauges still agree well,
leads to a faster computation of the time derivative. but there are more discrepancies in the vicinity of the per-
In this work, we use an embedded Runge-Kutta method opendicular orientation. In fact, for this orientation, the dipole
order 4 with an adaptative stepsill] to solve the TDSE  operator exclusively couples electronic eigenstates having
(15). We have developed an algorithm that is very fast, as itlifferent angular momentum projections This means that
exploits the sparsity of the matricés and W; (j=y,2) to  with increasing laser intensity, highen values need to be
perform matrix-vector operations. Furthermore, we use parincluded in the basis expansion, making it harder to achieve
allel computing resources to speed up the matrix-vectoconvergence in the length gauge.
product by distributing the contribution of each blocwf to Provided that the length gauge is udd®], |C,q(1)|? is
parallel processors. the probability of finding the system at any tinten the
Results discussed throughout this paper have been oliectronic eigenstate of angular momentmmand energy,..
tained with the following basis parametef|=0.2, 6=0.1,  Therefore, Pion(t):1_Zm,En<O|Cm,n(t)|2 is the ionization
Mhay= 30, fmax=30, andwma,=70, leading to about 135000 probability of the system at an arbitrary timiewhen the
basis functions. Results are considered converged when th@yngth gauge is used3]. The time evolution of the ioniza-
remain almost unchanged with increasing basis size. We usgn probability, for the orientation anglg=60° and laser
a laser pulse of frequenay,=0.057 a.u(800 nm). We use a  peak intensityl =5x 10" W/cn®, is plotted in Fig. 3, to-
“trapezoidal” pulse envelope, i.e., the pulse is turned on lingether with the electric fielddivided by 20 of the laser
early over three laser periods, kept at constant intensity fopulse. Figure 3 indicates that for every half-cycle, the ioniza-
four laser periods, and turned off linearly over three lasetjon probability increases sharply when the electric field in-
periods. This corresponds to a total of ten laser periodgreases towards an extremum, and then decreases slightly
(26 fs. The equilibrium internuclear distand@=2 a.u. is  when the electric field decreases towards zero.
used. The total excitation probability, i.e., the probability for
finding the system in excited states, is given by
Zme,<0lCmn(D]1*=[Co o(1)[?, where|Co ()| is the probabil-
ity for finding the system in the ground state at tim&he
The probability for finding the system in the electronic time evolution of the excitation probabilitialso calculated
eigenstate of enerdy, and angular momentum projectiom  in the length gaugds shown in Fig. 4, with the electric field

IV. IONIZATION AND EXCITATION
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(divided by 10 superimposed. It appears that the excitationmental harmonic. It follows that the high-order harmonic
probability is clearly driven by the electric field, as it in- spectrum from the system is almost completely determined
creases sharply with the magnitude of the electric field, andy |G(w)|?, where

then decreases almost to zero when the electric field tends to
zero. The electronic response follows the field so that one is :

e atabase remEn 6l = [ el TV (9

V. NUCLEAR CONTRIBUTIONS TO HARMONIC SinceV(r)=V;(r)+V,(r), then we may separate the nuclear

GENERATION contributions
The harmonic spectruii(w) radiated by a system is pro- G(w) = Gy(w) + Gy(w), (20)
portional to the absolute square of the Fourier transform h
AJ(w) of the dipole acceleratiof24], where
Adw) = f N (t)e-[VV(r) + EQW(®)dt.  (18) Gj(w) = f W (tle: VVi(n|¥(b)dt, (21)

(W) VV(r)+E(t)|W(t) is the dipole acceleration obtained with j=1,2. Equations(19) and (21) indicate thatG;(w) is
via Ehrenfest’s theorerf24]. The second term in Eq18) is  the analog of(w) for the nucleug. This suggests the inter-
the Fourier transform of the electric field, whose contributionpretation of|G;(w)|? as the harmonic spectrum originating
to the harmonic spectrum is essentially limited to the fundafrom the nucleug, in the presence of the other nucleus.
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FIG. 3. Time evolution of the ionization probability of;Hsolid FIG. 4. Time evolution of the total excitation probability ofH

lines) and of the electric field of the laser pul&#ashed lines This (solid lines and of the electric field of the laser pulg¢dashed
ionization probability is computed in the length gauge, with thelines). This excitation probability is computed using the length
molecular orientation anglg=60° and a laser peak intensity5 gauge, a molecular orientation angle 60°, and a laser peak inten-
X 10" W/cm?P. For a better comparison of the two plots, the elec-sity 1=5x 10 W/cn?. For a better comparison of the two plots,
tric field is divided by 20, i.e.E(t)/20 is actually plotted. Time is the electric field is divided by 10, i.eE(t)/10 is actually plotted.
given in units of the laser period. The internuclear distance andime is given in units of the laser period. The internuclear distance
laser pulse duration used are the same as in Fig. 2. and laser pulse duration are the same as in Fig. 2.

Figure 5 shows the harmonic spectra originating from theobtained by taking the inverse Fourier transform of the prod-
nucleus 1(i.e., |Gy(w)[? and from the nucleus Zi.e.,, uct of Gj(w) by a Gaussian window function, which is cen-
|Gy(w)|?) of H3, for various orientationg of the molecule tered at a selected reference harmonic, and which has a
with respect to the laser polarization. In both cases, and fospecified full width at half maximuntFWHM). The result-
all orientations, features of these spectra strongly resembldsg time profile indicates the time at which the selected set of
those of harmonic spectra from atoms: a sharp decrease Brmonics was emitted during the pulse. Figure 6 shows the
the first few harmonics, followed by a “plateau,” and endingtime profiles of harmonics emitted by the nuclei 1 and 2 of
with a cutoff that determines the highest harmonic ordet for various orientations of the molecule. The window
achievable. The cutoff is independent of the molecular orifunction used to obtain these profiles is centered at the 85th
entation and is located approximately at the 85th harmonidyarmonic and has a FWHM ofdg. This harmonic order is
which is in agreement with the energy cutoff formula givennear the cutoff region, where we anticipate the electron to
by Eq.(1). However, except for the orientatiore 90°, there  return to the molecular core with the maximum energy
is a feature in Fig. 5 that does not exist in the harmonic3.11J, [8].
spectra from atoms. This feature is the presence of bdth In addition, we have solved the one-dimensiol&D)
and evenharmonics. Even harmonics do not appear in theclassical Newton equatiok=—-E(t) for the motion a free
spectra of atoms due to the inversion symmetry that exists ilectron driven by the electric fielH(t) of the laser pulse.
these systems as a result of their spherical symmetry. In facAssuming that at the initial time,, the electron is at the
with the other nucleus nearby, the potential experienced bgrigin of the coordinates with zero velocity, we find the time
the electron from one nucleus is not inversion symmetricof first return of the electron to the origin and the corre-
(except fory=90°), leading to bottpndd andevenharmonics  sponding kinetic energy. These first returns are the so-called
in the spectra originated from a single nucleus. short electron trajectoridgl5]. By varyingt, throughout the

In order to get an additional insight into the nuclear con-laser pulse, we find and plot with dots in Figepthe first
tributions to the harmonic spectrum, we use a Gabor analysi®turn energies versus the return time. The resulting plots
[20,21], which provides the time profiles of the harmonic shows two peaks every laser period, corresponding to two
spectra originated from each nucleus. The time profiles arelassical returns with the maximum kinetic energy 8117
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[8]. Throughout the ten-cycle-long pulse used in this work,t; encounters nucleus 1 first, and nucleus 2 next. At the next
classical first returns with the maximum kinetic energyrecollision at timet,, the returning electron encounters
3.1, occur at the timed;=-1.3, ,=-0.8, t37=-0.3,t,  nucleus 2 first, then nucleus 1 next, and the intensity of the
=0.2,t5=0.7,t5=1.2, andt;=1.7 (in units of the laser peri- time profile att, is higher for the nucleus 2 than for the
ods. nucleus 1. This asymmetry repeats itself alternatively
For all molecular orientations, the time profiles in Fig. 6 throughout the laser pulse, with the intensity profile of the
show series of peaks separated by about half the laser periadgucleus 1 dominating at one recollision and the profile of the
These peaks, which indicate the instafdsiring the laser nucleus 2 dominating a half-cycle later at the next recolli-
excitation at which the 85th harmonic is emitted by eachsion, and so on. This suggests that at each return of the
nucleus, agree very well with peaks in the plot of the classielectron wave packet to the molecular core, high-order har-
cal first return energy versus the return time in Fi@)6This  monics are emitted predominantly by the nucleus that expe-
indicates that high-order harmonics are indeed emitted evengences the first recollision. Indeed, after its recollision with
half-cycle by each nucleus when the electron wave packeahe first nucleus, the electron wave packet that reaches the
returns for a recollision with the molecular core. second nucleus is diminished by its scattering and its recom-
Consider Fig. 6) for the parallel orientation of the mol- bination with the first nucleus. In other words, the nuclei
ecule(y=0). One sees that at the first harmonic emission ascreen each other from the returning wave packet. This is
time t;, the intensity of the time profile for the nucleus 1 is further supported by the fact that as one tends from the par-
larger than that of the nucleus 2. On the other hand, thallel orientation(x=0°) to the perpendicular orientatiory
classical analysis indicates that the returning electron at time90°) in Fig. 6, the asymmetry in the time profile between
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FIG. 6. Time profiles(in arb. unit3 of the 85th harmonic emit-  ferences(red curvé. The arrows indicate the location minima due
ted by the nucleus (solid lines and by the nucleus @lashed lines  to interferences. The internuclear distance and laser pulse duration
of H3, for laser orientation angleg shown. In the bottom pldi(e)  are the same as in Fig. 2. The peak intensity of the laser &
x=90°], where the time profiles for the two nuclei are identical, we x 10 W/cn?.
also plot(with dotg the kinetic energyin units of the ponderomo-
tive energyU,) of the returning classical electrons vs their first *
return times(spee text for more detajlsTime is shown in units of G()]?=[Gy(w)? + [Go(w)[* + 2 REGy () Gy(w)].

the laser period. (22

the two nuclei decreases gradually and vanishes for the caseis clear that|G,(w)|?>+|G,(w)|? is the harmonic spectrum
x=90° where there is no such screening. without interferences, and 2 E(él(w)G;(w)] is the interfer-
ence term. Therefore, plottingG(w)]? and |G,(w)|?
+|G,(w)|? side by side provides a direct quantitative, unam-
VI. INTERFERENCE EFFECTS IN HARMONIC biguous insight into influence of interferences in the har-
GENERATION monic spectra.
Plots of|G(w)[? and G;(w)|?>+|G,(w)|? for various orien-
As discussed previously, the full harmonic spectrumtations of the molecule are displayed in Fig. 7 for the peak
is almost entirely determined byG(w)?, while |Gj(w)]* intensity|=3x 10 W/cn?, and in Fig. 8 for the peak in-
(j=1,2 is the harmonic spectrum originating from the tensity |=5x10* W/cn?. Since the harmonic spectra
nucleusj. Since G(w)=G;(w)+Gy(w), then the full har- |Gy(w)[? and|G,(w)|? originating from each nucleus of H
monic spectrum is given by exhibit both odd and even harmoni@sxcept fory=90°), it
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is not surprising that the harmonic spectrum of Without e ik o )2 k- R
interferencegsee red lines in Fig. 7 and Figs(f8-8(i)] also I(k) = €1+ 2= 2e 12 co ) (23
contains both odd and even harmonics. However, it appears
that only odd harmonics are present in the full harmonicwherek=2x/\ is the electron momentum, ardits wave
spectraG(w)|? [see blue lines in Fig. 7 and Figsa8-8(e)], number. The electron momentuknis polarized along the
which includes interferences. In other words, interferencesglectric field, so thak -R=kRcosy. Destructive interference
lead to a cancellation of even harmonics. In fact, the inter{minimum in the harmonic speciraccurs wheri(k)=0, i.e.,
ference term restores the overall inversion symmetry of thavhen
system, leading to only odd harmonics. _ _
Another interesting feature from Figs. 7 and 8 is the fact kK-R=@p+Dm p=012,.... (24
that the interference term leads to a strong suppression of @imilar interferences were originally pointed out in angular
relatively broad band of consecutive harmonics, leading to alistributions of ATI spectra of K[12].
minimum in the harmonic spectrum of;HWith increasing The time profiles of the 85th harmonic in the spectrum of
X the size of the band of suppressed harmonics increased, (including interferencesare shown in Fig. 9 for various
and the location of the minimum moves to higher harmonicorientation angleg. To obtain these profiles, we use a win-
orders. The location of these minima agrees with the interdow function centered at the 85th harmonic, with a FWHM
pretation in[17], where it was shown that the occurrence of of 5w,. In each case, the scaled electric field of the laser
minima or maxima in the harmonic spectra depends on theulse is also plotted. For all orientation angles, the profiles
interference term show a series of peaks, which are separated by half the laser
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period, and which coincide with the classical first returnfiles of the full harmonic emission of 5las well as those of
timest; (j=1,7) described earlier. This means that suchharmonic emissions from each nucleus, are shown in Fig. 10,
high-order harmonics are emitted when the electron returnwith the scaled electric field of the laser superimposed. For
for a recollision with the molecular core, in agreement withall orientations shown in Fig. 10, one sees that due to de-
the semiclassical recollision mechanism. The emission ocstructive interference, the profiles for the full harmonic spec-
curs predominantly when the peak of the laser pulse isrum of H; (with interferences includedare significantly
reached, at intensities where tunnelling is significant. Onesuppressed compared to the profiles for each nucleus. The
also sees that harmonic emission occurs in the vicinity of th&5th harmonic af=60° [Fig. 10d)] is located near the cut-
zeros of the electric field, independently of the molecularoff harmonic energy given by Edl), and corresponds to a
orientation. This is in agreement with the semiclassical recolelassical recollision trajectory without the Coulomb poten-
lision model[8]. tial, the so-called short trajectof6]. Figure 1@d) indicates

Further insight into the interference resulting from elec-that the 85th harmonic ai=60° is emitted near the zero of
tron recollision with the molecular ion core is gained from athe electric field. In this cutoff energy region, indeed, har-
time profile analysis of the harmonic spectra of i the  monic emission always occur at the zero of the electric field
vicinity of the interference minima shown in Fig. 8. Explic- of the laser, when electrons following short trajectories re-
itly, we use a window function centered at the interferenceurn to the molecular core. This is confirmed in Fig. 9 for all
minima with a FWHM of Gu, as in Figs. 6 and 9. The pro- orientation angles.
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However, photon emission for harmonics at the interfer-10(a)-10(c)]. Note that for double trajectoriedow-order
ence minima for other orientation anglesee Figs. harmonic$ and single trajectorieshigh-order harmonigs
10(a)-10(c)] show the occurrence of harmonic emission atefficient destructive interference is seen to occur, reflecting
times that do not correspond to short trajectories. The semihe fact that photon emission amplitudes at each nucleus are
classical recollision model predicts that at lower energiesput of phase with each other. Next, we examine the theoret-
i.e., lower harmonics, two recollision trajectories shouldical formulations that allow to elucidate these multicenter
dominate, coalescing into one single trajectory at the maxiinterference phenomena, which occur only in molecules and
mum cutoff energy46,47. Thus, at lower energies, one ex- which have already been predicted to occur in molecular ATI
tra trajectory, called the long trajectory, is expected to returrspectra12].
to the molecular core at the peak of the electric field. This
extra trajectory has been recently characterizei. Figure VIl. ACCELERATION VERSUS DIPOLE
10 |Ilust_rate_s q_uantltatlvely t_hls se_:m_lclasspa_l prediction, as PHOTON EMISSION
the profiles indicate harmonic emissi@mecollisiong occur-
ring near the maximéminima) and the zeros of the electric It has been shown that the correct evaluation of the har-
field for harmonics well below the cutoffsee Figs. monic spectrum is to proceed via the Fourier transféitw)
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of the acceleration of the dipole, which may be expressed as .
[24] A*(w) = NgZ(Ep— By + w) f dr(e"'1+ 72
T . .
Aw = emar o 30
0 r rz
T . .
g Td(T) + d9T(T) - wzf dold(tdt, (25) Consider the integral
0 er; e r2> .
: : on| ——=+ ——=|kTdr. 31
whered(t)=(¥(t)|(-r)|¥(t)) is the mean dipole moment of Je ( r3 r ea (39

the electron, andl(t) the exact time-dependent wave func-
tion at timet. For simplicity, the turnon of the laser pulse is
chosen at=0, and its turnoff at=T. Exploiting Ehrenfest’s

theorem,A(w) can be expressed as in E48) in terms of (ie., atr=R/2), wheree1=earR2 s negligible (pro-

tmhgng[flgﬁgtec\)/; :Hgtg?#éorrg? n?g,t-]?:tsl[ﬁgltrlltjrlns S;Irt\(; f[:r?gql-:ou-\/ided thatR is relatively largé. Therefore, the second term
rier transform of the dipole mometﬁl(w):—wzfge“”‘d(t)dt, in Eq. (31) is negligible compared to the first one, so that

The quantity e 1= @*R2 js maximum at r;=0
(i.e., atr =—R/2), and is negligible elsewhere:r,/r3 is also
maximum atr =—R/2, while e-rzlrg is maximum atr,=0

i.e., the last term in Eq(25). Clearly, expressions oh(w) _[e-ry e-ry) . _e-ry .

. . . e | ==+ —=|kdr = | er=—=&kdr.
andD(w) are equivalent itl(T) andd(T) vanish at the end of r3 rs r3
the pulse, and if an exact wave functig#(t) is used. Using (32)

A(w) (the acceleration forjremphasizes maximum accelera-
tion at the nuclei, whereas usifijf ) (the dipole form em-  Similarly, one can show that
phasizes the spatial extent of electron trajectories. Below, we

. . _ . [er; ey ey
analyze the two forms in the context of an approximate wave f e Mz(—g + —3>e'k 'dr = J e wrz_ge'k dr.
function W (t), and compare with our exact numerical calcu- N ra ra
lations. (33

We start by approximating the time-dependent wave func-_ = |

tion by a superposition of the ground-state wave functign 1 1is gives

and a continuum wave packdt;, which describes the re-  a%(,) = N:Z5(E, - B¢ + o)
combining electrori46],

- —ar, &1 Jkr —ar, S 12 jkr

W(r,0) = AU 0Wo(r) + We(r, 1) (26) X|) e e [ et

Eo=-l, is the ground-state energy, agt) is the ground- +C.c. =NEZS(Ey - Ey + w)[6 K RI2 + gk R12]
state probability amplitude. We assume that there is little o 0 Tk -
depletion of the initial state, so thai(t)~1. For a single a1 ik
recollision event, Ehrenfest’s theorem gives x|em r3 ¢hlar +c.c., (34)

after making a change of variables—r; andr —r,. The
above equation clearly exhibits the more general interference
term (eKR2+ gkR/2) "where the+ and — signs correspond
after neglecting terms involving continuum-continuum tran-to the gerade and ungerade initial states, respectively. For the
sitions, and after ignoring the term that involves the electrignitial ground state of H (gerade involved in this work, one

Alw) = f eF(Wle- V V()W (t)ddt+c.c., (27)

field E(t) as for Eq.(19). . ~ retrieves the interference terftk) given by Eq.(23). Such
We approximate the initial state wave function by a linearan interference was originally obtained in ATI spectra i H
combination of atomic orbitald CAO) [12,48 [12].

S S Let Nin be the harmonic order corresponding to a mini-
Wo = No(e ™1 £ e7%2), (28) mum in the harmonic spectrum of;Hthe energy of the
where N3 is a normalization constant. We assume that théharmonic photon corresponding to this minimumNigwo.
initial state could have a gerade-) or ungeradg—) sym-  If k is the electron momentum at the instant of recombina-
metry. The real parameter, can be adjusted so that the tion of the electron wave packet with the ground state, then
energy associated with the wave functi28) agrees with We may write

the exact energy of ground or first excited state of H 1

[48,49. The continuum wave function describing the elec- ~k? = Npinwo- (35

tron returning to the molecular core with enerkfy2 is ap- 2

proximated by the plane wave Note that we consider Eq35), instead ofzk?=1,+Npnwp,

W (t) = dkTED, (29) which explicitly contains the ionization potentig} of the
¢ molecule, and which naturally emerges from E84). The
This leads to reason for this is that the recollision occurs near the nuclei,
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TABLE II. Harmonic order at which an interference minimum
occurs in the harmonic spectrum of; Hor various orientation
anglesy. Results from the solution of the TDSEecond column

are compared with those obtained from the acceleration formula

given by Eq.(23) using I(k)=0 (third column, and with those
derived from the dipole formula given by E¢43) using Z(k)=0
(fourth column).

Harmonic ordem;, at the minimum

Angle TDSE Acceleration Exact Dipole
X (This work) +LCAO +LCAO
0 ~23 22 42
30 =27 29 55
40 ~39 37 68
45 ~43 43 79
50 ~51 52 95
60 ~cutoff 87 153
75 >cutoff 323 553
90 None el el

when the electron momentuknin Eg. (35) already encom-
passes the effect of the Coulomb potential. Obtaikirfgppm
the destructive interference condition given by E2f), one
can use Eq(35) to derive the harmonic orde,,;, at which
a minimum in the harmonic spectrum is expected.

PHYSICAL REVIEW A 71, 053407(2005

(OTWk}KldI0)

E-E, i78(E = E)(O|Tylk)k/d0),

= f dE,
(37)

where the integral sums over all intermediate continuum
stategk). The total harmonic transition matrix elementTf

is separated into a nonresonant principal gartntegral and

a resonant transitioB=E,, whereE is the initial (final) total
energy of the laser-molecule systeify is an (unknown
intermediate transition operator corresponding to the multi-
photon transition from the initial bound sta@® to the con-
tinuum statelk) from which photon emission occurs. In Eq.
(37), we have emphasized the dipole form of the photon
emission process. For continuum energigsmuch larger
than the ionization potentidy, which is the threshold energy
for continuum excitation, the PP integral becomes negligible
due to cancellation from fluctuations of the denominator:
-E.>0 andE-E, <0 in Eqg.(36). Only in this limit can we
assume that the total transition moment depends on the reso-
nant process, i.e.,

(0[T|0) == (kd]0). (38)

The absolute phase of E(36) is an essential factor in at-
tosecond pulse synthegis0] and depends on both nonreso-
nant and resonant contributions.

Note, however, that instead of the acceleration formula of
Eq. (27), one could use the traditional dipole formula

D(w) = f ef(W e r| P (t))é“dt+c.c., (39

For various orientation angles, we summarize in Table I

the harmonic ordersly,;, at which a minimum occurs in the \yhich involves the transition matri88). Interestingly, using
harmonic spectra of H The second column in Table Il con- the wave functiong28) and (29), the above integral can be

tains the harmonic orders obtained in this work, after SOIU'eva|uated exact]y, without using the approximations de-

tion of the TDSE(see arrows in Figs. 7 and.8he harmonic
order in the third column are obtained by using E@4) and
(35 as described abové&acceleration” values It appears
that results from the solution of the TDSE agree quite well
with “acceleration” values. This indicates that the simple
emission model from a continuum to a bound state via an
acceleration mechanism arising from electron recollision re-
produces the interference pattern quite well. Note, however,
that the minima obtained in Figs. 7 and 8 from the full 3D

time TDSE are rather broad, suggesting that many electron

trajectories with different momenta actually contribute to
each minimum.

We examine next the transition matrix elem&nt which
determines the intensity of the HOHG spectrum. Consider
the multiphoton transition from the initial electronic st

scribed earlier in the evaluation of the integ(ar). Indeed,

Di(w):f ei(EO—Ek+w)tdt

% f Né(e—airl + e-aifz)e . reik'rdr + C.C.
X f (1t e 2)e- (- iV dr +c.c.

= ~iNg8(Eg — Ey + w)e - Vi {(e™ R+ ¥R D7 (k)}

+c.c., (40)

to a continuum staték) and then back to the same initial where

ground state by emission of a photon of enekgyNw. The
transition matrix element can be considered as a hyper-
Raman process through the continuum sfigtend is written
as[22]

8ma,

dik) = J e = (4D)

is the Fourier transform of the atomic orbitl*". For the

case of a geradét+) ground state considered in this work,
one obtains

(O[Twlk)kld|0)

0Tx|0) =
OfTo e

dE

lim e—0

(36)

D*(w) = - 2Nofw - E)DL(KIK), (42

whereZ(k) is given by
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e-R
(k) = i
(k) > sin

k-R e -k k-R spectrum of H exhibits minima, which are explicitly shown
( 2 ) 22+ COE( > ) (43 to be due to interferences.
* A simple interpretation of interference effects in the har-
Imposing the destructive interference conditibk)=0, one  monic spectrum of Eican be obtained via a transition matrix
arrives at discrete numerical solution that depends on an ircoupling the ground state described approximately by a lin-
tegerp as in Eq.(24). The resulting harmonics orders at ear combination of atomic orbita(t CAO) and a continuum
which minima are predicted are given in the fourth columnstate described approximately by a plane wave. The accel-
of Table Il. These results do not agree with our time-eration and dipole forms of the transition matrix lead to dif-
dependent calculations in the second column, as well as witferent results due to the use of approximate ground and/or
the predictions of the interference teritk) obtained from continuum wave functions. We have shown that the accelera-
the acceleration form. This means that obtaining the hartion form predicts accurately the interference effects i H
monic spectrum via the dipole fails to predict interferencewhile the dipole form does not. The accuracy of the accel-
effects correctly, when a LCAO wave function and a planeeration form is related to the fact that it weights the short
wave are used to represent the ground-state wave functiomnge(harmonics are emitted at these short distanpes of
¥, and the continuum wave functiol;, respectively. The the wave functions more highly than the dipole form, which
acceleration form emphasizes maximum acceleration ne@mphasizes larger distances. Using a plane wave to describe
the nuclei(short distancesthus, intuitively, the acceleration the continuum stateV., the dipole form of the transition
form more accurately reproduces the two-center character ghatrix indicates that the emission of harmonic photons is
the molecule, in contrast to the dipole form that emphasizegroportional to the Fourier transform of the ground-state
the spatial extentlarge distancesof electron trajectories. wave function¥, [see Eq(39)]. This feature is a key ingre-
Since the two forms are equivalent when exact wave funcdient of a recent method for tomographic imaging of the
tions are used, the failure of the dipole form is due to the usground-state molecular orbita]&5], a method that exploits
of approximate wave functiong, and¥.. Using a Coulomb the orientation dependence of HOHG spectra discussed in
two-center continuum wave function instead of a plane wavehis paper. Our work emphasizes that a formulation of to-
could improve results for the dipole form. We note that themographic imaging based on the acceleration f¢imstead
free electron states®” are not orthogonal to the initial state of the dipole form as in Ref25]) could be more accurate in
LCAO wave functions(28), and thus can give spurious re- reconstructing molecular orbitals from the harmonic spec-
sults[51]. trum. One final issue is the phase variation of the HOHG
amplitudes at the intensity minima illustrated in Figs. 7 and
8, and observed in model calculatigris/]. It has been sug-
VIII. CONCLUSIONS gested that this is due to a resonance effect where the recol-

We have described a new accurate method for solving théding electron wavelength is commensurate with the inter-
3D TDSE for a two-center molecule in interaction with an nuclear distance as indicated by Eq&3) and (24).
intense laser field having an arbitrarily oriented linear polar-Clarification of these issues will help develop HOHG in mol-
ization. The method uses spheroidal coordinates and expan@sules as a new tool for electron imaging and new sources of
the time-dependent wave function in a basis of associate@ttosecond pulse synthe$g.

Laguerre and Legendre functions. We show that projecting

the T_DSE ir_1.the basis of electronic. eige.tnstates. al!o_ws to ACKNOWLEDGMENTS

exploit additional symmetry, resulting in a significant

speedup of calculations. Complex scaling is used to prevent We thank NSERGNatural Science and Engineering Re-
the electron probability flux from reflecting when it eventu- search Council of Canagland CIPI(Canadian Institute for
ally reaches the boundaries of the region described by ouPhotonic Inovatiohfor financing this research. We also ac-
wave function. knowledge illuminating discussions with our colleagues, P.B.

A good agreement is found between results obtained ifCorkum, D. Villeneuve, and S. Chelkowski.
the length and velocity gauges. Our results show that the
ionization probability of H is maximum for the parallel ori-
entation of the molecule with respect to the laser field polar-
ization, and decreases to reach a minimum for the perpen-
dicular orienta_tion. The harmonic spectra_originating from ., any operatof(, the matrix elements are given by
each nucleus indicates that each nucleus is a source of har-
monic radiation, which has all features relevant to the har- , , . A gmme
monic spectrum emitted by an atom, except that both odd X} =deUT, OV, (ﬂ)XUT(f)V,T(n)Z—,
and even harmonics appear in the spectrum. A time-profile 7
analysis of the harmonic spectra emitted by each nucleus (A1)

indicates that the emission of high-order harmonics by eaculherep andp’ denote the sets of parametdrs, u, v} and

nucleus occurs every half-cycle when the electron wave =~ | | . o .
packet returns for a recollision with the molecular core. Wet™ 4}, respectivelyX is the unit operator for the case

have also calculated the harmonic spectra gfwith and  of the overlap matrixS, and X=H for the matrixH. dr
without interferences included. We confirm that the harmonic= :R(£2- 7?)dé dyde is the volume element in spheroidal
8

APPENDIX A: OVERLAP AND ELECTRONIC
HAMILTONIAN OF MATRIX ELEMENTS
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coordinates. Therefore, the overlap and atomic Hamiltonian 9 2m v—|m+1 L2m
matrix elements can be written respectively as y-\m\[z a(§-1)]= ? Lo el 2a(€ - 1)]
: R® ~ +|m+1-2a(é-1
8 = o g [d) (@4}, (0 -d]) (O], (2], _v|m = (€=
(A2) L2 [2a(é- 1)]. (A10)
Hﬁ’ =- [hV VdM L0+ drV",YV(O)Fl}T,Y .- (A3)  Exploiting the recurrenc€A10), the action of the derivative

operator in square-bracket in EgA6) on U"(¢) can be ex-

The nuclei repulsion is not included in the above matnxpreSSEd |n terms of Laguerre polynomials as

elements oH. Quantities involved in these expressions are>2-oAn(ELAT \m|+n[2a(§ 1)], where theA,(¢)'s are a mixture
given by of polynomials and rational functions df, and wheren

=0,1,2,... Thus, the integral in EqA6) can be written as
m _ m m a sum of integrals of a product &,(¢) by two Laguerre
d,,.(a) = L U (§U, ()& dé, (A4) polynomials[i.e., integrals similar to Eq(A8)], which we
also evaluate numerically using the Gauss-Laguerre quadra-
ture.
~m _ vV (VM adn, A5 Fr_om the recurrence relations of associated Legendre
m “(q) f (V) dn (AS) functions[28], one can show that

(p-m+1)(u+m+1)
Vi(y) =
hY) :f u (g){ f((52— )—) Wil Curu+y

* L [, ™

m?
- @ 2R | U, (AB)
In order to evaluatedT,yV(q), we iteratively apply the
1 recurrence relation (A1l) to express nqv”‘(n) as
h,T',M f /(,7)[ (( _,72)_) }Vum(ﬂ)dﬂ, = Br(w, VT wen(7), where theBy(u,m)’s depend on the
- guantum numberm and m but not on %, and wheren
(A7) =0,1,2,... Then we use the fact that
+1

whereq is a non-negative integer, ady, , is the Kronecker j VT (VY (D dm=6.. A12
symbol that gives rise to the selection ra¥e=min SandH. _ w IV An =0, (A12)

Note that we denote all integrals involving the variahje .,
with a tilde, and those involving the variablewithout a  In this way, the integraIsIZ’,"lT(q) up toq=3 needed in this

tilde. work are obtained in closed analytical form. Since the result-
Using the expression ob!(¢) given by Eq.(7) and  ing expressions are quite bulky, we do not reproduce them in
change of variablX=2a(£-1), one obtains this paper.

Starting from the first-order differential equation defining

" NN o X a/ X2 I Legendre polynomial®}!(») (see, e.g., Eq. 8.700.1 of Ref.
d, (@)= o L € P +1 12 + B [28]) one can show that’;‘(n) satisfies
LM (OL2T(X)dX. (A8) [i( 1- i) - i}vm =+ DT
p ( 772)87’ . () == plu+ DVi(y).
We evaluate the integral in EA8) numerically using the (A13)
Gauss-Laguerre quadrature form{f2] o
This gives
o0 N
J e Xf(X)dX= >, w; f(X;), (A9) hl"}’# =-ulpu+1)5,,. (A14)
0 j=1

wherew; andX; are the weights and abscissae, respectively,

of the Gauss-Laguerre quadrature. Note that whgd is a APPENDIX B: DIPOLE MATRIX ELEMENTS

polynomial, as is the case in EGA8), the Gauss-Laguerre

quadrature (A9) is exact, provided that the number of N the length gauge, dipole matrix elements are given by

o

quadrature pointdN is larger than half the degree of the EQ. (Al), with X=y=(R/2)sin H\(£-1)(1-7°) and X=z

polynomial f(x) [52]. =(R/2)&n for they andz components of the dipole, respec-
Using Eqg. 8.971.3 0of28], one can show that tively [27]. This leads to
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' (5m’ m+1 ~ Oy m—l) R m’'.m Jm m dé
DLyP = — — xhM= [ UT (HUN(§) ==, B9
(b, 5 24 b= U eue Z= (B9)
m’,m, Ay m',m _am m A m’ m
x{t,, (Z)t;u,u 0 -t (O)tM,’ﬂ (2} (B1) v +1Vm’( o dr 510
for they component of the dipole in the length gauge, and Kt = 4 M SN V1- ,}2’

' R ~ ~
(D))" :5m,'m§{d:‘,’,}(3)dl'f,’ﬂ(l)—dr;“,’v(l)dl'?,’ﬂ(3)} . - ) §
Z,,r,,,:f UV,(§)<(§ D ) uy(§dé,  (B11)
1

(B2)
for the z component of the dipole in the length gauge, where +1 P
m Zo .= Vo (F-1)— |V, (;ndy.  (B12)
o m = i M an
t, ()= é)U (HENE - 1d¢, (B3)
1 In order to evaluate the integra(®3), (B7), (B9), and

(B11), we express their integrands as a sum of products of
% e &D  polynomials of¢, and Laguerre polynomials by us-
m m m ’ ]
(@)= f V (77)V (N7N1-7dn, (B4 ing Egs.(7) and(A10), then use the quadrature formui#0)
to evaluate the resulting integral numerically. Here, the
with g as an integed”, (q) andd™, (q) are defined in Eqs. quadrature formula is also exact, for the same reasons as
(A5) and (A4). o Hor mentioned above for the integréd8).

For the evaluation of ™LM(), we first use Eq. 8.733.4
gf Ref. [28] to show that V””lnq\l 772V "(n)
=ay(p, MV 1 V5 () +ag(u, m>v"”” V),
where theal(,u m) and ay(u,m) are funcuons ofu andm
(O m+1 = O m-1) R? g ' m only. Then, applying the recurren€Al1l) iteratively for the
2 22{ v L 0 integer ¢ considered, we further express
VM””l W1-?V () as a linear combination of

For the velocity gaug@k:a/ay andX=4/ gz for they and
z components of the dipole, respectively. Using expression
of 9/9y and d/ 9z in spheroidal coordinatd®7] leads to

V\p' —
(D))=

~m m_ MO me1 + S, m‘l)Rj Vm+1VM”l+pl(n) (where p is an integey, so that Eq.(A12)
Yo 2i 2 could be used. This leads to closed-form analytical expres-
’ ! ’ ’ m+1m
X{t:j‘in(o)ry(ﬂrr:y;bm_'_X:}riy,:nf:)'/,j'm(o)}, (B5) sions fortM M that we do not reproduce here because they

are lengthy. A similar approach using Eq. 8.735.5 of Ref.
B2 [28] also yields analytical expressions ﬁ;j’";m
(Dv)p St iz 120 (1) +d" (1)~Zm 1, (B6) We could not obtain analytical expressions for the inte-
mo2 A K grals (B8) and (B10). Instead, these integrals are evaluated
numerically using the Gauss-Legendre quadraft4és, after
expressmg?/anvm(n) in terms ofV '.1(7) by means of Eq.
8.733.1 of Ref[28] The latter equatlon also leads to

where

ynm= f U?'(g)(gvfz—13>UL"(§)d§, (B7)
1 9% —m (u—m+1)(u+m+1)

z, = ’
wam ENT prep ey

, +1 , a)
yomm= v 1-7"— |V (dn, (B8 -
=[G Joron, e SRS AL D
pn—1D(Zu
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