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We study the transfer of energy from an optical potential to atomic and molecular gases and demonstrate that
this process is analogous to collisionless Landau damping of electrostatic potentials in plasmas and gravita-
tional potentials observed on astrophysical scales. We show that a signficant fraction of the light attenuation
within a cavity can be attributed to this mechanism when the cavity is filled with a gas at high density. The
resulting motion of particles created by optical Landau damping can be used to induce transport when a
periodic potential produced by two counterpropagating high-intensity pulsed optical fields is used. Bulk drift of
the gas also appears feasible even when the mean kinetic energy is much greater that the maximum optical
potential.
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Landau dampingf1g is an important mechanism for dissi-
pation in a wide range of collisionless systems in plasma
sciencef2,3g, astrophysicsf4,5g, and low-temperature phys-
ics f6g. In this process, energy is transferred from a traveling
potential to the system in the absence of collisions, resulting
in a damping of the original potential wave. In a collisionless
plasma, Landau damping of an electrostatic wave created by
a periodic disturbance is damped by the interactions between
the charged particles and the electrostatic wave. The result-
ing asymmetry induced in the Maxwell-Boltzmann distribu-
tion results in a bulk drift and rapid damping of the electro-
static wave. In astrophysical systems, the damping of a
gravitational potential is induced by gravitional attraction.
For all cases, a generalized potential traveling in the system
will trap particles that are traveling close to the phase veloc-
ity, j, of the potential. In the absence of collisions, particles
moving at the phase velocity of the potential, and in phase
with the trough of the potential, will experience no force and
travel with the potential. Particles that are moving slightly
slower or faster than the phase velocity will be trapped, if
their kinetic energy, as measured in the reference frame of
the traveling wave, is less than or equal to the well potential
energy. These particles will have velocities in the rangev
=j±D, whereD=Î2fm/M, fm is the potential well depth,
and M is the mass of the particles. The trapping process
increases the mean velocity of slower particles and decreases
that of the faster particles, creating a plateauf]fsvd /]v=0g
in the distribution functionfsvd centered at the phase veloc-
ity of the traveling wave of a thermally distributed system of
particlesf2,3g. This process transfers energy from the poten-
tial to the system of particles, and in the case of strong
interactions, significantly attenuates the potential by colli-
sionless Landau damping and induces bulk motion in the
systemf7g.

Conservative optical potentials have been used exten-
sively to trap and manipulate ultracold atoms in the nK to
mK range using the optical dipole forcef8–14g. Larger po-
tentials in the 100 K range can be produced by high-intensity

pulsed lasers for shorter time periodsf15g. These stronger
potentials have been used to deflect cold moleculess5 Kd
and, more recently, to dissociate diatomic molecules by
strong centrifugal optical forcingf16,17g.

In this paper, we demonstrate that an optical periodic po-
tential created by the interaction between a light field and the
polarizability of a neutral atom or molecule can undergo an
analogous process to Landau damping, which we call optical
Landau damping. In this process, the dissipation of the opti-
cal wave is transformed into particle motion via the dipole
force. We begin by demonstrating that the motion of a ther-
mal ensemble of particles can be strongly perturbed by an
optical potential when the mean kinetic energy is less the
potential well depth, and like Landau damping in other sys-
tems, it leads to transport and bulk motion. We then study the
damping of the optical potential within a cavity containing a
gas at high densities and predict that this phenomenon would
be observed in the temporal decay of the optical field within
the cavity. Finally, we consider bulk drift and fluidic pro-
cesses induced in a capillary by weaksmKd CW optical po-
tentials.

I. OPTICAL LANDAU DAMPING IN A PERIODIC
OPTICAL POTENTIAL

We consider the forces on atoms or molecules within a
one-dimensional periodic optical dipole potential created by
the interference of two counterpropagating fields with wave

vectorsk1
W and k2

W . In atomic and molecular optics, this is
often called an optical lattice. Figure 1 is a schematic dia-
gram of a lattice created by two optical fieldsE1 andE2 and
with frequenciesv1 andv2. The phase velocity of the trav-
eling potential is given byj=Dv /q, where the wave number

q= uk1
W −k2

W u=k1+k2 and the angular difference frequency be-
tween the two fields isDv=v1−v2. For an atom with a
traveling wave field created by two fields that are far from
resonance, the potential is well approximated by the
quasielectrostatic expressionf18g
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fsx,td = 1
2aEsx,td2, s1d

where a is the effective polarizability of the particle and
Esx,td is the electric field of the optical waves. We study the
classical motion of particles in large potentials in the
1–100 K range that can be created by pulsed optical fields
far from resonance. The classical motion of molecules within
constant velocity optical lattices created by two counter-
propagating fields has been measuredf19g, and the motion in
accelerating potentials has been predictedf20–22g. The dem-
onstration of important statistical mechanical phenomena
and the quantum-mechanical motion of cold atoms in optical
lattices using potentials in themK range have been investi-
gated both experimentally and theoreticallyf12,13g. For two
counterpropagating laser beams with intensityI = I1+ I2, the
maximum potential well depth isfm=aIZ0/n, where Z0
=Îm0/«0=376.73V andn is the index of refraction.

To study the time- and space-dependent motion imparted
to a thermal distribution function,f = fsx,v ,td, of polarizable
particles by a one-dimensionals1Dd optical potentials1d, we
solve the one-dimensional Boltzmann equation with the
Bhatnagar, Gross, and KrooksBGKd collision integral ap-
proximationf23g,

]f

]t
+ v

]f

]x
−

¹fsx,td
M

]f

]v
= −

f − f0

tcol
, s2d

wheref0 is the MB velocity distribution. The relaxation time
in the BGK collision integral approximation is given by
tcol= lc/vm, wherelc=1/Î2pd2N is the free collision length
for gas with densityN and particles with diameterd, and
vm=Î8kbT/pM is the mean velocity. We consider perturba-
tions to the distribution function of a gas of argon which is
initially at 300 K, and in thermal equilibrium at a pressure of
0.01 Torr. The fields used to form the optical potential have
a maximum field intensity of 1.6231012 W/m2 which cor-
responds to an average potential well depth of 78.1 K. We
seek particular solutions to the Boltzmann equation by as-
suming that the potential is created by pulsed laser fields
with a Gaussian temporal profile with a full width at half
maximumsFWHMd of 10 ns. A periodic potential with infi-
nite length allows the use of a cyclic boundary condition
dfs−L /2 ,v ,td=dfsL /2 ,v ,td, where L=2l, and l=4p /q is
subject to the boundary conditionsfsx,v→ ±` ,td=0. This
will correctly model the motion along the axis for a large
proportion of the particles. To calculate the distribution func-
tion, Eq. s2d is numerically integrated using a MacCormack
finite-difference schemef24g, with a zero initial condition,
fsx,v ,0d= f0, where f0 is the 1D Maxwell-Boltzmann func-

tion for the gas at the initial gas temperature.
Figure 2 shows the evolution of the velocity distribution

function calculated for the optical potential traveling at
316.3 m/s at different times during the 10 ns pulse. As the
potential has a periodicity of half a wavelength, the distribu-
tion function is averaged over this scale. As shown by the
perturbation to the velocity distribution function, the poten-
tial is capable of trapping atoms centered at 316.3 m/s with
an average velocity spread of 180 m/s as shown by the
width of the perturbation. The asymmetry induced in the
distribution function implies that a localized bulk velocity
will be induced in the gas at this time and also that the
optical potential must be damped since energy must be ex-
pended in producing the plateau.

The modification to the velocity distribution functions, as
shown in Fig. 2, are due to particles that are trapped by the
potential, but also to untrapped particles that are strongly
perturbed by the moving potential. The trapped particles
slosh back and forth between the walls of the potential and
exchange energy with it. As there are more particles at the
lower velocities, more energy must be taken out of the po-
tential until a flat plateau with a width equal to the potential
well depth is formed. After this time, equal energy is given to
and taken away from the potential when averaged over an
oscillation cycle.

When the density is low, such that the lattice period is less
than the mean free pathld l, the plateau in the distribution
function created by the trapped species can be used to calcu-
late a drift velocity,

Vdrstd =
1

NKE−`

`

vfsv,x,tddvL
l

<
1

N
E

j−D

j+D

dfvdv. s3d

The corresponding density of the kinetic energy is

K =KE
−`

` Mv2

2
ffsv,x,td − f0svdgdvL

l

< E
j−D

j+D Mv2

2
dfdv,

s4d

whereN is the number density anddf is the difference be-
tween the temporally or spatially averaged velocity distribu-
tion function fsvd, which results from the traveling periodic
potential, and the MB distribution function,f0svd corre-
sponding to thermal equilibrium. We only consider particles
with velocities in thej±D velocity range to be significantly
perturbed by the potential. The differencedf is approximated
by Taylor expansions of the functionsfsvd and f0svd centered
at the phase velocity of the potential, assuming an idealized
plateauf2,3g wherefsvd= f0sjd and where]fsvd /]v=0 in the
region j±D. The difference to first order is given bydfsvd
= fsvd− f0svd<−f]f0svd /]vgjdv, where dv=v−j. From Eq.
s3d, the drift velocity is given by

Vdr =
2

3
D3f0sjd

Mj

NkbT
, s5d

and from Eq.s4d the density of kinetic energy

K =
2

3

M2f0sjdj2D3

kbT
= NMVdrj. s6d

FIG. 1. The creation of an optical lattice by two counterpropa-
gating optical fields. The frequency difference between the two
beams determines the speed of the lattices.
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From Eq. s5d it follows that a maximum drift,Vdr
max

<0.161/kBT ss2fmd3/Md1/2, can be achieved when the trav-
eling wave velocity equalsj=ÎkBT/M. For instance, in ar-
gon at a temperature of 300 K and a potential well depth of
78.1 K scorresponding laser beams intensity,Ia=1.62
31016 W/m2d, a maximum drift velocity of 15.1 m/s is es-
timated atj<250 m/s. From Eq.s6d it follows that a maxi-
mum density of kinetic energy reaches whenj=Î2kBT/M.

To quantifiy how much energy from the optical potential
is damped by this type of motion, we can calculate the rate of
dissipation of kinetic energyK as dW/dt=−K /tcol, where
tcol is relaxation time or average time between the collisions.
When the phase velocity is given byj=Î2kBT/M, the energy
density is given from Eq.s6d by K= 4

3Mf0sjdD3< 4
3nwellfm,

where the number density of particles in the optical potential
is nwell=ej−D

j+Dfsvddv<2f0sjdD, and the power dissipated
therefore scales as

dW

dt
< −

4

3

nwellfm

tcol
. s7d

The optical power dissipated can be calculated more ac-
curately at any density from the bulk drift velocity induced

by the optical potential determined by numerical integration
of the Boltzmann equation. The corresponding local velocity
of the gas, calculated from the distribution function per-
turbed by the lattice asVsx,td=s1/Nde fsx,v ,tdvdv, is
shown below in Fig. 3. To understand how this bulk drift
increases during the pulse duration, we calculate this value as
a function of time by averaging Eq.s3d over the periodicity
of the velocity perturbation using the same potential as ob-
served on Figs. 3sad–3sdd. At each time corresponding to a
fraction of the Gaussian pulse widtht sdefined to be twice
the FWHMd, the velocity is always periodic, but most impor-
tantly, the average velocity in each figure is greater than zero
and increases with time in the absence of collisions.

Figure 4sad shows the evolution of the drift velocity cal-
culated from

kVsx,tdll =
1

Nl
E

0

l E
−`

`

fsx,v,tdvdvdx, s8d

during a pulse with a Gaussian temporal profile for three
potentials with the same well depth and phase velocity
s316 m/sd, but with different spatial periods of 397 nm,
795 nm, and 1.59mm. In each case, the maximum drift is

FIG. 2. The evolution of a perturbation to the velocity distribution function of argon gas at 0.01 Torr and 300 K by a moving pulsed
optical lattice. The dotted line is the unperturbed distribution function in the absence of the optical fields. The laser intensity isIa=1.62
31016 W/m2, which corresponds to a potential well depth of 78.1 K;l=795 nm.
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induced when the potential is greatest in the middle of the
pulse. Bulk drift implies that a net momentum has been im-
parted to the gas from the optical fields and therefore that
Landau damping of the optical potential will occur during
the pulse. To quantify this, we calculate the instantaneous
power per unit volume imparted to the gas from the potential
as a function of time given by

kPsx,tdll =
1

l
E

0

l E
−`

+`

f− ¹ fsx,tdgvfsx,v,tddvdx. s9d

Figure 4sbd is a plot of the power transferred to the gas by
the optical potential with three spatial different periods as in
Fig. 4sad. In each case, the power fluctuates with a well de-
fined period, which for the shortest period potential is ap-
proximately 2.6 ns forDv=1010 rad/s and 5.2 forDv=2.5
3109 rad/s. These oscillations are due to particles oscillat-
ing between the two walls of the potential.

The dissipated power and drift velocity averaged over a
spatial period as a function of the optical lattice frequency

differenceDv=v1−v2 is shown in Fig. 5. The gas and op-
tical pulse conditions are the same as used in the previous
figures.

In the initial part of the laser pulse, power is absorbed by
the particlesfkPsx,tdll.0g, but by the end of the pulse,
power is transferred back into the optical potential
fkPsx,tdll,0g. The total kinetic energy gained by the gas,
and lost from the optical potential, at the end of the pulse is
DE=kKsx,tdllprb

2LOL, where rb is the laser beam effective
radius andLOL is an effective optical lattice length.

For a peak laser intensity ofIa=1.6231012 W/cm2 with
Gaussian pulse durationt=20 nssFWHM=10 nsd and inter-
action length ofLOL,1 cm, the ratio of dissipated energy to
the total energy radiated by the lasers per pulse isDEL

=prb
2e0

tIstddt andDE/DEL,10–12. So although the distribu-
tion function, and therefore the momentum of the particles,
can be signficantly modified by the large optical potential,
the dissipation of laser energy is negligibly small and not
observable in this type of experiment.

FIG. 3. Local gas velocityVsx,td within the lattice as different times during the laser pulse. The pulse conditions are the same as in
Fig. 2.
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II. OPTICAL LANDAU DAMPING IN A CAVITY

Although the large changes to the velocity distribution
function can be made using high-intensity fields as discussed
above, the power dissipated for a single laser pulse is rela-
tively small. The damping of the optical field may, however,
be observed by amplifying the attenuation of the optical po-
tential by multiple passes of both lattice beams through the
interaction region and by increasing the density of the par-
ticles within the potential. This may be observed within an
optical cavity such as that used for cavity ringdown spectros-
copy, where the decay of the intensity of light transmitted
through the mirrors is used to measure an effective light loss
usually due to absorption. For this type of experiment, the
temporal variation in intensity of a pulsed field in this type of
cavity is given by

dI/dt = − I/tQ − NsRIc − 2Pdcl/LM . s10d

In this expression, the empty cavity liftime istQ
=LM / fcs1−Rdg, andLM is the distance between the mirrors,
R is the reflectivity, andl is the interaction region length in
which the intensity is high enough to induce optical damp-
ing. In the absence of absorption, the only other loss besides
optical Landau damping is Rayleigh scatteringswhich has a
cross sectionf18g sR=8p3a2/3«0

2l4d, proportional to the
density of moleculesN. Pd is the power absorbed due to
Landau damping of one of the lattice beams that is formed

within the cavity by the two counterpropagating beams. We
assume that the density is so high within the cavity that
particles collide with other particles before they reach the
other side of the potential. The typical time for a collision
between a particle and the potential is given bytcol= lc/ uv
−ju, wherej is the lattice phase velocity. We therefore con-
sider the situation where the mean free path is smaller than
the period of the optical lattice potenialslc!ld.

In a single collision where the walls of the potential are
moving, the change in kinetic energy is given byDÃ
=2Msv−jdj and therefore the power transferred per particle
to the wall isDÃ̇=DÃ /tcol=2Msv−jd2j / lc. The total rate of
gas energy exchangesor optical lattice energy dissipationd is
given by

dW

dt
=

2Mj

lc
FE

j

j+D

sv − jd2fsvddv −E
j−D

j

sv − jd2fsvddvG .

We can estimate these integrals by expanding the distri-
bution function as a Taylor series to first orderfsvd< f0sjd
+sdf0/dvjdsv−jd The total disspation rate is given by

dW

dt
=

Mj

lc

df0
dvj

D4,

whereD=Î2fm/M, fm=aIz0 is the potential well depth, and
z0=Îm0/«0=376.7V is the impedance of free space.

For a Maxwellian distribution function, sdf0/dvdj

=−sMj /kTdf0sjd, the dissipation rate is given by

dW

dt
= −

M2j2

lckBT
f0sjdD4. s11d

The power absorbed by the gas,Pd, due to the optical
wave dissipation isPd=−dW/dt and the energy density of an
electromagnetic wave isW=«0Ea

2/2=I /c. It then follows by
substitution in Eq.s11d that dI /dt=−s4j2/ lckBTdf0sjdfm

2 c
=−usjdI2, whereusjd=s2jaz0d2f0sjdc/ lckBT. For the initial
condition Is0d= I0, the intensity at any later time within the
cavity is given by

I =
I0

1 + uI0t
.

FIG. 4. sad Plots of the drift velocity as a function of time during
the laser pulse.sbd Plots of the power dissipated by the mechanical
motion of the atoms within the lattice at phase velocityj
=316.3 m/s for different optical lattice wavelengths. Gas condi-
tions and pulse parameters are the same as in Fig. 2.

FIG. 5. The averaged dissipated power per laser pulse,
kkPsx,tdlllt, and the drift velocity,kkVsx,tdlllt, at differentDv. Gas
conditions and pulse parameters are the same as in Fig. 2.
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We can find a phase velocity which corresponds to the
maximum dissipation rate whenusjd8=0 atjmax=Î2kBT/M.
This corresponds to a frequency difference ofDvmax
=s4p /ldjmax, which for Ar gas at a temperature of 300K
gives a lattice velocity ofjmax=353 m/s and an angular fre-
quency difference ofDvmax=4.23109 rad/s. Note that there
is no optical Landau damping when the lattice velocity is
equal to zero. This is because particles colliding with the
potential wall on average return as much energy as they take
from it.

By substituting the expression for the power dissipated
sthe optical Landau damping rated for a Maxwellian distribu-
tion into the cavity decay of Eq.s10d, we can determine how
optical Landau damping will modify the decay of the field
within a cavity. At present, the best reflectivity for commer-
cial mirrors is given byR=0.999 99 f25g. To model the
optical damping, we have used a much lower reflectivity
R=0.999 95 that is commonly available for cavity ringdown
applicationsf26g. We have kept the initial laser beam inten-
sity in the intersection regionI0=53108 W/cm2 lower
where a breakdown in gases by pulsed laser radiation occurs
f27g. A stable near-concentric cavity will be required to
maintain a small beam waists60 mmd over a long Rayleigh
range sinteraction region length,l =2.5 cm, LM =50 cm
sFig. 6d.

We investigate damping in the cavity by plotting the
transmitted intensity out of the cavity as a function of time.
We have simulated this decay for a cavity containing argon
at a pressure of 50 atm and a temperature of 20 degrees cel-
sius. The Rayleigh range was used as the effective interac-
tion length over which damping would occur. Figure 7 shows
the exponential decay of light for the case of no LD with
only Rayleigh scattering and mirror losses and the dotted
curves indicate how this decay varies with the speed of the
lattice within the cavitysat differentDv= uv2−v1u dd. We es-
timate the temperature rise asDT,s2/NMcvde0

`Pdstddt,
wherecv=320 J/kg K is a specific-heat capacity of argon at
constant volume. At 50 atm, the temperature increases in the
interaction region by,3.9 K. As this is a relatively small
perturbation on the 300 K temperature of the gas, our pre-
dictions using a Gaussian distribution at 300 K will not be
significantly modified.

The relative role of each cavity decay mechanism in Eq.
s10d at 50 atm and differentDv is shown in Fig. 8.

The dependence of the characteristic decay timesthe time
when intensity in the cavity drops ine timesd on gas pressure

at the same cavity and laser beam parameters is shown in
Fig. 9. At 50 atm, a maximum change in the decay rate of
63% occurs when there is a frequency difference of
665 MHz between the two beams in the cavity. This corre-
sponds to a lattice velocity of 354 m/s, which is very close
to the above estimations ofDvmax andjmax. We do not con-
sider the excitation of acoustic waves by the traveling optical
potential within the cavity. At the pressure we have consid-
ereds50 atmd, dissipation by this mechanism may be greater
than that predicted in our treatment and would require further
study.

III. LANDAU DAMPING WITH CONTINUOUS WAVE
(CW) OPTICAL FIELDS

Large potentials can be created by pulsed fields far from
resonance, but the effects of optical Landau damping may
also be observed using smaller CW fields when they are
tuned close to a strong atomic resonance. Here dipole poten-
tials in the 1 mK range can be created and are capable of
inducing perturbations in colder gases.

For a two-level atom in a traveling wave fieldsFig. 1d
with a constant phase velocity, this optical potential is given
by f28g

fsx,td =
1

2
"d lnF1 + 2s0fcossqx− Dvtd + 1g + s2d/gd2

1 + s2d/gd2 G ,

s12d

whered is the detuning of the laser beams from resonance,g
is the natural linewidth, ands0= I / Is is the on-resonance satu-
ration parameter given by the laser intensity,I, and saturation
intensity, Is. We are interested in the regime where the laser
is detuned far from resonance, and where the saturation pa-
rameter s=4s0 cos2sqx−Dvtd / f1+s2d /gd2g!1. In this re-
gime, there are essentially no velocity-dependent forces. It is
important that there is a neglible probability for atoms to
exist in the excited state because they will experience a force
that isp out of phase with ground-state atoms. In this case,

FIG. 6. Diagram of an experimental arrangement to measure
optical Landau damping within a near-concentric optical cavity. Op-
tical fields are introduced into both mirrors to create two traveling
optical potentials.

FIG. 7. Laser intensity as a function of time in the cavity with
and without Landau damping for argon at a temperature of 293 K at
a pressure 50 atm. The laser intensity wasI0=531012 W/m2 using
cavity mirrors of reflectivityR=0.999 95;l=1064 nm.
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the force on the particles will spatially average to zero when
operating close to saturation because atoms rapidly cycle at
the Rabi frequency between the excited and ground state.
The dipole force on a two-level atom ensemble for a travel-
ing wave atj=Dv /q is given byf28g

Fsx,td = − ¹ fsx,td =
2"kds0 sinsqx− Dvtd

1 + 2s0fcossqx− Dvtd + 1g + s2d/gd2

< q
"g2

4d
s0 sinsqx− Dvtd. s13d

We can determine the time- and space-dependent motion
of the gas within the optical potential from the velocity dis-
tribution function created by the external periodic dipole
force. For simplicity, and to illustrate the essential physics,
we solve the one-dimensional Boltzmann equations2d with
the Bhatnagar, Gross, and KrooksBGKd collision integral
approximation. The dipole force for a traveling wave formed
by the interference between two counterpropagating beams is
given by Eq.s13d.

A periodic potential with infinite length allows the use of
the cyclic boundary conditionfs−L /2 ,v ,td= fsL /2 ,v ,td,
whereL=2l, and l=4p /q. Equations2d is also subject to
the boundary conditionsfsx,v→ ±` ,td=0, which were nu-
merically integrated using a McCormack finite-difference
schemef24g, with an initial conditionfsx,v ,t=0d= f0svd.

We have chosen to model the velocity drift induced in
rubidium vapor in a hollow capillary because it has been
used previously for both laser guiding and LID experiments
f11,29g. It also has a strong transition at 780.76 nm, which is
accessible with the tunable CW Ti:sapphire laser. The vapor
pressure of rubidium can be conveniently controlled by tem-
perature. In the case we considered, the potential is created in
a capillary of radiusr =20 microns by 100 mW counter-
propagating beams that are detuned approximately 80 GHz
below the 52S1/2–5 2P3/2 resonance corresponding to a po-
tential well depth of 50 mK.

For these conditions wheres!1, and where the Rabi fre-
quency is significantly less than the detuning, only forces on
atoms in the ground state need to be considered. The radia-
tion pressure force or dissipative force from a single beam is
four orders of magnitude less than the dipole force in a trav-
eling wave at this intensity and detuning, and therefore we
do not need to consider its effect on driftf28g. Our one-
dimensional analysis, which does not take into account the
radial variation of intensity inside the fiberf30g, will induce
a radial variation in drift velocity. Although most atoms are
in the ground state, a small fraction will be excited which
will lead to both radial and longitudinal heating, causing at-
oms to be temporally lost from the periodic trapping poten-
tials f32g. This will not prevent drift, since only a small pro-
portion of the MB distribution must be trapped to induce
transport, and a temperature rise will only reduce the effec-
tiveness in proportion to 1/T. In practice, this temperature
rise can be controlled by collisions with the fiber walls that
are maintained at a constant temperature.

The velocity distribution function, obtained from numeri-
cal solutions of Eq.s2d, is shown in Fig. 10sad for two trav-
eling wave velocities for rubidium vapor at a temperature of
560 K and saturation pressure of 100 Pa. The traveling wave
velocities of the potentials correspond to a detuning of
238.7 MHz and 478.5 MHz between the counterpropagating
beams, which are both detuned approximately 80 GHz from
the line center. The distribution functions were averaged over
a spatial period and normalized by the number density. Equa-
tion s2d was integrated until steady state was reached. In
insets in Fig. 10sad show that in each case the center of the
plateau created by the trapping potential corresponds to the
phase velocity of the traveling wave. The plateau width of
2Dv<5 m/s is in good agreement with the simple analytical
estimate of 6.3 m/s for this potential-well amplitude value.

The bulk gas velocityVsx,td=e−`
` fsx,v ,tdvdv is periodic

for all cases and oscillates with a periodT=2p /Dv at any
location but gas drift velocity,Vdrstd=kVsx,tdllÞ0. The drift
velocity was calculated for a range of traveling wave phase
velocities by averaging the time-dependent velocity over a
temporal periodT at a given location, and also by averaging
over a spatial periodl at a given timet. Because both kinds
of averaging produce the same result, only an average over a

FIG. 8. The intensity as a function of three laser detunings il-
lustrating the effect of optical Landau damping in the cavity. Also
shown is empty cavity decay in the absence of other loss mecha-
nisms and the contribution to the cavity decay by Rayleigh
scattering.

FIG. 9. Characteristic decay time in the cavity vsDv at different
gas pressure. Cavity and laser parameters are the same as in Fig. 7.
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temporal period is shown in Fig. 10sbd for a temperature of
560 K and 100 Pa. For comparison, the drift velocity esti-
mated from Eq.s5d is shown in the same figure for the above
conditions. Good agreement between the numerical predic-
tions and the analytical estimate is shown. The average drift
velocity increases with phase velocity until the number of
particles that can be trapped in the MB distribution decreases
faster than the increase in phase velocity. From the Eq.s5d it
also follows that at lower temperatures, higher drift veloci-
ties can be accomplished because the original distribution
function is narrower, allowing more particles to be trapped
for a particular well depth.

The power per unit volume imparted by the optical field
can be calculated from the force and induced velocity. The
power averaged over the spatial periodkPsx,tdll is given by
Eq. s9d and is shown in Fig. 10scd for the two traveling wave
velocities, 93 m/s and 186 m/s, at a particular spatial loca-
tion. The transferred power oscillates after the field is turned
on as the atoms oscillate in the potential well exchanging
energy with the traveling wave. This is optical Landau damp-
ing, where atoms with velocities less than the phase velocity
take energy from the field, and faster atoms give energy to
the field through stimulated scattering. Because the distribu-
tion is initially Gaussian, a greater fraction of the atoms that
are trapped are moving slower rather than faster than the
phase velocity. As a result, net power is removed from the
beam. If no collisions occur, no further average dissipation
will occur. This process is equivalent to the energy dissipa-
tion of electrostatic plasma waves by collisionless Landau
dampingf1–3g and current drive phenomenaf7g. Thus, we
call the transfer of energy from the optical field to the par-
ticles, and the resulting dissipation, optical Landau damping.
As shown in Fig. 10scd, the average power absorbed achieves
a steady-state valuePd=kPsx,tdll<const for time periods
much greater than the relaxation time. The power at steady
state is determined by collisions, which remove energy from
the trapped particles. For conditions corresponding to pre-
sented numerical solutionfFigs. 10sad and 10sbdg, the
dissipation ratePd=K /tcol, with K defined by Eq.s6d, at

phase velocitiesj=186 and 93 m/s isPd<156.7 and
<44.6 W/m3, respectively. These estimations are in good
agreement with numerical results, presented in Fig. 10scd.

The transport of gas particles described here may comple-
ment the scheme of atom guiding in hollow fibersf11,31,32g,
possibly improving the flux achievable within fibers when
the fiber is bent. However, because we do not trap all par-
ticles, van der Waals interactions with the wall will reduce
the transport efficiency. Also, if a buffer gas is present, trans-
port by LID f33g must be taken into account. When LID is
avoided, this process may also lead to particle separation
when another species that is not strongly perturbed by the
dipole force is introduced into the fiber. In this case, a pres-
sure differential will not be produced because the unper-
turbed species will move in the opposite direction compen-
sating for the transport of polarizable atoms that are pushed
in the direction of the travelling wave. For a large detuning,
this force will dominate over LID, and like LID, separation
along the fiber will occur. Such a scheme may be used to
separate atoms or molecules as in the manner of a gas chro-
matograph that is based on the polarizable interactions of
atoms or molecules with light, rather than with the interac-
tions of polar molecules with the wall of a capillary.

The drift velocity calculated above can only be sustained
for a short period of time in a closed system until the pres-
sure difference created equals the effective pressure induced
by the dipole force. This pressure can be estimated by as-
suming that the pressure gradient is equal to the macroscopic
dipole force per unit volume, which can be calculated from
the initial momentum flux 0.5MVdrN/tcol. The pressure dif-
ference across the fiber is given byDp<0.5MVdrNL/tcol,
whereL is the length of the fiber. A maximum pressure dif-
ference of 0.013 Pa or 95mTorr is obtained for a 3 cm
length fiber at the 560 K conditions calculated above. This
pressure difference could, for example, be measured by a
differential capacitance manometer which is capable of mea-
suring pressure differentials to at least an order of magnitude
below this value.

FIG. 10. sad The normalized velocity distribution for two traveling wave velocities of 93 m/s and 186 m/s, respectively.sbd The drift
velocity calculated for rubidium gas at different temperatures, as a function of traveling wave velocity. The open circles are derived from
numerical modeling at 560 K and 100 Pa, and the lines are estimates of drift velocity. The dashed line corresponds to the more exact second
order of Taylor expansions of the functionsfsvd and f0svd f22g. scd The average power per unit volume transferred to the gas for traveling
wave velocities of 93 m/s and 186 m/s. The power transferred from the optical field to the gas results in Landau damping of the optical
field.
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IV. CONCLUSIONS

We have predicted a range of new phenomena that result
from optical Landau damping. These include the creation of
bulk drift in a gas subject to optical potential as well as a
measurable damping of optical field within an optical cavity.
We have studied these processes for periodic optical poten-
tials slatticesd, whose well depth is less than the average
kinetic energy of gas particles. For relatively large optical
periodic potentialss100s of Kd created by pulsed optical

fields, we have predicted drift velocities in the 10 m/s range,
while for weakers1 mKd CW potentials we have predicted a
bulk drift in a fiber which leads to the establishment of a
pressure difference induced by the optical potential across a
capillary. By studying the dissipation of the optical potential
in a cavity which contains a high-density gas, we shown that
the Landau damping of the optical potential could be mea-
sured by a change in the cavity decay rate which is depen-
dent on the velocity of the potential and the width of the
thermal distribution function.
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