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A cold beam of He* s2 3S1d atoms is used at grazing incidence to study the quantum reflection on a flat
polished silicon surface. We measure the reflectivity as a function of the normal incident velocity component
between 3 and 30 cm/s. Our result is in reasonable agreement with a calculation of the attractive van der Waals
surface potential using the dielectric function of Si and the dipole polarizability of He*. We discuss the
influence of the conductivity and of a thin oxide layer on the potential. By comparing our data to those
previously measured with Ne* atoms, we are also able to confirm the scaling of the reflectivity with atomic
mass.
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I. INTRODUCTION

Optics has been a main source of inspiration for many
experiments with atomic waves. The analogy of phenomena
observed with photons and atoms is of course largely based
on the fact that equivalent equations govern their propaga-
tion. One of the consequences of this wave equation is the
reflection at an abrupt change in thesgenerally complexd
index of refraction, or correspondingly of the interaction po-
tential, regardless of the sign of change. In the case of atoms,
such reflections have been called “quantum reflection” and
predicted to occur when slow atoms approach the steep slope
of the van der Waals attraction near liquid and solid surfaces.
It has been experimentally observed with slow atoms re-
flected on liquid helium surfacesf1–6g and more recently
also on solid surfacesf7–10g. The study of atom reflections
at attractive potentials, in particular at solid surfaces, has
seen a considerable increase in interest recently, both as a
means to study the atom-surface potentials and in view of
possible applications in atom opticsf11–15g. Atom reflectors
based on solid surfaces are inherently stable, accurate, and
nearly dispersionless and they can be made very large. The
reflection is coherent as long as the wavelength of the inci-
dent wave is large compared to the surface roughness. This
condition is easily realized with polished surfaces and laser-
cooled atoms or at grazing incidence. The main disadvantage
of solid surface atom mirrors is their low reflectivity which
still strongly limits their applicability; however, some
progress has been made in this respect by preparing atoms in
a Bose-Einstein condensate with extremely low incident ve-
locities f10g, or by using microfabricated surface structures
f16,17g.

We report here on the experimental observation of quan-
tum reflection of laser-cooled metastable helium atoms on a
silicon surface at grazing incidence. This is a continuation of
our work with metastable neon atomsf8g and we are able to
directly confirm the scaling of the reflectivity with atomic
mass. The helium-silicon system offers the advantage that all
the material properties are very well known. However, a pe-
culiarity arises due to the fact that silicon is an intermediate
case between a perfect conductor and a pure dielectric, which

requires an additional analysis when calculating the interac-
tion potential. We present here a detailed analysis of the van
der Waals potential in the case of a poor conductor. The
interaction potential between a metastable helium atom and a
doped silicon surface is calculated. In addition, we discuss
the influence of an oxide surface layer on the potential shape.

II. INTERACTION POTENTIAL

At a distance large compared to the size of the atom, the
interaction potential between an atom and the solid is the
dipole attraction,Usrd=−C3/ r3, wherer is the distance from
the surfacef18,19g. At a distance larger than the wavelengths
of atomic transitions, however, retardation effects become
important and the potential changes toUsrd=−C4/ r4 f20,21g.
Several authors have derived general expressions for the in-
teraction potential between an atom and a solidf22–24g. We
use in the following the formula given in Refs.f24,25g sSI
units are used throughoutd:
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Here, e and a are the frequency-dependent and general
complex dielectric constant of the solid and the dipole polar-
izability of the atom, respectively.

Note that due to the exponential factor in Eq.s1d and
sincepù1, the main contribution to the integral is limited to
a frequency region where
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Without knowledge of bothasivd andesivd, the potential
cannot be further calculated. However, it is possible to derive
expressions for the potential in the limiting cases of very
small and very larger, which are usually given in the litera-
ture. We briefly repeat them below.

sid For r →0, the integral overp in Eq. s1d has a simple
asympotic form,

E
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`

dp j3exps− 2jrp/cdH„p,esijd… → c3
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s5d

and we can writeUsrd=−C3/ r3 with
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sii d For r →`, only very low frequencies contribute to the
integral. In practice, it is sufficient to go to a distancel so
thatc/ l is lower than the smallest significant frequency in the
absorption spectrum of the atom, and replaceasijd by the
static dipole polarizabilityas0d. For a perfect conductor
esivd→` and Eq. s2d simplifies to Hsp,ed→2p2. The
double integral in Eq.s1d is then readily evaluated to be
3c4as0d / s4r4d and we obtain

Usrd = −
C4

r4 with C4 =
3"cas0d
32p2e0

. s7d

For a dielectric with frequency-independent dielectric con-
stante, a similar derivation leads to the resultf25,26g

Usrd = −
C4

r4

e − 1

e + 1
fsed. s8d

An analytical expression for the functionfsed is given in
Ref. f25g, Eq. s21d.

When bothC3 andC4 are known, the potential is in prac-
tice often approximated by the analytical form

Usrd = −
C3

r3 bsr/ld bsxd =
1

1 + x
, s9d

wherel =C4/C3.

III. QUANTUM REFLECTION OF ATOMS AT THE
van der WAALS POTENTIAL

A matter wave is reflected when the potential changes
sufficiently abruptly within one de Broglie wavelength. This
condition of impedance mismatch can be expressed as

1

k2Udk

dr
U . 1, where ksrd = Îk0

2 − 2MUsrd/"2 s10d

is the local wave vector, withk0 the wave vector of the
incident atom with massM. The condition can be formulated
more rigorously by introducing a so-called “Badlands” func-
tion Bsrd f13g: If Bsrd!1, the motion of the particle is well
described using the notion of a trajectory in the WKB ap-
proximation. ForBsrdù1, this approximation breaks down
and quantum reflection is expected to occur. For a potential

Usrd=−Cn/ rn, n.2, the functionBsrd has a maximum near
the distancer0 where the absolute value of the potential
equals the incident energy of the atom, i.e.,uUsr0du
="2k0

2/2M. The reflection occurs mainly at this pointf3g.
In our experiment, we used metastable helium atoms in-

cident on a silicon surface with a normal incident velocity
component between about 3 and 30 cm/s. The correspond-
ing de Broglie wavelengths range from 0.3 to 2mm, and the
atoms are reflected at a distance from the surface varying
between 150 and 300 nm. The reflectivity of the atoms will
therefore be predominantly determined by the strength of the
potential in this region.

The Schrödinger equation with the potentialUsrd
=−Cn/ rn can be written in dimensionless form by scalingr
with rs=sMCn/"2d1/sn−2d, and the incident kinetic energy
with Es="2/ sMrs

2d¬Mvs
2. We can therefore define the scale

of the incident velocity as

vs =
"

M
S "2

MCn
D1/sn−2d

. s11d

The reflectivity of atoms on a solid surfaceR=Rsv0/vsd
approaches 1 when the incident velocityv0→0 but decreases
rapidly with increasing incident velocity. With the exception
of helium, the reflectivity is typically below 1% for veloci-
ties above a few cm/s. Becausevs scales withM−2 for n
=3, and withM−3/2 for n=4, lighter atoms are reflected more
efficiently. Similarly, a smaller potential constantCn should
lead to a higher reflectivity. SinceCn is roughly proportional
to the density, a material with lower density will be a better
reflector.

The scaling law might lead to the paradoxical conclusion
that the reflectivity will approach unity asCn approaches
zero. This property of the scaling law is of course a math-
ematical consequence of the divergence of the potential at
r →0. In reality, the potential will change its shape, typically
to some short-range repulsive potential well, as the atom
approaches the surface. It can, however, be argued more gen-
erally that, if the long-range van der Waals interaction is
reduced, any short-range surface potential will look like a
potential step to a sufficiently slow incident atom, which will
therefore be reflected coherently.

IV. THE van der WAALS POTENTIAL FOR POOR
CONDUCTORS

The electrical conductivity is one of the most strongly
varying properties of solids. Whereas for metals the static
conductivitys0 is as high as 6.23105 sV cmd−1 for silver, it
is less thans=10−14 sV cmd−1 for an electrical insulator.
Semiconductors have conductivities that typically range
from 10−9 to 102 sV cmd−1 and depend strongly on tempera-
ture and impurities. In the derivation of the interaction po-
tential between an atom and a solid, we have used the no-
tions of a perfect conductorse=`d and of a dielectric.
However, in the case of a semiconductor, the question arises
whether and in which range of electrical conductivities the
models of a perfect conductor and of a dielectric are still
applicable, and how the potential changes in the intermediate
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region. To our knowledge, this question has never been dis-
cussed in the literature.

Schwingeret al. f27g and Hargreavesf28g briefly consid-
ered the case of an imperfect metal by using the expression
esvd=1−vp

2/v2, where vp
2=ne2/ sm*e0d is the plasma fre-

quency squared. The conductor is imperfect in the sense that
at high frequenciesstypically in the infrared or higher spec-
tral regiond, the dielectric function will eventually drop to 1.
The resulting first-order deviation of the van der Waals po-
tential from the infinite dielectric constant result was calcu-
lated. Recently, the effect of a finite conductivity of the metal
surface on the Casimir-Polder interaction has been discussed
in more details by Babbet al. f29g, who also calculate the
potential between a gold wall and He*, Na, and Cs atoms
taking into account the finite conductivity of the metal, the
dynamic polarizability of the atom, and nonzero temperature.
For metals, the finite conductivity usually leads to a small
correction that is, however, not negligible in precision ex-
periments.

In the following, we will discuss the case when the con-
ductivity is not only finite but small, i.e., the transition from
a metal to a dielectric. A conducting material is characterized
by a resonance of the dielectric function atv=0. If we sepa-
rate the part of the dielectric function that is due to the pres-
ence of “free” charges, we can generally writef30g

esvd = eb + i
ssvd
e0v

. s12d

Here,eb denotes the background dielectric function, which is
usually nearly constant at low frequencies, and the conduc-
tivity s can be expressed as

ssvd =
ne2

m*sg0 − ivd
=

s0

1 − iv/g0
, s13d

wheren is the number of free charges per unit volume,m*

the effective mass of the charged particle,g0 is a damping
rate, ands0=ne2/ sm*g0d the static conductivity. We there-
fore write the imaginary-frequency dielectric function as

esivd = eb +
1

v/vs + v2/vp
2 , s14d

where we have introduced the frequencyvs=s0/e0, and
vp

2=vsg0=ne2/ sm*e0d is again the plasma frequency
squared mentioned above. We conclude that the solid be-
haves like a conductor for frequencies below bothvs andvp,
whereas it behaves like a dielectric for frequencies above
eithervs or vp.

We have seen abovefEq. s1dg that, in the calculation of
the van der Waals potential, the main contribution comes
from the frequency regionv,vr =c/ r, wherer is the dis-
tance from the surface. We have also said in the previous
section that slow atoms are reflected at distances in the order
of a few hundred nanometers. The corresponding frequency
region that we have to consider in the evaluation of the po-
tential therefore extends from zero up to the optical region:
vr <1015 s−1. If vs or vp are equal to or higher thanvr, then
e will be large over the relevant frequency region, and the
potential will be that of a perfect conductor. If, on the con-

trary, vs , vp!vr, thenesivd<eb and the potential will be
that of a dielectric.

For a typical metal,vs andvp are very large compared to
vr =c/ r and the solid behaves like an almost perfect conduc-
tor for an atom reflected by the van der Waals potential. The
finite conductivity leads only to a small correction at very
small distances from the surface.

If the density of charges is reduced, the dielectric function
will eventually approach that of an insulator. We can esti-
mate the order of magnitude of the number of charges per
volume n at which this transition occurs, by settingvr
=c/ r <vp=ne2/ smee0d, whereme is the mass of the electron.
For r =0.5 mm, we obtainn<1019 cm−3. Assuming that the
damping rateg0=1013 s−1, which is a typical value for met-
als and many semiconductors at room temperature, the cor-
responding static conductivitys0<103 sV cmd−1.

The conductivities of pure silicon and germanium at room
temperature are 3.8310−6 sV cmd−1 and 2.3
310−2 sV cmd−1, respectively. At a distance from the surface
in the order of 0.5mm, the van der Waals potential of both
materials will be that of a dielectric, in spite of the presence
of free charges. By doping the material, the conductivity can
be increased by several orders of magnitude. Highly doped
silicon can reach conductivities of 102 sV cmd−1 or higher,
and small deviations from the pure-dielectric potential are
expected.

In conclusion, we have analyzed the influence of the elec-
trical conductivity on the van der Waals interaction potential
between a solid surface and an atom. For metals, the ap-
proximation of a perfect conductor is very good in most
cases, and the finite conductivity causes small deviations
only at short distances from the surface. On the other hand,
the conductivities of semiconductors are generally so low—
even at high doping concentrations—that the interaction po-
tential is mainly determined by the dielectric properties of
the semiconductor, and the presence of free charges leads
only to small corrections at larger distances.

V. THE CASE OF He* AND SILICON

We have concluded in the previous section that for sili-
con, the dielectric properties will dominate over the effect of
free charges. That means that we will have to consider the
dielectric function of silicon in the calculation of the van der
Waals potential. The interaction potential between the helium
atom and the solid is the same for all metals but not for
dielectrics. We will calculate the potential for both cases and
compare them later to our experimental results.

The imaginary-frequency dipole polarizabilities of the
metastable states of He have been calculated by several au-
thors, the precision increasing over timef26,31,32g. For the
2 3S1 state, the function can be quite well approximated by a
simple one-oscillator model for the atom

asivd <
as0d

1 + sv/vad2 , s15d

with as0d=5.204310−39 F m2 s315.631 atomic unitsd and
va=1.79331015 s−1 f33g.
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For a perfectly conducting surface, we assumee=` and
calculate the potential by integrating Eq.s6d. Using the one-
oscillator model forasivd fEq. s15dg, we obtain

C3
` <

"as0dva

32pe0
= 1.13 10−48 J m3, s16d

which is about 10% below the exact value given in Ref.f26g,

C3
` = 1.22813 10−48 J m3 s1.900 92 atomic unitsd.

s17d

This value is reproduced within a relative error below 1% by
integrating Eq.s6d using the exact values forasivd given in
Refs.f31,32g. Similarly, we obtain for the coefficient of the
retarded potential using Eq.s7d

C4
` = 1.7653 10−55 J m4 s5163 atomic unitsd. s18d

In order to calculate the potential for the silicon surface,
we have to include the dielectric properties of the semicon-
ductor. Fortunately, the dielectric function of silicon is
known over nearly the entire spectral rangef34g. If we ne-
glect details, an oscillator model is appropriate to describe its
main characteristics. Vidali and Colef33g pointed out that
the imaginary-frequency dielectric constant of many solids
can be approximated by the expression

esivd − 1

esivd + 1
<

es0d − 1

es0d + 1

1

1 + sv/vsd2 . s19d

For silicon, they givees0d=11.7 andvs=1.7831016 s−1, in
agreement with the values of Ref.f34g.

Sincevs is about one order of magnitude larger thanva,
the dielectric function of silicon is nearly constant over the
entire range whereasivd is considerably larger than zero
fsee Fig. 1sadg. We can therefore expect that using Eq.s6d
with esivd=es0d is a good approximation, i.e.,

C3
Si <

es0d − 1

es0d + 1
C3

` = 1.033 10−48 J m3. s20d

Integration of Eq.s6d using the frequency-dependent dielec-
tric function from Eq.s19d and the dynamic dipole polariz-
ability of He* from Refs.f31,32g leads to an additional cor-
rection of about 15%,

C3
Si = 0.85

es0d − 1

es0d + 1
C3

` = 8.83 10−49 J m3. s21d

Similarly, we obtain for theC4 coefficient between the
He* atom and the silicon surface

C4
Si = C4

`es0d − 1

es0d + 1
f„es0d…

= C4
` 3 0.8433 0.808 = 1.2023 10−55 J m4. s22d

The transition from the unretarded to the retarded regime
takes place at the distancel =C4

Si/C3
Si=137 nm.

A word of caution is required at this point: we have intro-
duced the constantC4 in the limit r →`, with the conse-
quence that only the static dielectric function contributes to
the interaction potential. Since the presence of free charges

leads to a resonance of the dielectric function atv=0, C4
will then always assume the value of a perfect conductor.
However, for a poor conductor, the distancer where this
limit is valid might be impractically large. The expression for
C4

Si given above is valid in the regionc/va, r ,c/vp.
The imaginary-frequency dipole polarizabilityasivd for

the He 23S1 atom and the dielectric function of silicon for
several conductivities are shown in Fig. 1sad. We calculated
the interaction potentials as a function of the distance from
the surface by integrating Eq.s1d. The result is shown in Fig.
1sbd. The potential for a He 23S1 atom and a perfect conduc-
tor is shown by the short-dashed line: The curve is calculated
with the values forasivd given in Refs.f31,32g and repro-
duces the data given by Yan and Babbf26g, which are shown
as crosses, with a relative error below 1%. The long-dashed
line shows the potential between the He atom and a dielectric
with esivd=es0d=11.7, and the solid line the potential cal-

FIG. 1. sad The imaginary-frequency dipole polarizabilityasivd
of He* s2 3S1d taken from Refs.f31,32g sdashed lined and the di-
electric functionesivd of silicon ssolid lined calculated using Eq.
s19d and the values from Ref.f33g. We also show the dielectric
function of doped silicon with a plasma frequencyvp=1014 s−1

sdash-dot-dotd and vp=1015 s−1 sdash-dotd. The presence of free
charges leads to a resonance at zero frequency.sbd The van der
Waals potential between a He* atom and a silicon surface. The
short-dashed line shows the potential in the case of a perfectly
conducting surface. It has been calculated using Eq.s1d and the He*

dipole polarizability plotted insad. This calculation reproduces the
values given by Yan and Babbf26g scrossesd with a relative error
below 1%. The dashed line is the potential calculated for a dielec-
tric with the frequency-independent dielectric functione=11.7 and
the solid line is the potential calculated using the frequency-
dependent dielectric function of undoped silicon. The latter differ
only at very short distances from the surface, where the high-
frequency behavior ofesivd must be considered.
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culated with the dielectric function of silicon from Eq.s19d.
The difference between the two latter curves appears only at
short distances from the surface, where the high-frequency
behavior ofasivd andesivd must be considered.

The dependence of the potential on the conductivity is
demonstrated in Fig. 2sad. For illustrative purposes, the po-
tential is shown for the values of the plasma frequencyvp
=1015 and 1016. If we assumed a damping rate ofg0
=1013 s−1 f34g and set the effective mass equal to the elec-
tron mass, the corresponding conductivities are abouts0
=104 sV cmd−1 ands0=106 sV cmd−1, respectively. In prac-
tice, such high values are not achievable with doped silicon.
At lower conductivities, the potential practically coincides
with the pure dielectric case. At higher conductivities and at
larger distance, the potential approaches that of a perfect
conductor.

VI. THE INFLUENCE OF THE OXIDE LAYER

Silicon samples that have been exposed to air are covered
with a thin layer of silicon oxide. The thickness of such

naturally grown layers is in the order of a few nanometers,
depending on the time of exposure and other conditions. This
naturally grown oxide usually consists of some intermediate
oxide such as SiOx, rather than SiO2 f35g. In semiconductor
device fabrication, silicon wafers are passivated by growing
a much thicker layer of several hundred nanometers at higher
temperaturesf36g. Silicon oxide forms a large variety of
structures with different properties, but the naturally grown
oxide can generally be considered to be a glass with an index
of refraction around 1.5 in the optical region, and a static
dielectric constant around 3.9f34g. Since the dielectric con-
stant of the oxide is much smaller than that of pure silicon, a
thin oxide layer is expected to slightly change the shape of
the van der Waals potential near the surface. In this section,
we discuss the potential generated by a thin layer and quan-
tify the effect of the oxide layer on the van der Waals poten-
tial of a silicon surface.

The r−3 and r−4 dependence of the potential between an
atom and a solid surface can be derived via a pairwise sum-
mation of the interatomic potential between the atom and all
atoms of the solid in the entire half-space. The van der Waals
potential between two atoms varies with the interatomic dis-
tance asr−6, and asr−7 at larger distance due to the retarda-
tion of the electromagnetic field. The method of integrating
over pairwise interactions reproduces, however, only the cor-
rect potential shape; the quantitative agreement is only ap-
proximate, because the force between two atoms generally
depends on the presence of other atoms. Nevertheless, the
method provides useful approximations when the potential
for more complicated geometries has to be calculated. Fol-
lowing this idea, we consider the van der Waals potential
near a surface to be the result of an integration over the entire
volume of the solid, with all interactions included. If the last
step of this integration was along the direction perpendicular
to the surface, we can writeUsrd=−Usr +sdus=0

` . The potential
of a layer of finite thickness is then readily obtained by re-
placing the integration boundaries.

Assume, for example, that a substrate with van der Waals
constantC3

s is covered with a layer of thicknesst of a mate-
rial with constantC3

l . Then the potential of the entire surface
can be calculated to beUsrd=−C3

ssr + td−3+C3
l fsr + td−3−r−3g.

At a distance from the surfacer , t, the potential shape is
determined by the properties of the layer material, whereas at
r . t the properties of the substrate material dominate, with a
smooth transition between the two regions.

In order to calculate the van der Waals potential of the
silicon oxide layer, we assume that the silicon oxide is a
dielectric with frequency-independent dielectric constante
=3.9, and we calculate the coefficients asC3=C3

`se−1d / se
+1d=7.27310−49 J m3 and C4=C4

`se−1d / se+1dfsed=8.04
310−56 J m4 by using Eqs.s6d and s8d. The potential of the
layer material is then approximated byUsrd=−C4/ fr3sr + ldg
with l =C4/C3. The calculated potential is shown in Fig. 2sbd
for several values of the layer thickness.

It can be seen that even for a thin layer of 30 nm, the
potential is reduced by a few percent at a distance of 150 nm
s2834 a.u.d, where the atoms are reflected in our experiment.
Such a thin oxide layer will therefore lead to a small increase
of the reflectivity.

FIG. 2. sad Demonstration of the effect of the conductivity of a
solid on the van der Waals potential in the case of silicon and
metastable helium 23S1. The potential for a perfect conductor is
shown by the dotted line. The solid line represents the potential for
undoped silicon, which behaves like a dielectric. We also show the
potential for doped silicon with plasma frequenciesvp=1015 s−1

sdash-dotd and vp=1016 s−1 sdash-dot-dotd. Note that the effect of
free charges appears mainly at a larger distance from the surface.
sbd The van der Waals potential between a He* atom and a silicon
surface covered with an oxide layer. The silicon oxide is assumed to
be a dielectric with constante=3.9. The potentials are shown for
undoped siliconssolid lined and layers of thickness oft=30 nm
sdash-dotd, t=100 nmsdash-dot-dotd, andt=` sdottedd.
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Generally, at a layer thickness of several hundred nanom-
eters the reflectivity will be solely determined by the prop-
erties of the layer material. Deposition of a low-dielectric
constant film will increase the reflectivity, whereas deposi-
tion of a metal film will decrease the reflectivity of atoms.

VII. EXPERIMENT

The experimental setup has already been described previ-
ously f17g. It is schematically shown in Fig. 3. Metastable
helium atoms in the 23S1 state are trapped and cooled in a
magneto-optical trapsMOTd using the transition at 1083 nm.
The atoms are released from the trap by illuminating the
cloud of atoms from the top with short pulses of resonant
light. Focusing of the laser beam to a 1/e2 waist below
100 mm provides an almost pointlike source of atoms. A
silicon plate is placed in the beam line 41 cm below the trap.
The plate can be rotated around the upper edge to adjust the
incident angle, which was varied between 1.3 and 6.5 mrad.
The pattern of scattered atoms is detected with a gated mi-
crochannel platesMCPd detector, placed 113 cm below the
MOT. In order to improve the time resolution of the time-of-
flight measurement, only atoms that arrive after a chosen
delay and within a short interval are detected. We typically
reduced the velocity spread to below 10%. The length and
intensity of the releasing laser pulses are adjusted to maxi-
mize the number of atoms within the chosen interval. The
MOT is switched off directly after the releasing pulse as well
as during the detection interval.

The pattern on the MCP detector consists of atoms pass-
ing behind the silicon plate, atoms passing in front of the
silicon plate, and atoms reflected on the plate. A movable
edge is placed 4 cm above the silicon plate to block out
atoms that would otherwise overlap with the reflected part.
The reflected atoms can be clearly distinguished from di-
rectly falling atoms down to incident angles of about 1 mrad.
The relative angle between the surface and the atomic beam
is measured by reflecting a HeNe laser on the silicon plate.
The reflectivity is determined as the ratio of the number of
atoms in the reflected part and the number of incident atoms,
which is determined using the number of atoms passing be-
hind the plate and the projected width of the silicon plate.

We used a 20032030.5 mm silicon plate of B-doped
p-type, with a conductivity of about 0.02sV cmd−1. The

s001d surface was covered with a layer of naturally grown
silicon oxide. We estimated the thickness of the layer by
measuring the reflectivity of a HeNe laser on the sample for
various polarizations and incidence angles. The result of this
measurement indicates a layer thickness below 10 nm. The
surface was polished and is expected to have a roughness in
the order of several nm.

We measured the reflectivity on our sample as a function
of the normal incident velocity component between 3 and
30 cm/s. Both the parallel incident velocitys23 m/s to
70 m/sd and the incident angles1.3–6.5 mradd have been
varied to check the consistency of the measurement. An error
analysis was done for all data points. The result is shown in
Fig. 4.

We compare them to the reflectivity expected for He* at-
oms reflected on a perfectly conducting surfacesdashedd and
on a silicon surface with low conductivity that behaves like a
dielectricssolidd. The curves are obtained by solving the one-
dimensional Schrödinger equation with the interaction poten-
tials calculated in Sec. V. As a boundary condition we as-
sume that close to the surface the wave function contains
only the wave moving towards the surface. This calculation
does not include any short-range interaction, i.e., the poten-
tials considered here are all divergent atr =0. Our data are
described relatively well by using the potential calculated for
the silicon surface that behaves like a dielectric, whereas the
curve calculated for a perfect conducting surface clearly de-
viates from our measurement.

However, the measured reflectivity is slightly larger than
expected for undoped silicon. This could in principle be ex-
plained by the presence of a thin oxide layer. We show the
reflectivities expected for a thickness of 30 and 100 nm in
Fig. 4. The deviation of the data would suggest a layer thick-
ness of about 100 nm. However, an independent measure-
ment indicated a thickness of below 10 nm and the effect of
such a thin oxide layer on the reflectivity of atoms should be

FIG. 3. Cross-sectional view of the experimental setup.
FIG. 4. Measurement of the reflectivity of He* s2 3S1d on a pol-

ished p-doped silicon plate as a function of the normal incident
velocity serror barsd. We compare the result to the reflectivities
calculated for several potentials. The long-dashed line shows the
reflectivity expected for He* on a perfect conductor. The solid line
shows the case for undoped siliconsi.e., with low conductivityd.
The reflectivities expected for a Si surface covered with a 30-nm-
sdash-dotd and 100-nm-thicksdash-dot-dotd oxide layer are also
shown.
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negligible. The observed deviation might rather indicate that
some short-range interaction should be included, in particu-
lar at higher incident velocities.

We mentionned above that in our case the de Broglie
wavelength ranges from 0.3 to 2mm, and that the distance of
reflection from the surface lies between 150 and 300 nm.
This distance is larger than or equal to the distance where
retardation is observed, i.e.,r . l =137 nm: For low veloci-
ties the reflectivity is therefore determined by the retarded
potential and for higher velocities by the potential in the
transition region. The region of reflection lies near the dis-
tancel =137 nm for incident velocities nearv=38 cm/s.

We also believe that the reflection is coherent because the
de Broglie wavelength and the distance of reflection are large
compared to the surface roughness.

VIII. CONFIRMATION OF THE SCALING LAW

The quantum reflection on a silicon surface has been pre-
viously studied on the same silicon sample with metastable
Ne atomsf8g. This allows us to directly confirm the scaling
of the reflectivity with atomic mass. The reflectivities for He
and for Ne are shown together in Fig. 5sad.

The ratio of the atomic masses of He and Ne is
MNe/MHe=5. Using Eq.s7d and the value for the static di-
pole polarizability aNes0d=3.07310−39 F m2 we calculate
the constantC4

` for Ne* to be 1.0310−55 J m4. Similarly, we
estimate the constantC3 for Ne* to be 1.13310−48 J m3 by
using Eq.s16d and the valueva

Ne=3.131015 s−1 f37g.
Using Eq.s11d, we then obtain the following scaling ve-

locities for He and Ne: vs
He=4.89 cm/s and vs

Ne

=5.69 mm/s for the retarded potential, andvs
He=2.16 cm/s

andvs
Ne=0.94 mm/s for the unretarded potential. Their ratios

are vs
He/vs

He=8.6 for the retarded andvs
He/vs

He=23 for the
unretarded potential, respectively.

In Fig. 5sbd, we plot the same data as before with the
incident velocities scaled by the calculated values forvs. We
use only the values for the retarded potential. After scaling,
both sets of data follow nearly the same curve, except at the
highest velocities, where the scaling of the unretarded poten-
tial sn=3d should be used. The relative increase of the reflec-
tivity due to the smaller mass is even larger for the unre-
tarded potential.

IX. CONCLUSION

In conclusion, we have observed the specular reflection of
He* atoms on a flat polished silicon surface and confirm that
the reflection is caused by the attractive surface potential tail.
This potential, including retardation, has been calculated us-
ing the known dipole polarizability of metastable helium and
the dielectric function of silicon. For silicon, the van der

Waals potential is determined by the dielectric properties of
the semiconductor, with little influence from the presence of
free charges. We also considered the influence of a thin oxide
layer on the silicon substrate. For a layer thickness below 20
nm, its effect on the reflectivity of atoms is negligible. Fi-
nally, we have compared the reflectivity of He* to that of Ne*

measured on the same surface, and confirmed the scaling of
the incident velocity with atomic mass and potential param-
eters.
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FIG. 5. sad The reflectivity of He* spointsd compared to that of
Ne* s1s3d atoms ssolid lined, both measured on similar silicon
samples as a function of the normal incident velocity. The neon data
are taken from Ref.f8g. sbd The same data with the normal incident
velocities scaled with vs

Ne=5.69 mm/s and vs
He=4.89 cm/s,

respectively.
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