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A cold beam of H& (2 351) atoms is used at grazing incidence to study the quantum reflection on a flat
polished silicon surface. We measure the reflectivity as a function of the normal incident velocity component
between 3 and 30 cm/s. Our result is in reasonable agreement with a calculation of the attractive van der Waals
surface potential using the dielectric function of Si and the dipole polarizability 6f M discuss the
influence of the conductivity and of a thin oxide layer on the potential. By comparing our data to those
previously measured with Neatoms, we are also able to confirm the scaling of the reflectivity with atomic
mass.
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[. INTRODUCTION requires an additional analysis when calculating the interac-
Optics has been a main source of inspiration for mam}ion potential. We present here a detailed analysis of the van
experiments with atomic waves. The analogy of phenomenger Waals potential in the case of a poor conductor. The
observed with photons and atoms is of course largely base@teraction potential between a metastable helium atom and a
on the fact that equivalent equations govern their propagadoped silicon surface is calculated. In addition, we discuss
tion. One of the consequences of this wave equation is théhe influence of an oxide surface layer on the potential shape.
reflection at an abrupt change in tligenerally complex
index of refraction, or correspondingly of the interaction po-

tential, regardless of the sign of change. In the case of atoms, At a distance large compared to the size of the atom, the
such reflections have been called “quantum reflection” anghteraction potential between an atom and the solid is the
predicted to occur when slow atoms approach the steep slopgpole attractionU(r)=-C;/r%, wherer is the distance from

of the van der Waals attraction near liquid and solid surfaceshe surfacg18,19. At a distance larger than the wavelengths
It has been experimentally observed with slow atoms repf atomic transitions, however, retardation effects become
flected on _Iqu|d helium surfacefsl—6] and more recently important and the potential changeditr)=-C,/r*[20,21].

also on solid surfacely—10]. The study of atom reflections geyeral authors have derived general expressions for the in-
at attractive potentials, in particular at solid surfaces, hageraction potential between an atom and a sf#@-24. We

seen a considerable increase in interest recently, both as\@e in the following the formula given in Refi24,25 (Sl
means to study the atom-surface potentials and in view Ofinits are used throughgut

possible applications in atom optitkl-15. Atom reflectors

based on solid surfaces are inherently stable, accurate, an h ” , * _ .
nearly dispersionless and they can be made very large. Th (r=- 87,260C3f0 déafif) X fl dp €% H(p, e(ig)),
reflection is coherent as long as the wavelength of the inci-

dent wave is large compared to the surface roughness. This 1)
condition is easily realized with polished surfaces and lasefyhere the path of integration over the frequeridyas been
cooled atoms or at grazing incidence. The main disadvantagg,ifed to the complex plane, and

of solid surface atom mirrors is their low reflectivity which

II. INTERACTION POTENTIAL

still strongly limits their applicability; however, some _s-p 2 S~ €p
progress has been made in this respect by preparing atoms in H(p.e) = m) +(1-2p )s+ e’ (2)
a Bose-Einstein condensate with extremely low incident ve-
locities [10], or by using microfabricated surface structures a3
s=\e-1+p-. (3)

[16,17.
We report here on the experimental observation of quan- Here, € and o are the frequency-dependent and general

tum reflection of laser-cooled metastable helium atoms on gomplex dielectric constant of the solid and the dipole polar-

silicon surface at grazing incidence. This is a continuation ofzability of the atom, respectively.

our work with metastable neon atorf® and we are able to Note that due to the exponential factor in E4) and

directly confirm the scaling of the reflectivity with atomic sincep= 1, the main contribution to the integral is limited to

mass. The helium-silicon system offers the advantage that adl frequency region where

the material properties are very well known. However, a pe-

culiarity arises due to the fact that silicon is an intermediate ¢ (4)

<o =-.
case between a perfect conductor and a pure dielectric, which §< o r
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Without knowledge of both(iw) ande(iw), the potential  U(r)=-C,/r", n>2, the functionB(r) has a maximum near
cannot be further calculated. However, it is possible to deriveéhe distancer, where the absolute value of the potential
expressions for the potential in the limiting cases of veryequals the incident energy of the atom, i.6U(ro)|
small and very large, which are usually given in the litera- :ﬁzkéle. The reflection occurs mainly at this poir&].

ture. We briefly repeat them below. In our experiment, we used metastable helium atoms in-
(i) Forr—0, the integral ovep in Eqg. (1) has a simple cident on a silicon surface with a normal incident velocity
asympotic form, component between about 3 and 30 cm/s. The correspond-

3 ing de Broglie wavelengths range from 0.3 tuh, and the
Ccei-1 (5) atoms are reflected at a distance from the surface varying
2r3e(id) +1 between 150 and 300 nm. The reflectivity of the atoms will
therefore be predominantly determined by the strength of the
potential in this region.

f dp Eexp(— 2&rp/c)H(p, (i) —
1

and we can writeJ(r)=-Cg/r2 with

5 o i) -1 The Schrodinger equation with the potenti&l(r)
C3= 1672 J dga(ig)l—l. (6)  =-C,/r" can be written in dimensionless form by scaling
€Jo e(1¢) + with r=(MC,/#?)Y("=2 and the incident kinetic energy

. _ 2 2 .
(i) Forr — =, only very low frequencies contribute to the With Es=%2/(Mrg) =:Mug. We can therefore define the scale
integral. In practice, it is sufficient to go to a distariceo  ©Of the incident velocity as

thatc/l is lower than the smallest significant frequency in the 5 32 \Un-2

absorption spectrum of the atom, and replace) by the Vg = —( ) (11
static dipole polarizabilitya(0). For a perfect conductor MAMG,

e(iw)—> and Eq. (2) simplifies to H(p,e)—2p® The The reflectivity of atoms on a solid surfag&R(vo/ve)
double integral in Eq(1) is then readily evaluated to be approaches 1 when the incident veloaity— 0 but decreases
3c*a(0)/(4r*) and we obtain rapidly with increasing incident velocity. With the exception

3hca(0) of helium, the reflectivity is typically below 1% for veloci-
- (7) ties above a few cm/s. Because scales withM=2 for n
32me, =3, and withM~32 for n=4, lighter atoms are reflected more
efficiently. Similarly, a smaller potential consta@f, should
lead to a higher reflectivity. Sindg, is roughly proportional
to the density, a material with lower density will be a better
Cse-1 reflector.

ur)=- Fm(ﬁ(f)- (8) The scaling law might lead to the paradoxical conclusion

that the reflectivity will approach unity a€,, approaches

An analytical expression for the functiogi(e) is given in  zero. This property of the scaling law is of course a math-

C
um:—ﬁ with C,=

For a dielectric with frequency-independent dielectric con-
stante, a similar derivation leads to the res{®5,26]

Ref. [25], Eq. (21). ematical consequence of the divergence of the potential at
When bothC; andC, are known, the potential is in prac- r— 0. In reality, the potential will change its shape, typically
tice often approximated by the analytical form to some short-range repulsive potential well, as the atom
c 1 approaches the surface. It can, however, be argued more gen-
U(r):——ssﬁ(r”) B(x)= ——, (9)  erally that, if the long-range van der Waals interaction is
r 1+x reduced, any short-range surface potential will look like a
wherel =C,/Cs,. potential step to a sufficiently slow incident atom, which will

therefore be reflected coherently.

lll. QUANTUM REFLECTION OF ATOMS AT THE IV. THE van der WAALS POTENTIAL FOR POOR
van der WAALS POTENTIAL CONDUCTORS

A matter wave is reflected when the potential changes 1nq glectrical conductivity is one of the most strongly
sufficiently abruptly within one de Broglie wavelength. This \5rving properties of solids. Whereas for metals the static
condition of impedance mismatch can be expressed as conductivity oy is as high as 6.2 10° (Q cm)~ for silver, it

dk s is less thano=10"1 (Q cm)™* for an electrical insulator.
arl” 1, where k(r)=vkg=2MU(r)/A° (10)  Semiconductors have conductivities that typically range
from 10° to 1% (2 cm)™* and depend strongly on tempera-

is the local wave vector, witlky the wave vector of the ture and impurities. In the derivation of the interaction po-
incident atom with mas®l. The condition can be formulated tential between an atom and a solid, we have used the no-
more rigorously by introducing a so-called “Badlands” func-tions of a perfect conductofe=«) and of a dielectric.
tion B(r) [13]: If B(r)<1, the motion of the particle is well However, in the case of a semiconductor, the question arises
described using the notion of a trajectory in the WKB ap-whether and in which range of electrical conductivities the
proximation. ForB(r)=1, this approximation breaks down models of a perfect conductor and of a dielectric are still
and quantum reflection is expected to occur. For a potentiapplicable, and how the potential changes in the intermediate

1
K2
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region. To our knowledge, this question has never been digrary, o,, 0, <o, then e(io) =~ €, and the potential will be
cussed in the literature. that of a dielectric.

Schwingeret al.[27] and Hargreavef28] briefly consid- For a typical metalws andw, are very large compared to
ered the case of an imperfect metal by using the expressio®,=c/r and the solid behaves like an almost perfect conduc-
e(w)=1-w’/w? where w>=ne?/(m'ey) is the plasma fre- tor for an atom reflected by the van der Waals potential. The
guency squared. The conductor is imperfect in the sense théihite conductivity leads only to a small correction at very
at high frequenciegtypically in the infrared or higher spec- small distances from the surface.
tral region, the dielectric function will eventually drop to 1. If the density of charges is reduced, the dielectric function
The resulting first-order deviation of the van der Waals po-will eventually approach that of an insulator. We can esti-
tential from the infinite dielectric constant result was calcu-mate the order of magnitude of the number of charges per
lated. Recently, the effect of a finite conductivity of the metalvolume n at which this transition occurs, by setting,
surface on the Casimir-Polder interaction has been discussett/r = wp:nezl(meeo), wherem, is the mass of the electron.
in more details by Bablet al. [29], who also calculate the Forr=0.5um, we obtainn= 10" cm 3. Assuming that the
potential between a gold wall and HeNa, and Cs atoms damping ratey,=10" s7%, which is a typical value for met-
taking into account the finite conductivity of the metal, theals and many semiconductors at room temperature, the cor-
dynamic polarizability of the atom, and nonzero temperatureresponding static conductivityy~ 10° (Q cm)™L.

For metals, the finite conductivity usually leads to a small The conductivities of pure silicon and germanium at room
correction that is, however, not negligible in precision ex-temperature are 38106 (Q cm)™? and 2.3
periments. X 1072 (Q cm)~%, respectively. At a distance from the surface

In the following, we will discuss the case when the con-in the order of 0.5um, the van der Waals potential of both
ductivity is not only finite but small, i.e., the transition from materials will be that of a dielectric, in spite of the presence
a metal to a dielectric. A conducting material is characterizegf free charges. By doping the material, the conductivity can
by a resonance of the dielectric functionaat 0. If we sepa-  pe increased by several orders of magnitude. Highly doped
rate the part of the dielectric function that is due to the pressilicon can reach conductivities of 200 cm)~* or higher,

ence of “free” charges, we can generally wiigf] and small deviations from the pure-dielectric potential are
o(w) expected.
e(w) = e, +i (12 In conclusion, we have analyzed the influence of the elec-
€W

trical conductivity on the van der Waals interaction potential
Here, ¢, denotes the background dielectric function, which isbetween a solid surface and an atom. For metals, the ap-

usually nearly constant at low frequencies, and the conduddroximation of a perfect conductor is very good in most
tivity o can be expressed as cases, and the finite conductivity causes small deviations

only at short distances from the surface. On the other hand,

. R : , (13) the conductivities of semiconductors are generally so low—
m(y-iw) 1l-iely even at high doping concentrations—that the interaction po-
tential is mainly determined by the dielectric properties of
the semiconductor, and the presence of free charges leads
only to small corrections at larger distances.

ne2 0o

o(w) =

wheren is the number of free charges per unit volumeg,
the effective mass of the charged particig,is a damping
rate, andop,=ne?/(m’y,) the static conductivity. We there-
fore write the imaginary-frequency dielectric function as

1 V. THE CASE OF He" AND SILICON
—. (14) . . . .
wlw, + wz/wg We have concluded in the previous section that for sili-

con, the dielectric properties will dominate over the effect of
free charges. That means that we will have to consider the
dielectric function of silicon in the calculation of the van der
SWaals potential. The interaction potential between the helium
atom and the solid is the same for all metals but not for
Bielectrics. We will calculate the potential for both cases and
compare them later to our experimental results.

The imaginary-frequency dipole polarizabilities of the
etastable states of He have been calculated by several au-

eliw) = e+

where we have introduced the frequeney=o0y/€,, and
wf,:wayoznez/(m*eo) is again the plasma frequency
squared mentioned above. We conclude that the solid b
haves like a conductor for frequencies below bethandw,,
whereas it behaves like a dielectric for frequencies abov
either ,, or wp,

We have seen aboVé&q. (1)] that, in the calculation of
the van der Waals potential, the main contribution comes,

from the frequency regiom < w =c/r, wherer is the dis- 5 ¢ 0 precision increasing over tiff26,31,33. For the

tance from the surface. We have also s_ald in th_e previous 351 state, the function can be quite well approximated by a
section that slow atoms are reflected at distances in the Ordgfmple one-oscillator model for the atom

of a few hundred nanometers. The corresponding frequency
region that we have to consider in the evaluation of the po- _ a(0)

tential therefore extends from zero up to the optical region: alio) = m (19
w,~10" s If w, or w, are equal to or higher tham,, then a

e will be large over the relevant frequency region, and thewith «(0)=5.204x 103 F m? (315.631 atomic unitsand
potential will be that of a perfect conductor. If, on the con- w,=1.793x 10'° s71 [33].
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For a perfectly conducting surface, we assusrec and

F=1
calculate the potential by integrating E&). Using the one- 300 17\ 30
oscillator model fora(iw) [Eq. (15)], we obtain @ 250 t ‘\ 25
c " \
K a(0 2 200 1y ) 20
C; =~ ha©w, _ 1.1x 1048 J n?, (16) £ N\ \ \ 2
3amep :g; 150 e "\.\\ 15 W
which is about 10% below the exact value given in R26], =~ 100 \\ 10
CZ=1.2281x 10748 J n? (1.900 92 atomic units 3 % “\& 5
(17) 0 1014 1015 1016 1017 0
This value is reproduced within a relative error below 1% by Frequency o (s™)
integrating Eq(6) using the exact values far(iw) given in ®) 2 FeTI
Refs.[31,32. Similarly, we obtain for the coefficient of the R a— ST O
retarded potential using E¢7) = o 113 \*““T\
o Y 3
C; =1.765% 10°°° J nf* (5163 atomic units  (18) £ 06 N\ \\
B k
In order to calculate the potential for the silicon surface, = 0.4 \‘\
we have to include the dielectric properties of the semicon- = \‘-\
ductor. Fortunately, the dielectric function of silicon is =02 Y
known over nearly the entire spectral rar{@d]. If we ne- > ‘\
glect details, an oscillator model is appropriate to describe its 01 ; ] ] ]
main characteristics. Vidali and Co[83] pointed out that o 00 000 0000
the imaginary-frequency dielectric constant of many solids Distance from surface r (atomic units)

can be approximated by the expression FIG. 1. (a) The imaginary-frequency dipole polarizabilityi w)

eiw)-1 €0)-1 1 of He" (23S)) taken from Refs[31,37 (dashed ling and the di-
- =~ 2 (19 electric functione(iw) of silicon (solid line) calculated using Eq.
eiw)+1  €0)+11+(w/wy (19 and the values from Ref33]. We also show the dielectric
For silicon, they givee(0)=11.7 andw,=1.78x 10*¢s7%, in  function of doped silicon with a plasma frequenay=10" s
agreement with the values of RE84]. (dash-dot-dgt and w,=10"s™ (dash-dot The presence of free
Since ws is about one order of magnitude larger thag charges Ieadg to a resonance at zero frequ.e.(tnyThe van der
the dielectric function of silicon is nearly constant over the'Vaals potential between a Hatom and a silicon surface. The
entire range wherex(iw) is considerably larger than zero short-dashed line shows the potential in the case of a perfectly

. . conducting surface. It has been calculated using(Bcand the Hé
\[/Si?he ;;(‘3)') Ei)(](.))vivseacggotgéars:)?(r)iir?]);ﬁﬁ)cr: tih:t using E6) dipole polarizability plotted in(@). This calculation reproduces the

values given by Yan and Ball26] (crossep with a relative error
€0)-1

. 48 below 1%. The dashed line is the potential calculated for a dielec-
«0)+ 1C3 =1.03x 1083 n?. (200 tric with the frequency-independent dielectric functien11.7 and

the solid line is the potential calculated using the frequency-
Integration of Eq(6) using the frequency-dependent dielec- dependent dielectric function of undoped silicon. The latter differ
tric function from Eq.(19) and the dynamic dipole polariz- only at very short distances from the surface, where the high-
ability of He" from Refs.[31,37 leads to an additional cor- frequency behavior oé(iw) must be considered.

rection of about 15%, leads to a resonance of the dielectric functionwatO, C,
S e0)-1 9 will then always assume the value of a perfect conductor.
C3 :0-85W+1C3 =8.8X 10 Jn?. (21)  However, for a poor conductor, the distancevhere this
€ limit is valid might be impractically large. The expression for
Similarly, we obtain for theC, coefficient between the Cj3' given above is valid in the regioty w,<r <c/ w,,.

C3'~

He' atom and the silicon surface The imaginary-frequency dipole polarizabiligy(iw) for
the He 2°S, atom and the dielectric function of silicon for
Cfi =Cy €0 -1 #((0)) several conductivities are shown in Figall We calculated
€0)+1 the interaction potentials as a function of the distance from

_ oo _ 55 the surface by integrating E€L). The result is shown in Fig.
=Cii X 0.843x 0.808=1.202¢ 10 I nf’. (22) 1(b). The potential for a He 2S, atom and a perfect conduc-

The transition from the unretarded to the retarded regiméor is shown by the short-dashed line: The curve is calculated
takes place at the distanteCf'/C?':B? nm. with the values fora(iw) given in Refs.[31,32 and repro-

A word of caution is required at this point: we have intro- duces the data given by Yan and B4B6], which are shown
duced the constant, in the limit r—o, with the conse- as crosses, with a relative error below 1%. The long-dashed
quence that only the static dielectric function contributes tdine shows the potential between the He atom and a dielectric
the interaction potential. Since the presence of free chargesith €(iw)=€(0)=11.7, and the solid line the potential cal-
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....... depending on the time of exposure and other conditions. This

2 o naturally grown layers is in the order of a few nanometers,
“"-iii': naturally grown oxide usually consists of some intermediate

08 R oxide such as SiQrather than SiQ[35]. In semiconductor

' NN device fabrication, silicon wafers are passivated by growing
06 I\ a much thicker layer of several hundred nanometers at higher
0.4 \w"ﬁ. temperatureg36]. Silicon oxide forms a large variety of
N3 structures with different properties, but the naturally grown
'\'-‘ oxide can generally be considered to be a glass with an index

W= of refraction around 1.5 in the optical region, and a static
dielectric constant around 3[84]. Since the dielectric con-
stant of the oxide is much smaller than that of pure silicon, a
thin oxide layer is expected to slightly change the shape of
the van der Waals potential near the surface. In this section,
] —— 100 nm we discuss the potential generated by a thin layer and quan-
- infinity tify the effect of the oxide layer on the van der Waals poten-
tial of a silicon surface.

The r2 andr™ dependence of the potential between an
-.;,_'b\ atom and a solid surface can be derived via a pairwise sum-
. mation of the interatomic potential between the atom and all
atoms of the solid in the entire half-space. The van der Waals
3 potential between two atoms varies with the interatomic dis-

100 1000 10000 tance ag %, and ag™’ at larger distance due to the retarda-
Distance from surface r (atomic units) tion of the electromagnetic field. The method of integrating
over pairwise interactions reproduces, however, only the cor-

FIG. 2. () Demonstration of the effect of the conductivity of a rect potential shape; the quantitative agreement is only ap-
solid on the van der Waals potential in the case of silicon andproximate, because the force between two atoms generally
metastable helium 2S,. The potential for a perfect conductor is depends on the presence of other atoms. Nevertheless, the
shown by the dotted line. The solid line represents the potential fof, a0 provides useful approximations when the potential
undoped silicon, which behaves like a dielectric. We also show thefor more complicated geometries has to be calculated. Fol-
potential for doped Sg”c_‘}“ with plasma frequencieg=10"° s lowing this idea, we consider the van der Waals potential
(dash-dot and w,=10"s™* (dash-dot-dgt Note that the effect of near a surface to be the result of an integration over the entire

free charges appears mainly at a larger distance from the surface, . . . . .
(b) The van der Waals potential between & kgom and a silicon volume of the solid, with all interactions included. If the last

surface covered with an oxide layer. The silicon oxide is assumed tgtep of this integration W"?‘S along the d'rSCt'on perpencﬁcular
be a dielectric with constant=3.9. The potentials are shown for [ the surface, we can writd(r)=-U(r +s)|c,. The potential
undoped silicon(solid line) and layers of thickness di=30 nm  Of @ layer of finite thickness is then readily obtained by re-
(dash-do, t=100 nm(dash-dot-ddt andt=c (dotted. placing the integration boundaries.
Assume, for example, that a substrate with van der Waals
S . .
culated with the dielectric function of silicon from E€L9). constantC, is covered with a layer of thicknesof a mate-

The difference between the two latter curves appears only Jjal with constantCs. Then the potential of the entire surface

— -3 | -3_ -3
short distances from the surface, where the high—frequenc&aln be_ calculated to be(r)=-C3(r+1) +C3[(r+-t) . ,
behavior ofa(iw) and e(iw) must be considered. t a distance from the surface<t, the potential shape is

The dependence of the potential on the conductivity isdetermlned by the properties of the layer material, whereas at

demonstrated in Fig.(3). For illustrative purposes, the po- r >t the properties of the substrate material dominate, with a

tential is shown for the values of the plasma frequengy smlooth(;[rantsmonl b(Ttvtve?E the twa) re\?\llonls. tential of th
=10'° and 108 If we assumed a damping rate of n order 1o caiculate the van cer Waals potential of the

=10 s71 [34] and set the effective mass equal to the elecSilicon oxide layer, we assume that the silicon oxide is a
tron mass, the corresponding conductivities are ahgyit dielectric with frequency-lndepen_dt_ant dlelectgc constant
=10 (Q cm)~! and oy=1C° (Q cm)~L, respectively. In prac- =3.9, and we z:galculate the coeiﬂments @s=Cs(e—1)/(e
tice, such high values are not achievable with doped silicon! 1):Zé27>< 100 J_ms and C;=Cy(e=-1)/(e+1)p(€)=8.04
At lower conductivities, the potential practically coincides X 10°°J nt by using Eqs(6) and (8). The potentlgl of the
with the pure dielectric case. At higher conductivities and af@yer material is then approximated bi(r)=—C,/[r*(r +1)]

larger distance, the potential approaches that of a perfedith 1=Ca/Cs. The calculated potential is shown in Figb?

-U(r) r3 (atomic units)

0.2

100 1000 10000
Distance from surface r (atomic units)

,\
RS>
r

£
v
/

0.8
0.6

7

ek

0.4

-U(r) r3 (atomic units)

conductor. for several values of the layer thickness.
It can be seen that even for a thin layer of 30 nm, the
VI. THE INFLUENCE OF THE OXIDE LAYER potential is reduced by a few percent at a distance of 150 nm

(2834 a.u), where the atoms are reflected in our experiment.
Silicon samples that have been exposed to air are covereslich a thin oxide layer will therefore lead to a small increase
with a thin layer of silicon oxide. The thickness of such of the reflectivity.
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resonant laser 100 : T
at 1083 nm +  Experimental data
MOT of He* ) —-—- perfect corpuctor
23, @ -0 107" undoped silicon
1 > X s +30 nm oxide layer
= AN e +100 nm layer
Movable 310 g
k3]
“41lcm o
. 103
silicon
plate
screen
104
0 10 20 30
MCP detector 113 em Normal incident velocity ( cm/s )

FIG. 4. Measurement of the reflectivity of H&2 331) on a pol-
ished p-doped silicon plate as a function of the normal incident
velocity (error bars. We compare the result to the reflectivities

Generally, at a layer thickness of several hundred nanonmcalculated for several potentials. The long-dashed line shows the
eters the reflectivity will be solely determined by the prop-reflectivity expected for Heon a perfect conductor. The solid line
erties of the layer material. Deposition of a low-dielectric shows the case for undoped silicéire., with low conductivity.
constant film will increase the reflectivity, whereas deposi-The reflectivities expected for a Si surface covered with a 30-nm-
tion of a metal film will decrease the reflectivity of atoms. (dash-dot and 100-nm-thick(dash-dot-dgt oxide layer are also
shown.

FIG. 3. Cross-sectional view of the experimental setup.

VII. EXPERIMENT

The experimental setup has already been described previ@01) surface was covered with a layer of naturally grown
ously [17]. It is schematically shown in Fig. 3. Metastable silicon oxide. We estimated the thickness of the layer by
helium atoms in the ?Sl state are trapped and cooled in a measuring the reflectivity of a HeNe laser on the sample for
magneto-optical trapMOT) using the transition at 1083 nm. various polarizations and incidence angles. The result of this
The atoms are released from the trap by illuminating themeasurement indicates a layer thickness below 10 nm. The
cloud of atoms from the top with short pulses of resonansurface was polished and is expected to have a roughness in
light. Focusing of the laser beam to aef/waist below the order of several nm.

100 um provides an almost pointlike source of atoms. A We measured the reflectivity on our sample as a function
silicon plate is placed in the beam line 41 cm below the trapof the normal incident velocity component between 3 and
The plate can be rotated around the upper edge to adjust ti3® cm/s. Both the parallel incident velocit{23 m/s to
incident angle, which was varied between 1.3 and 6.5 mrad/0 m/9 and the incident anglél.3—6.5 mra@l have been
The pattern of scattered atoms is detected with a gated misaried to check the consistency of the measurement. An error
crochannel platéMCP) detector, placed 113 cm below the analysis was done for all data points. The result is shown in
MOT. In order to improve the time resolution of the time-of- Fig. 4.

flight measurement, only atoms that arrive after a chosen We compare them to the reflectivity expected for e
delay and within a short interval are detected. We typicallyoms reflected on a perfectly conducting surfétashed and
reduced the velocity spread to below 10%. The length ann a silicon surface with low conductivity that behaves like a
intensity of the releasing laser pulses are adjusted to maxdielectric(solid). The curves are obtained by solving the one-
mize the number of atoms within the chosen interval. Thedimensional Schrédinger equation with the interaction poten-
MOT is switched off directly after the releasing pulse as welltials calculated in Sec. V. As a boundary condition we as-
as during the detection interval. sume that close to the surface the wave function contains

The pattern on the MCP detector consists of atoms pas®nly the wave moving towards the surface. This calculation
ing behind the silicon plate, atoms passing in front of thedoes not include any short-range interaction, i.e., the poten-
silicon plate, and atoms reflected on the plate. A movabldials considered here are all divergentrat0. Our data are
edge is placed 4 cm above the silicon plate to block outescribed relatively well by using the potential calculated for
atoms that would otherwise overlap with the reflected partthe silicon surface that behaves like a dielectric, whereas the
The reflected atoms can be clearly distinguished from dicurve calculated for a perfect conducting surface clearly de-
rectly falling atoms down to incident angles of about 1 mrad.viates from our measurement.

The relative angle between the surface and the atomic beam However, the measured reflectivity is slightly larger than
is measured by reflecting a HeNe laser on the silicon plateexpected for undoped silicon. This could in principle be ex-
The reflectivity is determined as the ratio of the number ofplained by the presence of a thin oxide layer. We show the
atoms in the reflected part and the number of incident atomseflectivities expected for a thickness of 30 and 100 nm in
which is determined using the number of atoms passing be-ig. 4. The deviation of the data would suggest a layer thick-
hind the plate and the projected width of the silicon plate. ness of about 100 nm. However, an independent measure-

We used a 208 20Xx 0.5 mm silicon plate of B-doped ment indicated a thickness of below 10 nm and the effect of

p-type, with a conductivity of about 0.022cm)™ . The such a thin oxide layer on the reflectivity of atoms should be
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negligible. The observed deviation might rather indicate that 100
some short-range interaction should be included, in particu-
lar at higher incident velocities. 101 25
We mentionned above that in our case the de Broglie g e
wavelength ranges from 0.3 togm, and that the distance of § 102 *s 2
reflection from the surface lies between 150 and 300 nm. = "Om
This distance is larger than or equal to the distance where T B \ oy
retardation is observed, i.e.>>1=137 nm: For low veloci- 10 \ * o |,
ties the reflectivity is therefore determined by the retarded
potential and for higher velocities by the potential in the 10
transition region. The region of reflection lies near the dis- (@) 0 N%rm;l‘? 'd15t 2|0 " 25 /30 35
tancel =137 nm for incident velocities nea=38 cm/s. - incident velocity  em/s)
We also believe that the reflection is coherent because the
de Broglie wavelength and the distance of reflection are large
compared to the surface roughness. AR
>
VIIl. CONFIRMATION OF THE SCALING LAW § 102
[45)
The quantum reflection on a silicon surface has been pre- - 109 3,
viously studied on the same silicon sample with metastable L I
Ne atomg8]. This allows us to directly confirm the scaling ~
of the reflectivity with atomic mass. The reflectivities for He 10°
and for Ne are shown together in Figah o 1 2 3 , é’ S ,6 7
(b) Scaled normal incident velocity

The ratio of the atomic masses of He and Ne is
MNe/MHez,E" U_s_lng Eeqﬂ) and the \églue gor the static di- FIG. 5. (a) The reflectivity of Hé (points compared to that of
pole p°|ar'zaf'|'tya %0)=3.07x 10" Fm* we calculate ng (1s,) atoms (solid line), both measured on similar silicon
the constanC, for Ne to be 1.0< 107%° J nf. Similarly, we samples as a function of the normal incident velocity. The neon data
estimate the consta@; for Ne' to be 1.13<10*8JnP by  are taken from Ref8]. (b) The same data with the normal incident
using Eq.(16) and the valugn}®=3.1x 10" s* [37]. velocities scaled with vY®=5.69 mm/s and v®=4.89 cm/s,

Using Eg.(11), we then obtain the following scaling ve- respectively.
locites for He and Ne: v5®=4.89 cm/s and vl*®

:5.6%emm/s for the retarded potential, amﬁf;z.m cm/s  waals potential is determined by the dielectric properties of
andv e=%.34 mm/s for the unretafdedHIZOt%lgtlaL Their ratiosihe semiconductor, with little influence from the presence of
are vg-/vg-=8.6 for the retarded ands™/v =23 for the  free charges. We also considered the influence of a thin oxide
unretarded potential, respectively. _ layer on the silicon substrate. For a layer thickness below 20
~In Fig. §b), we plot the same data as before with thenm ijis effect on the reflectivity of atoms is negligible. Fi-
incident velocities scaled by the calculated valuesufoiVe nally, we have compared the reflectivity of He that of Né

use only the values for the retarded potential. After scalingmeasured on the same surface, and confirmed the scaling of

both sets of data follow nearly the same curve, except at thge incident velocity with atomic mass and potential param-
highest velocities, where the scaling of the unretarded potensigrs.

tial (n=3) should be used. The relative increase of the reflec-
tivity due to the smaller mass is even larger for the unre-
tarded potential. ACKNOWLEDGMENTS
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