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Experimental verification of a one-parameter scaling law for the quantum
and “classical” resonances of the atom-optics kicked rotor
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We present experimental measurements of the mean energy in the vicinity of the first and second quantum
resonances of the atom-optics kicked rotor for a number of different experimental parameters. Our data are
rescaled and compared with the one-paramedeclassical scaling function developed to describe the quantum
resonance peaks. Additionally, experimental data are presented for the “classical’ resonance which occurs in
the limit as the kicking period goes to zero. This resonance is found to be analogous to the quantum reso-
nances, and a similar one-parameter classical scaling function is derived, and found to match our experimental
results. The widths of the quantum and classical resonance peaks are compared, and their sub-Fourier nature
examined.

DOI: 10.1103/PhysRevA.71.053404 PACS nuntber42.50.Vk, 75.40.Gb, 05.45.Mt, 05.66k

[. INTRODUCTION integer part of the atomic momentum, i.e., the atom’s quasi-
momentum. Treating the atoms independently, their motion
The heart of experimentally testing and controlling clas-can be mapped onto the circle owing to the spatial periodic-
sical and quantum systems often lies in the introduction of atity of the standing wave, which makes the quasimomentum a
external periodic driving forcd1-3]. The driving probes constant of the motion. However, only some values of qua-
system-specific properties, the knowledge of which allowssimomentum allow resonant driving to ocdi]. All other
one, in turn, to understand and to optimally control the syswvalues induce a dephasing in the evolution which hinders the
tem at hand. In particular, driven systems often exhibit resoresonant kicking of the atomsee Sec. Il for details Sec-
nancelike behavior if the external driving frequency matche®ond, if an atom is kicked resonantly it moves extremely
the natural frequency of the unperturbed system. quickly; in fact its energy grows quadratically in tintso-
Typical nonlinear classical systems are resonant for only &alled ballistic propagationThese fast atoms quickly escape
finite interaction time since the driving itself forces the sys-any fixed experimental detection window after a sufficiently
tem to gain energy and hence drift out of resonance. Only ifarge number of kick$6,7].
the natural frequencies are independent of the energy, as for In this paper, we report experimental data which show the
the linear(harmonig oscillator, the system can absorb en- behavior of a typical experimental ensemble of cold atoms
ergy on resonance indefinitely. In the quantum world, theunder resonant driving. Our main observable is the mean
situation may be different by virtue of the unperturbed sys-energy of the atomic ensemble measured after a fixed num-
tem possibly having a discrete energy spectrum. If this speder of kicks and scanned over the resonant kicking frequency
trum shows an appropriate scaling in the excitation quantunor period. We verify a recently derived single-parameter scal-
number, resonant motion can persist forever. ing law of the resonant peak seen when scanning the energy
A simple example of such a system is provided by the freevs the period 8,10,11. The scaling law allows us to clearly
rotor, whose energy spectrum scales quadratically in the exesolve the resonance peak structure because it reduces the
citation quantum numbefdue to periodic boundary condi- dynamics to atationaryand experimentally robust signature
tions for the motion on the circleKicking the rotor periodi-  of the quantum resonant motion.
cally in time with a frequency commensurable with the After a short review of our experimental setup in Sec. Il
energy difference of two neighboring levels leads to per-and the theoretical treatment of the atom-optics kicked rotor
fectly resonant driving. These so-called quantum resonancedose to quantum resonance in Sec. Ill, we present experi-
of the well-studied kicked rotofKR) [4] have been known mental data for the mean energies around the first two fun-
theoretically for some timé¢5], but the first traces of this damental quantum resonances of the kicked atom. From
example of frequency-matched driving have only recentlythese data, we extract the afore mentioned scaling law in Sec.
come to light in experiments with cold aton8,7]. Such IV. The effect of the quasimomentufas a typical quantum
experiment$7] and theoretical studid$,9] have also shown variable on the motion disappears in the classical limit of
the surprisingly robust nature of these resonances in the pretiie kicked rotor, when the kicking period approaches zero
ence of noise and perturbations. [5,12]. In the latter case, the rotor is constantly driven, and a
Experimentally, the quantum resonances of the KR ardallistic motion occurs forall members of the atomic en-
hard to detect for two principal reasons. First, only a rela-semble[13]. Both phenomena, the quantum and the “classi-
tively small proportion of atoms are kicked resonantly for thecal” (for vanishing kicking periogresonance, are related to
following reason: ideally, the atomic motion is along a line, one another by a purely classical theory developed previ-
which introduces an additional parameter, namely, the noneusly for the quantum resonance pe&&d.0,11.
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In Sec. V we focus on the first direct comparison of the Trap and repump
behavior of the ensemble averaged energies in the case of tt
“classical” and the quantum resonance. In particular, the sub
Fourier scaling of the resonance peaks in the mean energy ¢
a function of the kick number is discussed. The latter makes From kicking
both types of resonances studied here a potential source ¢ 1a7r

high-precision measurements of system-specific parameters /\Q
AOM

Il. EXPERIMENTAL SETUP PPG

Our experimental system is a realization of the paradig- m
matic kicked rotor moddl14,15, whose relevance lies in the _. SMF
=

fact that it shows the basic features of a complex dynamical
system, and it may be used to localip energy approxi- y/—Y
mate much more complicated systems, such as microwave Computer
driven Rydberg atomgl6], or an ion in a particle accelerator

[1’%)7]' . ts utili loud of about®1old . dard six-beam magneto-optical trédOT) of about 16 Cs atoms
ur experiments utilize a cloud or abou CESIUM is formed inside a vacuum cell at the intersection of three retrore-

atoms, provided by a, standard six beam magneto-optical t,rat‘?ected “trapping” beampvertical beams an¢anti-)Helmholtz coils
(MOT) [18]. The typical momentum spread of the atomic .o ot showh A standing wave is formed across the cloud of
sample lies between four and eight two-photon recoils. Theomg by retroreflecting light from a “kicking laser,” which is trans-
shape of the initial momentum distribution is well approxi- ported to the MOT by means of a single-mode fik8MF). This
mated by a Gaussian with standard deviatigp=(4—8 |ight is pulsed on and off by an acousto-optic modula&@®M)

X 2hik,, centered at zero momentufh9], although signifi-  which is gated by a programmable pulse generdRPQ. The
cant non-Gaussian tails can eXi$8]. The width is measured PPG's pulse train is uploaded from a computer, which also controls
in units of two-photon recoils, corresponding to the wave-the timing of the experimente.g., when the trapping AOM and
length of the kicking lasex, =2#/k . The fractional parts in anti-Helmholtz coils are turned on and off

these units of the initial momenta, i.e., the quasimomentum

discussed below, are practically uniformly distributed in theexpansion time, the trapping beam is switched on and the
funqamental Brillouin zone defined by the periodiC kick pO' atoms are frozen in Space by optical mo”ases' A Charge_
tential[10]. _ _ coupled device image of the resulting fluorescence is re-
As shown in Fig. 1, the atoms interact with a pulsed,corded and used to infer the momentum distribution of the
far-detuned optical standing wave which is created by retatoms using standard time-of-flight techniq(iék The mean
roreflecting the light from a 150 mWslave diode laser energy of the atomic ensemble may then be inferred by cal-
which is injection locked to a lower-powémastef diode  cylating the second moment of the experimental momentum
laser at a wavelength ok =852 nm. Power fluctuations (jstribution.
were minimal during the experiments performed here Kicking laser powers of up to 30 mW were employed, and
(~1%) although larger drifts occurred over the course ofgetunings from the ,,,(F=4) — 6P3,(F’'=5) transition of
many experimental runs. Accurate pulse timing is achieve@esjum of 500 MHz and 1 GHz were used for the classical
using a custom-built programmable pulse gener®&G to  and quantum resonance scans, respectively. These param-
gate an acousto-optic modulator. The PPG is programmed iters produced spontaneous emission rates@f5% per
a computer running theTLINUX™ operating system kernel kick for the quantum resonance scans, which was low
[20] which controls the timing of the experimental sequencesnough to ensure that the structure of the peaks was not

(aside from the pulse train itsg@lfExperimentally, we ap- affected for the low kick numbers used here.
proximate s kicks by pulses of widthr, which are approxi-

mately rectangular in shape. The lowest valuerptised in
our experiments was 240 ns and the highest was 480 ns. For
the experiments reported here, the effect of the finite width
of the kicking pulse$19,22 turns out to be negligible, since  We now consider the theoretical treatment of the atom-
fairly small numbers of kick¢fewer than 20 and low kick-  optics kicked rotor near quantum resonance. The Hamil-
ing strengths are used. In the case where7the0 limit is  tonian that generates the time evolution of the atomic wave
being investigated experimentally, tiéekick assumption is  function is(in dimensionless form[6,14]
clearly not valid[13,21]. This restricts us to a minimum pe- , N
riod 7=320 ns, forr,=240 ns, in our study of the “classical’
resonance peaks. | ’ H(t) = % * kcos(z)}_: At ~t), @)

In a typical experimental run, the cooled atoms were re- =0
leased from the MOT and subjected to up to 16 standingvherep is the atomic momentum in units ofiR_ (i.e., of
wave pulses, then allowed to expand for an additional fregwo-photon recoilg z is the atomic position in units ofk2,
drift time in order to resolve the atomic momenta. After thist’ is time, andt is an integer that counts the kicks. In our

FIG. 1. Schematic diagram of our experimental setup. A stan-

Ill. € CLASSICAL DYNAMICS NEAR
THE FUNDAMENTAL QUANTUM RESONANCES
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units, the kicking periodr may also be viewed as a scaled tum evolution can be approximated by theclassical stan-

Planck constant as defined by the equation8ERT/%, dard map derived if10,11,23:

WhereER:ﬁZkf/ZM is the recoil energyassociated with the -

energy change of a cesium atom of mdgsifter emission of Ju1=ditksin(Puy), V=0 + (6)

a photon of wavelengti\, =27/k =852 nn). The dimen- ~ o ) . )

sionless parametdxis the kicking strength of the system and for k< 1. Jimplicitly contains the quasimomentup) which

is proportional to the kicking laser intensity. defines the initial conditions in momentum in the phase
An atom periodically kicked in space and time is de-SPace generated by the me§) [8].

scribed by a wave packel(z) decomposed into2-periodic For small|€|, the e classical dynamics is quasi-integrable,
Bloch statesy(2), that is and the growth of the energy is dominated by the princéipal

) classical resonant island aroudd 27 [1]. The latter island
. is populated only by the values ¢ that are close to the
2) = fo dB explif2)y(2), (2 resonant ones, while the nonresonant quasimomenta corre-
spond to initial conditions outside the nonlinear resonance
whereg is the quasimomenturtie., the fractional part of the island[8,10,11. Moreover, at any time, the ratio between
momentump). Quasimomentum is conserved in the evolu-the energy and its value at0 is a scaling function of the
tion generated by Eq1), so the different Bloch states in Eq. singlevariable
(2) evolve independently of each other, whereby their mo- —
menta can change only by integers by virtue of the kicks. For x=tvk|el. (7
any given quasimomentum, the dynamics is formally equivathe scaling function(which was explicitly derived in
lent to that of a rotofmoving on a circl¢ whose one-period [8,10,11) is
Floquet operator is given by
(Et0)

where =z mod27), and N=-id/dé is the angular momen- ith the functions
tum operator. From Eq3) we can immediately derive the .
two necessary conditions for quantum resonant motion: if By(x) = EJ q Siré(s)
=2ar/q (r,q integerg then the atomic motion may show 0 mJo S
asymptotic quadratic growth in energy so longasm/2r,
0<m=2r, minteger at the same time. Under these condi-2nd
tions the Floguet operat@B) is also periodic in momentum 1 (27 >
space, with the integer periaf As in previous experimental G(X) = _J dé’of dJed(X, 6, J0)>.
studies[6], we focus on the first two fundamental quantum 8mJo -2
resonanceg=1, 2, for which the amplitudes of Bloch waves _
with B=1/2 forq=2, andB=0,1/2 forq=1 at momentum JEJ/\ﬁ( is the momentum of the pendulum approximation
states separated loyx 2%k_exactly rephase after each kick. to the dynamics generated around the stable fixed point of
The rephasing condition enforces ballistic propagation of thé6), rescaled to unit coupling parametesee[8,10,1] for
corresponding states in momentum space, so their energletails.
grows quadratically in time. The remaining Bloch compo- The one-parameter scaling 1d®) allows us to deduce the
nents of the original wave packé), with 8 not in the reso-  shape and the parameter dependence of the resonance peaks
nant class, exchange energy with the kicking laser in a qugelegantly from the experimental data, which in the unscaled
siperiodic manner. The competition between the resonant arf@m is shown in Figs. 2 and 3 for=27 and 4w, respec-
the nonresonant subclasses of Bloch stétesveen ballistic ~ tively.
and quasiperiodic propagatipleads tolinear growth of the
total mean energ¥ ~k?t/4 obtained by incoherently aver- V. EXPERIMENTAL VERIFICATION OF THE SCALING
aging over the continuous set of quasimomenta which con- LAW AT QUANTUM RESONANCE
stitute the atomic ensemb|8,10,11.

For q=1, 2, we write 7=27{+¢, where € denotes the
detuning from the exact resonance dtwll, 2. As shown in
[10,11], the Floquet operatdi3), can then be rewritten as

. , A 4
{1 = e cotgrin+ p712, 3 ~ R =1 =60 + —G(¥, (8)

We have used the data obtained for various scans of the
mean energy vs the kicking period around the quantum reso-
nancesr=2m and 4, and for kick number$=5, 10, 15 to
extract the ratidE; .)/(E; o). We subtract from the numerator

Up(t) = ek cotOldgrityle (4)  the initial energy of the atomic ensemble with the character-
- . . istic width in momentum space,. The contribution ofr?/2
with k=Kkl|¢|, I =|¢\V as rescaled momentum, and to the energy must be subtracted because the derivation of
L 1 . the scaling functiorR(x) assumed an initial atomic momen-
Hg(l,t) = Esgr(e)l2 + (7l + 76). (5) tum distribution in the unit intervd0, 1) [10], corresponding

to a uniform distribution of quasimomentg=p,<[0,1).
Introducing the new variabled=+I+m(+73, 9=6+={1  Since the maximum of the resonance pedk.-o) is experi-
—-sgn(e)]/2, where * denotes the sign efsgr(e), the quan- mentally the most unstable parametdue to the early loss
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g 40 ) 40

FIG. 2. Experimentally measured mean ener-
gies around the first quantum resonance rat
=24 after (a) 5, (b) 10, and(c) 15 kicks. Error
bars show an average over three independent ex-
periments. The kicking strength and initial mo-
mentum standard deviation were measured to be
k=4.1+0.6 ando,=5.9+0.2, respectively. Note
that the estimated errors in these parameters do
not take into account systematic drifts which take
place over the course of experimental runs. The
solid line joins the experimental points to aid the
eye.

Energy (2-photon recoils)

o | T RRTEN BRTERT U 0|||||||||| ' PR |

6 62 64 6 62 64 6 62 64
T T T

of the fastest resonant atoms from the experimental detection We fittedk and o, for each data set and then used these
window [6-8]), we use the theoretical Va|u(£t,0>—0€/ 2  fitted parameters to scale our data. In the case ofrther
=k%/4 to rescale our experimental data, rather than thélata, the best-fit value &fwas found to be 4.5 compared to
height of the experimental peak itself. Results are presenteldde independently measured valueksf4.1+0.6. For ther

in Figs. 4 and 5 forr=2a and 4r respectively. We see very =47 data, the best fit value df was 5.2 compared with a
good agreement between the theoretical scaling functiof’easured value &f=5+0.5. The corresponding fitted values
R(x) from Eq. (8) and our experimental data. Despite the of o, were 5 and 5.2 two-photon recoils, respectively, which

. : .. differ from the measured values of 4.53+0.02 and 4.3+0.2.
relatively Ia_rge_expenmental errors dge to the uncertainty "rhis difference is due to the systematic error involved in
the determination ofo, (see discussion belgwthe data

%Ireterminingcrp from the experimental initial momentum dis-
aing o he comvion o e furcion(o at frge |10 25 15eUs5ee 1) I il e ey buton
x=8. These oscillations arise from the averaged contribuzgie in order to reliably extract the second moment leading
tions of the initial conditiond, € (-2, 2) within the principal  to an underestimation of the true initial momentum spread.
nonlinear resonance island, which evolve with different fre- |t is interesting to note that in Figs. 2 and 3, there is
quencies around the corresponding elliptic fixed point of thenoticeable asymmetry in the resonance peaks. This degree of
map (6). The quasimomentum classes contributingdx)  asymmetry is not predicted by the standarclassical theory

are thus the near-resonant values, while the nonresonant vaind its precise cause has not yet been ascertained. However,
ues contribute to the function Iby(x), which saturates to a the asymmetry most likely stems from one or more system-
constant for largex [8,10,11. atic experimental effects, including the effect of small

35||||||||||45||||||||||45||||||||||

| (a) (©)

40 -1 40

35 -1 35 FIG. 3. Experimentally measured mean ener-
gies around the second quantum resonance at
=44 for (a) 5; (b) 10, and(c) 15 kicks. The kick-
ing strength and initial momentum standard de-
viation were measured to bde=5.0£0.5 andoy,
=6.3+0.1, respectively. Error bars as in Fig. 2.
We note both in this figure and in Fig. 2 that the
resonances exhibit some asymmetry, which is
thought to be of purely experimental origisee

the discussion in Sec. IV

251

30 - 30

25 -1 25

20 -1 20

Energy (2-photon recoils)
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— 15
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guantum dynamics onto a purely classical map giveri@y
The latter map is formally equivalent to the usual standard
map, which describes the classical limit of the quantum KR
when the kicking period tends to zefb2]:

R(x) Ju1=di+ksin(by1), O1=6+J;, 9

now with J=7p=7(n+B) andk=kr. Because of the analogy
between the map$) and(9), we expect a scaling law for the
mean energy also in the limit— 0. Sincer— 0, all quasi-
momentum subclasses contribute now similarly to the energy
growth, and the averaged energy is given only by the initial

conditions within the principal nonlinear resonance island
FIG. 4. Experimental mean energies aroursl7 taken from (see[13] for detaily
Fig. 2 and rescaled aﬁ{Etf)—azp/Z)/(tkzM). Triangles are fort
=5, squares fot=10, and circles fot=15. Error bars represent (Ey) = 7 X (A2 =~ K216y (%), (10
statistical fluctuations over three experiments, and do not take into ith
account fluctuations ik or o,. The solid line shows the numeri- wi

cally evaluated scaling functidR(x) of Eq. (8). We note that, for 10 \E 2m Vik
[ an[ oo
0 0

0,11

and 15 kicks, data fofe| <0.03 have been omitted due to our in- Gy(x) = 0J(X, 60,J0)?
ability to accurately resolve atomic energies for fast atoms this
close to resonance. Experimental data for both positive and negative 1 (27
L[
2m)g

’/_
2N T

values ofe are plotted. We would like to note the good correspon- 0I(X, 69, Jg = 0)?, (11
dence between the classical prediction and the experimental data

for over one order of magnitude in the scaling variakle which depends on the variabiet(k7)2 [which, given that

o . =€ for the classical resonance, is the same as the scaling
amounts of spontaneous emission0.5% chance per kick arable given in Eq(7)] and weakly ork and 7, in contrast
for the quantum resonance schasd also from the slightly {5 the quantum resonant case studied in Sec. Ill. The depen-
lesser time of flight experienced by atoms for positive agjence 0fG,, on 7 is negligibly small forr=<1/k, so that in
opposed to negative Asymmetry of the peaks has also beenyracticeG,, can be viewed as a function of the scaling pa-
noted in other experiments probing the structure of the quan=,meterx alone.
tum resonancef24]. In any case, this asymmetry does not  poy the ratio(E, Y/(E, ) we then arrive at the scaling
prevent us from observing the structure of the quantum resqy,nction ' ’
nances, but leads to a slightly enhanced scatter of the experi-

mental data points in Figs. 4 and 5. = 2
P g 2L~ Ry(X) = 5Gy(X), (12)
<Et,0> X
V. CLASSICAL LIMIT OF VANISHING KICKING PERIOD which in the limit of vanishings tends to unity, since

Gy (X)=x2/2 for small x [8,13]. Our result(10) describes

In spite of the intrinsically quantum nature of the quantumgquadratic growth in mean energy as—0. We note again
resonances as an example of perfectly frequency-matchefat in the case of quantum resonancesslassical theory
driving, the method reviewed in Sec. Ill allows us to map thEpredicts onlylinear mean energy growth with kick number at
guantum resonandel0,11]. This linear increase is induced
by the contribution of most quasimomentum classes which
lie outsidethe classical resonance island. Foer 0, almost
all initial conditions(or quasimomenddie within the princi-
pal resonance island, which leads to the ballistic growth for
the averagedensemble energ{l0).

For finite 7> 0 andt’k> 1/, we obtain from(10)

Irg

R(x)

k
(Eirmo)~ o e, (13

01r ) sinceGg, saturates to the value= 0.7 for largex. Within the

1 ' T "o stated parameter range, this result implies dynamical

freezing—the ensemble’s mean energy is independent of
FIG. 5. Scaled experimenta] mean energies arotmdlr taken kick number. This phenomenon is a classical effect in a Sys-

from Fig. 3; triangles are for=>5, squares fot=10, and circles for tem with a regular phase space, and was observgtBirfor

t=15 kicks. The solid line shows the scaling functi®éx) from Eq.  the first time. It is distinct from dynamical localization which

(8). Again, for 10 and 15 kicks, data too close to resonance, i.e., fois the quantum suppression of momentum diffusion for a

|| <0.03, have been omitted. chaotic phase spadd,12]. Experimentally, the freezing ef-
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FIG. 6. (a) Circles show experimentally measured mean ener- FIG. 7. (a) Circles show experimental data as- 0 for 10 kicks.
gies asr— 0 after 5 kicks. The measured valuekos 4.9+0.2. The  The other experimental parameters are the same as those given for
solid line is classical data fdt=4.9, as generated by the még, Fig. 6(a). The circles in(b) show experimental data once again for
using practically the same initial momentum distribution as in thethe second quantum resonance after 10 kicks this time. Other ex-
experiment. The thermal energqglz has been subtracted to facili- perimental parameters are the same as those given for (BigVée
tate comparison with the quantum resonance curvéjnin (b), note that for the quantum resonance(lim, the simulation and ex-
circles show experimental data after 5 kicks near the second quaiperimental results differ most markedly near the resonance peak. In
tum resonance for positive= -4 and the experimental param- this region(e<0.03, some fast, resonant atoms are being lost from
eters are as given for Fig. 3. The thermal ene«jﬁz has been the experimental viewing area leading to a lower energy growth rate
subtracted. The solid line show<lassical data as generated by the than predicted theoreticallisee discussion in Secs. | andl. INote
map (6). that in (a) it is not possible to probe low values @f e due to the

finite width of the pulses.

fect corresponds to the cessation of energy absorption from

the kicks, similar(but different in origin to that which oc- e cjassical scaling function froifi2) than thee classical
curs at dynamical quallzatlon. The_freez'lng may be €X-scaling function(8) which is shown in Fig. 8 as a dash-
plained as the averaging over all trajectories which start afjgtieq line. The clearly different scaling of the quantum and
momenta close to zero, and move with different frequenciegne «classical” resonant peaks goes along with the same rates

about the principal elliptic fixed point of the ma§). _ at which the peaks become narrower with time in a sub-
From Eq.(12), we immediately see that for the “classical” gq\rier manner.

resonancer— 0, the resonant peak width scales in time like
(kt?)™%, as at the quantum resonances studied in Secs. lll and
IV. However, the tails of the classical resonance peak decay VI. CONCLUSIONS

: > i
faster (proportionally to 1%“) than those at quantum reso In summary, we have experimentally confirmed a theo-

nance[proportionally to 1k; cf. Eq. (8)]. This very fast . . ing law for th
shrinking of both types of resonance peaks is compared irrwetlcally predllcted one-parameter scaling 1aw for .t € reso-
Figs. 6 and 7. nance peaks in the mean energy of a periodically kicked cold

Both types of these sensitive resonance peaks may serve
as an experimental tool for determining or calibrating param-
eters in a very precise manner. Additionally, we note that the
quadratic scaling in time at the quantum resonances and the
“classical” resonance, respectively, is much faster and hence
much more sensitive than the sub-Fourier resonances de-
tected in a similar context by Szriftgizer and co-workers
[25]. A detailed study of the quantum energy spectrum of the 0.1¢
kicked atoms close to the two types of resonances is under C
way to clarify the origin of the observed sub-Fourier scaling
of the resonance peaks.

Finally, we have plotted rescaled experimental data for the
7— 0 resonance against the scaling function of B@), as
seen in Fig. 8. The scaling was performed using the fitted g g Rescaled experimental mean energies for

parameters as given in Figs. 6 and 7. We note that it is moreg 033-0.284(corresponding to 0.32—2.7s). The data are for
difficult to extract the scaling from experimental data in thek=4.9 with t=3 (circles, 7 (diamonds, and 16(stars. Error bars

classical case, as opposed to the quantum case, because iffficate statistical fluctuations over three experiments, and do not
peak of the extremely narrow resonance is difficult to probeinclude variations ink or 0. The solid line shows the classical
This leads to a larger uncertainty in the scaled energy and thszaling function of Eq(12). The dash-dotted line shows the scaling
points appear somewhat more scattered than those in Figsidhction from Eq. (8) (valid for the quantum resonangegor

and 5. However, the points clearly agree much better witttomparison.

Rcl(x) i
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atomic ensemble. This scaling of the resonant peaks is uni- It will be of great interest to clarify whether a similar
versal, in the sense that it reduces the dependence from alhiversal scaling law can be found for other time-dependent
the system’s parameters to just one combination of such varbystems, such as the close-to-resonant dynamics of the
ables. Furthermore, the scaling theory works in principle forkicked harmonic oscillatof26], or the driven Harper model
arbitrary initial momentum distributions. In particular, it is [27,28. As with the atom-optics kicked rotor, both of the
valid for the experimentally relevant uniformly distributed latter systems may be readily realized in laboratory experi-
quasimomenta at the fundamental quantum resonances of tReNts[29,30.

kicked atoms. In the classical limit of vanishing kicking pe-
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