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Expressions for momentum distributions of electrons in antiproton–hydrogen-atom collisions are derived in
the framework of the advanced adiabatic approach for the time- independent Schrödinger equation. Protonium
formation cross sections for states with differentn and l spherical quantum numbers are also obtained. Total
ionization and protonium formation cross sections are compared with other calculations in the interval of
impact energies from 0.5 eV to 10 keV. We show that diabatic states promoted into the continuum can be
rigorously defined within the advanced adiabatic framework.

DOI: 10.1103/PhysRevA.71.052717 PACS numberssd: 34.50.Fa

I. INTRODUCTION

Cross sections for protonium formation are important for
designing antiproton traps since trapped antiprotons undergo
atomic reactions with background gases which remove them
from the trap. First, antiprotons are captured into highly ex-
cited bound states by ejecting the bound electrons, then they
are radiationally deexcited, and, finally, they annihilate by
nuclear interactions. An understanding of these process re-
quires reliable cross sections for low-energy collisions of an-
tiprotons with atoms.

This article presents expressions for energy and angular
distributions of electrons in antiproton–hydrogen-atom colli-
sions in terms of the finite-dipole eigenfunctions and eigen-
values calculated for complex dipole moments. The expres-
sions were derived in the framework of the advanced
adiabatic approachf1g. We test them in the interval of impact
energies from 0.5 eV to 10 keV by integrating electron spec-
tra over momentum and comparing the total ionization and
protonium formation cross sections with other calculations
f2–7g. Using conservation of total energy and angular mo-
mentum below the ionization threshold we obtain protonium
formation cross sections for states with differentn and l
spherical quantum numbers.

At present, ionization cross sections based on semiclassi-
cal methodsf2,5g that are essentially exact for energies
above a few hundred eV for projectiles whose masses are
comparable to the proton mass have been reported. In this
energy range protonium formation cross sections are ex-
tremely small and a wide variety of techniques can be reli-
ably employed to compute ionization cross sections. Impor-
tant for designing antiproton traps, however, are energies in
the 0–50 eV range. The hyperspherical representation is
readily adapted to this region; however, hyperspherical adia-
batic methods are impractical owing to the need for large
numbers of basis states that are difficult to computef8g. In
this energy range a wave treatment for the relative motion of
the nucleif5g is needed since thepp̄ system is bound in the
final state and protonium in specificn, l states are not repre-

sented in standard adiabatic bases. For these reasons, then
and l distributions that are available at the present time em-
ploy the Born approximationf9g, the continuous-time Monte
Carlo sCTMCd method f4g, the FMD methodf10g, or the
diabatic-state methodf11g. A version of CTMC that employs
model potentials incorporating quantum correctionsf12g is
referred to as the KW or FMD methodf10g. Comprehensive
discussion of these calculations and calculations for negative
exotic particles other than antiprotons can be found in the
review article of Cohenf13g.

A theory developed by Solov’evf1g and known as the
advanced adiabatic theory circumvents many problems that
hinder quantum computations of ionization at low impact
energies. The advanced adiabatic theory is based on the time-
energy Fourier transformation. This transformation takes into
account the time delay of the outgoing wave packet related
to the ionization and associated with the Hamiltonian at the
moment of ionization. Therefore the advanced adiabatic
theory employs the functionts«d inverse to the adiabatic en-
ergy «std and applies to any system where there is an adia-
batic parameter that varies with timet. It has been success-
fully used to compute ionization energy and angular
distributions in ion-atom collisions.

The key idea of this theory is to obtain formulas that are
exact in the limit as theinitial impact velocity vanishes, i.e.,
asv→0. Of course, the limitv→0 is a mathematical limit
on a computed amplitude and does not suppose that the limit
can actually be taken experimentally. Even so, it is reason-
able to suppose that a result that is exact in the limitv→0
will be reliable for v! kvel where kvl is the mean electron
velocity in the initial or final states. In the processes consid-
ered herev<1/6 andkvel<1 so that the inequality is well
satisfied.

A limitation of this now standard advanced adiabatic ap-
proximation is the use of a common classical trajectory for
relative motion of heavy particles. This is not a conceptual
limitation and can be readily relaxed as done by Demkov and
Osherovf14g in their discussion of exact solutions for the
multicrossing model, a precursor of the advanced adiabatic
theory. It is similarly shown in this manuscript how the ad-
vanced adiabatic theory is readily adapted to the time-
independent Schödinger equation. The wave version em-
ploys the functionRs«d inverse to the adiabatic energy«sRd
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where the internuclear distanceR in place oft. The present
article reports calculations of ionization and protonium for-
mation includingn andl distributions of the protonium states
using this wave version of the advanced adiabatic theory.
The resulting wave version of the advanced adiabatic theory
is used to compute energy and angular distributions of elec-
trons for low-energy impact of antiprotons on atomic hydro-
gen.

II. ADVANCED ADIABATIC THEORY

The conventional adiabatic electron energies for an elec-
tron in the field ofp+ p̄ are known as the potential curves of
the finite dipole. In the separated-atom limit they are the
Stark energy levels of the H atom in the field of the antipro-
ton. At the united-atom limit, where the antiproton coincides
with the proton, the electron nuclei potentials cancel and the
electron is completely free. At some finite distance, called
the Fermi-Teller radiusRFT=0.6393. . . the electron just be-
comes unbound in the finite dipole field of thepp̄ system.
The lowest adiabatic potential curve of the finite dipole is
shown in Fig. 1sad below «=0. Since the pointR=RFT is an
essential singularityf15g, adiabatic functions«sRd have no
limits at this point. Therefore dynamics are difficult to de-
scribe using adiabatic states.

In the advanced adiabatic theory the energy distribution of
emitted electrons integrated over the electron directions is
given by the probabilityPs«kd, namely, Eq.s16d of Ref. f1g,

Ps«kd = As«kdU dt

dR
expSi2E

«i

«k

ts«dd«DU , s1d

where

As«d = Î2«UdRs«d
d«

U E uCs«; r̂du2dr̂ , s2d

«i is the electronic energy of the initial state,«k is the energy
of the ionized electron, andCs« ; r̂d is the coefficient of the
outgoing electron wave expsiÎ2«rd / r of the finite dipole
wave functionFs« ; rd, which satisfies the Schödinger equa-
tion for the finite dipole

F−
1

2
¹r

2 +
1

ur + fRs«d/2gẑu
−

1

ur − fRs«d/2gẑuGFs«;rd

= «Fs«;rd, s3d

with boundary conditions

uFs«;0du , const,

Fs«;rd → Cs«; r̂d
r

expsiÎ2«rd asr → `. s4d

The wave functionFs« ; rd is normalized according to

E F2s«;rdd3r = 1. s5d

Calculations ofRs«d, Cs« ; r̂d, and As«d are based on the
separation of the variables in spheroidal coordinates and are
carried out using the algorithm discussed in Ref.f16g. Figure
1sbd shows the computedRs«d in the form of a parametric
plot. The function ReRs«d can be easily inverted to obtain
the multivalued function«sReRd shown in Fig. 1sad. A di-
abatic single-valued function«DsRd can be constructed by
smoothing the spike near«=0. Such a diabatic energy has no

FIG. 1. sad The lowest adiabatic potential curve«sRd,0 of the finite dipole as a function of the internuclear separationR joined at the
Fermi-Teller radiusR=RFT to the real argument« of the complex functionRs«d for «.0. sbd Parametric plot of ReR and ImR as a function
of the real variable« for the quasistationary state continued from the lowest bound state.scd CoefficientAs«d used in Eq.s1d.
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imaginary part and the state is promoted to the continuum at
R=RD<1 a.u. Note that the spike forR,RD seen in Fig.
1sad implies that fixed-nucleus bound dipole states do not
realistically describe the electrons in the dipole fields of two
heavy particles whenR,RD. In essence, dipole states do not
actually exist forR,RD. Numerical values of the function
As«d computed for the finite dipole case are shown in Fig.
1scd and tabulated in Table I.

In the advanced adiabatic framework the dynamics are
related to ImRs«d, shown in Fig. 1scd, rather than G
=2 Im «sRd used in survival probability calculations. The
survival probability technique gives reliable results, that
agree with the advanced adiabatic results, only whenGsRd
!Re«sRd f1g, since it does not take into account the time
delay due to propagation of the outgoing wave packet of
emitted electrons. In the case of the finite dipolef17g GsRd
@ uRe«sRdu and «sRd is discontinuous atR=RFT, since R
=RFT is an essential singularity.

III. CROSS SECTIONS FOR IONIZATION AND
PROTONIUM FORMATION

To transform Eq.s1d from the time-dependent to the time-
independent representation the time is replaced by the gen-
eralized time parameter

t = −
]S

]E
, s6d

where S is the classical action andE is the total energy,
which equals the collision energy in the center-of-mass

frame of reference. The classical action is the sum of the
classical actions in the initial and final states

S=E
Ri

RM

KsRddR+E
RM

RT

KfsRddR, s7d

where

KsRd = Î2mfE − «sRd − sL + 1/2d2/2mR2 + 1/Rg,

KfsRd = Î2mfE − «k − sL + 1/2d2/2mR2 + 1/Rg, s8d

and wherem is the reduced mass of colliding particles,L is
the total angular momentum,Ri is a large value ofR on the
initial branch of«sRd, RT is the turning point in final channel,
and RM is the complex value ofR where «sRd=«k. The
matching radiiRM as function of«k are shown on Fig. 1sbd.

The time replacement of Eq.s6d, when substituted into
Eq. s1d, gives the energy and angular distributions of emitted
electrons in the form

Ps«kd = As«kdUdKsRMd
dE

expsi2SdU . s9d

The integral for the classical action in the initial state Eq.s7d
goes along the real axis fromRi to RFT and along the contour
in Fig. 1sbd, from RFT to RM. The integral for the classical
action in the final state is evaluated analytically.

Equations9d is the principal result of the work reported
here. It gives an essentially closed-form expression for the
ionization cross section for electrons ejected from atomic
hydrogen in terms of two functions, namely,Rs«d, or equiva-
lently «sRd and As«d obtained by solving the finite dipole
Schrödinger equation Eq.s3d. These quantities are tabulated
in Tables I and II on a grid of energies sufficient for numeri-
cal evaluation ofS in Eq. s7d. This gives an effectively
closed-form result that can be used to find ionization prob-
abilities for any desired value of the parameters, namely, the
ejected electron energy«k, the total energyE, and the total
orbital angular momentumL. Below, we show how this same
expression is used to compute protonium formation.

For calculations of ionization whenE.0 it is useful to
note that the first integral in Eq.s7d includes the part fromRi
to RFT involving «sRd tabulated in Table II. This part of the
action is real and contributes a phase to theS-matrix element
so it can be omitted. Only the integral fromRFT to RM con-
tributes to the imaginary part of the action.

This latter integral is best done by changing integration
variables to«. We then use a simple numerical integration
technique that gives

E
RFT

RM

KsRddR<
1

2o
k=0

N

fK„Rs«kd… + K„Rs«k+1d…g

3fRs«n+1d − Rs«kdg s10d

where

K„Rs«kd… =Î2MFE − «k −
sL + 1/2d2

2mR2s«kd
+

1

Rs«kd
G . s11d

TABLE I. Advanced adiabatic functions for positive energy.

«k sa.u.d ReR sa.u.d Im R sa.u.d uAu sa.u.d

0 0.6393 0 0

0.00001 0.8009 0.0636 11.02

0.00002 0.8133 0.0722 15.04

0.00004 0.8318 0.0863 15.66

0.0001 0.8477 0.0996 15.34

0.0002 0.8654 0.1158 13.16

0.0004 0.8849 0.1358 9.548

0.001 0.9138 0.1703 6.675

0.002 0.9374 0.2046 5.725

0.004 0.9620 0.2484 5.072

0.01 0.9921 0.3267 4.443

0.02 1.0076 0.4060 3.984

0.04 0.9620 0.5423 3.441

0.1 0.9598 0.6656 2.614

0.2 0.8676 0.7897 1.921

0.4 0.7220 0.8842 1.151

1 0.4868 0.9167 0.4797

2 0.3203 0.8675 0.2341

4 0.1925 0.7774 0.09772

10 0.08577 0.6345 0.03117
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When E,0, electrons can still be ejected with positive
energy«k, but now the system must tunnel fromRi to RFT. In
this case the integral fromRi to RFT contributes to the imagi-
nary part of the action and cannot be omitted. Of course,
sinceE,0, the antiproton and proton must be bound. The
procedure to calculate this process is discussed below.

If the quantityE−«k is negative, then there are two turn-
ing points in the final channel and the wave function is
bounded asR→` only when the integral between the two
turning points takes on half integral multiples ofp, i.e., theR
motion is quantized according to

E − «k = −
1

2

m

n2 , s12d

where −m / s2n2d is the binding energy of thenth state of
protonium. Therefore the ionization amplitude becomes the
amplitude for the rearrangement process

p̄ + H → sp̄,pdn + e− s13d

up to a normalization constant. In this way one extracts the
rearrangement amplitude even though no protonium states
are included in the basis set.

There is little difference theoretically between ionization
with and without protonium formation as is apparent from
the continuity of ionization cross sections across the proto-
nium threshold seen in CTMC calculationsf2,4g. This allows
a simple way to compute protonium formation in the ad-
vanced adiabatic theory, namely, we compute ionization

without reference to the quantization of the protonium ener-
gies and then identify the cross section for negative values of
E−«k with protonium formation. This is convenient for com-
putations of total protonium formation cross sections. Using
the standardf11g d«k /dn energy interval weighting one ob-
tains then, l distributions of the protonium in the form

fn,l =
m

n3PSE +
1

2

m

n2D s14d

and the angular momentuml of the protonium state isl <L,
since the emitted electron has a small angular momentum.

We compute total ionization and protonium formation
cross sections for low-energy impact of antiprotons on
atomic hydrogen by integrating electron spectra Eq.s9d over
«k. The results of our calculations are shown in Fig. 2 for
energies between 0.5 eV and 10 keV. In the energy range
200 eV,E,10 keV, where the protonium formation cross
sections are negligible, the advanced adiabatic results are in
good agreement with essentially exact solutions of the time-
dependent Schrödinger equation in the straight line approxi-
mation by Schultzet al.using a lattice techniquef2g sTDSEd,
Sakimoto using a discrete-variable representationsDVRd
method f5g, and atomic coupled-channel calculations of
Schiwietzet al. f3g sCCSd, of Hall et al. f6g sCCHd, and of
Igarashiet al. f7g sCCId.

Below the ionization threshold atElab=2E=27.2 eV, elec-
tron ejection is uniquely associated with protonium forma-
tion. In this region the advanced adiabatic theory is most
reliable since the relative velocities of the heavy particles
become much smaller than the electron velocities. Figure 2
shows good agreement between our advanced adiabatic cal-
culations of total protonium formation cross sections and full
quantum-mechanicalsQMd and semiclassicalsSCd calcula-
tions of Sakimotof5g. The present results fall in between the
KW-FMD and CTMC results at low energy.

At very low energies, antiprotons may be temporarily
trapped in the combined polarization and centrifugal poten-
tials Veff=LsL+1d /2mR2−ap/2R4, whereap=9/2 is the po-
larizability of the hydrogen atom. The associated orbiting

TABLE II. Lowest adiabatic potential curve.

R sa.u.d «sRd sa.u.d

2.5 −0.143582

2.4 −0.133133

2.3 −0.122326

2.2 −0.111189

2.1 −0.0997689

2 −0.0881331

1.9 −0.0763773

1.8 −0.0646324

1.7 −0.0530728

1.6 −0.041924

1.5 −0.0314673

1.4 −0.0220371

1.3 −0.0140013

1.2 −0.00771014

1.1 −0.0033967

1 −0.00102467

0.9 −0.000148709

0.8 −3.64512e−06

0.78 −1.07992e−06

0.76 −2.36022e−07

0.74 −3.29193e−08

0.72 −2.25025e−09

FIG. 2. Cross sections for ionization and protonium formation,
whereElab=2E.
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resonances can decay by electron emission thereby leading
to protonium formation via a process similar to associative
ionization in negative ion collisions. If one assumes unit
probability for decay via electron emission then one obtains
the Langevin cross sectionssometime called the orbiting
cross sectiond sp f5g for protonium formation given bysp

=2pÎap/E, an estimate that is thought to be exact for van-
ishingly small E. According to Sakimotof5g the orbiting
cross sections match semiclassical calculationsf5g and there-
fore our calculations forE,0.3 eV.

IV. PROBABILITIES FOR PROTONIUM FORMATION IN
THE SELECTIVE n AND l STATES

Using conservation of total energy and total angular mo-
mentum we compute distributions of protonium formation
cross sections over states with differentn and l spherical
quantum numbers. Results of our calculations of these distri-
butions are shown in Figs. 3sad and 3sbd for E=13.6 eV and
in Figs. 4sad and 4sbd for E=8.2 eV. Then distributions are
similar to KW calculations of Cohenf4g in all cases, al-
though Fig. 2 indicates that the KW-FMD total cross sections
are a factor of 2 larger than the advanced adiabatic at 0.5 eV.
A possible explanation of this discrepancy and how to im-
prove the KW-FMD calculations are discussed in the review
article f13g.

Our results and those of Ref.f4g, maximize atn=32 or
33. A more elaborate survival probability calculation was
recently publishedf18g for E=2.5 eV. Theirn distribution
shown in Fig. 4 maximizes atn=30 and has a tail extending
to n=39, but, by energy conservation, the highestn that
could be populated isn=33. The high-n tail indicates a limi-
tation of the approximate calculations of Ref.f18g.

V. SUMMARY

The most notable feature of thel distributions is their
nonstatistical nature with a rapid decrease at a valuel sig-
nificantly less than the maximum. This decrease occurs when
the classical turning radiusRT exceedsRD so that the ampli-
tude of the final-state wave function is small forR<RD.

In summary, we have derived a simple expression involv-
ing a single integral that gives the complete scattering matrix
for antiproton impact on atomic hydrogen. The theory is in
remarkably good agreement with essentially exact calcula-
tions of ionization above 1 keV, and the KW or FMD calcu-
lations of protonium formation below 50 eV.
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FIG. 3. sad Probabilities for protonium formation as a function
of n for the initial energyE=13.6 eV. Solid curve, this work;
circles, KW-FMD, Ref. f4g; dashed curve, the recommended fit,
Ref. f4g. sbd Probabilities for protonium formation in the selectivel
states forn=98.

FIG. 4. sad Probabilities for protonium formation as a function
of n for the initial energyE=8.2 and 2.5 eV. Solid curve, this work;
circles, KW-FMD, Ref. f4g; dashed curve, the recommended fit,
Ref. f4g; dot-dashed curve, Ref.f18g. sbd Probabilities for proto-
nium formation in the selectivel states forn=44.
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