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The zero-range potential model, widely used in nonrelativistic quantum mechanics, is extended to con-
tinuum problems involving Dirac particles. A bispinor wave function of a Dirac particle scattered from a
system of zero-range potentials is sought in the form of an incident wave superposed with waves emerging
from points where targets are located. Interactions between the particle and individual targets are described by
imposing certain limiting conditions, relating linearly upper and lower components of the wave function at
target locations. This yields an inhomogeneous algebraic system for superposition coefficients appearing in the
expression for the wave function. After preliminary considerations, admitting a quite general form of the
incident wave, the case of the monochromatic plane-wave scattering is considered in detail. Expressions for
232 and 434 matrix scattering amplitudes and scattering kernels, as well as for various kinds of differential
and total cross sections, are given. An eigenchannel formalism for the model is developed in the manner
analogous to that presented in the author’s recent workfR. Szmytkowski, Ann. Phys.sN.Y.d 311, 503 s2004dg
on scattering from short-range potentials. Eigenchannel representations of the scattering wave function, of a
“final-state” wave function for photodetachment, as well as of outgoing and ingoing matrix Green functions,
are derived. Formulas for matrix scattering amplitudes, scattering kernels, and cross sections expressed in
terms of eigenphase shifts and eigenchannel spinor harmonics are presented. A possibility to formulate the
zero-range potential model for Dirac particles in an alternative way is also discussed.
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I. INTRODUCTION

Among the analytically soluble models used in nonrela-
tivistic quantum mechanics, one of particularly wide appli-
cability is the zero-range potential modelsZRPMd. Accord-
ing to Demkov and Ostrovskyf1g, this model was first used
in 1934 in atomic physics by Fermif2g, in a paper concern-
ing perturbation of spectral lines, and shortly thereafter by
the same authorf3g in nuclear physics, in a study of neutron
scattering from chemically bound protons. At the same time,
similar ideas appeared independently in a paper by Thomas
f4g on the structure of H3. Until the 1960s, the model was
used primarily in nuclear physicsf5g; it found also applica-
tions in the theory of multiple scattering of scalar wavesf6g
and in quantum statistical mechanicsf7g. The wide use of the
ZRPM in nonrelativistic atomic and molecular physics
started in 1964, after publications of Demkovf8g, Smirnov
and Firsovf9g, and Demkov and Drukarevf10g. Comprehen-
sive presentations of the method and its numerous applica-
tions in nonrelativistic atomic and molecular theory, with
bibliographies covering the period through the mid-1970s,
may be found in the monograph by Demkov and Ostrovsky
f1g and in the review by Drukarevf11g. Representative
works on the subject published since 1980 are listed in Refs.
f12,13g.

The past three decades have seen a rapid growth of inter-
est in the relativistic effects in atomic and molecular physics
f14g. Consequently, it seems quite natural to consider appli-
cations of the ZRPM in the relativistic theory of atoms and

molecules. It is therefore somewhat surprising that, after an
extensive search of the literature, we have found only one
relevant publication: in a paper published in 1977, Perel’man
f15g, extending the nonrelativistic workf10g, discussed a
Dirac particle bound in a field of a single zero-range poten-
tial and perturbed by a homogeneous electric fieldf16g.

In the ZRPM for Schrödinger particles, interactions be-
tween a particle and pointlike targetsszero-range potentialsd
are modeled by imposing suitable limiting conditions on the
particle’s wave function at points where the targets are lo-
cated; these conditions relate linearly the wave function and
its spatial derivativefcf. Eq. s2.5d in Ref. f13gg. Conditions
used by Perel’manf15g for a Dirac particle were of the same
kind. Guided by experience gained during our earlier studies
on the operator formulation of theR-matrix method for the
Dirac equationf17g, in the present paper we propose the
ZRPM for Dirac particles differing from that suggested in
Ref. f15g. The difference lies in the fact that we model inter-
actions between a Dirac particle and pointlike targets by us-
ing matrix limiting conditions, relating linearlyupper and
lower componentsof the particle’s bispinor wave function at
the targets’ locations. The formalism developed in this work
is aimed at dealing with scattering and related continuum
problems. Its extension to bound-state problems, as well as
its applications to specific atomic and molecular processes,
will be presented in later publications.

The structure of the paper is as follows. In Sec. II, we
introduce the ZRPM for an unbound Dirac particle, prescrib-
ing a form of its wave function and subjecting this function
to the aforementioned particular limiting conditions at points
where zero-range potentials are located. In Sec. III, we con-
sider the problem of scattering of an initially parallel mo-
noenergetic beam of spin-polarized Dirac particles from a*Email address: radek@mif.pg.gda.pl
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system of zero-range potentials. In particular, we derive gen-
eral expressions for matrix scattering amplitudes and scatter-
ing kernels, as well as for various kinds of differential and
total cross sections of interest. In Sec. IV, we define an aux-
iliary generalized matrix eigenproblem and use its solutions
to introduce eigenchannels, eigenphase shifts, and eigen-
channel bispinor and spinor harmonics in the manner analo-
gous to that presented in Refs.f13,18,19g. In Sec. V A, we
return to the general continuum problem discussed earlier in
Sec. II. Exploiting the concepts and results of Sec. IV, we
split the particle’s wave function into two parts, one for
which the target is ideally transparent and the remainder,
which is a genuine scattering function. Then, in Sec. V B, the
results of Sec. V A are applied to the monochromatic plane-
wave scattering problem of Sec. III. Explicit expressions for
matrix scattering amplitudes and scattering kernels in terms
of eigenphase shifts and eigenchannel bispinor or spinor har-
monics are obtained in Sec. V C. In Sec. V D, analogous
results are derived for three kinds of total cross sections.
Keeping in view planned applications of the relativistic
ZRPM to atomic and molecular photodetachment problems,
in Sec. VI we find a so-called “final-state” wave function,
which asymptotically behaves as a plane wave superposed
with a radially ingoing wave. Then, in Sec. VII we construct
continuum outgoing and ingoing matrix Green functions for
a Dirac particle in the presence of a system of zero-range
potentials. Two brief examples are presented in Sec. VIII. We
conclude in Sec. IX giving there an outlook on some planned
extensions of the formalism developed in this work. The pa-
per ends with several Appendixes. In particular, in Appendix
A we transform the limiting conditions, built in the definition
of our ZRPM for Dirac particles, to a form resembling coun-
terpart conditions underlying the nonrelativistic ZRPM,
while in Appendix G we provide a snapshot look at still
another ZRPM for Dirac particles.

II. DEFINITION OF THE MODEL AND GENERAL
CONSIDERATIONS

We are interested in the situation in which a Dirac particle
of rest massm and fixed real energyE ssuch thatuEu.mc2d
scatters elastically from a system ofNù1 pointlike targets
szero-range potentialsd located at the pointshr nj. In the
model proposed in this work, the time-independent four-
component wave functionCs+dsE,r d describing this process
is assumed to have the following form:

Cs+dsE,r d = FsE,r d + o
n=1

N

Cn
s+dsE,r d s2.1d

and to satisfy the Dirac equation

f− ic"a · = + mc2b − EI gCs+dsE,r d = 0

sr Þ r n;n = 1, . . . ,Nd s2.2d

everywhere inR3 except at the points where the targets are
located. In Eq. s2.2d, a andb are standard 434 Dirac ma-
trices f20g andI denotes the unit 434 matrix.

The first component of the right-hand side of Eq.s2.1d,
i.e., FsE,r d, is an incident wave; it satisfies the free-particle
Dirac equation everywhere inR3,

f− ic"a · = + mc2b − EI gFsE,r d = 0 sr P R3d.

s2.3d

fThroughout this section, we shall be admitting thatFsE,r d
is any regular solution of Eq.s2.3d.g It is evident from Eq.
s2.3d that FsE,r d may be expressed as

FsE,r d = 1 f+sE,r d
− ic"

E + mc2s · = f+sE,r d 2 , s2.4d

wheres is the vector composed of the Pauli matrices, while
the two-component spinor functionf+sE,r d satisfies the free
Klein-Gordon equation

f− c2"2=2 + smc2d2 − E2gf+sE,r d = 0 sr P R3d. s2.5d

Each of the functionshCn
s+dsE,r dj, standing under the sum

on the right-hand side of Eq.s2.1d, satisfies the free-particle
Dirac equation everywhere inR3 exceptat oneof the points
hr nj,

f− ic"a · = + mc2b − EI gCn
s+dsE,r d = 0 sr Þ r nd

s2.6d

and is explicitly given by

Cn
s+dsE,r d =

1

k
S xn

s+dsEd
− i«k−1sxn

s+dsEd · =
Deikur−r nu

ur − r nu
s2.7ad

or, equivalently,

Cn
s+dsE,r d = S h0

s+dskur − r nudxn
s+dsEd

«h1
s+dskur − r nudmnsr d · sxn

s+dsEd
D ,

s2.7bd

where hh0 or 1
s+d szdj fand hh0 or 1

s−d szdj, to be used laterg are de-
fined in terms of the spherical Hankel functions of the first
and second kindsf21g as

h0
s±dszd = ± ih0

s1
2dszd =

e±iz

z
s2.8ad

and

h1
s±dszd = − h1

s1
2dszd =

e±iz

z
± i

e±iz

z2 . s2.8bd

In Eqs.s2.7ad and s2.7bd, and also hereafter,

k = sgnsEd
ÎE2 − smc2d2

c"
s2.9d

is the particle’s wave numbersobserve that it may assume
positive as well as negative valuesd,

« =ÎE − mc2

E + mc2 , s2.10d

mnsr d is the unit vector along the direction ofsr −r nd,
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mnsr d =
r − r n

ur − r nu
, s2.11d

while xn
s+dsEd is some energy-dependent two-component

spinor to be determined later.
Since for larger = ur u it holds that

h0
s±dskur − r nud ,

r→`e±ikr

kr
e7iknr·r n, s2.12ad

h1
s±dskur − r nud ,

r→`e±ikr

kr
e7iknr·r n, s2.12bd

and

mnsr d ,
r→`

nr , s2.13d

wherenr =r / r, from Eq. s2.7bd one deduces that asymptoti-
cally the functionCn

s+dsE,r d satisfies the condition which
may be written as

lim
r→`

rfnr · a+ − «b+gCn
s+dsE,r d = 0 s2.14ad

or equivalentlyscf. Appendix Ad

lim
r→`

rfnr · a− − «−1b−gCn
s+dsE,r d = 0, s2.14bd

with

a± = b±a, b± = 1
2sI ± bd. s2.15d

On the other hand, it follows from Eq.s2.7bd that for larger
the radial component of the current density

j n
s+dsE,r d = cCn

s+d†sE,r daCn
s+dsE,r d s2.16d

sthe dagger denotes the matrix Hermitian conjugationd is

nr · j n
s+dsE,r d ,

r→` 2c«

k2r2xn
s+d†sEdxn

s+dsEd, s2.17d

which is non-negative irrespective of the sign ofE. Conse-
quently, the conditionss2.14ad and s2.14bd are outflow sor
radiationd conditionsf22g and in the asymptotic zone each of
the functionshCn

s+dsE,r dj, and thus also their superposition
standing on the right-hand side of Eq.s2.1d, describes a par-
ticular mode ofescapeof the Dirac particle.

To make our model complete, we have to build into it
interactions between the scattered Dirac particle and indi-
vidual targets. We do this by imposing the following limiting
conditions:

lim
r→r n

fisr − r nd · a+ + «sur − r nuKn + k−1b+dgCs+dsE,r d = 0

sn = 1, . . . ,Nd s2.18d

at the points where the targets are located; in Appendix B, we
show that these conditions are natural generalizations of the
limiting conditions used in the nonrelativistic ZRPMfcf. Eq.
s2.5d of Ref. f13gg. The 434 matriceshKnj appearing in Eq.
s2.18d possess the property

b+Knb+ = Kn s2.19d

and are defined in terms of 232 matriceshKnj as

Kn = SKn 0

0 0
D , s2.20d

with zeros denoting 232 null matrices. In the Pauli basis
sconsisting of the unit 232 matrix I and the Pauli vectorsd,
the matriceshKnj have the representations

Kn = ûnI + kn · s, s2.21d

where

ûn = 1
2TrfKng, s2.22ad

kn = 1
2TrfsKng. s2.22bd

Henceforth, we shall be assuming that the matriceshKnj are
Hermitian. It is then evident from Eqs.s2.22ad and s2.22bd
that the scalarshûnj and the vectorshknj are real. Although,
for brevity, hereafter we shall not be marking this explicitly,
we shall be admitting thathKnj, thus alsohûnj andhknj, may
be energy-dependent.

It remains to explain how the spinorshxn
s+dsEdj, in terms

of which the outgoing waveshCn
s+dsE,r dj have been defined

in Eqs. s2.7ad and s2.7bd, may be determined. Substituting
Eq. s2.1d into Eq. s2.18d, after making use of Eqs.s2.4d,
s2.7bd, s2.8ad, s2.8bd, and s2.20d, we find thathxn

s+dsEdj are
solutions of the following linear algebraic system:

fKn + iI gxn
s+dsEd + o

n8=1

sn8Þnd

N

h0
s+dskur n − r n8udxn8

s+dsEd

= − f+sE,r nd sn = 1, . . . ,Nd. s2.23d

Arranging hxn
s+dsEdj and hf+sE,r ndj into 2N-component col-

umn vectors

as+dsEd = „x1
s+dTsEd ¯ xN

s+dTsEd…T s2.24d

and

bsEd = „f+
TsE,r 1d ¯ f+

TsE,r Nd…T, s2.25d

respectively, and introducing a 2N32N complex matrix
LsEd with elements

Lnn,n8n8sEd = hfKngnn8 + idnn8jdnn8 + h0
s+dskur n − r n8ud

3dnn8s1 − dnn8d sn,n8 = 1, . . . ,N;n,n8 = 1,2d,

s2.26d

we may rewrite the systems2.23d in the compact form

LsEdas+dsEd = − bsEd, s2.27d

convenient for later purposes.
Apart from the matrixLsEd, in considerations carried out

in later sections, use will be made of the matrices

LHsEd = 1
2fLsEd + L†sEdg s2.28d

and
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LAsEd = 1
2i fLsEd − L†sEdg s2.29d

being, respectively, the Hermitian and anti-Hermitian parts
of LsEd. Elements of these matrices are given by

fLHsEdgnn,n8n8 = fKngnn8dnn8 − y0skur n − r n8uddnn8s1 − dnn8d

sn,n8 = 1, . . . ,N;n,n8 = 1,2d s2.30d

and

fLAsEdgnn,n8n8 = dnn8dnn8 + j0skur n − r n8uddnn8s1 − dnn8d

sn,n8 = 1, . . . ,N;n,n8 = 1,2d, s2.31d

with

j0szd =
sinz

z
, y0szd = −

cosz

z
s2.32d

being, respectively, the spherical Bessel and Neumann func-
tions of order zerof21g.

III. PLANE-WAVE SCATTERING

A. Preliminaries

Let the incoming waves2.4d be a monochromatic spin-
polarized Dirac plane wave propagating in the directionn0,

FsE,n0,n0,r d = eikn0·rUsE,n0,n0d, s3.1d

with

UsE,n0,n0d = S hsn0d
«n0 · shsn0d

D . s3.2d

In the definitions3.2d, n0 stands for a unit vector, describing
the initial particle’s spin polarization in its rest frame, and
hsn0d is a two-component spinor such that

n0 · shsn0d = + hsn0d, s3.3d

normalized to unity in the sense of

h†sn0dhsn0d = 1. s3.4d

Then, it follows from Eqs.s2.1d, s2.7bd, s2.12ad, s2.12bd, and
s2.13d that asymptotically the wave functionCs+dsE,
n0,n0,r d excited by the waves3.1d is of the form

Cs+dsE,n0,n0,r d ,
r→`

asymp
r→`

eikn0·rUsE,n0,n0d

+
eikr

r
Fs+dsE,n0,nr,n0d, s3.5d

where

Fs+dsE,n0,nr,n0d = S f s+dsE,n0,nr,n0d
«nr · sf s+dsE,n0,nr,n0d

D , s3.6d

with

f s+dsE,n0,nr,n0d =
1

k
o
n=1

N

e−iknr·r nxn
s+dsE,n0,n0d, s3.7d

is the bispinor scattering amplitude. The spinorshxn
s+dsE,

n0,n0dj appearing in Eq.s3.7d are solutions to the system
s2.23d, with f+sE,r nd specified to be

f+sE,n0,n0,r nd = eikn0·r nhsn0d. s3.8d

B. Matrix scattering amplitudes and matrix scattering
kernels

We define the 232 matrix scattering amplitudeFs+dsE,
nr ,n0d through the relationship

f s+dsE,n0,nr,n0d = Fs+dsE,nr,n0dhsn0d. s3.9d

In terms ofFs+dsE,nr ,n0d, the 434 matrix scattering ampli-
tude is defined as

F s+dsE,nr,n0d

=
1

1 + «2

3S Fs+dsE,nr,n0d «Fs+dsE,nr,n0dn0 · s

«nr · sFs+dsE,nr,n0d «2nr · sFs+dsE,nr,n0dn0 · s
D .

s3.10d

It is readily verifiable that it holds that

Fs+dsE,n0,nr,n0d = F s+dsE,nr,n0dUsE,n0,n0d. s3.11d

fObserve that while Eq.s3.11d follows from Eq. s3.10d, the
converse isnot true.g

Having defined the matrix scattering amplitudes, we in-
troduce 232 and 434 matrix scattering kernels through the
relationships

Ss+dsE,nr,n0d = ds2dsnr − n0dI +
ik

2p
Fs+dsE,nr,n0d

s3.12d

and

S s+dsE,nr,n0d = ds2dsnr − n0dI +
ik

2p
F s+dsE,nr,n0d,

s3.13d

respectively, whereds2dsn−n8d is the Dirac delta function on
the unit sphere. Since

asymp
r→`

eikn0·r =
2pi

k
Fe−ikr

r
ds2dsnr + n0d −

eikr

r
ds2dsnr − n0dG ,

s3.14d

from Eqs.s3.5d, s3.1d, s3.11d, ands3.13d we infer that
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Cs+dsE,n0,n0,r d ,
r→`2pi

k
Fe−ikr

r
ds2dsnr + n0dI

−
eikr

r
S s+dsE,nr,n0dGUsE,n0,n0d.

s3.15d

Similarly, if we definec+
s+dsE,n0,n0,r d to be the upper com-

ponent ofCs+dsE,n0,n0,r d,

Cs+dsE,n0,n0,r d = S c+
s+dsE,n0,n0,r d

− i«k−1s · = c+
s+dsE,n0,n0,r d

D ,

s3.16d

and exploit the asymptotic relations3.14d, from Eqs.s3.5d,
s3.1d, s3.2d, s3.6d, s3.9d, ands3.12d we obtain

c+
s+dsE,n0,n0,r d ,

r→`2pi

k
Fe−ikr

r
ds2dsnr + n0dI

−
eikr

r
Ss+dsE,nr,n0dGhsn0d. s3.17d

C. Differential cross sections

The angular distribution of scattered particles in the
asymptotic zone may be characterized by a differential cross
section defined as

d2QsE,n0,nr,n0d
d2nr

= lim
r→`

r2 jscatsE,n0,n0,r d
j incsE,n0,n0,r d

, s3.18d

where

jscatsE,n0,n0,r d = cCscat
† sE,n0,n0,r dnr · aCscatsE,n0,n0,r d,

s3.19d

with

CscatsE,n0,n0,r d = Cs+dsE,n0,n0,r d − FsE,n0,n0,r d,

s3.20d

is the radial current density in the scattered wave, while

j incsE,n0,n0,r d = cF†sE,n0,n0,r dn0 · aFsE,n0,n0,r d = 2c«

s3.21d

is the current density in the incident plane waves3.1d fon the
right-hand side of Eq.s3.21d, use has been made of the nor-
malization condition s3.4dg. On combining Eqs.
s3.18d–s3.21d, s3.5d, ands3.6d, one obtains

d2QsE,n0,nr,n0d
d2nr

= f s+d†sE,n0,nr,n0df s+dsE,n0,nr,n0d,

s3.22d

and further, after exploiting Eq.s3.9d,

d2QsE,n0,nr,n0d
d2nr

= TrfFs+dsE,nr,n0d%sn0dFs+d†sE,nr,n0dg,

s3.23d

where

%sn0d = hsn0dh†sn0d = 1
2fI + n0 · sg s3.24d

is the 232 spin density matrix for the incident wave. Since

R
4p

d2n0%sn0d = 2pI , s3.25d

a differential cross section averaged over all orientations of
n0,

d2QsE,nr,n0d
d2nr

=
1

4p
R

4p

d2n0
d2QsE,n0,nr,n0d

d2nr
,

s3.26d

is given by

d2QsE,nr,n0d
d2nr

=
1

2
TrfFs+dsE,nr,n0dFs+d†sE,nr,n0dg.

s3.27d

D. Total cross sections

Three kinds of total cross sections will be considered in
this work. The first one is a total cross section for a fixed
direction of incidencen0 and a fixed initial spin orientation
n0, defined as

QsE,n0,n0d =R
4p

d2nr
d2QsE,n0,nr,n0d

d2nr
. s3.28d

The second total cross section of interest is an average of one
defined in Eq.s3.28d over all initial spin orientations,

QsE,n0d =
1

4p
R

4p

d2n0QsE,n0,n0d. s3.29ad

It follows from Eq.s3.26d that it may be also found from the
formula

QsE,n0d =R
4p

d2nr
d2QsE,nr,n0d

d2nr
, s3.29bd

with the integrand given by Eq.s3.27d. Finally, the third kind
of the total cross section we shall be interested in is obtained
by averaging one defined in Eq.s3.29ad over all directions of
incidence,

QsEd =
1

4p
R

4p

d2n0QsE,n0d. s3.30d

It seems worthwhile to note that the cross sections3.28d
may be expressed as

QsE,n0,n0d =
4p

k2 as+d†sE,n0,n0dLAsEdas+dsE,n0,n0d.

s3.31d

Here as+dsE,n0,n0d is the 2N-component column vector
composed of the spinorshxn

s+dsE,n0,n0dj fcf. Eq. s2.24dg and
LAsEd has been defined in Eq.s2.29d. To prove the validity of
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Eq. s3.31d, we combine the definitions3.28d with Eqs.s3.22d
and s3.7d, which yields

QsE,n0,n0d =
1

k2 o
n,n8=1

N

xn
s+d†sE,n0,n0dxn8

s+dsE,n0,n0d

3 R
4p

d2nre
iknr·sr n−r n8d. s3.32d

Applying the well-known formula

R
4p

d2neikn·sr−r8d = 4p j0skur − r 8ud s3.33d

to the integral on the right-hand side of Eq.s3.32d gives

R
4p

d2nre
iknr·sr n−r n8d = 4pfdnn8 + j0skur n − r n8uds1 − dnn8dg.

s3.34d

Hence, after invoking Eq.s2.31d, one arrives at Eq.s3.31d.

IV. EIGENCHANNELS FOR SYSTEMS OF ZERO-RANGE
SCATTERERS

A. An auxiliary matrix eigenproblem

Consider an auxiliary weighted eigenproblem

LHsEdxgsEd = lgsEdLAsEdxgsEd, s4.1d

with the weight matrixLAsEd defined in Eq.s2.29d; in Eq.
s4.1d, lgsEd is an eigenvalue andxgsEd is an associated ei-
genvector. We already know that both matrices appearing in
the problems4.1d are Hermitian; moreover, it is proved in
Appendix C thatLAsEd is at least positive semidefinite. If
LAsEd is strictly positive definite, then, following a routine
procedure, it may be shown that all 2N eigenvalues to the
problems4.1d are real and that eigenvectors associated with
different eigenvalues are orthogonal in the sense of

xg
†sEdLAsEdxg8sEd = 0 flgsEd Þ lg8sEdg. s4.2d

It is always possible to choose eigenvectors associated with
degenerate eigenvaluessif there are anyd so that the orthogo-
nality relations4.2d holds for all eigenvectors. If, in addition,
the eigenvectorshxgsEdj are normalized to unity in the sense
of

xg
†sEdLAsEdxgsEd = 1, s4.3d

then one has the weighted orthonormality relation

xg
†sEdLAsEdxg8sEd = dgg8, s4.4d

which will play an important role in later considerations.
Finally, the Hermiticity ofLHsEd andLAsEd implies that the
eigenvectorshxgsEdj form a complete set; the corresponding
closure relation, derived in Appendix D, is

o
g=1

2N

xgsEdxg
†sEdLAsEd = LAsEdo

g=1

2N

xgsEdxg
†sEd = I, s4.5d

whereI is the unit 2N32N matrix. The case when the matrix
LAsEd is positive semidefinite may be treated as a limiting
case ofLAsEd positive definite.

For some systems of zero-range potentials, due to their
inherent geometrical or “dynamical” symmetries, the prob-
lem of solving Eq.s4.1d may appear to be reducible to that of
solving several lower-dimensional eigensystems. Two ex-
amples of such situations, being consequences of particular
forms of the “interaction” matriceshKnj, are considered in
Appendix E.

B. Eigenchannels, eigenphase shifts, eigenchannel bispinor and
spinor harmonics

Let us express the eigenvectorshxgsEdj in terms of two-
component spinorshjngsEdj,

xgsEd = „j1g
T sEd ¯ jNg

T sEd…T. s4.6d

With these spinors, we define 2N eigenchannels

XgsE,r d =ÎksE + mc2d
4pc2"2 o

n=1

N FS y0skur − r nudjngsEd
i«y1skur − r nudmnsr d · sjngsEd

D + lgsEdS j0skur − r nudjngsEd
i« j1skur − r nudmnsr d · sjngsEd

DG , s4.7d

where

j1szd = −
cosz

z
+

sinz

z2 , y1szd = −
sinz

z
−

cosz

z2 s4.8d

are, respectively, spherical Bessel and Neumann functions of
order 1f21g. fThe factor in front of the sum in Eq.s4.7d has
been introduced to enforce compatibility of the asymptotic
formula s4.13d with Eq. s7.29d of Ref. f18g.g Evidently, the

eigenchannels satisfy the free-particle Dirac equation every-
where inR3 except at the pointshr nj,

f− ic"a · = + mc2b − EI gXgsE,r d = 0

sr Þ r n;n = 1, . . . ,Nd s4.9d

fcf. Eq. s2.2dg. With the aid of Eqs.s4.1d, s4.6d, s2.30d, and
s2.31d, it is also readily verifiable that at the pointshr nj the
eigenchannels obey the limiting conditions
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lim
r→r n

fisr − r nd · a+ + «sur − r nuKn + k−1b+dgXgsE,r d = 0

sn = 1, . . . ,Nd s4.10d

fcf. Eq. s2.18dg.
Introducing realeigenphase shifts, related to the realfcf.

the discussion preceding Eq.s4.2dg eigenvalues of the system
s4.1d through

lgsEd = − cotdgsEd, s4.11d

we may rewrite Eq.s4.7d in the form

XgsE,r d = − sgnsEdÎ E + mc2

4pc2"2k

1

sindgsEd

3 o
n=1

N S jngsEd
− i«k−1sjngsEd · =

Dsinfkur − r nu + dgsEdg
ur − r nu

.

s4.12d

Making in either of Eqs.s4.7d or s4.12d the limiting passage
r →`, we arrive at

XgsE,r d ,
r→`

sgnsEdÎ E

2c2"2k

1

i sindgsEdFe−ikr−idgsEd

r

3YgsE,− nrd −
eikr+idgsEd

r
YgsE,nrdG , s4.13d

where

YgsE,nrd =
1

Î4ps1 + «2d
o
n=1

N

e−iknr·r nS jngsEd
«nr · sjngsEd

D
s4.14d

are eigenchannel bispinor harmonics. Defining two-
componenteigenchannel spinor harmonics

YgsE,nrd =
1

Î4p
o
n=1

N

e−iknr·r njngsEd, s4.15d

we may rewrite the definitions4.14d in the following more
compact form:

YgsE,nrd =
1

Î1 + «2S YgsE,nrd
«nr · sYgsE,nrd

D . s4.16d

In Appendix F, we show that the spinor harmonicss4.15d
form an orthonormal set on the unit sphere, i.e., it holds that

R
4p

d2nrYg
†sE,nrdYg8sE,nrd = dgg8. s4.17d

Combining this with Eq.s4.16d, we see that the bispinor
harmonics are also orthonormal,

R
4p

d2nrYg
†sE,nrdYg8sE,nrd = dgg8. s4.18d

V. APPLICATIONS OF EIGENCHANNELS AND RELATED
OBJECTS IN SCATTERING PROBLEMS

A. Scattering wave function: General case

Since the eigenchannel vectors form the complete set, we
may use them as a basis for expanding the vectoras+dsEd
defined in Eq.s2.24d,

as+dsEd = o
g8=1

2N

ag8
s+dsEdxg8sEd. s5.1d

Substituting this expansion into Eq.s2.27d, making use of the
fact that

LsEd = LHsEd + iLAsEd, s5.2d

and exploiting the eigenequations4.1d, we find

o
g8=1

2N

flg8sEd + igag8
s+dsEdLAsEdxg8sEd = − bsEd. s5.3d

Premultiplying Eq.s5.3d with xg
†sEd and using the weighted

orthonormality relations4.4d yields the expansion coefficient
ag

s+dsEd in the form

ag
s+dsEd = −

1

lgsEd + i
xg

†sEdbsEd. s5.4d

Substituting this back into Eq.s5.1d gives

as+dsEd = − o
g=1

2N
1

lgsEd + i
fxg

†sEdbsEdgxgsEd s5.5ad

or, equivalently, in terms of the eigenphase shifts,

as+dsEd = o
g=1

2N

eidgsEd sindgsEdfxg
†sEdbsEdgxgsEd.

s5.5bd

Hence, for the spinor components ofas+dsEd we have

xn
s+dsEd = o

g=1

2N

eidgsEdsindgsEdF o
n8=1

N

jn8g
† sEdf+sE,r n8dGjngsEd.

s5.6d

Combining Eqs.s2.1d, s2.7bd, ands5.6d results in the follow-
ing expression for the total wave function induced by the
wave s2.4d,

Cs+dsE,r d = FsE,r d + o
g=1

2N

eidgsEdsindgsEd

3F o
n8=1

N

jn8g
† sEdf+sE,r n8dGQg

s+dsE,r d, s5.7d

where

Qg
s±dsE,r d = S u0g

s±dsE,r d
±«u1g

s±dsE,r d
D , s5.8d

with
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u0g
s±dsE,r d = o

n=1

N

h0
s±dskur − r nudjngsEd s5.9d

and

u1g
s±dsE,r d = o

n=1

N

h1
s±dskur − r nudmnsr d · sjngsEd. s5.10d

fFor the sake of brevity, two kinds of functions have been
defined in Eqs.s5.8d–s5.10d; those with lower superscripts
will find applications in later sections.g

Manipulating Eqs.s5.7d–s5.10d with the aid of the rela-
tions

h0
s±dszd = ± i j 0szd − y0szd, s5.11ad

h1
s±dszd = − j1szd 7 iy1szd, s5.11bd

it is possible to split the functionCs+dsE,r d according to

Cs+dsE,r d = CnintsE,r d + Cint
s+dsE,r d, s5.12d

with

CnintsE,r d = FsE,r d − o
g=1

2N F o
n8=1

N

jn8g
† sEdf+sE,r n8dG

3 o
n=1

N S j0skur − r nudjngsEd
i« j1skur − r nudmnsr d · sjngsEd

D
s5.13d

and

Cint
s+dsE,r d = −Î 4pc2"2

ksE + mc2d og=1

2N

eidgsEdsindgsEd

3F o
n8=1

N

jn8g
† sEdf+sE,r n8dGXgsE,r d. s5.14d

Evidently, the functionCnintsE,r d satisfies the free-particle
Dirac equationeverywherein R3,

f− ic"a · = + mc2b − EI gCnintsE,r d = 0 sr P R3d.

s5.15d

This means that it is that part ofCs+dsE,r d which doesnot
experience scattering, i.e., for which the target is ideally
transparent. The remainderCint

s+dsE,r d is the superposition of
the eigenchannelss4.7d and therefore obeys the free-particle
Dirac equation

f− ic"a · = + mc2b − EI gCint
s+dsE,r d = 0

sr Þ r n;n = 1, . . . ,Nd s5.16d

fcf. Eqs. s2.2d and s4.9dg everywhere inR3 exceptat the
target locations, where it is constrained to satisfy the limiting
conditions

lim
r→r n

fisr − r nd · a+ + «sur − r nuKn + k−1b+dgCint
s+dsE,r d = 0

sn = 1, . . . ,Nd s5.17d

fcf. Eqs. s2.18d and s4.10dg. Consequently,Cint
s+dsE,r d is es-

sentially that part ofCs+dsE,r d which describes the scattering
process.

We conclude this thread observing that two alternative
expressions for the noninteracting waveCnintsE,r d, derivable
from Eq. s5.13d, are

CnintsE,r d = FsE,r d −
1

k
o
g=1

2N F o
n8=1

N

jn8g
† sEdf+sE,r n8dG

3 o
n=1

N S jngsEd
− i«k−1sjngsEd · =

Dsinkur − r nu
ur − r nu

s5.18ad

and

CnintsE,r d = FsE,r d −Î1 + «2

4p

3 o
g=1

2N F o
n8=1

N

jn8g
† sEdf+sE,r n8dG

3 R
4p

d2nYgsE,ndeikn·r . s5.18bd

B. Scattering wave function: Plane-wave scattering

If the incoming wave is the plane waves3.1d, Eqs.s5.6d,
s3.8d, ands4.15d yield

xn
s+dsE,n0,n0d = Î4po

g=1

2N

eidgsEd sindgsEdYg
†sE,n0dhsn0djngsEd

=Î 4p

1 + «2o
g=1

2N

eidgsEd sindgsEdYg
†sE,n0d

3 UsE,n0,n0djngsEd. s5.19d

Further, application of Eqs.s3.2d and s4.14d transforms the
total wave functions5.7d into

Cs+dsE,n0,n0,r d = eikn0·rUsE,n0,n0d

+Î 4p

1 + «2o
g=1

2N

eidgsEd sindgsEd

3 Yg
†sE,n0dUsE,n0,n0dQg

s+dsE,r d.

s5.20d

In the same manner, the genuine scattering wave function
s5.14d goes over into
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Cint
s+dsE,n0,n0,r d = −Î8p2c2"2

kE
o
g=1

2N

eidgsEd

3 sindgsEdYg
†sE,n0dUsE,n0,n0dXgsE,r d,

s5.21d

while the noninteracting waves5.13d may be rewritten in
either of the following three equivalent forms:

CnintsE,n0,n0,r d = eikn0·rUsE,n0,n0d

−Î 4p

1 + «2o
g=1

2N

Yg
†sE,n0dUsE,n0,n0d

3 o
n=1

N S j0skur − r nudjngsEd
i« j1skur − r nudmnsr d · sjngsEd

D ,

s5.22ad

CnintsE,n0,n0,r d = eikn0·rUsE,n0,n0d

−
1

k
Î 4p

1 + «2o
g=1

2N

Yg
†sE,n0dUsE,n0,n0d

3 o
n=1

N S jngsEd
− i«k−1sjngsEd · =

Dsinkur − r nu
ur − r nu

,

s5.22bd

CnintsE,n0,n0,r d =R
4p

d2nP sE,n,n0deikn·rUsE,n0,n0d,

s5.22cd

with

P sE,n,n0d = ds2dsn − n0dI − o
g=1

2N

YgsE,ndYg
†sE,n0d

s5.23d

fwe note parenthetically that the kernelP sE,n,n0d is Her-
mitian and idempotent, so it is a projecting kernelg. The rep-
resentation in Eq.s5.22bd is suited for making comparison
with its nonrelativistic analoguefcf. Eq. s4.16d of Ref. f13gg,
while that in Eq.s5.22cd is particularly convenient for inves-
tigating the asymptotics ofCnintsE,n0,n0,r d. Indeed, on us-
ing in Eq. s5.22cd the asymptotic formulas3.14d, we obtain

CnintsE,n0,n0,r d ,
r→`2pi

k
Fe−ikr

r
P sE,− nr,n0d

−
eikr

r
P sE,nr,n0dGUsE,n0,n0d.

s5.24d

Similarly, for the asymptotic form of the interacting wave
s5.21d we find

Cint
s+dsE,n0,n0,r d ,

r→`2pi

k
Fe−ikr

r
fds2dsnr + n0dI

− P sE,− nr,n0dg

−
eikr

r
S red

s+dsE,nr,n0dGUsE,n0,n0d,

s5.25d

where

S red
s+dsE,nr,n0d = o

g=1

2N

e2idgsEdYgsE,nrdYg
†sE,n0d s5.26d

is the 434 reducedscattering kernel.

C. Matrix scattering amplitudes and matrix scattering kernels

Combining Eqs.s3.7d and s5.19d gives

f s+dsE,n0,nr,n0d =
4p

k
o
g=1

2N

eidgsEd sindgsEd

3 YgsE,nrdYg
†sE,n0dhsn0d. s5.27d

Hence, upon invoking Eq.s3.9d, we deduce the expansion

Fs+dsE,nr,n0d =
4p

k
o
g=1

2N

eidgsEd sindgsEdYgsE,nrdYg
†sE,n0d.

s5.28d

Substituting this result into Eq.s3.10d and making use of Eq.
s4.16d yields the analogous expansion

F s+dsE,nr,n0d =
4p

k
o
g=1

2N

eidgsEd sindgsEdYgsE,nrdYg
†sE,n0d.

s5.29d

Further, exploiting the expansionss5.28d and s5.29d in the
definitionss3.12d ands3.13d leads to the following represen-
tations of the matrix scattering kernels:

Ss+dsE,nr,n0d = ds2dsnr − n0dI + o
g=1

2N

fe2idgsEd − 1g

3YgsE,nrdYg
†sE,n0d, s5.30d

S s+dsE,nr,n0d = ds2dsnr − n0dI + o
g=1

2N

fe2idgsEd − 1g

3YgsE,nrdYg
†sE,n0d. s5.31d

Finally, from Eqs.s5.31d, s5.26d, and s5.23d we obtain the
relationship

S s+dsE,nr,n0d = P sE,nr,n0d + S red
s+dsE,nr,n0d.

s5.32d

The representationss5.29d and s5.31d may be used for
various purposes. For instance, with the aid of the latter one
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immediately proves that the scattering kernelS s+dsE,n,n8d is
unitary, because one has

R
4p

d2n9S s+dsE,n,n9dS s+d†sE,n8,n9d = ds2dsn − n8dI

s5.33ad

and

R
4p

d2n9S s+d†sE,n9,ndS s+dsE,n9,n8d = ds2dsn − n8dI.

s5.33bd

fThe reader may wish to show that the same isnot true for
the reduced scattering kernelS red

s+dsE,n ,n8d, which appears
to be unitary only in the subspace spanned by the bispinor
harmonicss4.14d.g Similarly, exploiting the expansions5.29d,
one arrives at the generalized optical relations

R
4p

d2n9F s+dsE,n,n9dF s+d†sE,n8,n9d

=
2p

ik
fF s+dsE,n,n8d − F s+d†sE,n8,ndg s5.34ad

and

R
4p

d2n9F s+d†sE,n9,ndF s+dsE,n9,n8d

=
2p

ik
fF s+dsE,n,n8d − F s+d†sE,n8,ndg. s5.34bd

Unitarity relations, analogous to those in Eqs.s5.33ad and
s5.33bd, may be derived for the 232 scattering kernel
Ss+dsE,n ,n8d, while optical relations, counterpart to those in
Eqs.s5.34ad ands5.34bd, may be obtained for the 232 scat-
tering amplitudeFs+dsE,n ,n8d.

D. Total cross sections

It is possible to derive remarkably simple expressions, in
terms of the eigenphase shifts and the spinor harmonics, for
the three kinds of total cross sections introduced in Sec.
III D. From the definitions3.28d, the relations3.23d, and the
expansions5.28d, after making use of the orthonormality
propertys4.17d, one obtains

QsE,n0,n0d =
16p2

k2 o
g=1

2N

sin2 dgsEdYg
†sE,n0d%sn0dYgsE,n0d.

s5.35d

Averaging this result overn0 with the aid of Eq.s3.25d gives

QsE,n0d =
8p2

k2 o
g=1

2N

sin2 dgsEdYg
†sE,n0dYgsE,n0d.

s5.36d

Hence, after further averaging over all possible directions of
incidencen0, again exploiting Eq.s4.17d, one arrives at

QsEd =
2p

k2 o
g=1

2N

sin2 dgsEd. s5.37d

VI. “FINAL-STATE” WAVE FUNCTION
FOR PHOTODETACHMENT

Thus far, we have been concerned with scattering. A re-
lated process, belonging to the category of half-collisions, is
photodetachment. Attempting to describe this process theo-
retically, one encounters an auxiliary mathematical object, a
so-called “final-state” wave functionCs−dsE,n0,n0,r d. This
function is a counterpart of the scattering wave function
Cs+dsE,n0,n0,r d considered before, but differs from the lat-
ter in that asymptotically it has the form of a plane wave
superposed with a radiallyingoing, rather than outgoing,
wave.

Proceeding in the same spirit as in Sec. II in the presence
of N zero-range scatterers, we shall seekCs−dsE,n0,n0,r d in
the form

Cs−dsE,n0,n0,r d = eikn0·rUsE,n0,n0d + o
n=1

N

Cn
s−dsE,n0,n0,r d.

s6.1d

Here UsE,n0,n0d is the plane-wave amplitudes3.2d, while
the N functions hCn

s−dsE,n0,n0,r dj, obeying the asymptotic
inflow conditions

lim
r→`

rfnr · a+ + «b+gCn
s−dsE,n0,n0,r d = 0 s6.2ad

or equivalentlyscf. Appendix Ad

lim
r→`

rfnr · a− + «−1b−gCn
s−dsE,n0,n0,r d = 0 s6.2bd

fcf. Eqs.s2.14ad ands2.14bd and notice differences in signsg,
are explicitly given by

Cn
s−dsE,n0,n0,r d = S h0

s−dskur − r nudxn
s−dsE,n0,n0d

− «h1
s−dskur − r nudmnsr d · sxn

s−dsE,n0,n0d
D

s6.3d

fcf. Eq. s2.7bd and again notice the difference in signsg, with
the functionshh0 or 1

s−d szdj defined in Eqs.s2.8ad ands2.8bd. An
algebraic system for the spinor coefficientshxn

s−dsE,n0,n0dj
results after inserting Eqs.s6.1d and s6.3d into the limiting
conditions

lim
r→r n

fisr − r nd · a+ + «sur − r nuKn + k−1b+dg

3 Cs−dsE,n0,n0,r d = 0 sn = 1, . . . ,Nd s6.4d

fcf. Eq. s2.18dg; one obtains

fKn − iI gxn
s−dsE,n0,n0d + o

n8=1

sn8Þnd

N

h0
s−dskur n − r n8udxn8

s−dsE,n0,n0d

= − eikn0·r nhsn0d sn = 1, . . . ,Nd s6.5d

fcf. Eq. s2.23dg. The systems6.5d may be solved in the man-
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ner completely analogous to that in which in Sec. V we have
solved the systems2.23d. Therefore, we shall skip details and
go directly to the final result,

xn
s−dsE,n0,n0d = Î4po

g=1

2N

e−idgsEd sindgsEd

3 Yg
†sE,n0dhsn0djngsEd

=Î 4p

1 + «2o
g=1

2N

e−idgsEd sindgsEd

3 Yg
†sE,n0dUsE,n0,n0djngsEd s6.6d

fcf. Eq. s5.19dg. Hence, after combining Eqs.s6.1d, s6.3d, and
s6.6d, one obtains

Cs−dsE,n0,n0,r d = eikn0·rUsE,n0,n0d

+Î 4p

1 + «2o
g=1

2N

e−idgsEd sindgsEd

3 Yg
†sE,n0dUsE,n0,n0dQg

s−dsE,r d,

s6.7d

with Qg
s−dsE,r d defined in Eqs.s5.8d–s5.10d. Asymptotically,

Eq. s6.7d becomes

Cs−dsE,n0,n0,r d ,
r→`Fasymp

r→`
eikn0·rI +

e−ikr

r
F s−dsE,nr,n0dG

3 UsE,n0,n0d, s6.8d

with

F s−dsE,nr,n0d =
4p

k
o
g=1

2N

e−idgsEd sindgsEdYgsE,− nrdYg
†sE,n0d,

s6.9d

i.e., Cs−dsE,n0,n0,r d does indeed show the required
asymptotic behavior.

VII. GREEN FUNCTIONS

Finally, we turn to the problem of determining the outgo-
ing sthe upper superscriptd and ingoing sthe lower super-
scriptd matrix Green functionsG s±dsE,r ,r 8d in the presence
of N zero-range potentials. As before, we restrict our consid-
erations to energies real and such thatuEu.mc2. Everywhere
in R3 except at the points where the potentials are located,
these functions obey the inhomogeneous equation

f− ic"a · = + mc2b − EI gG s±dsE,r ,r 8d = ds3dsr − r 8dI

sr Þ r n;n = 1, . . . ,Nd. s7.1d

Asymptotically, they satisfy the analogues of the Sommer-
feld conditions,

lim
r→`

rfnr · a+ 7 «b+gG s±dsE,r ,r 8d = 0 s7.2ad

or equivalentlyscf. Appendix Ad

lim
r→`

rfnr · a− 7 «−1b−gG s±dsE,r ,r 8d = 0, s7.2bd

while at the locations of individual potentials they are con-
strained to obey the limiting conditions

lim
r→r n

fisr − r nd · a+ + «sur − r nuKn + k−1b+dgG s±dsE,r ,r 8d = 0

sn = 1, . . . ,Nd. s7.3d

We seekG s±dsE,r ,r 8d in the forms

G s±dsE,r ,r 8d = G 0
s±dsE,r ,r 8d + o

n=1

N

G n
s±dsE,r ,r 8d,

s7.4d

where

G 0
s±dsE,r ,r 8d =

1

4pc2"2f− ic"a · = + mc2b + EI g
e±ikur−r8u

ur − r 8u
s7.5d

are respective free-particle Dirac Green functions, while

G n
s±dsE,r ,r 8d =

k

4pc2"2S sE + mc2dh0
s±dskur − r nudGn0

s±dsE,r 8d sE + mc2dh0
s±dskur − r nudGn1

s±dsE,r 8d
±c"kh1

s±dskur − r nudmnsr d · sGn0
s±dsE,r 8d ±c"kh1

s±dskur − r nudmnsr d · sGn1
s±dsE,r 8d

D sn = 1, . . . ,Nd

s7.6d

are contributions due to thenth zero-range potential. The 232 matriceshGn0
s±dsE,r 8dj and hGn1

s±dsE,r 8dj are to be determined.
To find hGn0

s±dsE,r 8dj and hGn1
s±dsE,r 8dj, we exploit the fact that Eq.s7.5d may be rewritten as

G 0
s±dsE,r ,r 8d =

k

4pc2"2S sE + mc2dh0
s±dskur − r 8udI ±c"kh1

s±dskur − r 8udmsr ,r 8d · s

±c"kh1
s±dskur − r 8udmsr ,r 8d · s sE − mc2dh0

s±dskur − r 8udI
D , s7.7d
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with

msr ,r 8d =
r − r 8

ur − r 8u
, s7.8d

combine Eqs.s7.4d, s7.6d, ands7.7d, and substitute the result
into the limiting conditionss7.3d. This yields the following
systems of algebraic equations:

fKn ± iI gGn0
s±dsE,r 8d + o

n8=1

sn8Þnd

N

h0
s±dskur n − r n8udGn80

s±d sE,r 8d

= − h0
s±dskur 8 − r nudI sn = 1, . . . ,Nd, s7.9d

fKn ± iI gGn1
s±dsE,r 8d + o

n8=1

sn8Þnd

N

h0
s±dskur n − r n8udGn81

s±d sE,r 8d

= ± «h1
s±dskur 8 − r nudmnsr 8d · s sn = 1, . . . ,Nd.

s7.10d

The systemss7.9d ands7.10d are structurally similar either to

the systems2.23d sfor upper superscriptsd or to the system
s6.5d sfor lower superscriptsd; the only difference is that now
inhomogeneities and unknowns are 232 matrices rather
than two-component vectors. Solving the systemss7.9d and
s7.10d by the expansion method presented in Sec. V A gives

Gn0
s±dsE,r 8d = o

g=1

2N

e±idgsEd sindgsEdjngsEdu0g
s7d†sE,r 8d

s7.11d

and

Gn1
s±dsE,r 8d = 7 «o

g=1

2N

e±idgsEdsindgsEdjngsEdu1g
s7d†sE,r 8d,

s7.12d

with hu0g
s±dsE,r dj and hu1g

s±dsE,r dj defined in Eqs.s5.9d and
s5.10d, respectively. Hence, upon inserting Eqs.s7.11d and
s7.12d into Eq.s7.6d, and the result into Eq.s7.4d, one arrives
at the following explicit expressions for the sought Green
functions:

G s±dsE,r ,r 8d = G 0
s±dsE,r ,r 8d +

k

4pc2"2o
g=1

2N

e±idgsEd sindgsEdSsE + mc2du0g
s±dsE,r du0g

s7d†sE,r 8d 7c"ku0g
s±dsE,r du1g

s7d†sE,r 8d
±c"ku1g

s±dsE,r du0g
s7d†sE,r 8d − sE − mc2du1g

s±dsE,r du1g
s7d†sE,r 8d

D ,

s7.13d

or equivalently, but more compactly,

G s±dsE,r ,r 8d = G 0
s±dsE,r ,r 8d +

ksE + mc2d
4pc2"2 o

g=1

2N

e±idgsEd sindgsEdQg
s±dsE,r dQg

s7d†sE,r 8d. s7.14d

From Eqs.s7.7d, s7.8d, ands7.14d, one easily verifies that the
functionsG s±dsE,r ,r 8d obey the symmetry relations

G s±d†sE,r ,r 8d = G s7dsE,r 8,r d. s7.15d

As the source recedes to infinity, i.e.,r8→`, the free-
particle Green functionss7.5d behave as

G 0
s±dsE,r ,r 8d

,
r8→`E + mc2

4pc2"2

e±ikr8

r8
S I 7«nr8 · s

7«nr8 · s «2I
De7iknr8·r .

s7.16d

Moreover, since

u0g
s±dsE,r 8d ,

r8→`Î4p

k

e±ikr8

r8
YgsE, ± nr8d s7.17d

and

u1g
s±dsE,r 8d ,

r8→`Î4p

k

e±ikr8

r8
nr8 · sYgsE, ± nr8d, s7.18d

one has

Qg
s±dsE,r 8d ,

r8→`Î4ps1 + «2d
k

e±ikr8

r8
YgsE, ± nr8d. s7.19d

Hence, after employing Eqs.s3.2d, s5.20d, and s6.7d, it fol-
lows that

G s±dsE,r ,r 8dUsE,n0, 7 nr8d

,
r8→` E

2pc2"2

e±ikr8

r8
Cs±dsE,n0, 7 nr8,r d. s7.20d

VIII. TWO EXAMPLES

A. Cross sections for scattering from a single zero-range
potential

As the first example, consider a Dirac particle scattered
from a single zero-range potential located at the origin of a
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coordinate system and characterized by the “interaction” ma-
trix,

K = ûI + k · s. s8.1d

Then, the matrices in the spectral problems4.1d are

LHsEd = K, LAsEd = I , s8.2d

and the problem has two eigenvalues,

l±sEd ; − cotd±sEd = û ± k, s8.3d

with associated orthonormalsin the standard sense, since in
this particular case the weight matrix is the unit matrixd
eigenvectors

x±sEd ; j±sEd = hs±nkd. s8.4d

In Eqs. s8.3d and s8.4d, k= uku, nk=k /k, while the spinors
hs±nkd are defined, up to a phase factor, by equations analo-
gous to Eqs.s3.3d and s3.4d. The resulting eigenchannel
spinor harmonics are

Y±sE,nrd =
1

Î4p
hs±nkd. s8.5d

It appears that neither the 232 scattering amplitude

Fs+dsE,nr,n0d = −
1

k

û + i

sû2 − k2 − 1d + 2iû
I

+
1

k

1

sû2 − k2 − 1d + 2iû
k · s s8.6d

nor the differential cross sections

d2QsE,n0,nr,n0d
d2nr

=
1

k2

sû2 + k2 + 1d − 2ûk · n0

sû2 + k2 + 1d2 − 4û2k2 s8.7d

and

d2QsE,nr,n0d
d2nr

=
1

k2

û2 + k2 + 1

sû2 + k2 + 1d2 − 4û2k2 s8.8d

depend on the direction of incidencen0 and the observation
directionnr. The total cross sections3.28d is

QsE,n0,n0d =
4p

k2

sû2 + k2 + 1d − 2ûk · n0

sû2 + k2 + 1d2 − 4û2k2 s8.9d

fnotice that ifû=0 or k=0, the right-hand side of Eq.s8.9d
becomes independent ofn0g, while the total cross sections
s3.29ad and s3.30d are found to be identical and given by

QsE,n0d = QsEd =
4p

k2

û2 + k2 + 1

sû2 + k2 + 1d2 − 4û2k2 . s8.10d

B. Eigenphase shifts and eigenchannel spinor harmonics
for two identical zero-range potentials

As the second example, we shall find eigenphase shifts
and eigenchannel spinor harmonics for a Dirac particle in a
field of two identical zero-range potentials located at the
points

r 1 = 1
2R, r 2 = − 1

2R, s8.11d

respectively. Each potential is characterized by the interac-
tion matrix s8.1d. A brief analysis shows that in this case

LHsEd = LH8 sEd ^ I + I ^ k · s s8.12d

and

LAsEd = LA8sEd ^ I , s8.13d

whereLH8 sEd andLA8sEd are 232 matrices with elements

fLH8 sEdgnn8 = ûdnn8 − y0skRds1 − dnn8d sn,n8 = 1,2d

s8.14d

and

fLA8sEdgnn8 = dnn8 + j0skRds1 − dnn8d sn,n8 = 1,2d,

s8.15d

respectively; hereR= uRu. After employing the results of Ap-
pendix E 2, with no difficulty we find that the eigenvalues of
the spectral problems4.1d are

l1sEd ; − cotd1sEd =
û + k − y0skRd

1 + j0skRd
, s8.16ad

l2sEd ; − cotd2sEd =
û − k − y0skRd

1 + j0skRd
, s8.16bd

l3sEd ; − cotd3sEd =
û + k + y0skRd

1 − j0skRd
, s8.16cd

l4sEd ; − cotd4sEd =
û − k + y0skRd

1 − j0skRd
, s8.16dd

while the suitably chosen associated orthonormalizedfin the
sense of Eq.s4.4dg eigenvectors are

x1sEd =
1

Î2f1 + j0skRdg
Shsnkd

hsnkd
D , s8.17ad

x2sEd =
1

Î2f1 + j0skRdg
Shs− nkd

hs− nkd
D , s8.17bd

x3sEd =
i

Î2f1 − j0skRdg
S hsnkd

− hsnkd
D , s8.17cd

x4sEd =
i

Î2f1 − j0skRdg
S hs− nkd

− hs− nkd
D . s8.17dd

Hence, the relevant eigenchannel spinor harmonics are found
to be

Y1sE,nrd =
cossknr ·R/2d

Î2pf1 + j0skRdg
hsnkd, s8.18ad

Y2sE,nrd =
cossknr ·R/2d

Î2pf1 + j0skRdg
hs− nkd, s8.18bd
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Y3sE,nrd =
sinsknr ·R/2d

Î2pf1 − j0skRdg
hsnkd, s8.18cd

Y4sE,nrd =
sinsknr ·R/2d

Î2pf1 − j0skRdg
hs− nkd. s8.18dd

Once the eigenvaluess8.16ad, s8.16bd, s8.16cd, and
s8.16dd and the eigenchannel spinor harmonicss8.18ad,
s8.18bd, s8.18cd, ands8.18dd have been determined, with no
difficulty, from Eqs.s5.28d, s3.23d, s3.27d, ands5.35d–s5.37d,
one may derive explicit expressions for the 232 scattering
amplitude as well as for these particular differential and total
cross sections which are of interest. We do not present these
formulas here for they are quite long.

IX. CONCLUSIONS

In this paper, we have presented the zero-range potential
model for scattering of Dirac particles. There are two direc-
tions in which we plan to continue this work in the near
future. First, we are engaged in extending the formalism de-
veloped in this paper to bound-state problems. Such an ex-
tension will be interesting not only for its own sake, but also
because, in conjunction with the results of Sec. VI of the
present paper, it will offer the immediate possibility to carry
out perturbative calculations on photodetachment induced by
a weak time-harmonic electromagnetic field. Significant
progress towards achieving this goal has been already made,
and results, with applications, will be presented in a forth-
coming publication. Second, we plan to extend the ZRPM
for Dirac particles to become applicable to time-dependent
processes in external electromagnetic fields of arbitrary
strengths. In view of the fact that the nonrelativistic ZRPM is
frequently used for investigating processes in strong laser
fields, the need for such an extension is evident.

ACKNOWLEDGMENTS

Discussions with R. Augusiak are acknowledged. I thank
Dr. AM. Alhasan for commenting on the manuscript.

APPENDIX A: EQUIVALENCE OF TWO FORMS
OF OUTFLOW (OR INFLOW) ASYMPTOTIC

CONDITIONS

Let Js±dsE,r d obey the asymptotic conditions

lim
r→`

rfnr · a+ 7 «b+gJs±dsE,r d = 0 sA1d

fcf. Eqs.s2.14ad, s6.2ad, ands7.2adg. If the upperslowerd sign
in the square brackets is chosen, Eq.sA1d represents the
outflow sinflowd condition.

Operating on Eq.sA1d from the left with 7«−1nr ·a−
yields, after rearrangement,

lim
r→`

rfsnr · a−db+ 7 «−1snr · a−dsnr · a+dgJs±dsE,r d = 0.

sA2d

From the definitionss2.15d and from the well-knownf20g
properties of the Dirac matricesa andb, it follows that

snr · a±db7 = nr · a±, sA3ad

snr · a±dsnr · a7d = b±. sA3bd

Hence, we deduce that Eq.sA2d may be simplified to

lim
r→`

rfnr · a− 7 «−1b−gJs±dsE,r d = 0 sA4d

fcf. Eqs.s2.14bd, s6.2bd, ands7.2bdg.
To show that Eq.sA4d implies Eq.sA1d, one should pre-

multiply the former with7«nr ·a+ and simplify the result,
again making use of Eqs.sA3ad and sA3bd.

APPENDIX B: THE LIMITING CONDITIONS (2.18)
IN A TWO-COMPONENT FORM

We shall show that it is possible to transform the limiting
conditionss2.18d to a form very similar to one used in the
nonrelativistic theoryf1,13g. Let c+

s+dsE,r d andc−
s+dsE,r d de-

note the upper and the lower components of the function
s2.1d, respectively. Expressed in terms ofc±

s+dsE,r d, the lim-
iting conditionss2.18d are

lim
r→r n

fsI + kur − r nuKndc+
s+dsE,r d + i«−1ksr − r nd · sc−

s+dsE,r dg

= 0 sn = 1, . . . ,Nd. sB1d

On the other hand, it follows from the Dirac equations2.2d
that

c−
s+dsE,r d = − i«k−1s · = c+

s+dsE,r d sr Þ r n;n = 1, . . . ,Nd.

sB2d

Inserting this relationship into Eq.sB1d gives

lim
r→r n

hI + kur − r nuKn + fsr − r nd · sgss · = djc+
s+dsE,r d = 0

sn = 1, . . . ,Nd, sB3d

which, after exploiting properties of the Pauli matrices, may
be rewritten as

lim
r→r n

hI + kur − r nuKn + sr − r nd · I = + is · fsr − r nd 3 = gj

3c+
s+dsE,r d = 0 sn = 1, . . . ,Nd. sB4d

In the next step, we make use of the explicit form of
c+

s+dsE,r d resulting from Eqs. s2.1d, s2.4d, and s2.7bd.
Because

sr − r nd 3 = h0
s+dskur − r nud = 0, sB5d

we have

lim
r→r n

sr − r nd 3 = c+
s+dsE,r d = 0; sB6d

hence, it follows that Eq.sB4d may be replaced by

lim
r→r n

fI + kur − r nuKn + sr − r nd · I = gc+
s+dsE,r d = 0

sn = 1, . . . ,Nd. sB7d

If the matriceshKnj are simple multiplies of the unit 232
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matrix, in Eq.sB7d there is no mixing between components
of c+

s+dsE,r d and both these components satisfy limiting con-
ditions which, apart from unimportant notational differences,
are identical with those used in the nonrelativistic theoryfcf.
Eq. s2.5d in Ref. f13gg.

APPENDIX C: POSITIVE SEMIDEFINITENESS
OF THE MATRIX L A„E…

Let z be an arbitrary 2N-component column vector, com-
posed ofN two-component spinorshznj,

z = sz1
T
¯ zN

TdT. sC1d

Since, as it follows from Eqs.s2.31d ands3.33d, elements of
the matrixLAsEd may be rewritten in the form

fLAsEdgnn,n8n8sEd =
1

4p
dnn8R

4p

d2nre
iknr·sr n−r n8d, sC2d

employing Eq.sC1d one has

z†LAsEdz =
1

4p
o

n,n8=1

N

zn
†zn8R

4p

d2nre
iknr·sr n−r n8d. sC3d

If we define

tsE,nrd =
1

Î4p
o
n=1

N

e−iknr·r nzn, sC4d

Eq. sC3d may be cast into the form

z†LAsEdz =R
4p

d2nrt
†sE,nrdtsE,nrd ù 0. sC5d

EquationsC5d implies that the matrixLAsEd is at least posi-
tive semidefinite.

APPENDIX D: VALIDATION OF THE WEIGHTED
CLOSURE RELATIONS (4.5)

Assume that the Hermitian matrixLAsEd, defined in Eq.
s2.29d, is positive definite. Then, it may be written as

LAsEd = LA
1/2sEdLA

1/2sEd sD1d

with LA
1/2sEd being also Hermitian and positive definite. Op-

erating on Eq.s4.1d from the left with the matrixLA
−1/2sEd,

transforms this equation into

L̃HsEdx̃gsEd = lgsEdx̃gsEd, sD2d

with the Hermitian matrix

L̃HsEd = LA
−1/2sEdLHsEdLA

−1/2sEd sD3d

and with

x̃gsEd = LA
1/2sEdxgsEd. sD4d

EquationsD2d constitutes the standard Hermitian matrix ei-
genvalue problem; it results from Eqs.s4.4d andsD4d that all

its all eigenvectorshx̃gsEdj are orthonormal in the standard
sense,

x̃g
†sEdx̃g8sEd = dgg8. sD5d

For finite-dimensional Hermitian matrices we are working
here with, Eq.sD5d implies the closure relation

o
g=1

2N

x̃gsEdx̃g
†sEd = I sD6d

fjust observe that Eqs.sD5d and sD6d express, in alternative
ways, the fact that the modal matrix for the eigensystemsD2d
is unitaryg. Referring to the definitionsD4d, we may rewrite
Eq. sD6d in the form

LA
1/2sEdo

g=1

2N

xgsEdxg
†sEdLA

1/2sEd = I. sD7d

Operating on Eq.sD7d from the left with LA
1/2sEd and from

the right withLA
−1/2sEd gives

LAsEdo
g=1

2N

xgsEdxg
†sEd = I. sD8d

Similarly, acting on Eq.sD7d from the left withLA
−1/2sEd and

from the right withLA
1/2sEd, yields

o
g=1

2N

xgsEdxg
†sEdLAsEd = I. sD9d

Combining Eqs.sD8d and sD9d results in Eq.s4.5d.

APPENDIX E: SOME PARTICULAR CASES WHEN
THE EIGENSYSTEM (4.1) MAY BE SIMPLIFIED

In this appendix, we shall discuss briefly two particular
situations when it is possible to simplify the process of solv-
ing the eigensystems4.1d. In both cases, we shall be exploit-
ing the fact that, as it follows directly from Eq.s2.31d, the
weight matrixLAsEd may be written as the Kronecker prod-
uct

LAsEd = LA8sEd ^ I , sE1d

where theN3N matrix LA8sEd has elements

fLA8sEdgnn8 = dnn8 + j0skur n − r n8uds1 − dnn8d

sn,n8 = 1, . . . ,Nd. sE2d

1. “Scalar” zero-range potentials

If all zero-range potentials are “scalar,” i.e., such that the
matriceshKnj are simple multiples of the unit 232 matrix,

Kn = ûnI sE3d

fcf. Eq. s2.21dg, from Eq. s2.30d one has

LHsEd = LH8 sEd ^ I , sE4d

where theN3N matrix LH8 sEd has elements
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fLH8 sEdgnn8 = ûndnn8 − y0skur n − r n8uds1 − dnn8d

sn,n8 = 1, . . . ,Nd. sE5d

Consider theN3N eigensystem

LH8 sEdxg8sEd = lg8sEdLA8sEdxg8sEd, sE6d

with its eigenvectors orthonormalized according to

xg8
†sEdLA8sEdxg8

8 sEd = dgg8. sE7d

It is evident that iflg8sEd is some particular eigenvalue to the
systemsE6d and if xg8sEd is its associated eigenvector, then
lgsEd=lg8sEd is a doubly degeneratesat this moment, we
disregard all possible additional degeneracies caused by
other factorsd eigenvalue to the systems4.1d and its associ-
ated eigenvectors, orthonormal in the sense of Eq.s4.4d, may
be chosen to be

xg,1sEd = xg8sEd ^ S1

0
D, xg,2sEd = xg8sEd ^ S0

1
D . sE8d

2. Zero-range potentials with identical vector parts

The second situation we consider is that when all zero-
range potentials have identical vector parts, i.e.,

Kn = ûnI + k · s sE9d

sone may think about the target composed of such potentials
as being, in some sense, “completely polarized”d. Then the
matrix LHsEd is

LHsEd = LH8 sEd ^ I + I8 ^ k · s, sE10d

whereLH8 sEd is defined by Eq.sE5d and I8 is the unitN3N
matrix. Since

k · shs±nkd = ± khs±nkd, sE11d

a spectrum of the 2N32N eigensystems4.1d is the union of
spectra of the twoN3N eigensystems

fLH8 sEd ± kI8gxg,±9 sEd = lg,±9 sEdLA8sEdxg,±9 sEd. sE12d

Provided the eigenvectors in Eq.sE12d have been orthonor-
malized so that

xg,±9† sEdLA8sEdxg8,±
9 sEd = dgg8, sE13d

eigenvectors to the systems4.1d, orthonormal in accordance
with Eq. s4.4d, are

xg,±sEd = xg,±9 sEd ^ hs±nkd. sE14d

APPENDIX F: ORTHONORMALITY
OF THE EIGENCHANNEL SPINOR HARMONICS

Consider the integral

Igg8sEd =R
4p

d2nrYg
†sE,nrdYg8sE,nrd, sF1d

which is the scalar product of two eigenchannel spinor har-
monics over the unit sphere. Making explicit use of the defi-
nition s4.15d, we transform Eq.sF1d into

Igg8sEd =
1

4p
o

n,n8=1

N

jng
† sEdjn8g8sEdR

4p

d2nre
iknr·sr n−r n8d,

sF2d

and further, after exploiting Eqs.s3.34d and s2.31d, into

Igg8sEd = xg
†sEdLAsEdxg8sEd. sF3d

The right-hand side of Eq.sF3d may be simplified with the
aid of Eq.s4.4d; one obtains

Igg8sEd = dgg8, sF4d

which means that the eigenchannel spinor harmonicss4.15d
form an orthonormal set on the unit sphere.

APPENDIX G: AN ALTERNATIVE MODEL OF ZERO-
RANGE POTENTIALS FOR DIRAC PARTICLES

Assume that interactions between a Dirac particle andN
point targets are described by the following limiting condi-
tions:

lim
r→r n

fisr − r nd · a− + «−1sur − r nuK̄n + k−1b−dgC̄sE,r d = 0

sn = 1, . . . ,Nd sG1d

imposed on the particle’s wave functionC̄sE,r d at target
locations; here

K̄n = S0 0

0 Kn
D . sG2d

sThroughout this appendix, all objectswithout overlines are
defined as in the main text.d Let

F̄sE,r d = S− i«−1k−1s · = f̄−sE,r d

f̄−sE,r d
D sG3d

be some particular solution to the free-particle Dirac equa-
tion in R3. If we look for these wave functions excited by the
wave sG3d which are of the form

C̄s±dsE,r d = F̄sE,r d + o
n=1

N

C̄n
s±dsE,r d, sG4d

with

C̄n
s±dsE,r d = S±«−1h1

s±dskur − r nudmnsr d · sx̄n
s±dsEd

h0
s±dskur − r nudx̄n

s±dsEd
D

sG5d
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fcf. Eqs. s2.7bd and s6.3dg, then, proceeding as in the main
text, we find that the spinor coefficientshx̄n

s±dsEdj obey

fKn ± iI gx̄n
s±dsEd + o

n8=1

sn8Þnd

N

h0
s±dskur n − r n8udx̄n8

s±dsEd = − f̄−sE,r nd

sn = 1, . . . ,Nd. sG6d

Solving this system by the method presented in Sec. V A,
one eventually arrives at

C̄s±dsE,r d = F̄sE,r d + o
g=1

2N

e±idgsEd sindgsEd

3F o
n8=1

N

jn8g
† sEdf̄−sE,r n8dGQ̄g

s±dsE,r d,

sG7d

with

Q̄g
s±dsE,r d = S±«−1u1g

s±dsE,r d
u0g

s±dsE,r d
D . sG8d

Relevant eigenchannels are

X̄gsE,r d =ÎksE − mc2d
4pc2"2 o

n=1

N FSi«−1y1skur − r nudmnsr d · sjngsEd
y0skur − r nudjngsEd

D − cotdgsEdSi«−1j1skur − r nudmnsr d · sjngsEd
j0skur − r nudjngsEd

DG . sG9d

Asymptotically, they behave as

X̄gsE,r d ,
r→`

sgnsEdÎ E

2c2"2k

1

i sindgsEdFe−ikr−idgsEd

r

3ȲgsE,− nrd −
eikr+idgsEd

r
ȲgsE,nrdG , sG10d

with

ȲgsE,nrd =
1

Î1 + «−2S«−1nr · sYgsE,nrd
YgsE,nrd

D sG11d

being orthonormal bispinor eigenchannel harmonics for the
problem at hand.

If the exciting wavesG3d is the spin-polarized monochro-
matic plane waves3.1d, the wave functionssG7d become

C̄s±dsE,n0,n0,r d = eikn0·rUsE,n0,n0d

+Î 4p

1 + «−2o
g=1

2N

e±idgsEd sindgsEd

3 Ȳg
†sE,n0dUsE,n0,n0dQ̄g

s±dsE,r d.

sG12d

Asymptotically, one has

C̄s±dsE,n0,n0,r d ,
r→`Fasymp

r→`
eikn0·rI +

e±ikr

r

3F̄ s±dsE,nr,n0dGUsE,n0,n0d,

sG13d

with the far-field matrix amplitudes

F̄ s±dsE,nr,n0d

=
4p

k
o
g=1

2N

e±idgsEd sindgsEdȲgsE, ± nrdȲg
†sE,n0d.

sG14d

The differential cross section for scattering of a spin-
polarized plane waves3.1d is

d2Q̄sE,n0,nr,n0d
d2nr

= TrfFs+dsE,nr,n0d%̄sn0,n0dFs+d†sE,nr,n0dg,

sG15d

where

%̄sn0,n0d = n0 · s%sn0dn0 · s. sG16d

Its average over all orientations ofn0 is

d2Q̄sE,nr,n0d
d2nr

=
1

2
TrfFs+dsE,nr,n0dFs+d†sE,nr,n0dg

sG17d

and is identical with the averaged differential cross section
s3.27d. The total cross section, the total cross section aver-
aged overn0, and the total cross section averaged both over
n0 and overn0 are given by

Q̄sE,n0,n0d =
16p2

k2 o
g=1

2N

sin2 dgsEd

3Yg
†sE,n0d%̄sn0,n0dYgsE,n0d, sG18d
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Q̄sE,n0d =
8p2

k2 o
g=1

2N

sin2 dgsEdYg
†sE,n0dYgsE,n0d,

sG19d

and

Q̄sEd =
2p

k2 o
g=1

2N

sin2 dgsEd, sG20d

respectively. Notice that the averaged total cross sections
sG19d and sG20d are identical with these in Eqs.s5.36d and
s5.37d, respectively, but, in general, the analogous statement
is not true for the cross sectionssG18d and s5.35d.

Finally, the Green functions, satisfying

f− ic"a · = + mc2b − EI gḠ s±dsE,r ,r 8d = ds3dsr − r 8dI

sr Þ r n;n = 1, . . . ,Nd sG21d

subject to the asymptotic conditions

lim
r→`

rfnr · a+ 7 «b+gḠ s±dsE,r ,r 8d = 0 sG22ad

or equivalently

lim
r→`

rfnr · a− 7 «−1b−gḠ s±dsE,r ,r 8d = 0, sG22bd

and to the “interaction” limiting conditions

lim
r→r n

fisr − r nd · a− + «−1sur − r nuK̄n + k−1b−dgḠ s±dsE,r ,r 8d

= 0

sn = 1, . . . ,Nd, sG23d

sought in the forms

Ḡ s±dsE,r ,r 8d = G 0
s±dsE,r ,r 8d + o

n=1

N

Ḡ n
s±dsE,r ,r 8d,

sG24d

with

Ḡ n
s±dsE,r ,r 8d =

k

4pc2"2S±c"kh1
s±dskur − r nudmnsr d · sḠn1

s±dsE,r 8d ±c"kh1
s±dskur − r nudmnsr d · sḠn0

s±dsE,r 8d

sE − mc2dh0
s±dskur − r nudḠn1

s±dsE,r 8d sE − mc2dh0
s±dskur − r nudḠn0

s±dsE,r 8d
D sn = 1, . . . ,Nd,

sG25d

are found to be

Ḡ s±dsE,r ,r 8d = G 0
s±dsE,r ,r 8d +

ksE − mc2d
4pc2"2 o

g=1

2N

e±idgsEd sindgsEdQ̄g
s±dsE,r dQ̄g

s7d†sE,r 8d. sG26d
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