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We describe a numerical method used previouslyfPhys. Rev. A 70, 011404sRd s2004dg for solving the
three-dimensional time-dependent Schrödinger equation for H2

+ swith fixed nucleid in interaction with an
intense, arbitrary oriented laser pulse. In this approach, we use the prolate spheroidal coordinate system, and
expand the time-dependent wave function in a complex basis of Laguerre polynomials and Legendre functions.
Our results indicate that ionization, excitation, and harmonic generation are strongly influenced by the orien-
tation of the molecular axis with respect to the laser polarization axis. We evaluate the contribution of each
nucleus to harmonic generation, as this permits a quantitative and nonambiguous assessment of interference
effects as a function of molecular orientation. A time-profile analysis, using a Gabor transform of the harmonic
spectrum around certain harmonics, shows that every half-cycle high-order harmonics are emitted byeach
nucleuswhen the electron wave packet returns for a recollision with the molecular core, thus confirming the
strong field recollision model in molecules. In general, each nucleus emits both odd and even harmonics, but
even harmonics are destroyed by interferences between contributions of each nucleus. These interferences are
shown to be maximum at certain harmonic orders as a function of molecular orientation. A comparison of
acceleration and dipole formulations of the harmonic emission process is made in order to assess the use of
high-order harmonic generation for electron wave-function imaging.
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I. INTRODUCTION

Current laser technology has opened up a new field of
study, the nonlinear nonperturbative response of matter to
intense ultrashort laser pulsesf1g. In the case of atomic sys-
tems, this has led to the discovery of many new nonlinear
nonperturbative optical phenomena and processes such as
above threshold ionizationsATI d, tunnelling ionization, and
high-order harmonic generationsHOHGd. The latter has be-
come the main source for the generation of subfemtosecond,
i.e., attosecond pulsesf2,3g.

The interaction of molecules with intense ultrashort laser
pulses introduces new challenges due to the presence of
nuclear motion, i.e., extra degrees of freedom, and due to
additional time scalesf4g. Previous studies of HOHG based
on the numerical solution of the time-dependent Schrödinger
equation sTDSEd for H2

+ with both static sBorn-
Oppenheimerd and movingsnon-Born-Oppenheimerd nuclei
f5g have confirmed the applicability of the quasistatic atomic
model of recollision of the ionized electron with the parent
ion, or with neighboring ionsf6,7g as the main mechanism
for HOHG. This semiclassical recollision mechanism pre-
dicts a maximum harmonic orderNm, giving rise to the cutoff
law f8,9g

Nmv0 = Ip + 3.17Up, s1d

where Ip is the ionization potential, andUp= I /4v0
2 is the

ponderomotive energy of the electron in a laser field of in-
tensity I and frequencyv0. The recollision of an ionized
electron with neighboring ions in extended molecular sys-
tems can lead to even higher cutoffs or equivalently higher
harmonic orderNm f7g.

The semiclassical recollision model predicts furthermore
that under the influence of the laser field, the ionized electron
returns to the parent ion near the zero of the electric field,
assuming that the electron ionizes with zero initial velocity
via tunnelling. The recollision model has now been con-
firmed experimentally for H2

+ f10g and D2
+ f11g. These experi-

ments confirm that ultrashort time scales are characteristic of
electron recollision and depend on the laser frequency only.
This suggests that Born-Oppenheimersi.e., fixed nucleid
simulations of molecular HOHG should be useful in explor-
ing the effect of laser-induced electron diffractionsLIEDd
f12g, and the concomitant interferences arising from rescat-
tering of the recolliding electron wave packet with different
nuclei observed recently in a molecular simulation of ATI
f13g.

Molecular HOHG offers another variation upon the
atomic case, the orientation dependence of this nonlinear re-
sponse to short intense pulsesf14g, whose orientation de-
pends on laser intensitiesf15g. Experiments have also shown
that HOHG in molecules is enhanced when molecules are
prealigned, and that there is a high sensitivity of the effi-
ciency of the HOHG spectrum with the relative orientation
of the molecule and the laser pulse polarizationf16g. Recent
H2

+ and H2 reduced model calculationsf17,18g confirm the
importance of interference contributions to HOHG from
various regions within a molecule as in previous calculations
of LIED f12g and molecular ATIf13g.

In this paper, we present an exact numerical solution of
the three-dimensionals3Dd Born-Oppenheimersstatic nucleid
TDSE for the interaction of H2

+ with a laser pulse having an
arbitrary oriented linear polarization. We investigate the in-
fluence of molecular orientation on ionization and harmonic
generation. The contribution of each nucleus to the harmonic
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spectrum is evaluated separately, so that interferences of the
two contributions are assessed unambiguouslyspreliminary
results have been reported in an earlier communicationf19gd.
A time-frequency analysis of the generation of harmonics is
performed using a Gabor transform techniquef20,21g, so
that the magnitude of relevant interferences and their en-
hancement or suppression are identified in time. Further-
more, we examine the usefulness of a Frank-Condon model
of HOHG intensities and their orientation dependence, as a
direct transition from a continuum electron wave function to
the ground-state electron wave function. This usually occurs
in continuum molecular Raman transitionf22g or harmonic
interference ionization spectraf23g. Dipole and acceleration
formulationsf24g of the photoemission process are compared
in order to establish a valid theoretical description of the
interference effects. The sensitivity of HOHG intensities to
the molecular orientation have recently been proposed as a
new tool for tomographic reconstruction of molecular elec-
tronic orbitals f25g. The present results provide guidelines
for such an inversion procedure based on HOHG spectra, as
we provide a rigorous derivation of analytical formulas for
the interference in the harmonic spectra of two-center mol-
ecules.

This paper is organized as follows. In Sec. II, we describe
the complex basis in which the time-dependent wave func-
tion is expanded. The solution of the TDSE is presented in
Sec. III, where we also discuss the advantages of the method
used. Results for ionization and excitation are given in Sec.
IV. The contribution of each nucleus to the harmonic spec-
trum of H2

+ is analyzed in Sec. V. Section VI is devoted to a
study of interference effects in the harmonic generation of
H2

+. We compare the acceleration and dipole formulations of
the harmonic photoemission in Sec. VII. After a conclusion
in Sec. VIII, we present in two appendices the evaluation of
matrix elements involved in the solution of the TDSE. Un-
less stated otherwise, atomic unitssa.u.d are used throughout
this paper.

II. THE WAVE-FUNCTION EXPANSION

In the Born-Oppenheimer approximationsfixed nucleid,
the electronic Hamiltonian for a system consisting of two
nuclei having identical chargeZ, and one active electron is

H = −
1

2
¹2 + Vsrd +

Z2

R
, s2d

whereR is the internuclear distance, and

Vsrd = V1srd + V2srd = −
Z

r1
−

Z

r2
s3d

is the Coulomb potential experienced by the electron due to
both nuclei.r 1=r +R /2 andr 2=r −R /2 are the position vec-
tors of the electron relative to the nucleus 1 and relative to
the nucleus 2, respectively.r is the position vector of the
electron relative to the geometric center of the molecule.

The interaction of the above system with a laser field is
described by the TDSE

i
]

]t
Csr ,td = fH + DstdgCsr ,td, s4d

where the HamiltonianDstd for the interaction of the electron
with the laser field isDLstd=Estd ·r in the length gauge, and
is DVstd=−iAstd ·¹ in the velocity gauge. The vector poten-
tial Astd of the laser field isAstd=A0fstdsinsv0tde, whereA0

is the maximum amplitude,fstd is the pulse envelope,v0 is
the laser frequency, ande is the unit vector along the laser
polarization axis. The electric field of the laser pulse is de-
rived from Astd asEstd=−s] /]tdAstd.

For convenience, we make the following choices, which
do not impose any physical restriction on the system:sid The
molecular axis is aligned along thez axis, i.e.,R=Rez, where
ej denotes the unit vector along thej axis. sii d The laser
polarization is chosen in theyz plane, so thate=sinsxdey

+cossxdez. Therefore, DLstd=Estdfssinxdy+scosxdzg and
DVstd=−iAstdfssinxds] /]yd+scosxds] /]zdg. Since the mol-
ecule is aligned along thez axis, thenx is the angle between
the z axis and the laser polarization direction.

The electronic angular momentum operatorL2 and its pro-
jection Lz along thez axis satisfy the relationsfL2,HgÞ0
and fLz,Hg=0. This means that in the absence of external
field, a two-center molecule does not have spherical symme-
try, but does have axial symmetry. Consequently, the projec-
tion m of the electronic angular momentum along the inter-
nuclear axisLz is conserved. In the presence of a laser field
linearly polarized along the molecular axissi.e., x=0d, the
axial symmetry is preserved. In this case, the solution of the
resulting TDSE is in essence a two-dimensionals2Dd prob-
lem due to this axial symmetry. However, for an arbitrary
oriented laser polarization, as considered in this work, the
existence of a component of the electric field perpendicular
to the molecular axis breaks the axial symmetry, so that the
angular momentum projectionm is no longer conserved.
Solving the TDSE for this case is by all means a fully 3D
problem.

Prolate spheroidal coordinates are well established as the
most adequate coordinate system for investigating the mo-
lecular structure of two-center moleculesf26g. These coordi-
natessj ,h ,fd are defined by

j = sr1 + r2d/R, h = sr1 − r2d/R, s5d

where f is the azimuthal angle, 1øjø +`, −1øhø +1,
and 0øfø2p. Expressions in spheroidal coordinates of the
HamiltonianH, the coordinatessx,y,zd, and their derivatives
s] /]x,] /]y,] /]zd can be found in Ref.f27g.

For a two-center molecule, the stationary Schrödinger
equationHC=EC is separable in spheroidal coordinates.
Due to this separability, it is suitable to expand the time-
dependent wave function in a discrete basis as follows:

Csj,h,f,td = o
m,m,n

ammnstdUn
msjdVm

mshd
eimf

Î2p
, s6d

where ammnstd are time-dependent coefficients. The basis
functionsUn

msjd andVm
mshd are given by
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Un
msjd = Nn

me−asj−1dsj2 − 1dumu/2Ln−umu
2umu f2asj − 1dg s7d

and

Vm
mshd = Mm

mPm
mshd, s8d

where a=bR and b is a real or complex parameter to be
discussed later.Lp

qsxd denotes the Laguerre polynomials, and
Pp

qsxd is the associated Legendre functionsor spherical func-
tiond of the first kind f28g. m is the electron’s angular mo-
mentum projection onto thez axis. It takes the valuesm
=0, ±1, ±2, . . . , ±mmax. The two other indices take the val-
ues m= umu , umu+1, . . . ,umu+mmax and n= umu , umu+1, . . . ,umu
+nmax. mmax, mmax, and nmax are cutoff parameters used to
control the basis size.

We use the following normalization conditions for the ba-
sis functions:

E
1

+`

Un
msjdS j − 1

j + 1
Dumu

Un
msjddj = 1 s9d

and

E
−1

+1

Vm
mshdVm

mshddh = 1, s10d

which lead to

Nn
m =Îs2ad2umu+1sn − umud!

sn + umud!
s11d

and

Mm
m =ÎSm +

1

2
D sm − md!

sm + md!
. s12d

The normalization conditionss9d ands10d are interesting be-
cause they lead to analytical expressions forNn

m andMm
m. In

addition, the resulting normalization constantsNn
m and Mm

m

are crucial in preventing the basis functionsUn
msjd andVm

mshd
from taking very large values with increasingm. Such large
values lead to numerical instabilities. Finally, the basis func-
tion Vm

mshd inherits interesting properties such asVm
−mshd

=s−1dmVm
mshd andVm

ms−hd=s−1dsm+mdVm
mshd.

SincePm
mshd=s−1dms1−h2dm/2sdm/dhmdPmshd f28g, it ap-

pears that the basis functionsUn
msjd andVm

mshd depend on the
factors sj2−1dumu/2 and s1−hdumu/2, respectively. This feature
has been shown to removes singularities in the Hamiltonian
H f26g. In addition, a semianalytic solution of the stationary
Schrödinger equation for H2

+ is greatly simplified by writing
the wave function of H2

+ in terms of Laguerre polynomials
and associated Legendre functionsf26g. These functions per-
mit to recover the well-known hydrogenlike wave functions
in the united-atom limitsi.e., R→0d. Basis expansions simi-
lar to s6d have been used successfully for molecular structure
f29g and multiphoton ionization rate calculations for H2

+ f27g,
as well as for time-dependent calculations in H2

+ with laser
pulses linearly polarized along the internuclear axisf30g. It is
worth mentioning that the basis expansions6d mimics the
Sturmian basis used for the spherically symmetric case of
hydrogenf31g.

As mentioned above, for the case of a laser field linearly
polarized along thez axis,m is conserved. This means that if
the initial state is the ground state of H2

+ for which m=0, one
can setm=0 in the basis expansions6d. If there is a compo-
nent of the laser field perpendicular to the internuclear axis,
one has to include higherm values in the expansions6d.

Throughout the time evolution of the exact solution
Csj ,h ,f ,td, the quantitykCstd uCstdl, which represents the
probability for finding the electron somewhere in the whole
space, remains constant and equal to unity. The computation
of kCstd uCstdl requires an integration over all the space. In
practice, however, due to limitations in computer resources,
the expansions6d should be truncated. Therefore, the result-
ing approximate wave function only describes a restricted
region of space, say, a sphere of some characteristic radius.
As long as the system remains in this sphere over the time
interval of interest, the truncated basis is adequate. But if the
system breaks up during its time evolution, as it is the case
when ionization occurs, one or more fragments of the system
may leave this sphere. Nevertheless, if the basis functions
Un

msjd are real, the normkCstd uCstdl computed with the
truncated wave-function expansion remains constant equal to
unity throughout the time evolutionf32g. This means that the
probability of finding the complete system inside the sphere
is always unity on a real basis. Therefore, if the system
breaks up with one of its fractions reaching the surface of the
sphere over the time interval under interest, the fact that
kCstd uCstdl=1 with a real basis means that this fragment
must reflect from the surface and return to the interior of the
sphere.

These reflections are unphysical and must be prevented by
absorbing the outgoing flux at the boundary of the sphere.
This may be achieved by imposing strictly outgoing wave
boundary conditions on the wave function itself. It has been
shownf33g that complex scalingf34g in the solution of the
TDSE analytically prevents reflection of outgoing wave
packets. In prolate spheroidal coordinates, complex scaling
can be implementedf35g by making the transformation
sj ,h ,fd→ seiuj ,h ,fd in the Hamiltonian, or equivalently,
by making the transformationsj ,h ,fd→ se−iuj ,h ,fd in the
wave function, whereu is the complex scaling “angle.” For
the basis expansions6d, the complex scaling method amounts
to using a complex nonlinear parameterb= ubue−iu s0,u
,p /2d, and the resulting basis functionsUn

msjd behave as-
ymptotically as outgoing waves. This asymptotic outgoing
behavior prevents reflections at the boundaries of the region
described by the truncated wave-function expansion.

III. THE PROPAGATION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

In order to solve the TDSEs4d, we project it onto the
basis expansions6d to obtain its matrix representation

i
]

]t
SC = fH + gstdssinxDy + cosxDzdgC, s13d

where C represents the vector representation of the wave
function, andS is the overlap matrix.H, Dy, andDz denote,
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respectively, the matrix elements of the electronic Hamil-
tonian, and those of they and z components of the dipole
operatorslength or velocity gaugesd. gstd is a scalar function
that equalsEstd in the length gauge, and equals −iAstd in the
velocity gauge.

Details on the evaluation of the matrix elements ofS, H,
Dy, andDz are given in Appendices A and B. Thanks to the
separability of spheroidal coordinates, all these matrix ele-
ments can be expressed as products of one-dimensional inte-
grals, many of which are obtained in closed analytical forms.
Those integrals that could not be obtained analytically are
evaluated numerically using Gauss-Laguerre and Gauss-
Legendre quadratures, which are very stable and accurate.

As shown in these appendices, the basis expansions6d
yields interesting selection rules;S, H, and Dz matrix ele-
ments are subjected to the selection rulem8=m, whereasDy
matrix elements are subjected tom8=m±1. In other words,
the z component of the dipole couples only states that have
identical angular momentum projections, whereas they com-
ponent of the dipole couples states whose angular momen-
tum projections differ by unity. Due to these selection rules,
all matrices involved in Eq.s13d are very sparse:H, S, and
Dz are bloc diagonal, whereasDy is bloc tridiagonal. Here,
each bloc corresponds to a givensm8 ,md pair, and the non-
zero blocs are those for which the selection rulesm8=m and
m8=m+1 hold.

In order to obtain the initial state for time propagation of
the TDSE s13d, we solve the the stationary Schrödinger
equation, which is equivalent to solving the eigenvalue prob-
lem

HC = ESC, s14d

whereE denotes the requested eigenvalues. Note that, due to
complex scaling,H andS are complex symmetric, so that the
eigenvaluesE are complex. However, bound state energies
are independent of the complex scaling angleu, whereas
continuum states are rotated downward in the lower half of
the complex plane, making an angle 2u with the real axis
f34g. In other words, bound states are unchanged by complex
rotation.

Solving the generalized eigenvalue problems14d yields
not only the initial state, but also a set of bound states and
discretized continuum states. The number and the accuracy
of such bound and continuum states depend on the number
of terms in the basis expansion. The accuracy of these states
also depends on the nonlinear parameterb usedf36g. There-
fore, the solution of the eigenvalue equations14d provides an
insight into the accuracy of the basis expansions6d, by com-
parison of the energies obtained with reference data. Table I
shows energies of the first ten energies of H2

+ swith the nuclei
repulsion 1/R excludedd for various angular momentum pro-
jections m up to umu=12. Energies given in this table are
accurate up to all digits shown. This high accuracy achieved
for eigenstate energies suggests that the basis expansions6d
is very suitable for describing H2

+.
Another insight into the accuracy of the wave-function

expansions6d can be gained through dipole matrix elements.
Figure 1 shows the dipole matrix elements obtained for the
1ssg→2ssu transition for various internuclear distances.

Our results in Fig. 1 are plotted together with dipole matrix
element formulaf37g obtained using a linear combination of
atomic orbitalssLCAOd. As expected, as small internuclear
distances where LCAO wave functions are known to be quite
inaccurate, there are substantial differences between the ap-
proximate LCAO results and our exact results. However,
with increasing internuclear distance the LCAO approxima-
tion becomes increasingly valid, and one can see that LCAO
results get closer to our exact results.

Equations13d is a system of first-order partial differential
equationssPDEsd, which can be solved using standard nu-
merical procedures. However, for reasons described below,
we project it into the basis of electronic eigenstatessi.e., the
so-called eigenstate basisf38,39gd where it becomes

i
]

]t
F = fh + gstdssinxWy + cosxWzdgF, s15d

where Fstd=PtCstd, and where the exponentt denote the
transposed of the corresponding matrix.h is the diagonal
matrix of eigenvalues ofH selectronic energiesd. P is the
orthogonal matrix of eigenvectors ofH selectronic wave
functionsd, i.e., h=PtHP. W j =PtD jP is the matrix of dipole
couplings between all electronic eigenstatess j =y,zd. The
projected wave functionFstd in the eigenstate basis repre-
sents a linear superposition of all electronic eigenstates re-
sulting from solving the eigenvalue equations14d, i.e.,

Fstd = o
m,n

Cm,nstdFm,n, s16d

where Fm,n is the electronic eigenstate of energyEn and
angular momentum projectionm, andCm,nstd is its probabil-
ity amplitude.n labels both bound states and the discretized
continuum. Note thatCstd can be easily deduced fromFstd
by the matrix vector productCstd=PFstd. This last transfor-
mation permits us to move back and forth between the eigen-
state representationF of the wave function and its coordi-
nate representationC.

Besides the selection rulesm8=m andm=m±1 mentioned
earlier for the matrix elements of the dipole operator, the fact
that we are dealing with an homonuclear molecule gives rise
to another selection rule: the dipole operator couples only
eigenstates having different parity. In other words, the dipole
couples only gerade states with ungerade states, so that in the
dipole matrix W j in the eigenstate representation, all ele-
ments coupling only gerade states vanish, as well as those
coupling only ungerade states. Therefore, one can arrange
the componentsCm,nstd of Fstd in increasingm values such
that for eachm, all components corresponding to geradesgd
states are arranged sequentially, followed by all those corre-
sponding to ungerade states. Consequently, for each nonzero
sm8 ,md bloc of the matrixD j, the corresponding bloc in the
matrix W j is split into four nearly equal sub-blocs, among
which two are zero. The increased sparsity inW j, combined
with the fact thath is diagonal indicates clearly that the
TDSE s15d in the eigenstate representation is much sparser
that its analogs13d. As discussed below, this is an interesting
computational advantage for the eigenstate representation.
Another advantage of this representation is thatuCm,nstdu2 is
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the projection of the time-dependent wave function onto the
electronic state of energyEn and angular momentum projec-
tion m. This means that the evolution of each electronic state
can be traced throughout the laser excitation.

Our numerical experiments, as well as previous similar
work on the H atomf31g, indicate that the system of nonlin-
ear PDEs13d is stiff f40g due to different scales in the matrix
elements ofS, H, Dy, and Dz. Working in the eigenstate
representations15d attenuates this stiffness. However, with
increasing laser intensity and basis size the stiffness becomes
increasingly serious even in the eigenstate representation.
When an explicit method such as Runge-Kuttaf40g is used
to propagate the TDSE, the stiffness translates into the re-

quirement of a smaller and smaller time step to maintain the
stability of the integration, even though accuracy require-
ments allow for a much larger stepsize. The simplest cure for
this problem is to use an implicit methodf40g that is stable in
principle for all stepsizes. The penalty is that implicit meth-
ods require matrix inversions at each step. On the other hand,
explicit methods require only matrix-vector products neces-
sary to compute the time derivative, i.e., right-hand side of
Eqs. s13d or s15d. With the large basis size involved in this
work, the computation time and memory costs of inverting
large complex matrices far outweigh the smaller stepsizes
required by explicit methods. This is particularly true in this
work because the matricesh, Wy, and Wz in Eq. s15d are

TABLE I. Absolute values of energiessnuclei repulsion 1/R excludedd of the first ten bound states of H2
+

for various values of the electron’s angular momentum projectionm up to umu=11. The equilibrium internu-
clear distanceR=2 a.u. is used. The superscriptg andu specifies the symmetry gerade or ungerade of the
eigenstate. Energies are given in atomic units.

m=0 m= ±1 m= ±2 m= ±3

1.1026342145g 0.42877181990u 0.21273268181g 0.12312550080u

0.66753439220u 0.22669962664g 0.12496254294u 0.07986919551g

0.36086487534g 0.20086482991u 0.12101946275g 0.07904328586u

0.25541316509u 0.12671013067g 0.08014600689g 0.05556674393u

0.23577762883g 0.12619892053u 0.07997419943u 0.05547938897g

0.17768104513g 0.11591529004u 0.07796553506g 0.05500270852u

0.13731292428u 0.08083489934g 0.05563963169g 0.04083181867g

0.13079187763g 0.08061122322u 0.05562458478u 0.04082330650u

0.12664387015u 0.08031607574g 0.05553856586u 0.04076818295g

0.10544230117g 0.07532056626u 0.05437870191g 0.04046842876u

m= ±4 m= ±5 m= ±6 m= ±7

0.07949446111g 0.05538472492u 0.04074836411g 0.03121946244u

0.05548654454u 0.04078221208g 0.03123251806u 0.02468193050g

0.05526340422g 0.04070881742u 0.03120448535g 0.02466991435u

0.04081006084g 0.03124359573u 0.02468682771g 0.01999701269u

0.04077281964u 0.03122713993g 0.02467907910u 0.01999312727g

0.04063248607g 0.03117800508u 0.02465939833g 0.01998436945u

0.03125268028u 0.02469097684g 0.01999905547u 0.01652804417g

0.03124579033g 0.02468685749u 0.01999669677g 0.01652668104u

0.03122083254u 0.02467529964g 0.01999104822u 0.01652376198g

0.03112689445g 0.02464080593u 0.01997670464g 0.01651718314u

m= ±8 m= ±9 m= ±10 m= ±11

0.02467628832g 0.01999199041u 0.016524404477g 0.01388620671u

0.01999465741u 0.01652575980g 0.013886937819u 0.01183307502g

0.01998901532g 0.01652290828u 0.013885406600g 0.01183220998u

0.01652697311g 0.01388759952u 0.011833453668g 0.01020348925u

0.01652491168u 0.01388645043g 0.011832784970u 0.01020308522g

0.01652067327g 0.01388425422u 0.011831580695g 0.01020239264u

0.01388819175u 0.01183379632g 0.010203695398u 0.00888860431g

0.01388738491g 0.01183330539u 0.010203388373g 0.00888840726u

0.01388579714u 0.01183240162g 0.010202852988u 0.00888807877g

0.01388253282g 0.01183067436u 0.010201888822g 0.00888751570u
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very sparse. Consequently, the computation of the right-hand
side of Eq.s15d is very fast, provided that one exploits this
sparsity. In this perspective, the eigenstate representation
s15d has an advantage over the original representations13d
because the higher sparsity of matrices in the former case
leads to a faster computation of the time derivative.

In this work, we use an embedded Runge-Kutta method of
order 4 with an adaptative stepsizef41g to solve the TDSE
s15d. We have developed an algorithm that is very fast, as it
exploits the sparsity of the matricesh and W j s j =y,zd to
perform matrix-vector operations. Furthermore, we use par-
allel computing resources to speed up the matrix-vector
product by distributing the contribution of each bloc ofW j to
parallel processors.

Results discussed throughout this paper have been ob-
tained with the following basis parameters:ubu=0.2, u=0.1,
mmax=30, mmax=30, andnmax=70, leading to about 135 000
basis functions. Results are considered converged when they
remain almost unchanged with increasing basis size. We use
a laser pulse of frequencyv0=0.057 a.u.s800 nmd. We use a
“trapezoidal” pulse envelope, i.e., the pulse is turned on lin-
early over three laser periods, kept at constant intensity for
four laser periods, and turned off linearly over three laser
periods. This corresponds to a total of ten laser periods
s26 fsd. The equilibrium internuclear distanceR=2 a.u. is
used.

IV. IONIZATION AND EXCITATION

The probability for finding the system in the electronic
eigenstate of energyEn and angular momentum projectionm

at time tend sthe end of laser excitationd is given by Pn,m
= uCm,nstenddu2. Thus, the total ionization probability at the end
of the laser pulse is

Pion = 1 − o
m,En,0

uCm,nstenddu2, s17d

where the summation spans allm and all bound states, which
are characterized byEn,0. The ionization probability of H2

+,
obtained in the length and velocity gauges, is plotted versus
the orientation anglex in Fig. 2. For the two laser peak
intensities sI =331014 W/cm2 and I =531014 W/cm2d
shown, there is a strong dependence of the ionization on the
orientation of H2

+ relative to the laser polarization axis. The
ionization probability is maximum forx=0 sparallel orienta-
tion of the moleculed, and decreases with increasingx to
reach a minimum forx=p sperpendicular orientation of the
moleculed. This pattern appears to be independent of the
peak intensity of the laser, and of the gauge used for the
computation.

Results in Fig. 2 show that there is a good agreement
between results from the length and velocity gauges, which
is another illustration of the accuracy and stability of our
calculations. Our numerical simulations indicate that conver-
gence of results is easier to achieve in the velocity gauge
than in the length gauge, as the latter requires more angular
momentasi.e., a largermmaxandmmaxd in the basis expansion
for convergence. This agrees with previous numerical experi-
ments in atomsf42g. For the intensityI =331014 W/cm2

fsee Fig. 2sadg, results from the two gauges agree very well,
with the largest percentage difference of 6.5% occurring at
the parallel orientation. At the higher intensityI =5
31014 W/cm2 fsee Fig. 2sbdg, both gauges still agree well,
but there are more discrepancies in the vicinity of the per-
pendicular orientation. In fact, for this orientation, the dipole
operator exclusively couples electronic eigenstates having
different angular momentum projectionsm. This means that
with increasing laser intensity, higherm values need to be
included in the basis expansion, making it harder to achieve
convergence in the length gauge.

Provided that the length gauge is usedf43g, uCm,nstdu2 is
the probability of finding the system at any timet in the
electronic eigenstate of angular momentumm and energyEn.
Therefore, Pionstd=1−om,En,0uCm,nstdu2 is the ionization
probability of the system at an arbitrary timet, when the
length gauge is usedf43g. The time evolution of the ioniza-
tion probability, for the orientation anglex=60° and laser
peak intensityI =531014 W/cm2, is plotted in Fig. 3, to-
gether with the electric fieldsdivided by 20d of the laser
pulse. Figure 3 indicates that for every half-cycle, the ioniza-
tion probability increases sharply when the electric field in-
creases towards an extremum, and then decreases slightly
when the electric field decreases towards zero.

The total excitation probability, i.e., the probability for
finding the system in excited states, is given by
om,En,0uCm,nstdu2− uC0,0stdu2, where uC0,0stdu2 is the probabil-
ity for finding the system in the ground state at timet. The
time evolution of the excitation probabilitysalso calculated
in the length gauged is shown in Fig. 4, with the electric field

FIG. 1. Dipole matrix elements for the 1ssg→1ssu transition in
H2

+ for various internuclear distances. Results from our exact nu-
merical approachssolid linesd are compared with those obtained
using LCAO wave functionssdashed linesd f37g.
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sdivided by 10d superimposed. It appears that the excitation
probability is clearly driven by the electric field, as it in-
creases sharply with the magnitude of the electric field, and
then decreases almost to zero when the electric field tends to
zero. The electronic response follows the field so that one is
in the adiabatic regimef44g.

V. NUCLEAR CONTRIBUTIONS TO HARMONIC
GENERATION

The harmonic spectrumSsvd radiated by a system is pro-
portional to the absolute square of the Fourier transform
Aesvd of the dipole accelerationf24g,

Aesvd =E eivtkCstdue · f¹Vsrd + EstdguCstdldt. s18d

kCstdu¹Vsrd+EstduCstdl is the dipole acceleration obtained
via Ehrenfest’s theoremf24g. The second term in Eq.s18d is
the Fourier transform of the electric field, whose contribution
to the harmonic spectrum is essentially limited to the funda-

mental harmonic. It follows that the high-order harmonic
spectrum from the system is almost completely determined
by uGsvdu2, where

Gsvd =E eivtkCstdue · ¹ VsrduCstdldt. s19d

SinceVsrd=V1srd+V2srd, then we may separate the nuclear
contributions

Gsvd = G1svd + G2svd, s20d

where

Gjsvd =E eivtkCstdue · ¹ VjsrduCstdldt, s21d

with j =1,2. Equationss19d and s21d indicate thatGjsvd is
the analog ofGsvd for the nucleusj . This suggests the inter-
pretation of uGjsvdu2 as the harmonic spectrum originating
from the nucleusj , in the presence of the other nucleus.

FIG. 2. Ionization probability of H2
+ vs the

orientation anglex of molecule. Results are
shown for two peak intensities of the laser:sad
I =331014 W/cm2; sbd I =531014 W/cm2. The
empty squaresslength gauged and the filled
squaressvelocity gauged are the calculated data,
while the lines are drawn to guide the eye. The
equilibrium internuclear distanceR=2 a.u. is
used. Laser frequency used:v0=0.057 a.u. The
pulse consists of a linear turnon over three laser
periods, followed by four laser periods at con-
stant peak intensity, and linear turnoff over three
laser periods.
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Figure 5 shows the harmonic spectra originating from the
nucleus 1 si.e., uG1svdu2d and from the nucleus 2si.e.,
uG2svdu2d of H2

+, for various orientationsx of the molecule
with respect to the laser polarization. In both cases, and for
all orientations, features of these spectra strongly resembles
those of harmonic spectra from atoms: a sharp decrease of
the first few harmonics, followed by a “plateau,” and ending
with a cutoff that determines the highest harmonic order
achievable. The cutoff is independent of the molecular ori-
entation and is located approximately at the 85th harmonic,
which is in agreement with the energy cutoff formula given
by Eq.s1d. However, except for the orientationx=90°, there
is a feature in Fig. 5 that does not exist in the harmonic
spectra from atoms. This feature is the presence of bothodd
and evenharmonics. Even harmonics do not appear in the
spectra of atoms due to the inversion symmetry that exists in
these systems as a result of their spherical symmetry. In fact,
with the other nucleus nearby, the potential experienced by
the electron from one nucleus is not inversion symmetric
sexcept forx=90°d, leading to bothoddandevenharmonics
in the spectra originated from a single nucleus.

In order to get an additional insight into the nuclear con-
tributions to the harmonic spectrum, we use a Gabor analysis
f20,21g, which provides the time profiles of the harmonic
spectra originated from each nucleus. The time profiles are

obtained by taking the inverse Fourier transform of the prod-
uct of Gjsvd by a Gaussian window function, which is cen-
tered at a selected reference harmonic, and which has a
specified full width at half maximumsFWHMd. The result-
ing time profile indicates the time at which the selected set of
harmonics was emitted during the pulse. Figure 6 shows the
time profiles of harmonics emitted by the nuclei 1 and 2 of
H2

+ for various orientations of the molecule. The window
function used to obtain these profiles is centered at the 85th
harmonic and has a FWHM of 5v0. This harmonic order is
near the cutoff region, where we anticipate the electron to
return to the molecular core with the maximum energy
3.17Up f8g.

In addition, we have solved the one-dimensionals1Dd
classical Newton equationẍ=−Estd for the motion a free
electron driven by the electric fieldEstd of the laser pulse.
Assuming that at the initial timet0, the electron is at the
origin of the coordinates with zero velocity, we find the time
of first return of the electron to the origin and the corre-
sponding kinetic energy. These first returns are the so-called
short electron trajectoriesf45g. By varying t0 throughout the
laser pulse, we find and plot with dots in Fig. 6sed the first
return energies versus the return time. The resulting plots
shows two peaks every laser period, corresponding to two
classical returns with the maximum kinetic energy 3.17Up

FIG. 3. Time evolution of the ionization probability of H2
+ ssolid

linesd and of the electric field of the laser pulsesdashed linesd. This
ionization probability is computed in the length gauge, with the
molecular orientation anglex=60° and a laser peak intensityI =5
31014 W/cm2. For a better comparison of the two plots, the elec-
tric field is divided by 20, i.e.,Estd /20 is actually plotted. Time is
given in units of the laser period. The internuclear distance and
laser pulse duration used are the same as in Fig. 2.

FIG. 4. Time evolution of the total excitation probability of H2
+

ssolid linesd and of the electric field of the laser pulsesdashed
linesd. This excitation probability is computed using the length
gauge, a molecular orientation anglex=60°, and a laser peak inten-
sity I =531014 W/cm2. For a better comparison of the two plots,
the electric field is divided by 10, i.e.,Estd /10 is actually plotted.
Time is given in units of the laser period. The internuclear distance
and laser pulse duration are the same as in Fig. 2.
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f8g. Throughout the ten-cycle-long pulse used in this work,
classical first returns with the maximum kinetic energy
3.17Up occur at the timest1=−1.3, t2=−0.8, t3=−0.3, t4
=0.2, t5=0.7, t6=1.2, andt7=1.7 sin units of the laser peri-
odsd.

For all molecular orientations, the time profiles in Fig. 6
show series of peaks separated by about half the laser period.
These peaks, which indicate the instantssduring the laser
excitationd at which the 85th harmonic is emitted by each
nucleus, agree very well with peaks in the plot of the classi-
cal first return energy versus the return time in Fig. 6sed. This
indicates that high-order harmonics are indeed emitted every
half-cycle by each nucleus when the electron wave packet
returns for a recollision with the molecular core.

Consider Fig. 6sad for the parallel orientation of the mol-
eculesx=0d. One sees that at the first harmonic emission at
time t1, the intensity of the time profile for the nucleus 1 is
larger than that of the nucleus 2. On the other hand, the
classical analysis indicates that the returning electron at time

t1 encounters nucleus 1 first, and nucleus 2 next. At the next
recollision at time t2, the returning electron encounters
nucleus 2 first, then nucleus 1 next, and the intensity of the
time profile at t2 is higher for the nucleus 2 than for the
nucleus 1. This asymmetry repeats itself alternatively
throughout the laser pulse, with the intensity profile of the
nucleus 1 dominating at one recollision and the profile of the
nucleus 2 dominating a half-cycle later at the next recolli-
sion, and so on. This suggests that at each return of the
electron wave packet to the molecular core, high-order har-
monics are emitted predominantly by the nucleus that expe-
riences the first recollision. Indeed, after its recollision with
the first nucleus, the electron wave packet that reaches the
second nucleus is diminished by its scattering and its recom-
bination with the first nucleus. In other words, the nuclei
screen each other from the returning wave packet. This is
further supported by the fact that as one tends from the par-
allel orientationsx=0°d to the perpendicular orientationsx
=90°d in Fig. 6, the asymmetry in the time profile between

FIG. 5. Harmonic spectrasin arb. unitsd origi-
nating from the nucleus 1si.e., uG1svdu2d and
from the nucleus 2si.e., uG2svdu2d of H2

+, for vari-
ous orientation angles:sad and sed for x=0°; sbd
andsfd for x=30°; scd andsgd for x=40°; sdd and
sgd for x=90°. Plotssad, sbd, scd, and sdd on the
left-hand side correspond touG1svdu2, while plots
sed, sfd, sgd, andshd on the right-hand side corre-
spond to uG2svdu2. For x=90°, uG1svdu2 and
uG2svdu2 are identical. The internuclear distance
and laser pulse duration are the same as in Fig. 2.
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the two nuclei decreases gradually and vanishes for the case
x=90° where there is no such screening.

VI. INTERFERENCE EFFECTS IN HARMONIC
GENERATION

As discussed previously, the full harmonic spectrum
is almost entirely determined byuGsvdu2, while uGjsvdu2
s j =1,2d is the harmonic spectrum originating from the
nucleus j . Since Gsvd=G1svd+G2svd, then the full har-
monic spectrum is given by

uGsvdu2 = uG1svdu2 + uG2svdu2 + 2 RefG1svdG2
*svdg.

s22d

It is clear thatuuG1svdu2+ uG2svdu2u is the harmonic spectrum
without interferences, and 2 RefG1svdG2

*svdg is the interfer-
ence term. Therefore, plottinguGsvdu2 and uG1svdu2
+ uG2svdu2 side by side provides a direct quantitative, unam-
biguous insight into influence of interferences in the har-
monic spectra.

Plots ofuGsvdu2 and uG1svdu2+ uG2svdu2 for various orien-
tations of the molecule are displayed in Fig. 7 for the peak
intensity I =331014 W/cm2, and in Fig. 8 for the peak in-
tensity I =531014 W/cm2. Since the harmonic spectra
uG1svdu2 and uG2svdu2 originating from each nucleus of H2

+

exhibit both odd and even harmonicssexcept forx=90°d, it

FIG. 6. Time profilessin arb. unitsd of the 85th harmonic emit-
ted by the nucleus 1ssolid linesd and by the nucleus 2sdashed linesd
of H2

+, for laser orientation anglesx shown. In the bottom plotfsed
x=90°g, where the time profiles for the two nuclei are identical, we
also plotswith dotsd the kinetic energysin units of the ponderomo-
tive energyUpd of the returning classical electrons vs their first
return timesssee text for more detailsd. Time is shown in units of
the laser period.

FIG. 7. sColord Full harmonic spectrumuGsvdu2 sblue curved of
H2

+, and harmonic spectrumuG1svdu2+ uG2svdu2 of H2
+ without inter-

ferencessred curved. The arrows indicate the location minima due
to interferences. The internuclear distance and laser pulse duration
are the same as in Fig. 2. The peak intensity of the laser isI =3
31014 W/cm2.
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is not surprising that the harmonic spectrum of H2
+ without

interferencesfsee red lines in Fig. 7 and Figs. 8sfd–8sidg also
contains both odd and even harmonics. However, it appears
that only odd harmonics are present in the full harmonic
spectrauGsvdu2 fsee blue lines in Fig. 7 and Figs. 8sad–8sedg,
which includes interferences. In other words, interferences
lead to a cancellation of even harmonics. In fact, the inter-
ference term restores the overall inversion symmetry of the
system, leading to only odd harmonics.

Another interesting feature from Figs. 7 and 8 is the fact
that the interference term leads to a strong suppression of a
relatively broad band of consecutive harmonics, leading to a
minimum in the harmonic spectrum of H2

+. With increasing
x, the size of the band of suppressed harmonics increases,
and the location of the minimum moves to higher harmonic
orders. The location of these minima agrees with the inter-
pretation inf17g, where it was shown that the occurrence of
minima or maxima in the harmonic spectra depends on the
interference term

Iskd = eik·r 1 + eik·r 2 = 2eik·sr 1+r 2d/2 cosSk ·R

2
D , s23d

wherek=2p /l is the electron momentum, andl its wave
number. The electron momentumk is polarized along the
electric field, so thatk ·R=kRcosx. Destructive interference
sminimum in the harmonic spectrad occurs whenIskd=0, i.e.,
when

k ·R = s2p + 1dp, p = 0,1,2, . . . . s24d

Similar interferences were originally pointed out in angular
distributions of ATI spectra of H2

+ f12g.
The time profiles of the 85th harmonic in the spectrum of

H2
+ sincluding interferencesd are shown in Fig. 9 for various

orientation anglesx. To obtain these profiles, we use a win-
dow function centered at the 85th harmonic, with a FWHM
of 5v0. In each case, the scaled electric field of the laser
pulse is also plotted. For all orientation angles, the profiles
show a series of peaks, which are separated by half the laser

FIG. 8. Harmonic spectrumuGsvdu2 from H2
+

fleft-hand plots:sad for x=0°, sbd for x=30°, scd
for x=40°, sdd for x=50°, andsed for x=90°g,
and harmonic spectrumuG1svdu2+ uG2svdu2 from
H2

+ without interferences includedfright-hand
plots: sfd for x=0°, sgd for x=30°, shd for x
=40°, sid for x=50°, andsjd for x=90°g, for vari-
ous anglesx shown. In each left-hand plot, the
arrows point to the approximate location of a
minimum induced by interferences. Forx=90°,
uGsvdu2=4uG1svdu2=4uG2svdu2. The internuclear
distance and laser pulse duration are the same as
in Fig. 2. The peak intensity of the laser isI =5
31014 W/cm2.
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period, and which coincide with the classical first return
times tj s j =1,7d described earlier. This means that such
high-order harmonics are emitted when the electron returns
for a recollision with the molecular core, in agreement with
the semiclassical recollision mechanism. The emission oc-
curs predominantly when the peak of the laser pulse is
reached, at intensities where tunnelling is significant. One
also sees that harmonic emission occurs in the vicinity of the
zeros of the electric field, independently of the molecular
orientation. This is in agreement with the semiclassical recol-
lision modelf8g.

Further insight into the interference resulting from elec-
tron recollision with the molecular ion core is gained from a
time profile analysis of the harmonic spectra of H2

+ in the
vicinity of the interference minima shown in Fig. 8. Explic-
itly, we use a window function centered at the interference
minima with a FWHM of 5v0 as in Figs. 6 and 9. The pro-

files of the full harmonic emission of H2
+, as well as those of

harmonic emissions from each nucleus, are shown in Fig. 10,
with the scaled electric field of the laser superimposed. For
all orientations shown in Fig. 10, one sees that due to de-
structive interference, the profiles for the full harmonic spec-
trum of H2

+ swith interferences includedd are significantly
suppressed compared to the profiles for each nucleus. The
85th harmonic atx=60° fFig. 10sddg is located near the cut-
off harmonic energy given by Eq.s1d, and corresponds to a
classical recollision trajectory without the Coulomb poten-
tial, the so-called short trajectoryf46g. Figure 10sdd indicates
that the 85th harmonic atx=60° is emitted near the zero of
the electric field. In this cutoff energy region, indeed, har-
monic emission always occur at the zero of the electric field
of the laser, when electrons following short trajectories re-
turn to the molecular core. This is confirmed in Fig. 9 for all
orientation angles.

FIG. 9. Solid lines are the time profilessarb.
unitsd of the 85th harmonic emitted by H2

+ for
various orientations shown. Dashed lines repre-
sent the laser electricEstd /N, which is divided by
N to permit a comparison with the profilesfN
=150 for sad, N=200 for sbd, N=600 for scd, N
=250 for sddg. tj s j =1–7d are the classical first
return times of the electron with the maximum
kinetic energy 3.17Up, as described in the text.
Time is in units of the laser period. The internu-
clear distance and laser pulse duration are the
same as in Fig. 2. The peak intensity of the laser
is I =531014 W/cm2.
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However, photon emission for harmonics at the interfer-
ence minima for other orientation anglesfsee Figs.
10sad–10scdg show the occurrence of harmonic emission at
times that do not correspond to short trajectories. The semi-
classical recollision model predicts that at lower energies,
i.e., lower harmonics, two recollision trajectories should
dominate, coalescing into one single trajectory at the maxi-
mum cutoff energyf46,47g. Thus, at lower energies, one ex-
tra trajectory, called the long trajectory, is expected to return
to the molecular core at the peak of the electric field. This
extra trajectory has been recently characterizedf45g. Figure
10 illustrates quantitatively this semiclassical prediction, as
the profiles indicate harmonic emissionsrecollisionsd occur-
ring near the maximasminimad and the zeros of the electric
field for harmonics well below the cutofffsee Figs.

10sad–10scdg. Note that for double trajectoriesslow-order
harmonicsd and single trajectoriesshigh-order harmonicsd,
efficient destructive interference is seen to occur, reflecting
the fact that photon emission amplitudes at each nucleus are
out of phase with each other. Next, we examine the theoret-
ical formulations that allow to elucidate these multicenter
interference phenomena, which occur only in molecules and
which have already been predicted to occur in molecular ATI
spectraf12g.

VII. ACCELERATION VERSUS DIPOLE
PHOTON EMISSION

It has been shown that the correct evaluation of the har-
monic spectrum is to proceed via the Fourier transformAsvd

FIG. 10. sColord Time profilessin arb. unitsd
for harmonic orders in the vicinity of interference
minima in the spectra of H2

+ ssee Fig. 8d for the
peak intensityI =531014 W/cm2. The following
are plotted for orientation anglesx shown: the
scaled electric fieldsmagenta dotsd, the time pro-
files of the full harmonic spectrum of H2

+ with
interferences includedsblack linesd, the time pro-
files of harmonic spectra originating from the
nucleus 1sblue linesd and from the nucleus 2
sred linesd. The instantstj s j =1–7d are the clas-
sical times of first electron return as described in
Fig. 9.
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of the acceleration of the dipole, which may be expressed as
f24g

Asvd =E
0

T

eivtd̈stddt

= − iveivTdsTd + eivTḋsTd − v2E
0

T

eivtdstddt, s25d

wheredstd=kCstdus−r duCstdl is the mean dipole moment of
the electron, andCstd the exact time-dependent wave func-
tion at timet. For simplicity, the turnon of the laser pulse is
chosen att=0, and its turnoff att=T. Exploiting Ehrenfest’s
theorem,Asvd can be expressed as in Eq.s18d in terms of
the gradient of the Coulomb potentialf24g. It is quite com-
mon f46g to evaluate the harmonic spectrum using the Fou-
rier transform of the dipole momentDsvd=−v2e0

Teivtdstddt,
i.e., the last term in Eq.s25d. Clearly, expressions ofAsvd
andDsvd are equivalent ifḋsTd anddsTd vanish at the end of
the pulse, and if an exact wave functionCstd is used. Using
Asvd sthe acceleration formd emphasizes maximum accelera-
tion at the nuclei, whereas usingDsvd sthe dipole formd em-
phasizes the spatial extent of electron trajectories. Below, we
analyze the two forms in the context of an approximate wave
function Cstd, and compare with our exact numerical calcu-
lations.

We start by approximating the time-dependent wave func-
tion by a superposition of the ground-state wave functionC0,
and a continuum wave packetCc, which describes the re-
combining electronf46g,

Csr ,td = bstde−iE0tC0sr d + Ccsr ,td. s26d

E0=−Ip is the ground-state energy, andbstd is the ground-
state probability amplitude. We assume that there is little
depletion of the initial state, so thatbstd<1. For a single
recollision event, Ehrenfest’s theorem gives

Asvd =E eiE0tkC0ue · ¹ VsrduCcstdleivtdt + c.c., s27d

after neglecting terms involving continuum-continuum tran-
sitions, and after ignoring the term that involves the electric
field Estd as for Eq.s19d.

We approximate the initial state wave function by a linear
combination of atomic orbitalssLCAOd f12,48g

C0
± = N0

±se−a±r1 ± e−a±r2d, s28d

where N0
± is a normalization constant. We assume that the

initial state could have a gerades1d or ungerades2d sym-
metry. The real parametera± can be adjusted so that the
energy associated with the wave functions28d agrees with
the exact energy of ground or first excited state of H2

+

f48,49g. The continuum wave function describing the elec-
tron returning to the molecular core with energyk2/2 is ap-
proximated by the plane wave

Ccstd = eisk·r−Ektd. s29d

This leads to

A±svd = N0
±ZdsE0 − Ek + vd E dr se−a±r1 ± e−a±r2d

3Se · r 1

r1
3 +

e · r 2

r2
3 Deik·r + c.c. s30d

Consider the integral

E e−ar1Se · r 1

r1
3 +

e · r 2

r2
3 Deik·rdr . s31d

The quantity e−ar1=e−aur+R/2u is maximum at r1=0
si.e., atr =−R /2d, and is negligible elsewhere.e·r 1/ r 1

3 is also
maximum atr =−R /2, while e·r 2/ r 2

3 is maximum atr2=0
si.e., at r =R /2d, where e−ar1=e−aur+R/2u is negligible spro-
vided thatR is relatively larged. Therefore, the second term
in Eq. s31d is negligible compared to the first one, so that

E e−ar1Se · r 1

r1
3 +

e · r 2

r2
3 Deik·rdr <E e−ar1

e · r 1

r1
3 eik·rdr .

s32d

Similarly, one can show that

E e−ar2Se · r 1

r1
3 +

e · r 2

r2
3 Deik·rdr <E e−ar2

e · r 2

r2
3 eik·rdr .

s33d

This gives

A±svd = N0
±ZdsE0 − Ek + vd

3HE e−a±r1
e · r 1

r1
3 eik·rdr ±E e−a±r2

e · r 2

r2
3 eik·rdrJ

+ c.c. =N0
±ZdsE0 − Ek + vdfe−ik·R/2 ± eik·R/2g

3E e−a±r e · r

r3 eik·rdr + c.c., s34d

after making a change of variablesr → r 1 and r → r 2. The
above equation clearly exhibits the more general interference
term se−ik·R/2±eik·R/2d, where the1 and2 signs correspond
to the gerade and ungerade initial states, respectively. For the
initial ground state of H2

+ sgeraded involved in this work, one
retrieves the interference termIskd given by Eq.s23d. Such
an interference was originally obtained in ATI spectra in H2

+

f12g.
Let Nmin be the harmonic order corresponding to a mini-

mum in the harmonic spectrum of H2
+, the energy of the

harmonic photon corresponding to this minimum isNminv0.
If k is the electron momentum at the instant of recombina-
tion of the electron wave packet with the ground state, then
we may write

1

2
k2 = Nminv0. s35d

Note that we consider Eq.s35d, instead of1
2k2= Ip+Nminv0,

which explicitly contains the ionization potentialIp of the
molecule, and which naturally emerges from Eq.s34d. The
reason for this is that the recollision occurs near the nuclei,
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when the electron momentumk in Eq. s35d already encom-
passes the effect of the Coulomb potential. Obtainingk from
the destructive interference condition given by Eq.s24d, one
can use Eq.s35d to derive the harmonic orderNmin at which
a minimum in the harmonic spectrum is expected.

For various orientation angles, we summarize in Table II
the harmonic ordersNmin at which a minimum occurs in the
harmonic spectra of H2

+. The second column in Table II con-
tains the harmonic orders obtained in this work, after solu-
tion of the TDSEssee arrows in Figs. 7 and 8d. The harmonic
order in the third column are obtained by using Eqs.s24d and
s35d as described aboves“acceleration” valuesd. It appears
that results from the solution of the TDSE agree quite well
with “acceleration” values. This indicates that the simple
emission model from a continuum to a bound state via an
acceleration mechanism arising from electron recollision re-
produces the interference pattern quite well. Note, however,
that the minima obtained in Figs. 7 and 8 from the full 3D
time TDSE are rather broad, suggesting that many electron
trajectories with different momenta actually contribute to
each minimum.

We examine next the transition matrix elementTH, which
determines the intensity of the HOHG spectrum. Consider
the multiphoton transition from the initial electronic stateu0l
to a continuum stateukl and then back to the same initial
ground state by emission of a photon of energyE=Nv. The
transition matrix element can be considered as a hyper-
Raman process through the continuum stateukl and is written
as f22g

k0uTHu0l =E
lim e→0

dEk

k0uTNuklkkudu0l
E − Ek + ie

s36d

=PE dEk

k0uTNuklkkudu0l
E − Ek

− ipdsE − Ekdk0uTNuklkkudu0l,

s37d

where the integral sums over all intermediate continuum
statesukl. The total harmonic transition matrix element ofTH
is separated into a nonresonant principal partsPd integral and
a resonant transitionE=Ek, whereE is the initial sfinald total
energy of the laser-molecule system.TN is an sunknownd
intermediate transition operator corresponding to the multi-
photon transition from the initial bound stateu0l to the con-
tinuum stateukl from which photon emission occurs. In Eq.
s37d, we have emphasized the dipole form of the photon
emission process. For continuum energiesEk much larger
than the ionization potentialIp, which is the threshold energy
for continuum excitation, the PP integral becomes negligible
due to cancellation from fluctuations of the denominator:E
−Ek.0 andE−Ek,0 in Eq. s36d. Only in this limit can we
assume that the total transition moment depends on the reso-
nant process, i.e.,

k0uTHu0l ~ kkudu0l. s38d

The absolute phase of Eq.s36d is an essential factor in at-
tosecond pulse synthesisf50g and depends on both nonreso-
nant and resonant contributions.

Note, however, that instead of the acceleration formula of
Eq. s27d, one could use the traditional dipole formula

Dsvd =E eiE0tkC0ue · r uCcstdleivtdt + c.c., s39d

which involves the transition matrixs38d. Interestingly, using
the wave functionss28d and s29d, the above integral can be
evaluated exactly, without using the approximations de-
scribed earlier in the evaluation of the integrals27d. Indeed,

D±svd =E eisE0−Ek+vdtdt

3E N0
±se−a±r1 ± e−a±r2de · reik·rdr + c.c.

= N0
±dsE0 − Ek + vd

3E se−a±r1 ± e−a±r2de · s− i¹kdeik·rdr + c.c.

= − iN0
±dsE0 − Ek + vde ·¹khse−ik·R/2 ± eik·R/2dF1s

± skdj

+ c.c., s40d

where

F1s
± skd =E e−a±reik·rdr =

8pa±

sa±
2 + k2d2 s41d

is the Fourier transform of the atomic orbitale−a±r. For the
case of a gerades1d ground state considered in this work,
one obtains

D+svd = − 2iN0dsv − EkdF1s
+ skdIskd, s42d

whereIskd is given by

TABLE II. Harmonic order at which an interference minimum
occurs in the harmonic spectrum of H2

+ for various orientation
anglesx. Results from the solution of the TDSEssecond columnd
are compared with those obtained from the acceleration formula
given by Eq. s23d using Iskd=0 sthird columnd, and with those
derived from the dipole formula given by Eq.s43d using Iskd=0
sfourth columnd.

Angle
x

Harmonic orderNmin at the minimum

TDSE
sThis workd

Acceleration
+LCAO

Exact Dipole
+LCAO

0 <23 22 42

30 <27 29 55

40 <39 37 68

45 <43 43 79

50 <51 52 95

60 <cutoff 87 153

75 .cutoff 323 553

90 None ` `
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Iskd =
e ·R

2
sinSk ·R

2
D +

4e ·k

a±
2 + k2 cosSk ·R

2
D . s43d

Imposing the destructive interference conditionIskd=0, one
arrives at discrete numerical solution that depends on an in-
teger p as in Eq. s24d. The resulting harmonics orders at
which minima are predicted are given in the fourth column
of Table II. These results do not agree with our time-
dependent calculations in the second column, as well as with
the predictions of the interference termIskd obtained from
the acceleration form. This means that obtaining the har-
monic spectrum via the dipole fails to predict interference
effects correctly, when a LCAO wave function and a plane
wave are used to represent the ground-state wave function
C0 and the continuum wave functionCc, respectively. The
acceleration form emphasizes maximum acceleration near
the nucleisshort distancesd, thus, intuitively, the acceleration
form more accurately reproduces the two-center character of
the molecule, in contrast to the dipole form that emphasizes
the spatial extentslarge distancesd of electron trajectories.
Since the two forms are equivalent when exact wave func-
tions are used, the failure of the dipole form is due to the use
of approximate wave functionsC0 andCc. Using a Coulomb
two-center continuum wave function instead of a plane wave
could improve results for the dipole form. We note that the
free electron stateseikr are not orthogonal to the initial state
LCAO wave functionss28d, and thus can give spurious re-
sults f51g.

VIII. CONCLUSIONS

We have described a new accurate method for solving the
3D TDSE for a two-center molecule in interaction with an
intense laser field having an arbitrarily oriented linear polar-
ization. The method uses spheroidal coordinates and expands
the time-dependent wave function in a basis of associated
Laguerre and Legendre functions. We show that projecting
the TDSE in the basis of electronic eigenstates allows to
exploit additional symmetry, resulting in a significant
speedup of calculations. Complex scaling is used to prevent
the electron probability flux from reflecting when it eventu-
ally reaches the boundaries of the region described by our
wave function.

A good agreement is found between results obtained in
the length and velocity gauges. Our results show that the
ionization probability of H2

+ is maximum for the parallel ori-
entation of the molecule with respect to the laser field polar-
ization, and decreases to reach a minimum for the perpen-
dicular orientation. The harmonic spectra originating from
each nucleus indicates that each nucleus is a source of har-
monic radiation, which has all features relevant to the har-
monic spectrum emitted by an atom, except that both odd
and even harmonics appear in the spectrum. A time-profile
analysis of the harmonic spectra emitted by each nucleus
indicates that the emission of high-order harmonics by each
nucleus occurs every half-cycle when the electron wave
packet returns for a recollision with the molecular core. We
have also calculated the harmonic spectra of H2

+ with and
without interferences included. We confirm that the harmonic

spectrum of H2
+ exhibits minima, which are explicitly shown

to be due to interferences.
A simple interpretation of interference effects in the har-

monic spectrum of H2
+ can be obtained via a transition matrix

coupling the ground state described approximately by a lin-
ear combination of atomic orbitalssLCAOd and a continuum
state described approximately by a plane wave. The accel-
eration and dipole forms of the transition matrix lead to dif-
ferent results due to the use of approximate ground and/or
continuum wave functions. We have shown that the accelera-
tion form predicts accurately the interference effects in H2

+,
while the dipole form does not. The accuracy of the accel-
eration form is related to the fact that it weights the short
rangesharmonics are emitted at these short distancesd part of
the wave functions more highly than the dipole form, which
emphasizes larger distances. Using a plane wave to describe
the continuum stateCc, the dipole form of the transition
matrix indicates that the emission of harmonic photons is
proportional to the Fourier transform of the ground-state
wave functionC0 fsee Eq.s39dg. This feature is a key ingre-
dient of a recent method for tomographic imaging of the
ground-state molecular orbitalsf25g, a method that exploits
the orientation dependence of HOHG spectra discussed in
this paper. Our work emphasizes that a formulation of to-
mographic imaging based on the acceleration formsinstead
of the dipole form as in Ref.f25gd could be more accurate in
reconstructing molecular orbitals from the harmonic spec-
trum. One final issue is the phase variation of the HOHG
amplitudes at the intensity minima illustrated in Figs. 7 and
8, and observed in model calculationsf17g. It has been sug-
gested that this is due to a resonance effect where the recol-
liding electron wavelength is commensurate with the inter-
nuclear distance as indicated by Eqs.s23d and s24d.
Clarification of these issues will help develop HOHG in mol-
ecules as a new tool for electron imaging and new sources of
attosecond pulse synthesisf3g.
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APPENDIX A: OVERLAP AND ELECTRONIC
HAMILTONIAN OF MATRIX ELEMENTS

For any operatorX̂, the matrix elements are given by

Xr
r8 =E dt Un8

m8sjdVm8
m8shdX̂Un

msjdVm
mshd

eism−m8df

2p
,

sA1d

wherer and r8 denote the sets of parametershm,m ,nj and

hm8 ,m8 ,n8j, respectively.X̂ is the unit operator for the case

of the overlap matrixS, and X̂=H for the matrix H. dt
= 1

8Rsj2−h2ddj dh df is the volume element in spheroidal
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coordinates. Therefore, the overlap and atomic Hamiltonian
matrix elements can be written respectively as

Sr
r8 = dm8,m

R3

8
fdn8,n

m s2dd̃m8,m
m s0d − dn8,n

m s0dd̃m8,m
m s2dg,

sA2d

Hr
r8 = − dm8,m

R

4
fhn8,n

m d̃m8,m
m s0d + dn8,n

m s0dh̃m8,m
m g. sA3d

The nuclei repulsion is not included in the above matrix
elements ofH. Quantities involved in these expressions are
given by

dn8,n
m sqd =E

1

`

Un8
m sjdUn

msjdjq dj, sA4d

d̃m8,m
m sqd =E

−1

+1

Vm8
mshdVm

mshdhq dh, sA5d

hn8,n
m =E

1

`

Un8
m sjdF ]

]j
Ssj2 − 1d

]

]j
D

−
m2

j2 − 1
+ 2ZRjGUn

msjddj, sA6d

h̃m8,m
m =E

−1

1

Vm8
mshdF ]

]h
Ss1 − h2d

]

]h
D −

m2

1 − h2GVm
mshddh,

sA7d

whereq is a non-negative integer, anddm8,m is the Kronecker
symbol that gives rise to the selection rulem8=m in S andH.
Note that we denote all integrals involving the variableh
with a tilde, and those involving the variablej without a
tilde.

Using the expression ofUn
msjd given by Eq. s7d and

change of variableX=2asj−1d, one obtains

dn8,n
m sqd =

Nn8
mNn

m

2a
E

0

`

e−XS X

2a
+ 1DqS X2

4a2 +
X

a
Dumu

3Ln8−m
2umu sXdLn−m

2umu sXddX. sA8d

We evaluate the integral in Eq.sA8d numerically using the
Gauss-Laguerre quadrature formulaf52g

E
0

`

e−XfsXddX= o
j=1

N

wj fsXjd, sA9d

wherewj andXj are the weights and abscissae, respectively,
of the Gauss-Laguerre quadrature. Note that whenfsXd is a
polynomial, as is the case in Eq.sA8d, the Gauss-Laguerre
quadraturesA9d is exact, provided that the number of
quadrature pointsN is larger than half the degree of the
polynomial fsxd f52g.

Using Eq. 8.971.3 off28g, one can show that

]

]j
Ln−umu

2umu f2asj − 1dg =
n − umu + 1

j − 1
Ln−umu+1

2umu f2asj − 1dg

−
n + umu + 1 − 2asj − 1d

j − 1

3Ln−umu
2umu f2asj − 1dg. sA10d

Exploiting the recurrencesA10d, the action of the derivative
operator in square-bracket in Eq.sA6d on Un

msjd can be ex-
pressed in terms of Laguerre polynomials as
on=0

2 AnsjdLn−umu+n
2umu f2asj−1dg, where theAnsjd’s are a mixture

of polynomials and rational functions ofj, and wheren
=0,1,2, . . . .Thus, the integral in Eq.sA6d can be written as
a sum of integrals of a product ofAnsjd by two Laguerre
polynomialsfi.e., integrals similar to Eq.sA8dg, which we
also evaluate numerically using the Gauss-Laguerre quadra-
ture.

From the recurrence relations of associated Legendre
functionsf28g, one can show that

hVm
mshd =Îsm − m+ 1dsm + m+ 1d

s2m + 1ds2m + 3d
Vm+1

m shd

+Î sm − mdsm + md
s2m − 1ds2m + 1d

Vm−1
m shd. sA11d

In order to evaluatedn8,n
m sqd, we iteratively apply the

recurrence relation sA11d to express h qVm
mshd as

onBnsm ,mdVm±n
m shd, where theBnsm ,md’s depend on the

quantum numbersm and m but not on h, and wheren
=0,1,2, . . . .Then we use the fact that

E
−1

+1

Vm8
m shdVm

mshddh = dm8,m. sA12d

In this way, the integralsd̃m8,m
m8,msqd up to q=3 needed in this

work are obtained in closed analytical form. Since the result-
ing expressions are quite bulky, we do not reproduce them in
this paper.

Starting from the first-order differential equation defining
Legendre polynomialsPm

mshd ssee, e.g., Eq. 8.700.1 of Ref.
f28gd one can show thatVm

mshd satisfies

F ]

]h
Ss1 − h2d

]

]h
D −

m2

1 − h2GVm
mshd = − msm + 1dVm

mshd.

sA13d

This gives

h̃m8,m
m = − msm + 1ddm,m. sA14d

APPENDIX B: DIPOLE MATRIX ELEMENTS

In the length gauge, dipole matrix elements are given by

Eq. sA1d, with X̂=y=sR/2dsinfÎsj2−1ds1−h2d and X̂=z
=sR/2djh for the y andz components of the dipole, respec-
tively f27g. This leads to
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sDy
Ldr

r8 =
sdm8,m+1 − dm8,m−1d

2i

R4

24

3htn8,n
m8,ms2dt̃m8,m

m8,ms0d − tn8,n
m8,ms0dt̃m8,m

m8,ms2dj sB1d

for the y component of the dipole in the length gauge, and

sDz
Ldr

r8 = dm8,m
R4

24 hdn8,n
m s3dd̃m8,m

m s1d − dn8,n
m s1dd̃m8,m

m s3dj

sB2d

for thez component of the dipole in the length gauge, where

tn8,n
m8,msqd =E

1

`

Un8
m8sjdUn

msjdjqÎj2 − 1 dj, sB3d

t̃m8,m
m8,msqd =E

−1

+1

Vm8
m8shdVm

mshdhqÎ1 − h2 dh, sB4d

with q as an integer.dn8,n
m sqd andd̃m8,m

m sqd are defined in Eqs.
sA5d and sA4d.

For the velocity gauge,X̂=] /]y andX̂=] /]z for they and
z components of the dipole, respectively. Using expressions
of ] /]y and] /]z in spheroidal coordinatesf27g leads to

sDy
Vdr

r8=
sdm8,m+1 − dm8,m−1d

2i

R2

22 hyn8,n
m8,m t̃m8,m

m8,ms0d

− tn8,n
m8,ms0dỹm8,m

m8,mj −
msdm8,m+1 + dm8,m−1d

2i

R2

22

3htn8,n
m8,ms0dx̃m8,m

m8,m + xn8,n
m8,mt̃m8,m

m8,ms0dj, sB5d

sDz
Vdr

r8 = dm8,m
R2

22 hzn8,n
m d̃m8,m

m s1d + dn8,n
m s1dz̃m8,m

m j, sB6d

where

yn8,n
m8,m =E

1

`

Un8
m8sjdSjÎj2 − 1

]

]j
DUn

msjddj, sB7d

ỹm8,m
m8,m =E

−1

+1

Vm8
m8shdShÎ1 − h2 ]

]h
DVm

mshddh, sB8d

xn8,n
m8,m =E

1

`

Un8
m8sjdUn

msjd
dj

Îj2 − 1
, sB9d

x̃m8,m
m8,m =E

−1

+1

Vm8
m8shdVn

mshd
dh

Î1 − h2
, sB10d

zn8,n
m =E

1

`

Un8
m sjdSsj2 − 1d

]

]j
DUn

msjddj, sB11d

z̃m8,m
m =E

−1

+1

Vm8
mshdSsh2 − 1d

]

]h
DVm

mshddh. sB12d

In order to evaluate the integralssB3d, sB7d, sB9d, and
sB11d, we express their integrands as a sum of products of
e−asj−1d, polynomials ofj, and Laguerre polynomials by us-
ing Eqs.s7d andsA10d, then use the quadrature formulasA9d
to evaluate the resulting integral numerically. Here, the
quadrature formula is also exact, for the same reasons as
mentioned above for the integralsA8d.

For the evaluation oft̃m8,m
m+1,msqd, we first use Eq. 8.733.4

of Ref. f28g to show that Vm8
m+1hqÎ1−h2Vm

mshd
=a1sm ,mdVm8

m+1h qVm−1
m+1shd+a2sm ,mdVm8

m+1h qVm+1
m+1shd,

where thea1sm ,md and a2sm ,md are functions ofm and m
only. Then, applying the recurrencesA11d iteratively for the
integer q considered, we further express
Vm8

m+1h qÎ1−h 2Vm
mshd as a linear combination of

Vm8
m+1Vm±p

m+1shd swhere p is an integerd, so that Eq.sA12d
could be used. This leads to closed-form analytical expres-
sions for t̃m8,m

m+1,m that we do not reproduce here because they
are lengthy. A similar approach using Eq. 8.735.5 of Ref.
f28g also yields analytical expressions fort̃m8,m

m−1,m.
We could not obtain analytical expressions for the inte-

grals sB8d and sB10d. Instead, these integrals are evaluated
numerically using the Gauss-Legendre quadraturef40g, after
expressing] /]hVm

mshd in terms ofVm±1
m shd by means of Eq.

8.733.1 of Ref.f28g. The latter equation also leads to

z̃m8,m
m = − mÎsm − m+ 1dsm + m+ 1d

s2m + 1ds2m + 3d
dm8,m+1

+ sm + 1dÎ sm − mdsm + md
s2m − 1ds2m + 1d

dm8,m−1. sB13d
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