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We study the transfer of energy from an optical potential to atomic and molecular gases and demonstrate that
this process is analogous to collisionless Landau damping of electrostatic potentials in plasmas and gravita-
tional potentials observed on astrophysical scales. We show that a signficant fraction of the light attenuation
within a cavity can be attributed to this mechanism when the cavity is filled with a gas at high density. The
resulting motion of particles created by optical Landau damping can be used to induce transport when a
periodic potential produced by two counterpropagating high-intensity pulsed optical fields is used. Bulk drift of
the gas also appears feasible even when the mean kinetic energy is much greater that the maximum optical
potential.
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Landau damping1] is an important mechanism for dissi- pulsed lasers for shorter time periodkb]. These stronger
pation in a wide range of collisionless systems in plasmgotentials have been used to deflect cold molec(#ekK)
sciencef2,3], astrophysic$4,5], and low-temperature phys- and, more recently, to dissociate diatomic molecules by
ics[6]. In this process, energy is transferred from a travelingstrong centrifugal optical forcinf6,17).
potential to the system in the absence of collisions, resulting In this paper, we demonstrate that an optical periodic po-
in a damping of the original potential wave. In a collisionlesstential created by the interaction between a light field and the
plasma, Landau damping of an electrostatic wave created hyolarizability of a neutral atom or molecule can undergo an
a periodic disturbance is damped by the interactions betweesnalogous process to Landau damping, which we call optical
the charged particles and the electrostatic wave. The resulzandau damping. In this process, the dissipation of the opti-
ing asymmetry induced in the Maxwell-Boltzmann distribu- cal wave is transformed into particle motion via the dipole
tion results in a bulk drift and rapid damping of the electro-force. We begin by demonstrating that the motion of a ther-
static wave. In astrophysical systems, the damping of anal ensemble of particles can be strongly perturbed by an
gravitational potential is induced by gravitional attraction.optical potential when the mean kinetic energy is less the
For all cases, a generalized potential traveling in the systemotential well depth, and like Landau damping in other sys-
will trap particles that are traveling close to the phase veloctems, it leads to transport and bulk motion. We then study the
ity, &, of the potential. In the absence of collisions, particlesdamping of the optical potential within a cavity containing a
moving at the phase velocity of the potential, and in phasejas at high densities and predict that this phenomenon would
with the trough of the potential, will experience no force andbe observed in the temporal decay of the optical field within
travel with the potential. Particles that are moving slightly the cavity. Finally, we consider bulk drift and fluidic pro-
slower or faster than the phase velocity will be trapped, ifcesses induced in a capillary by we@kK) CW optical po-
their kinetic energy, as measured in the reference frame agéntials.
the traveling wave, is less than or equal to the well potential

energy. These particles will have velocities in the ramge |. OPTICAL LANDAU DAMPING IN A PERIODIC
=&+ A, whereA=v2¢,,/M, ¢, is the potential well depth, OPTICAL POTENTIAL

and M is the mass of the particles. The trapping process ) o
increases the mean velocity of slower particles and decreases W€ consider the forces on atoms or molecules within a
that of the faster particles, creating a platdat(v)/av=0] one-dimensional periodic optical dipole potential created by

in the distribution functiorf(v) centered at the phase veloc- (e interference of two counterpropagating fields with wave

ity of the traveling wave of a thermally distributed system of vectorsk; and k,. In atomic and molecular optics, this is
partic|es[2’3]_ This process transfers energy from the poten_Often called an Optical lattice. Figure 1 is a schematic dia-
tial to the system of particles, and in the case of stronglram of a lattice created by two optical fielg andE, and
interactions, significantly attenuates the potential by colli-With frequenciesw; and w,. The phase velocity of the trav-
sionless Landau damping and induces bulk motion in théling potential is given b¥=Aw/q, where the wave number
system[7]. q=|k;—ky|=k;+k, and the angular difference frequency be-

Conservative optical potentials have been used extertween the two fields iAw=w;—w,. For an atom with a
sively to trap and manipulate ultracold atoms in the nK totraveling wave field created by two fields that are far from
uK range using the optical dipole for¢8—14]. Larger po- resonance, the potential is well approximated by the
tentials in the 100 K range can be produced by high-intensityjuasielectrostatic expressiphg]
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£,=E\(9) cos [k;x-0,(D)] £,=Ey(1) cos [-kyx-,(1)] tion for the gas at the initial gas temperature.
= —_— Figure 2 shows the evolution of the velocity distribution
————

function calculated for the optical potential traveling at
316.3 m/s at different times during the 10 ns pulse. As the
Phase velocity (1) potential has a periodicity of half a wavelength, the distribu-
tion function is averaged over this scale. As shown by the
FIG. 1. The creation of an optical lattice by two counterpropa-perturbation to the velocity distribution function, the poten-
gating optical fields. The frequency difference between the twaijg| js capable of trapping atoms centered at 316.3 m/s with

beams determines the speed of the lattices. an average velocity spread of 180 m/s as shown by the
width of the perturbation. The asymmetry induced in the
d(x,1) :%QE(th)Z' (1) distribution function implies that a localized bulk velocity

will be induced in the gas at this time and also that the

where « is the effective polarizability of the particle and optical potential must be damped since energy must be ex-
E(x,t) is the electric field of the optical waves. We study thepended in producing the plateau.
classical motion of particles in large potentials in the The modification to the velocity distribution functions, as
1-100 K range that can be created by pulsed optical fieldshown in Fig. 2, are due to particles that are trapped by the
far from resonance. The classical motion of molecules withirpotential, but also to untrapped particles that are strongly
constant velocity optical lattices created by two counterperturbed by the moving potential. The trapped particles
propagating fields has been measUrEel, and the motion in  slosh back and forth between the walls of the potential and
accelerating potentials has been predi¢@@-22. The dem- exchange energy with it. As there are more particles at the
onstration of important statistical mechanical phenomendower velocities, more energy must be taken out of the po-
and the quantum-mechanical motion of cold atoms in opticatential until a flat plateau with a width equal to the potential
lattices using potentials in theK range have been investi- well depth is formed. After this time, equal energy is given to
gated both experimentally and theoreticdll2,13. For two  and taken away from the potential when averaged over an
counterpropagating laser beams with intensity,+1,, the  oscillation cycle.
maximum potential well depth isp,=alZy/n, where Z; When the density is low, such that the lattice period is less
=\ uol £9=376.73Q andn is the index of refraction. than the mean free path<, the plateau in the distribution

To study the time- and space-dependent motion impartetlinction created by the trapped species can be used to calcu-
to a thermal distribution functiorf,=f(x,v,t), of polarizable late a drift velocity,
particles by a one-dimensiondlD) optical potential1), we 1/ = 1 (&
solve the one-dimensional Boltzmann equation with the Vg () == f of(u,xdv ) ~ _f Sfodv.  (3)
Bhatnagar, Gross, and KrodBGK) collision integral ap- N\ J_. N NJea
proximation[23],

The corresponding density of the kinetic energy is

of of  V(xt) of f-fo * Mu2 EA 2

—4p— -0 2 _ v _ Mo

P U(?X M 2 _ (2 K= le T[f(v,x,t) - fo(v)]dv X =~ J;_A T&fdv,
wheref is the MB velocity distribution. The relaxation time (4)

in the BGK collision in_tegral approximation is given by
Teo=le/ v Wherel =1/y27d?N is the free collision length
for gas with densityN and particles with diameted, and

whereN is the number density andf is the difference be-
tween the temporally or spatially averaged velocity distribu-
vm=\8k.T/ M is the mean velocity. We consider perturba- 0" function f(v), which resuits from the traveling periodic
tions to the distribution function of a gas of argon which is Potential, and the MB distribution functiorfe(v) corre-
initially at 300 K, and in thermal equilibrium at a pressure of SPonding to thermal equilibrium. We only consider particles
0.01 Torr. The fields used to form the optical potential haveVith velocities in thex A velocity range to be significantly

a maximum field intensity of 1.62 102 W/m? which cor- perturbed by the _potent|al. The d|_fferenéb|s approximated
responds to an average potential well depth of 78.1 K. WY Taylor expansions of the functiofiey) andfo(v) centered
seek particular solutions to the Boltzmann equation by as@t the phase velocity of the potential, assuming an idealized
suming that the potential is created by pulsed laser fieldBlateau2,3] wheref(v)=fo(£) and wheredf(v)/dv =0 in the
with a Gaussian temporal profile with a full width at half region éxA. The difference to first order is given bjf(v)
maximum(FWHM) of 10 ns. A periodic potential with infi- =f(v)=fo(v) =—[dfo(v)/dv]:6v, where sv=v-§ From Eq.

nite length allows the use of a cyclic boundary condition(3), the drift velocity is given by
Sf(-L/2,v,t)=6f(L/12,v,t), whereL=2\, and \=4x/q is

subject to the boundary conditiori$x,v — +o0,t)=0. This Vg = gA3fo(§)£, (5)
will correctly model the motion along the axis for a large 3 Nk,T
proportion of the particles. To calculate the distribution func-gnd from Eq.(4) the density of kinetic energy
tion, Eq.(2) is numerically integrated using a MacCormack
finite-difference schem§24], with a zero initial condition, K = 2M*F(HEA® _ NMV
- - drf- (6)

f(x,v,0)=f,, wheref is the 1D Maxwell-Boltzmann func- 3 k,T
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FIG. 2. The evolution of a perturbation to the velocity distribution function of argon gas at 0.01 Torr and 300 K by a moving pulsed
optical lattice. The dotted line is the unperturbed distribution function in the absence of the optical fields. The laser intepsity6 s
X 10 W/m?, which corresponds to a potential well depth of 78.1\&795 nm.

From Eg. (5 it follows that a maximum drift,V;?* by the optical potential determined by numerical integration
~0.161kgT ((2¢,)3/M)¥2, can be achieved when the trav- of the Boltzmann equation. The corresponding local velocity
eling wave velocity equalg=\ksT/M. For instance, in ar- of the gas, calculated from the distribution function per-
gon at a temperature of 300 K and a potential well depth ofurbed by the lattice asv(x,t)=(1/N)[f(x,v,t)vdv, is
78.1 K (corresponding laser beams intensitl,=1.62 shown below in Fig. 3. To understand how this bulk drift
X 10*® W/m?), a maximum drift velocity of 15.1 m/s is es- increases during the pulse duration, we calculate this value as
timated até=250 m/s. From Eq(6) it follows that a maxi- a function of time by averaging E@3) over the periodicity
mum density of kinetic energy reaches whigny2kgT/M. of the velocity perturbation using the same potential as ob-

To quantifiy how much energy from the optical potential served on Figs. @)—-3(d). At each time corresponding to a
is damped by this type of motion, we can calculate the rate ofraction of the Gaussian pulse width(defined to be twice
dissipation of kinetic energK as dW/dt=-K/7,,, where the FWHM), the velocity is always periodic, but most impor-
Teo IS relaxation time or average time between the collisionstantly, the average velocity in each figure is greater than zero
When the phase velocity is given ¥ V2ksT/M, the energy ~ and increases with time in the absence of collisions.
density is given from Eq(6) by K:%mfo(g)ﬁz%nwe”d,m, Figure 4a) shows the evolution of the drift velocity cal-

where the number density of particles in the optical potentiafulated from

is Nuen=SEaf(v)dv=~2fo(9A, and the power dissipated 1 (-

therefore scales as VX, 0)) = mf f f(x,v,t)vdvdx, (8)
0 —o0

d_\N~ ﬂ'nwelld’m 7 . . . .
dat 3 .. - (7) durmg. a pul_se with a Gaussian temporal profile for thrg:-e
col potentials with the same well depth and phase velocity
The optical power dissipated can be calculated more ad316 m/9, but with different spatial periods of 397 nm,
curately at any density from the bulk drift velocity induced 795 nm, and 1.59m. In each case, the maximum drift is
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FIG. 3. Local gas velocity/(x,t) within the lattice as different times during the laser pulse. The pulse conditions are the same as in
Fig. 2.

induced when the potential is greatest in the middle of thelifferenceAw=w;—w, is shown in Fig. 5. The gas and op-
pulse. Bulk drift implies that a net momentum has been im-+ical pulse conditions are the same as used in the previous
parted to the gas from the optical fields and therefore thafigures.

Landau damping of the optical potential will occur during  |n the initial part of the laser pulse, power is absorbed by
the pulse. To quantify this, we calculate the instantaneoughe particles[(P(x,t)), >0], but by the end of the pulse,
power per unit volume imparted to the gas from the potentiabower is transferred back into the optical potential

as a function of time given by [(P(x,1)), <0]. The total kinetic energy gained by the gas,
N and lost from the optical potential, at the end of the pulse is
1 +°° AE=(K(x,t))\7r2Lo,, Wherer, is the laser beam effective
P(X,t)), = = -V o(x,)]vf(x,v,)dvdx. (9 _ P/ b0 b _
(PO O )\fo f_@ [ #x O, tdv © radius and_q, is an effective optical lattice length.

For a peak laser intensity ¢f=1.62x 102 W/cn? with

Figure 4b) is a plot of the power transferred to the gas byGaussian pulse duratiare20 ns(FWHM=10 ng and inter-
the optical potential with three spatial different periods as in

. ! action length oo~ 1 cm, the ratio of dissipated energy to
F'g' 4@). .In each. case, the power fluctugtes with a wgll dethe total energy radiated by the lasers per pulse\is
fined period, which for the shortest period potential is ap-_ ~ , 7| (t)dt and AE/AE, ~ 102 So although the distrib
proximately 2.6 ns fow=10'"rad/s and 5.2 foAw=2.5 —.7-rrbfo atan L - 20 alihough the distribu-
X 10° rad/s. These oscillations are due to particles oscillattion function, and therefore the momentum of the particles,
ing between the two walls of the potential. can be signficantly modified by the large optical potential,
The dissipated power and drift velocity averaged over dhe dissipat?on ‘?f laser energy'is negligibly small and not
spatial period as a function of the optical lattice frequencyobservable in this type of experiment.
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2N\ A conditions and pulse parameters are the same as in Fig. 2.
= 6.0x10° N
£ . ‘/ N/ . \\
2 soxi0’y /7 VNG within the cavity by the two counterpropagating beams. We
A 0.0 dezzzf” L\ assume that the density is so high within the cavity that
X ' particles collide with other particles before they reach the
T 3.0x10°] ---- A0=2.5x10° rad/sec other side of the potential. The typical time for a collision
oo b0 padleee between a particle and the potential is given Ry=I./[v
i i i - ¢, whereé is the lattice phase velocity. We therefore con-
0.0 5.0x10° 1.0x10° 1.5x10° 2.0x10° sider the situation where the mean free path is smaller than
time (sec) the period of the optical lattice potenidl<<\).

In a single collision where the walls of the potential are
FIG. 4. (a) Plots of the drift velocity as a function of time during moving, the change in kinetic energy is given Wyw
the !aser pulse(b) Plots of th power dis.sipated by the mechgnicaIZZM(v_g)g and therefore the power transferred per particle
motion of the atoms within the lattice at phase veloc#y g the wall isAw= Aw/7c0|=2M(v—§)2§/|C. The total rate of

=316.3 m/s for different optical lattice wavelengths. Gas condi- . : NN
as energy exchander optical lattice energy dissipatipis
tions and pulse parameters are the same as in Fig. 2. 9 9y g P 9y patip

given by
Il. OPTICAL LANDAU DAMPING IN A CAVITY dw 2M A ¢
ot = | f{j (v—&*(v)dv — f (v- &% (v)dv |.
Although the large changes to the velocity distribution t ¢ 3 EA

function can be made using high-intensity fields as discussed \we can estimate these integrals by expanding the distri-
above, the power dissipated for a single laser pulse is relgs iion function as a Taylor series to first ordép) = fo(&)
tively small. The damping of the optical field may, however,+(df0/dU§)(U_§) The total disspation rate is given by
be observed by amplifying the attenuation of the optical po-
tential by multiple passes of both lattice beams through the dw _M¢gdfy ,
interaction region and by increasing the density of the par- dt L do.
ticles within the potential. This may be observed within an ¢ e
optical cavity such as that used for cavity ringdown spectroswhereA=\2¢.,/M, ¢,=alz, is the potential well depth, and
copy, where the decay of the intensity of light transmittedzy,=uo/e0=376.7() is the impedance of free space.
through the mirrors is used to measure an effective light loss For a Maxwellian distribution function, (df/dv),
usually due to absorption. For this type of experiment, thee=(M&/kT)f(£), the dissipation rate is given by
temporal variation in intensity of a pulsed field in this type of aw M2
cavity is given b o 4

yisg y at ICkBTfo(f)A : (13)

The power absorbed by the gag;, due to the optical
In this expression, the empty cavity liftime isg  wave dissipation i®,=—dW/dt and the energy density of an

=Lw/[c(1-R)], andLy is the distance between the mirrors, electromagnetic wave ¥/=g,E2/2=I/c. It then follows by

R is the reflectivity, and is the interaction region length in substitution in Eq.(11) that dI/dt=—(4§ZIICkBT)fO(§)¢§1c

which the intensity is high enough to induce optical damp-=-6(¢£)12, where 6(§) =(2éaz)?*to(£)c/1 kgT. For the initial

ing. In the absence of absorption, the only other loss besidasondition 1(0)=1,, the intensity at any later time within the

optical Landau damping is Rayleigh scatteriwghich has a  cavity is given by

cross section18] or=8ma?/3s3\%), proportional to the

density of moleculesN. Py is the power absorbed due to | = lo _

Landau damping of one of the lattice beams that is formed 1+0lgt

dl/dt:_I/’TQ_N(TRIC_ZPdCI/LM. (10)
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We can find a phase velocity which corresponds to the
maximum dissipation rate whef(¢)’ =0 at &;,=V2ksT/M. FIG. 7. Laser intensity as a function of time in the cavity with
This corresponds to a frequency difference Afvg,,,  and without Landau damping for argon at a temperature of 293 K at
=(4m/N)énax Which for Ar gas at a temperature of 360  a pressure 50 atm. The laser intensity Wgs5 X 102 W/m? using
gives a lattice velocity o,,,,=353 m/s and an angular fre- cavity mirrors of reflectivityR=0.999 95\ =1064 nm.
quency difference oAwp=4.2X 10° rad/s. Note that there

is no optical Landau damping when the lattice veloCity iS4 the same cavity and laser beam parameters is shown in
equal to zero. This is because particles colliding with theFig 9. At 50 atm, a maximum change in the decay rate of
potential wall on average return as much energy as they tak&s% oCCUrs whén there is a frequency difference of
LC L 0665 MHz between the two beams in the cavity. This corre-

By substituting the expression for the power dissipate : . S
the optical Landau damping ratior a Maxwellian distribu- sponds to a Iattlpe vglocny of 354 m/s, which is very close
( P ping ra to the above estimations dfw,, and &, We do not con-

tion into the cavity decay of Eq10), we can determine how . S ; : .
optical Landau damping will modify the decay of the field sider the excitation of acoustic waves by the traveling optical
within a cavity. At present, the best reflectivity for commer- potential within the cavity. At the pressure we have consid-

cial mirrors is given byR=0.999 99[25]. To model the ered(50 atn), dissipation by this mechanism may be greater

optical damping, we have used a much lower reflectivitygt‘ﬁg;hat predicted in our treatment and would require further

R=0.999 95 that is commonly available for cavity ringdown
applicationg 26]. We have kept the initial laser beam inten-
sity in the intersection regior,=5x10° W/cn? lower
where a breakdown in gases by pulsed laser radiation occurs
[27]. A stable near-concentric cavity will be required to

IIl. LANDAU DAMPING WITH CONTINUOUS WAVE
(CW) OPTICAL FIELDS

maintain a sma_lll beam.waisﬁo wm) over a long Rayleigh Large potentials can be created by pulsed fields far from
range (interaction region length,/=2.5 cm, Ly=50 cm  resonance, but the effects of optical Landau damping may
(Fig. 6). also be observed using smaller CW fields when they are

We investigate damping in the cavity by plotting the tuned close to a strong atomic resonance. Here dipole poten-
transmitted intensity out of the cavity as a function of time.tjals in the 1 mK range can be created and are capable of
We have simulated this decay for a cavity containing argonnducing perturbations in colder gases.

at a pressure of 50 atm and a temperature of 20 degrees cel- For a two-level atom in a traveling wave fiel#ig. 1)
sius. The Rayleigh range was used as the effective interagith a constant phase velocity, this optical potential is given
tion length over which damping would occur. Figure 7 showspy [28]
the exponential decay of light for the case of no LD with
only Rayleigh scattering and mirror losses and the dotted 21 1 + 25[cogqx— Awt) + 1] + (28 y)?

i . . ; d(x,t) = - SIn ,
curves indicate how this decay varies with the speed of the 2 1+(281y)?
lattice within the cavity(at differentAw=|w,—-w,|)). We es- (12)
timate the temperature rise aST~(2/NMc,)[Pqy(t)dt,
wherec,=320 J/kg K is a specific-heat capacity of argon atwhered is the detuning of the laser beams from resonarnce,
constant volume. At 50 atm, the temperature increases in this the natural linewidth, ansh=1/1is the on-resonance satu-
interaction region by~3.9 K. As this is a relatively small ration parameter given by the laser intendifyagnd saturation
perturbation on the 300 K temperature of the gas, our preintensity,l. We are interested in the regime where the laser
dictions using a Gaussian distribution at 300 K will not beis detuned far from resonance, and where the saturation pa-

significantly modified. rameter s=4s, coS(gx—Awt)/[1+(28/y)?]<1. In this re-
The relative role of each cavity decay mechanism in Eqgime, there are essentially no velocity-dependent forces. It is
(10) at 50 atm and differenAw is shown in Fig. 8. important that there is a neglible probability for atoms to

The dependence of the characteristic decay fifine time  exist in the excited state because they will experience a force
when intensity in the cavity drops mtimes on gas pressure that is 7 out of phase with ground-state atoms. In this case,
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FIG. 8. The intensity as a function of three laser detunings il- FIG. 9. Characteristic decay time in the cavityAs at different

lustrating the effect of optical Landau damping in the cavity. Also 92S Pressure. Cavity and laser parameters are the same as in Fig. 7.

shown is empty cavity de_cay in the absepce of other loss me_cha- For these conditions wheee< 1, and where the Rabi fre-
nisms and the contribution to the cavity decay by Rayleighq,ency is significantly less than the detuning, only forces on
scattering. atoms in the ground state need to be considered. The radia-
tion pressure force or dissipative force from a single beam is
the force on the particles will spatially average to zero wherfour orders of magnitude less than the dipole force in a trav-
operating close to saturation because atoms rapidly cycle &ling wave at this intensity and detuning, and therefore we
the Rabi frequency between the excited and ground stat@lo not need to consider its effect on dri28]. Our one-
The dipole force on a two-level atom ensemble for a traveldimensional analysis, which does not take into account the

ing wave at¢=Aw/q is given by[28] radial variation of intensity inside the fibg80], will induce
a radial variation in drift velocity. Although most atoms are
27k s, Sin(gx— Awt) in the ground state, a small fraction will be excited which

F(x,t) == V ¢(x,t) =

will lead to both radial and longitudinal heating, causing at-
oms to be temporally lost from the periodic trapping poten-
3 ) tials [32]. This will not prevent drift, since only a small pro-
~0,5% sin(gx—Awt). (13)  portion of the MB distribution must be trapped to induce
transport, and a temperature rise will only reduce the effec-
We can determine the time- and space-dependent motidiiveness in proportion to I/, In practice, this temperature
of the gas within the optical potential from the velocity dis- rise can be controlled by collisions with the fiber walls that
tribution function created by the external periodic dipoleare maintained at a constant temperature.
force. For simplicity, and to illustrate the essential physics, The velocity distribution function, obtained from numeri-
we solve the one-dimensional Boltzmann equati@nwith  cal solutions of Eq(2), is shown in Fig. 1(a) for two trav-
the Bhatnagar, Gross, and KrodBGK) collision integral  eling wave velocities for rubidium vapor at a temperature of
approximation. The dipole force for a traveling wave formed560 K and saturation pressure of 100 Pa. The traveling wave
by the interference between two counterpropagating beams iglocities of the potentials correspond to a detuning of
given by Eq.(13). 238.7 MHz and 478.5 MHz between the counterpropagating
A periodic potential with infinite length allows the use of beams, which are both detuned approximately 80 GHz from
the cyclic boundary conditionf(-L/2,v,t)=f(L/2,v,t), the line center. The distribution functions were averaged over
whereL=2\, and\=47/qg. Equation(2) is also subject to a spatial period and normalized by the number density. Equa-
the boundary condition§(x,v — +0,t)=0, which were nu- tion (2) was integrated until steady state was reached. In
merically integrated using a McCormack finite-differenceinsets in Fig. 10a) show that in each case the center of the
schemg24], with an initial conditionf(x,v,t=0)=fy(v). plateau created by the trapping potential corresponds to the
We have chosen to model the velocity drift induced inphase velocity of the traveling wave. The plateau width of
rubidium vapor in a hollow capillary because it has been2Av~5 m/s is in good agreement with the simple analytical
used previously for both laser guiding and LID experimentsestimate of 6.3 m/s for this potential-well amplitude value.
[11,29. It also has a strong transition at 780.76 nm, which is  The bulk gas velocitw/(x,t)= [, f(x,v,t)vdv is periodic
accessible with the tunable CW Ti:sapphire laser. The vapdior all cases and oscillates with a peride27/Aw at any
pressure of rubidium can be conveniently controlled by temiocation but gas drift velocityy,(t) =(V(x, 1)), # 0. The drift
perature. In the case we considered, the potential is created Welocity was calculated for a range of traveling wave phase
a capillary of radiusr=20 microns by 100 mW counter- velocities by averaging the time-dependent velocity over a
propagating beams that are detuned approximately 80 GHzmporal periodr at a given location, and also by averaging
below the 5°S;,,—5 P, resonance corresponding to a po- over a spatial period at a given time. Because both kinds
tential well depth of 50 mK. of averaging produce the same result, only an average over a

1+ 2s[codgx— Awt) + 1] + (28] y)?
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FIG. 10. (a) The normalized velocity distribution for two traveling wave velocities of 93 m/s and 186 m/s, respediyeine drift
velocity calculated for rubidium gas at different temperatures, as a function of traveling wave velocity. The open circles are derived from
numerical modeling at 560 K and 100 Pa, and the lines are estimates of drift velocity. The dashed line corresponds to the more exact second
order of Taylor expansions of the functiofi@) andfy(v) [22]. (c) The average power per unit volume transferred to the gas for traveling
wave velocities of 93 m/s and 186 m/s. The power transferred from the optical field to the gas results in Landau damping of the optical
field.

temporal period is shown in Fig. () for a temperature of phase velocitiesé=186 and 93 m/s isPy=156.7 and
560 K and 100 Pa. For comparison, the drift velocity esti-~44.6 W/n?¥, respectively. These estimations are in good
mateld. from Eq(5) is shown in the same figure for t_he abovg agreement with numerical results, presented in Figc)10
conditions. Good agreement between the numerical predic- The transport of gas particles described here may comple-
tions and the analytical estimate is shown. The average drifhent the scheme of atom guiding in hollow fibgt4,31,33,
velocity increases with phase velocity until the number ofpossibly improving the flux achievable within fibers when
faster than the increase in phase velocity. From the(®gt  ticles, van der Waals interactions with the wall will reduce

also follows that at lower temperatures, higher drift veloci-y,o transport efficiency. Also, if a buffer gas is present, trans-

ties can be accomplished because the original distributioBOrt by LID [33] must be taken into account. When LID is
function is narrower, allowing more particles to be trappedavoided, this process may also lead to particle separation

for a particular well depth. . .
. . . . when another species that is not strongly perturbed by the
The power per unit volume imparted by the optical field dipole force is introduced into the fiber. In this case, a pres-

can be calculated from the force and induced velocity. The . . .
power averaged over the spatial peri@ix, ), is given by sure dlfferenual WI|| not t_)e produced. bec.ausg the unper-
Eq. (9) and is shown in Fig. 1@) for the two traveling wave turped species will move in the_ opposite direction compen-
velocities, 93 m/s and 186 m/s, at a particular spatial |0ca§at|ng fpr thg transport of pglanzable atoms that are pu;hed
tion. The transferred power oscillates after the field is turnedn,the d|rect.|on of t.he travelling wave. Fpr a large detumng,
on as the atoms oscillate in the potential well exchangingis force will dominate over LID, and like LID, separation
energy with the traveling wave. This is optical Landau damp-2/0ng the fiber will occur. Such a scheme may be used to
ing, where atoms with velocities less than the phase velocitpeParate atoms or molecules as in the manner of a gas chro-
take energy from the f|e|d’ and faster atoms give energy t@atograph that is based on the pOlarizable interactions of
the field through stimulated scattering. Because the distribuatoms or molecules with light, rather than with the interac-
tion is initially Gaussian, a greater fraction of the atoms thations of polar molecules with the wall of a capillary.

are trapped are moving slower rather than faster than the The drift velocity calculated above can only be sustained
phase velocity. As a result, net power is removed from thdor a short period of time in a closed system until the pres-
beam. If no collisions occur, no further average dissipatiorsure difference created equals the effective pressure induced
will occur. This process is equivalent to the energy dissipaby the dipole force. This pressure can be estimated by as-
tion of electrostatic plasma waves by collisionless Landawsuming that the pressure gradient is equal to the macroscopic
damping[1-3] and current drive phenomend]. Thus, we  dipole force per unit volume, which can be calculated from
call the transfer of energy from the optical field to the par-the initial momentum flux 08VyN/ 7.,. The pressure dif-
ticles, and the resulting dissipation, optical Landau dampingference across the fiber is given yp=~0.5MVyNL/ 7,

As shown in Fig. 1(c), the average power absorbed achievesvherel is the length of the fiber. A maximum pressure dif-

a steady-state valuBy=(P(x,t)),~const for time periods ference of 0.013 Pa or 9&Torr is obtained for a 3 cm
much greater than the relaxation time. The power at steadigngth fiber at the 560 K conditions calculated above. This
state is determined by collisions, which remove energy fronpressure difference could, for example, be measured by a
the trapped particles. For conditions corresponding to predifferential capacitance manometer which is capable of mea-
sented numerical solutiofFigs. 1Ga) and 1Qb)], the suring pressure differentials to at least an order of magnitude
dissipation ratePy=K/7.,, with K defined by Eq.(6), at  below this value.
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IV. CONCLUSIONS fields, we have predicted drift velocities in the 10 m/s range,
while for weaken1 mK) CW potentials we have predicted a
We have predicted a range of new phenomena that resufiulk drift in a fiber which leads to the establishment of a
from optical Landau damping. These include the creation opressure difference induced by the optical potential across a
bulk drift in a gas subject to optical potential as well as acapillary. By studying the dissipation of the optical potential
measurable damping of optical field within an optical cavity.in a cavity which contains a high-density gas, we shown that
We have studied these processes for periodic optical potemhe Landau damping of the optical potential could be mea-
tials (lattices, whose well depth is less than the averagesured by a change in the cavity decay rate which is depen-
kinetic energy of gas particles. For relatively large opticaldent on the velocity of the potential and the width of the
periodic potentials(100s of K created by pulsed optical thermal distribution function.
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