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We present experimental measurements of the mean energy in the vicinity of the first and second quantum
resonances of the atom-optics kicked rotor for a number of different experimental parameters. Our data are
rescaled and compared with the one-parametersed classical scaling function developed to describe the quantum
resonance peaks. Additionally, experimental data are presented for the “classical” resonance which occurs in
the limit as the kicking period goes to zero. This resonance is found to be analogous to the quantum reso-
nances, and a similar one-parameter classical scaling function is derived, and found to match our experimental
results. The widths of the quantum and classical resonance peaks are compared, and their sub-Fourier nature
examined.
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I. INTRODUCTION

The heart of experimentally testing and controlling clas-
sical and quantum systems often lies in the introduction of an
external periodic driving forcef1–3g. The driving probes
system-specific properties, the knowledge of which allows
one, in turn, to understand and to optimally control the sys-
tem at hand. In particular, driven systems often exhibit reso-
nancelike behavior if the external driving frequency matches
the natural frequency of the unperturbed system.

Typical nonlinear classical systems are resonant for only a
finite interaction time since the driving itself forces the sys-
tem to gain energy and hence drift out of resonance. Only if
the natural frequencies are independent of the energy, as for
the linearsharmonicd oscillator, the system can absorb en-
ergy on resonance indefinitely. In the quantum world, the
situation may be different by virtue of the unperturbed sys-
tem possibly having a discrete energy spectrum. If this spec-
trum shows an appropriate scaling in the excitation quantum
number, resonant motion can persist forever.

A simple example of such a system is provided by the free
rotor, whose energy spectrum scales quadratically in the ex-
citation quantum numbersdue to periodic boundary condi-
tions for the motion on the circled. Kicking the rotor periodi-
cally in time with a frequency commensurable with the
energy difference of two neighboring levels leads to per-
fectly resonant driving. These so-called quantum resonances
of the well-studied kicked rotorsKRd f4g have been known
theoretically for some timef5g, but the first traces of this
example of frequency-matched driving have only recently
come to light in experiments with cold atomsf6,7g. Such
experimentsf7g and theoretical studiesf8,9g have also shown
the surprisingly robust nature of these resonances in the pres-
ence of noise and perturbations.

Experimentally, the quantum resonances of the KR are
hard to detect for two principal reasons. First, only a rela-
tively small proportion of atoms are kicked resonantly for the
following reason: ideally, the atomic motion is along a line,
which introduces an additional parameter, namely, the non-

integer part of the atomic momentum, i.e., the atom’s quasi-
momentum. Treating the atoms independently, their motion
can be mapped onto the circle owing to the spatial periodic-
ity of the standing wave, which makes the quasimomentum a
constant of the motion. However, only some values of qua-
simomentum allow resonant driving to occurf5g. All other
values induce a dephasing in the evolution which hinders the
resonant kicking of the atomsssee Sec. III for detailsd. Sec-
ond, if an atom is kicked resonantly it moves extremely
quickly; in fact its energy grows quadratically in timesso-
called ballistic propagationd. These fast atoms quickly escape
any fixed experimental detection window after a sufficiently
large number of kicksf6,7g.

In this paper, we report experimental data which show the
behavior of a typical experimental ensemble of cold atoms
under resonant driving. Our main observable is the mean
energy of the atomic ensemble measured after a fixed num-
ber of kicks and scanned over the resonant kicking frequency
or period. We verify a recently derived single-parameter scal-
ing law of the resonant peak seen when scanning the energy
vs the periodf8,10,11g. The scaling law allows us to clearly
resolve the resonance peak structure because it reduces the
dynamics to astationaryand experimentally robust signature
of the quantum resonant motion.

After a short review of our experimental setup in Sec. II
and the theoretical treatment of the atom-optics kicked rotor
close to quantum resonance in Sec. III, we present experi-
mental data for the mean energies around the first two fun-
damental quantum resonances of the kicked atom. From
these data, we extract the afore mentioned scaling law in Sec.
IV. The effect of the quasimomentumsas a typical quantum
variabled on the motion disappears in the classical limit of
the kicked rotor, when the kicking period approaches zero
f5,12g. In the latter case, the rotor is constantly driven, and a
ballistic motion occurs forall members of the atomic en-
semblef13g. Both phenomena, the quantum and the “classi-
cal” sfor vanishing kicking periodd resonance, are related to
one another by a purely classical theory developed previ-
ously for the quantum resonance peaksf8,10,11g.
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In Sec. V we focus on the first direct comparison of the
behavior of the ensemble averaged energies in the case of the
“classical” and the quantum resonance. In particular, the sub-
Fourier scaling of the resonance peaks in the mean energy as
a function of the kick number is discussed. The latter makes
both types of resonances studied here a potential source of
high-precision measurements of system-specific parameters.

II. EXPERIMENTAL SETUP

Our experimental system is a realization of the paradig-
matic kicked rotor modelf14,15g, whose relevance lies in the
fact that it shows the basic features of a complex dynamical
system, and it may be used to locallysin energyd approxi-
mate much more complicated systems, such as microwave-
driven Rydberg atomsf16g, or an ion in a particle accelerator
f1,17g.

Our experiments utilize a cloud of about 105 cold cesium
atoms, provided by a standard six beam magneto-optical trap
sMOTd f18g. The typical momentum spread of the atomic
sample lies between four and eight two-photon recoils. The
shape of the initial momentum distribution is well approxi-
mated by a Gaussian with standard deviationsp.s4–8d
32"kL, centered at zero momentumf19g, although signifi-
cant non-Gaussian tails can existf13g. The width is measured
in units of two-photon recoils, corresponding to the wave-
length of the kicking laserlL=2p /kL. The fractional parts in
these units of the initial momenta, i.e., the quasimomentum
discussed below, are practically uniformly distributed in the
fundamental Brillouin zone defined by the periodic kick po-
tential f10g.

As shown in Fig. 1, the atoms interact with a pulsed,
far-detuned optical standing wave which is created by ret-
roreflecting the light from a 150 mWsslaved diode laser
which is injection locked to a lower-powersmasterd diode
laser at a wavelength oflL=852 nm. Power fluctuations
were minimal during the experiments performed here
s,1%d although larger drifts occurred over the course of
many experimental runs. Accurate pulse timing is achieved
using a custom-built programmable pulse generatorsPPGd to
gate an acousto-optic modulator. The PPG is programmed by
a computer running theRTLINUX™ operating system kernel
f20g which controls the timing of the experimental sequence
saside from the pulse train itselfd. Experimentally, we ap-
proximated kicks by pulses of widthtp which are approxi-
mately rectangular in shape. The lowest value oftp used in
our experiments was 240 ns and the highest was 480 ns. For
the experiments reported here, the effect of the finite width
of the kicking pulsesf19,22g turns out to be negligible, since
fairly small numbers of kickssfewer than 20d and low kick-
ing strengths are used. In the case where thet→0 limit is
being investigated experimentally, thed-kick assumption is
clearly not validf13,21g. This restricts us to a minimum pe-
riod t=320 ns, fortp=240 ns, in our study of the “classical”
resonance peaks.

In a typical experimental run, the cooled atoms were re-
leased from the MOT and subjected to up to 16 standing
wave pulses, then allowed to expand for an additional free
drift time in order to resolve the atomic momenta. After this

expansion time, the trapping beam is switched on and the
atoms are frozen in space by optical mollases. A charge-
coupled device image of the resulting fluorescence is re-
corded and used to infer the momentum distribution of the
atoms using standard time-of-flight techniquesf6g. The mean
energy of the atomic ensemble may then be inferred by cal-
culating the second moment of the experimental momentum
distribution.

Kicking laser powers of up to 30 mW were employed, and
detunings from the 6S1/2sF=4d→6P3/2sF8=5d transition of
cesium of 500 MHz and 1 GHz were used for the classical
and quantum resonance scans, respectively. These param-
eters produced spontaneous emission rates of,0.5% per
kick for the quantum resonance scans, which was low
enough to ensure that the structure of the peaks was not
affected for the low kick numbers used here.

III. e CLASSICAL DYNAMICS NEAR
THE FUNDAMENTAL QUANTUM RESONANCES

We now consider the theoretical treatment of the atom-
optics kicked rotor near quantum resonance. The Hamil-
tonian that generates the time evolution of the atomic wave
function is sin dimensionless formd f6,14g

Hst8d =
p2

2
+ k cosszdo

t=0

N

dst8 − ttd, s1d

wherep is the atomic momentum in units of 2"kL si.e., of
two-photon recoilsd, z is the atomic position in units of 2kL,
t8 is time, andt is an integer that counts the kicks. In our

FIG. 1. Schematic diagram of our experimental setup. A stan-
dard six-beam magneto-optical trapsMOTd of about 105 Cs atoms
is formed inside a vacuum cell at the intersection of three retrore-
flected “trapping” beamsfvertical beams andsanti-dHelmholtz coils
are not showng. A standing wave is formed across the cloud of
atoms by retroreflecting light from a “kicking laser,” which is trans-
ported to the MOT by means of a single-mode fibersSMFd. This
light is pulsed on and off by an acousto-optic modulatorsAOMd
which is gated by a programmable pulse generatorsPPGd. The
PPG’s pulse train is uploaded from a computer, which also controls
the timing of the experimentse.g., when the trapping AOM and
anti-Helmholtz coils are turned on and offd.
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units, the kicking periodt may also be viewed as a scaled
Planck constant as defined by the equationt=8ERT/",
whereER="2kL

2 /2M is the recoil energysassociated with the
energy change of a cesium atom of massM after emission of
a photon of wavelengthlL=2p /kL=852 nmd. The dimen-
sionless parameterk is the kicking strength of the system and
is proportional to the kicking laser intensity.

An atom periodically kicked in space and time is de-
scribed by a wave packetcszd decomposed into 2p-periodic
Bloch statescbszd, that is,

cszd =E
0

1

db expsibzdcbszd, s2d

whereb is the quasimomentumsi.e., the fractional part of the
momentumpd. Quasimomentum is conserved in the evolu-
tion generated by Eq.s1d, so the different Bloch states in Eq.
s2d evolve independently of each other, whereby their mo-
menta can change only by integers by virtue of the kicks. For
any given quasimomentum, the dynamics is formally equiva-
lent to that of a rotorsmoving on a circled whose one-period
Floquet operator is given by

Ûb = e−ik cossûde−itsN̂ + bd2/2, s3d

whereu=zmods2pd, andN̂=−id /du is the angular momen-
tum operator. From Eq.s3d we can immediately derive the
two necessary conditions for quantum resonant motion: ift
=2pr /q sr ,q integersd then the atomic motion may show
asymptotic quadratic growth in energy so long asb=m/2r,
0ømø2r, m integer at the same time. Under these condi-
tions the Floquet operators3d is also periodic in momentum
space, with the integer periodq. As in previous experimental
studiesf6g, we focus on the first two fundamental quantum
resonancesq=1, 2, for which the amplitudes of Bloch waves
with b=1/2 for q=2, andb=0,1/2 forq=1 at momentum
states separated byq32"kL exactly rephase after each kick.
The rephasing condition enforces ballistic propagation of the
corresponding states in momentum space, so their energy
grows quadratically in time. The remaining Bloch compo-
nents of the original wave packets2d, with b not in the reso-
nant class, exchange energy with the kicking laser in a qua-
siperiodic manner. The competition between the resonant and
the nonresonant subclasses of Bloch statessbetween ballistic
and quasiperiodic propagationd leads tolinear growth of the
total mean energyE<k2t /4 obtained by incoherently aver-
aging over the continuous set of quasimomenta which con-
stitute the atomic ensemblef8,10,11g.

For q=1, 2, we writet=2p,+e, where e denotes the
detuning from the exact resonance and,=1, 2. As shown in
f10,11g, the Floquet operators3d, can then be rewritten as

Ûbstd = e−ik̃ cossûd/ueue−iĤb/ueu, s4d

with k̃=kueu, Î = ueuN̂ as rescaled momentum, and

ĤbsÎ,td =
1

2
sgnsedÎ2 + Îsp, + tbd. s5d

Introducing the new variablesJ= ± I +p,+tb, q=u+pf1
−sgnsedg /2, where ± denotes the sign ofe=sgnsed, the quan-

tum evolution can be approximated by thee classical stan-
dard map derived inf10,11,23g:

Jt+1 = Jt + k̃ sinsqt+1d, qt+1 = qt + Jt s6d

for k̃!1. Jt implicitly contains the quasimomentumb, which
defines the initial conditions in momentum in the phase
space generated by the maps6d f8g.

For smallueu, thee classical dynamics is quasi-integrable,
and the growth of the energy is dominated by the principale
classical resonant island aroundJ=2p f1g. The latter island
is populated only by the values ofb that are close to the
resonant ones, while the nonresonant quasimomenta corre-
spond to initial conditions outside the nonlinear resonance
island f8,10,11g. Moreover, at any timet, the ratio between
the energy and its value ate=0 is a scaling function of the
singlevariable

x = tÎkueu. s7d

The scaling functionswhich was explicitly derived in
f8,10,11gd is

kEt,el
kEt,0l

< Rsxd ; 1 − C0sxd +
4

px
Gsxd, s8d

with the functions

F0sxd ;
2

p
E

0

x

ds
sin2ssd

s2 ,

and

Gsxd <
1

8p
E

0

2p

du0E
−2

2

dJ0J̄sx,u0,J0d2.

J̄;J/Îk̃ is the momentum of the pendulum approximation
to the dynamics generated around the stable fixed point of
s6d, rescaled to unit coupling parameterssee f8,10,11g for
detailsd.

The one-parameter scaling laws8d allows us to deduce the
shape and the parameter dependence of the resonance peaks
elegantly from the experimental data, which in the unscaled
form is shown in Figs. 2 and 3 fort=2p and 4p, respec-
tively.

IV. EXPERIMENTAL VERIFICATION OF THE SCALING
LAW AT QUANTUM RESONANCE

We have used the data obtained for various scans of the
mean energy vs the kicking period around the quantum reso-
nancest=2p and 4p, and for kick numberst=5, 10, 15 to
extract the ratiokEt,el / kEt,0l. We subtract from the numerator
the initial energy of the atomic ensemble with the character-
istic width in momentum spacesp. The contribution ofsp

2/2
to the energy must be subtracted because the derivation of
the scaling functionRsxd assumed an initial atomic momen-
tum distribution in the unit intervalf0, 1d f10g, corresponding
to a uniform distribution of quasimomentab;p0P f0,1d.
Since the maximum of the resonance peakkEt,e=0l is experi-
mentally the most unstable parametersdue to the early loss
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of the fastest resonant atoms from the experimental detection
window f6–8gd, we use the theoretical valuekEt,0l−sp

2/2
=k2t /4 to rescale our experimental data, rather than the
height of the experimental peak itself. Results are presented
in Figs. 4 and 5 fort=2p and 4p respectively. We see very
good agreement between the theoretical scaling function
Rsxd from Eq. s8d and our experimental data. Despite the
relatively large experimental errors due to the uncertainty in
the determination ofsp ssee discussion belowd, the data
show the characteristic structure, and also the oscillations
arising from the contribution of the functionGsxd at large
xù8. These oscillations arise from the averaged contribu-

tions of the initial conditionsJ̄0P s−2,2d within the principal
nonlinear resonance island, which evolve with different fre-
quencies around the corresponding elliptic fixed point of the
map s6d. The quasimomentum classes contributing toGsxd
are thus the near-resonant values, while the nonresonant val-
ues contribute to the function 1−F0sxd, which saturates to a
constant for largex f8,10,11g.

We fittedk and sp for each data set and then used these
fitted parameters to scale our data. In the case of thet=2p
data, the best-fit value ofk was found to be 4.5 compared to
the independently measured value ofk=4.1±0.6. For thet
=4p data, the best fit value ofk was 5.2 compared with a
measured value ofk=5±0.5. The corresponding fitted values
of sp were 5 and 5.2 two-photon recoils, respectively, which
differ from the measured values of 4.53±0.02 and 4.3±0.2.
This difference is due to the systematic error involved in
determiningsp from the experimental initial momentum dis-
tribution sas discussed inf13gd. In particular this distribution
may have noisy exponential wingsf19g which must be trun-
cated in order to reliably extract the second moment leading
to an underestimation of the true initial momentum spread.

It is interesting to note that in Figs. 2 and 3, there is
noticeable asymmetry in the resonance peaks. This degree of
asymmetry is not predicted by the standarde classical theory
and its precise cause has not yet been ascertained. However,
the asymmetry most likely stems from one or more system-
atic experimental effects, including the effect of small

FIG. 2. Experimentally measured mean ener-
gies around the first quantum resonance att
=2p after sad 5, sbd 10, andscd 15 kicks. Error
bars show an average over three independent ex-
periments. The kicking strength and initial mo-
mentum standard deviation were measured to be
k=4.1±0.6 andsp=5.9±0.2, respectively. Note
that the estimated errors in these parameters do
not take into account systematic drifts which take
place over the course of experimental runs. The
solid line joins the experimental points to aid the
eye.

FIG. 3. Experimentally measured mean ener-
gies around the second quantum resonance att
=4p for sad 5; sbd 10, andscd 15 kicks. The kick-
ing strength and initial momentum standard de-
viation were measured to bek=5.0±0.5 andsp

=6.3±0.1, respectively. Error bars as in Fig. 2.
We note both in this figure and in Fig. 2 that the
resonances exhibit some asymmetry, which is
thought to be of purely experimental originssee
the discussion in Sec. IVd.
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amounts of spontaneous emissions,0.5% chance per kick
for the quantum resonance scansd and also from the slightly
lesser time of flight experienced by atoms for positive as
opposed to negativee. Asymmetry of the peaks has also been
noted in other experiments probing the structure of the quan-
tum resonancesf24g. In any case, this asymmetry does not
prevent us from observing the structure of the quantum reso-
nances, but leads to a slightly enhanced scatter of the experi-
mental data points in Figs. 4 and 5.

V. CLASSICAL LIMIT OF VANISHING KICKING PERIOD

In spite of the intrinsically quantum nature of the quantum
resonances as an example of perfectly frequency-matched
driving, the method reviewed in Sec. III allows us to map the

quantum dynamics onto a purely classical map given bys6d.
The latter map is formally equivalent to the usual standard
map, which describes the classical limit of the quantum KR
when the kicking period tends to zerof12g:

Jt+1 = Jt + k̃ sinsut+1d, ut+1 = ut + Jt, s9d

now with J=tp=tsn+bd and k̃=kt. Because of the analogy
between the mapss6d ands9d, we expect a scaling law for the
mean energy also in the limitt→0. Sincet→0, all quasi-
momentum subclasses contribute now similarly to the energy
growth, and the averaged energy is given only by the initial
conditions within the principal nonlinear resonance island
sseef13g for detailsd

kEt,tl < t−2ksJtd2l/2 < k/2tGclsxd, s10d

with

Gclsxd ;
Îk

2pÎt
E

0

2p

du0E
0

Ît/k

dJ0J̄sx,u0,J0d2

<
1

2p
E

0

2p

du0J̄sx,u0,J0 = 0d2, s11d

which depends on the variablex= tsktd1/2 fwhich, given that
t=e for the classical resonance, is the same as the scaling
variable given in Eq.s7dg and weakly onk andt, in contrast
to the quantum resonant case studied in Sec. III. The depen-
dence ofGcl on t is negligibly small fort&1/k, so that in
practiceGcl can be viewed as a function of the scaling pa-
rameterx alone.

For the ratiokEt,tl / kEt,0l we then arrive at the scaling
function

kEt,tl
kEt,0l

< Rclsxd ;
2

x2Gclsxd, s12d

which in the limit of vanishingt tends to unity, since
Gclsxd<x2/2 for small x f8,13g. Our results10d describes
quadratic growth in mean energy ast→0. We note again
that in the case of quantum resonances,e classical theory
predicts onlylinear mean energy growth with kick number at
quantum resonancef10,11g. This linear increase is induced
by the contribution of most quasimomentum classes which
lie outsidethe classical resonance island. Fort→0, almost
all initial conditionssor quasimomentad lie within the princi-
pal resonance island, which leads to the ballistic growth for
the averagedensemble energys10d.

For finite t.0 andt2k@1/t, we obtain froms10d

kEt,t.0l <
k

2t
a, s13d

sinceGcl saturates to the valuea.0.7 for largex. Within the
stated parameter range, this result implies dynamical
freezing—the ensemble’s mean energy is independent of
kick number. This phenomenon is a classical effect in a sys-
tem with a regular phase space, and was observed inf13g for
the first time. It is distinct from dynamical localization which
is the quantum suppression of momentum diffusion for a
chaotic phase spacef4,12g. Experimentally, the freezing ef-

FIG. 4. Experimental mean energies aroundt=2p taken from
Fig. 2 and rescaled asskEt,el−sp

2/2d / stk2/4d. Triangles are fort
=5, squares fort=10, and circles fort=15. Error bars represent
statistical fluctuations over three experiments, and do not take into
account fluctuations ink or sp. The solid line shows the numeri-
cally evaluated scaling functionRsxd of Eq. s8d. We note that, for 10
and 15 kicks, data forueu,0.03 have been omitted due to our in-
ability to accurately resolve atomic energies for fast atoms this
close to resonance. Experimental data for both positive and negative
values ofe are plotted. We would like to note the good correspon-
dence between thee classical prediction and the experimental data
for over one order of magnitude in the scaling variablex.

FIG. 5. Scaled experimental mean energies aroundt=4p taken
from Fig. 3; triangles are fort=5, squares fort=10, and circles for
t=15 kicks. The solid line shows the scaling functionRsxd from Eq.
s8d. Again, for 10 and 15 kicks, data too close to resonance, i.e., for
ueu,0.03, have been omitted.
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fect corresponds to the cessation of energy absorption from
the kicks, similarsbut different in origind to that which oc-
curs at dynamical localization. The freezing may be ex-
plained as the averaging over all trajectories which start at
momenta close to zero, and move with different frequencies
about the principal elliptic fixed point of the maps9d.

From Eq.s12d, we immediately see that for the “classical”
resonancet→0, the resonant peak width scales in time like
skt2d−1, as at the quantum resonances studied in Secs. III and
IV. However, the tails of the classical resonance peak decay
faster sproportionally to 1/x2d than those at quantum reso-
nance fproportionally to 1/x; cf. Eq. s8dg. This very fast
shrinking of both types of resonance peaks is compared in
Figs. 6 and 7.

Both types of these sensitive resonance peaks may serve
as an experimental tool for determining or calibrating param-
eters in a very precise manner. Additionally, we note that the
quadratic scaling in time at the quantum resonances and the
“classical” resonance, respectively, is much faster and hence
much more sensitive than the sub-Fourier resonances de-
tected in a similar context by Szriftgizer and co-workers
f25g. A detailed study of the quantum energy spectrum of the
kicked atoms close to the two types of resonances is under
way to clarify the origin of the observed sub-Fourier scaling
of the resonance peaks.

Finally, we have plotted rescaled experimental data for the
t→0 resonance against the scaling function of Eq.s12d, as
seen in Fig. 8. The scaling was performed using the fitted
parameters as given in Figs. 6 and 7. We note that it is more
difficult to extract the scaling from experimental data in the
classical case, as opposed to the quantum case, because the
peak of the extremely narrow resonance is difficult to probe.
This leads to a larger uncertainty in the scaled energy and the
points appear somewhat more scattered than those in Figs. 4
and 5. However, the points clearly agree much better with

the classical scaling function froms12d than thee classical
scaling functions8d which is shown in Fig. 8 as a dash-
dotted line. The clearly different scaling of the quantum and
the “classical” resonant peaks goes along with the same rates
at which the peaks become narrower with time in a sub-
Fourier manner.

VI. CONCLUSIONS

In summary, we have experimentally confirmed a theo-
retically predicted one-parameter scaling law for the reso-
nance peaks in the mean energy of a periodically kicked cold

FIG. 6. sad Circles show experimentally measured mean ener-
gies ast→0 after 5 kicks. The measured value ofk is 4.9±0.2. The
solid line is classical data fork=4.9, as generated by the maps9d,
using practically the same initial momentum distribution as in the
experiment. The thermal energysp

2/2 has been subtracted to facili-
tate comparison with the quantum resonance curve insbd. In sbd,
circles show experimental data after 5 kicks near the second quan-
tum resonance for positivee=t−4p and the experimental param-
eters are as given for Fig. 3. The thermal energysp

2/2 has been
subtracted. The solid line showse classical data as generated by the
map s6d.

FIG. 7. sad Circles show experimental data ast→0 for 10 kicks.
The other experimental parameters are the same as those given for
Fig. 6sad. The circles insbd show experimental data once again for
the second quantum resonance after 10 kicks this time. Other ex-
perimental parameters are the same as those given for Fig. 6sbd. We
note that for the quantum resonance insbd, the simulation and ex-
perimental results differ most markedly near the resonance peak. In
this regionse&0.03d, some fast, resonant atoms are being lost from
the experimental viewing area leading to a lower energy growth rate
than predicted theoreticallyssee discussion in Secs. I and IId. Note
that in sad it is not possible to probe low values oft=e due to the
finite width of the pulses.

FIG. 8. Rescaled experimental mean energies fort
=0.033–0.284scorresponding to 0.32–2.75msd. The data are for
k=4.9 with t=3 scirclesd, 7 sdiamondsd, and 16sstarsd. Error bars
indicate statistical fluctuations over three experiments, and do not
include variations ink or sp. The solid line shows the classical
scaling function of Eq.s12d. The dash-dotted line shows the scaling
function from Eq. s8d svalid for the quantum resonancesd for
comparison.
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atomic ensemble. This scaling of the resonant peaks is uni-
versal, in the sense that it reduces the dependence from all
the system’s parameters to just one combination of such vari-
ables. Furthermore, the scaling theory works in principle for
arbitrary initial momentum distributions. In particular, it is
valid for the experimentally relevant uniformly distributed
quasimomenta at the fundamental quantum resonances of the
kicked atoms. In the classical limit of vanishing kicking pe-
riod, the dependence on quasimomentum, as an intrinsic
quantum variable, disappears entirely, leading to a simpler
version of the scaling law. The discussed scaling of the ex-
perimental data offers one the possibility to clearly observe
the quantum and “classical” resonant peak structures over
more than one order of magnitude in the scaling variable.
Furthermore, its sensitive dependence on the system’s pa-
rameters may be useful for high-precision calibration and
measurements.

It will be of great interest to clarify whether a similar
universal scaling law can be found for other time-dependent
systems, such as the close-to-resonant dynamics of the
kicked harmonic oscillatorf26g, or the driven Harper model
f27,28g. As with the atom-optics kicked rotor, both of the
latter systems may be readily realized in laboratory experi-
mentsf29,30g.
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