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Zero-range potentials for Dirac particles: Scattering and related continuum problems
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The zero-range potential model, widely used in nonrelativistic quantum mechanics, is extended to con-
tinuum problems involving Dirac particles. A bispinor wave function of a Dirac particle scattered from a
system of zero-range potentials is sought in the form of an incident wave superposed with waves emerging
from points where targets are located. Interactions between the particle and individual targets are described by
imposing certain limiting conditions, relating linearly upper and lower components of the wave function at
target locations. This yields an inhomogeneous algebraic system for superposition coefficients appearing in the
expression for the wave function. After preliminary considerations, admitting a quite general form of the
incident wave, the case of the monochromatic plane-wave scattering is considered in detail. Expressions for
2X 2 and 4X 4 matrix scattering amplitudes and scattering kernels, as well as for various kinds of differential
and total cross sections, are given. An eigenchannel formalism for the model is developed in the manner
analogous to that presented in the author’s recent WRrkSzmytkowski, Ann. PhygN.Y.) 311, 503(2004]
on scattering from short-range potentials. Eigenchannel representations of the scattering wave function, of a
“final-state” wave function for photodetachment, as well as of outgoing and ingoing matrix Green functions,
are derived. Formulas for matrix scattering amplitudes, scattering kernels, and cross sections expressed in
terms of eigenphase shifts and eigenchannel spinor harmonics are presented. A possibility to formulate the
zero-range potential model for Dirac particles in an alternative way is also discussed.
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[. INTRODUCTION molecules. It is therefore somewhat surprising that, after an
] . extensive search of the literature, we have found only one

~ Among the analytically soluble models used in nonrela-rejevant publication: in a paper published in 1977, Pere'man
tivistic quantum mechanics, one of particularly wide appli-[15], extending the nonrelativistic workl0], discussed a
cability is the zero-range potential mod@RPM). Accord-  Dirac particle bound in a field of a single zero-range poten-
ing to Demkov and Ostrovskpl], this model was first used tial and perturbed by a homogeneous electric fjalgl.
in 1934 in atomic physics by Fermi2], in a paper concern- In the ZRPM for Schrédinger particles, interactions be-
ing perturbation of spectral lines, and shortly thereafter bytween a particle and pointlike targdiero-range potentials
the same authdi3] in nuclear physics, in a study of neutron are modeled by imposing suitable limiting conditions on the
scattering from chemically bound protons. At the same timeparticle’s wave function at points where the targets are lo-
similar ideas appeared independently in a paper by Thomagated; these conditions relate linearly the wave function and
[4] on the structure of B Until the 1960s, the model was its spatial derivativecf. Eqg. (2.5 in Ref. [13]]. Conditions
used primarily in nuclear physids]; it found also applica- used by Pere'mafil5] for a Dirac particle were of the same
tions in the theory of multiple scattering of scalar wayek kind. Guided by experience gained during our earlier studies
and in quantum statistical mechanj@. The wide use of the ©n the operator formulation of the-matrix method for the
ZRPM in nonrelativistic atomic and molecular physics Dirac equation[17], in the present paper we propose the
started in 1964, after publications of DemkE8], Smirnov ZRPM for Dirac particles differing from that suggested in

and Firso[9], and Demkov and Drukard0]. Comprehen- Ref.[15]. The difference lies in the fact that we model inter-

X ; 1 ._actions between a Dirac particle and pointlike targets by us-
sive p_resentatlon_s_of_ the me_thod and its numerous apphc"%g matrix limiting conditions, relating linearlyupper and
tions in nonrelativistic atomic and molecular theory, with

- . . . X lower componentsf the particle’s bispinor wave function at
b|b||ografph|e3 .covhermg the peﬂotc)i throuah thedmc')d'lgmlfthe targets’ locations. The formalism developed in this work
may be found in the monograph by Demkov and Ostrovskys »imeq at dealing with scattering and related continuum
[1] and in the review by Drukarey1l]. Representative

. ; ) ; . roblems. Its extension to bound-state problems, as well as
‘[’\102”%0” the subject published since 1980 are listed in Refs o jications to specific atomic and molecular processes,

Th h decades h id hof i will be presented in later publications.
e past three decades have seen a rapid growth of Inter- e ‘g cture of the paper is as follows. In Sec. Il, we

est in the relativistic effects in atomic and molecular physicsmtroduce the ZRPM for an unbound Dirac particle, prescrib-

[14.]' Consequently, it seems qui;e_ ”?‘“ra' to consider applil—ng a form of its wave function and subjecting thié function
cations of the ZRPM in the relativistic theory of atoms andto the aforementioned particular limiting conditions at points
where zero-range potentials are located. In Sec. Ill, we con-

sider the problem of scattering of an initially parallel mo-

*Email address: radek@mif.pg.gda.pl noenergetic beam of spin-polarized Dirac particles from a
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system of zero-range potentials. In particular, we derive gen- The first component of the right-hand side of Eg.1),
eral expressions for matrix scattering amplitudes and scattere., ®(E,r), is an incident wave; it satisfies the free-particle
ing kernels, as well as for various kinds of differential andDirac equation everywhere iR?,

total cross sections of interest. In Sec. IV, we define an aux- . ,

iliary generalized matrix eigenproblem and use its solutions [-icha- V +mcB-ETIPEN=0 (k).
to introduce eigenchannels, eigenphase shifts, and eigen- (2.3
channel bispinor and spinor harmonics in the manner anal
gous to that presented in Refd.3,18,19. In Sec. VA, we . : .

return to the general continuum problem discussed earlier ifp any regular solution of Eq(2.3).] It is evident from Eq.
Sec. Il. Exploiting the concepts and results of Sec. IV, We(2'3) that ®(E,r) may be expressed as
split the particle’s wave function into two parts, one for &4 (E,r)

which the target is ideally transparent and the remainder, OEN=| -ich (2.4)
which is a genuine scattering function. Then, in Sec. V B, the ' o - Vo (Er)| '
results of Sec. V A are applied to the monochromatic plane- E+mc

wave scattering problem of Sec. lll. Explicit expressions forhere o is the vector composed of the Pauli matrices, while

mat_rix scattering _amplitud_es and scatter_ing_ kernels i_n termg,e two-component spinor functiaf, (E,r) satisfies the free
of eigenphase shifts and eigenchannel bispinor or spinor hag|ain-Gordon equation

monics are obtained in Sec. V C. In Sec. V D, analogous ” 2o S .

results are derived for three kinds of total cross sections. [~ c?h?V2+ (M) - E?p,(E,r) =0 (r e RY). (2.5
Keeping in view planned applications of the relativistic . +) .
ZRPM to atomic and molecular photodetachment problems, Each_of the funct_lon{;\Ifn (E.n}, st_an_dlng under the sum
in Sec. VI we find a so-called “final-state” wave function, O" the right-hand side of Eq2.1), satisfies the free-particle

. ) 5 !
which asymptotically behaves as a plane wave superpos#IraC equation everywhere iR” exceptat oneof the points

with a radially ingoing wave. Then, in Sec. VII we construct b
continuum outgoing and ingoing matrix Green functions for [-icha -V +mEB-E7IWWME)=0 (r#r,)
a Dirac particle in the presence of a system of zero-range

T‘I’hroughout this section, we shall be admitting tHdE,r)

potentials. Two brief examples are presented in Sec. VIII. We (2.6
conclude in Sec. IX giving there an outlook on some plannedind is explicitly given by
extensions .of the formalism d(_aveloped in.this wc_)rk. The pa- (e K|
per ends with severgl A_ppendlx§§. In parpc_ular, in Appgndm TH(E,T) = }( Xn (E) )e n 273
A we transform the limiting conditions, built in the definition " K\ —isk oy (E) -V 1y
of our ZRPM for Dirac particles, to a form resembling coun- )
terpart conditions underlying the nonrelativistic ZRPM, OF eduivalently,
while in Appendix G we prqvide a snapshot look at still o _( (K - ) xS(E) )
another ZRPM for Dirac particles. n (E,;r)= ah(1+)(k|r ) 'UXfr)(E) ,
(2.7b
II. DEFINITION OF THE MODEL AND GENERAL Where{h(+) (2)} [and {h(()_)or 1(2)}' to be used latdrare de-

CONSIDERATIONS . L oorl ; . .
fined in terms of the spherical Hankel functions of the first

We are interested in the situation in which a Dirac particleand second kindg21] as
of rest massn and fixed real energ§ (such thatE|>md)

1 +iz
scatters elastically from a system NfE=1 pointlike targets hf?(z) =+ ih(()Z)(z) -2 (2.89
(zero-range potentiaglslocated at the pointdr,}. In the z
model proposed in this work, the time-independent four-yng
component wave functio®™(E,r) describing this process . N,
is assumed to have the following form: h(f)(z) —_ hgz)(z) = 6_7 + i?. (2.8b
N
VEE,r) =D(E,r) + >, ¥(Er) (2.1)  In Egs.(2.78 and(2.7b), and also hereafter,
n=1 —
VE? - (mc?)?
and to satisfy the Dirac equation k= Sgr(E)T (2.9

—i . —F9 (+) -
[~icha: V +mcB-E7 JWH(Er) =0 is the particle’'s wave numbdpbserve that it may assume

positive as well as negative valyes

r#rpyn=1,...N) (2.2
. . E-mdc
everywhere inR3 except at the points where the targets are =\ Erme’ (2.10
located In Eq. (2.2), @ and B are standard % 4 Dirac ma-
trices[20] and.7 denotes the unit 4 4 matrix. M(r) is the unit vector along the direction &f-r,),
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po(r) = |r :r”|, (2.11)

while  x,, )(E) is some energy-dependent two-component

spinor to be determined later.
Since for larger =|r| it holds that

r—oo rikr
hg (Kr =) ~ = e, (2.123
r—oo *ikr .
(Kl =ry) ~ ——e™knn, (2.12b
and
r—oo
Mo(r) ~ 1 (2.13

wheren,=r/r, from Eq. (2.7b one deduces that asymptoti-
cally the function\lfff)(E,r) satisfies the condition which
may be written as

,""l rin, - @, — B, ]V (E,r) =0 (2.143
or equivalently(cf. Appendix A
rlinl rin,-a_-e B JPY(Er)=0, (2.14b
with
@, =B.a, PB.=5(7 ). (2.15

On the other hand, it follows from E@2.7b that for larger

the radial component of the current density
iSU(E ) =c¥ITE ) a¥P(E,r) (2.16

(the dagger denotes the matrix Hermitian conjugatisn

i ED ~ k2 S ENE, 217

which is non-negative irrespective of the signEfConse-
guently, the conditiong2.14g and (2.14b are outflow (or

radiation) conditions[22] and in the asymptotic zone each of
the functions{\Iff)(E,r)}, and thus also their superposition

standing on the right-hand side of Eg.1), describes a par-
ticular mode ofescapeof the Dirac particle.

To make our model complete, we have to build into |t
interactions between the scattered Dirac particle and indi-

vidual targets. We do this by imposing the following limiting
conditions:

lim [i(r =) - e, + e(|r =1 7+ KB IPO(E ) =0

r—ry

(n=1,...N) (2.18
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B 70 = (2.19
and are defined in terms of>22 matrices{Kn} as
T = (K“ O), (2.20
0 0

with zeros denoting X 2 null matrices. In the Pauli basis
(consisting of the unit X 2 matrix| and the Pauli vectos),
the matricegK,} have the representations

Kn=2,l + K- o, (2.2

where
0= 3THK,], (2.223
Ko = 3T oK) (2.22h

Henceforth, we shall be assuming that the matriggg are
Hermitian. It is then evident from Eq$2.229 and (2.22b
that the scalar$x,} and the vector$k,} are real. Although,
for brevity, hereafter we shall not be marking this explicitly,
we shall be admitting thdK,}, thus alsd{x,,} and{s,}, may
be energy-dependent.

It remains to explain how the splno{;(")(E)} in terms
of which the outgoing waveSP (E r)} have been defined
in Egs. (2.79 and (2.7b, may be determined. Substituting
Eqg. (2.1 into Eq. (2.18), after making use of Eq92.4),
(2.7b, (2.83, (2.8, and (2.20, we find that{y."(E)} are
solutions of the following linear algebraic system:

N
Ko+ il B+ 2 (K= ry DX (E)
n’=1

(n' #n)
=-¢.(Er,) (n=1,

Arranglng{xn )(E)} and{¢.(E,r,)} into 2N-component col-
umn vectors

..N). (2.23

a(E) = (TE) - xWTE)T (2.24

and
b(E) = (SLE,ry) - dL(E ), (2.29

respectively, and introducing aN2<2N complex matrix
L(E) with elements

nvn v (E {[Kn]w’ + iaw’}5nn’ + hg)+)(k|rn - rn’|)

X8, (1=6y) (NN =1,...N;p,v' =1,2),

(2.26)

we may rewrite the systerf2.23 in the compact form

L(E)a™(E)=-b(E),

convenient for later purposes.

(2.27)

at the points where the targets are located; in Appendix B, we Apart from the matrix_(E), in considerations carried out
show that these conditions are natural generalizations of thié later sections, use will be made of the matrices

limiting conditions used in the nonrelativistic ZRPf. Eq.
(2.5) of Ref.[13]]. The 4X 4 matrices.7,} appearing in Eq.
(2.18 possess the property

Lu(E) = 3[L(E) + L(E)] (2.28

and
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La(E) = 3 [L(E) - LY(E)] (2.29

being, respectively, the Hermitian and anti-Hermitian parts

of L(E). Elements of these matrices are given by

[LH(E)]ny,n’u’ = [Kn]w' nn’ — yo(k|rn - rn’|)5w’(l - 5nn')

(n,n"=1,...N;v,v =1,2 (2.30

and

[LA(E)]nv,n’u’ = 5uv'5nn’ + jO(k|rn - rn’|)5vv’(1 - 5nn’)

(n,n"=1,...N;p,v' =1,2), (2.31)
with

. sinz cosz

jo@= 5 Yo(2) = - 5 (2.32

PHYSICAL REVIEW A 71, 052708(2009

N
1 )
f(+>(Ea VO!nrvnO) = EE e_lknr.rnXﬁ)(EvVOvnO)v (37)
n=1

is the bispinor scattering amplitude. The spinéﬁ”(E,

vy,Np)} appearing in Eq(3.7) are solutions to the system
(2.23, with ¢,(E,r,) specified to be

¢+(Ea VOanIrn) = eiknolrnn(vo)- (38)

B. Matrix scattering amplitudes and matrix scattering
kernels

We define the X2 matrix scattering amplitud&™)(E,
n,,Ng) through the relationship

f(+)(E1 V01nr1n0) = F(+)(E1nryn0)7/(”0)- (39)

In terms of F*(E,n,,ny), the 4X 4 matrix scattering ampli-
tude is defined as

being, respectively, the spherical Bessel and Neumann func-

tions of order zerd21].

Ill. PLANE-WAVE SCATTERING

A. Preliminaries

Let the incoming waveg2.4) be a monochromatic spin-

polarized Dirac plane wave propagating in the directign

q)(E,Vo,no,r) = eikno'rZ/{(E, Vo,no), (31)
with
U(E, v n)=< 7o) ) (3.2
o0 eng - ornag) ) |

7 M(E,n,,np)
1
T 1+¢?

><< F®(E,n,,no) eFP(E,n;,nong - o )
en, - oFY(E,n,,ng) €%n, - oFP(E,n;,ng)ng -/’
(3.10

It is readily verifiable that it holds that
f(+)(E1 VOa nr1 nO) = ﬁ-‘-)(Ev nrvno)u(Ev VO! nO) . (3 11)

[Observe that while E(3.11) follows from Eq.(3.10, the

In the definition(3.2), ¥y stands for a unit vector, describing
the initial particle’s spin polarization in its rest frame, and
7(vp) IS a two-component spinor such that

converse isiot true]
Having defined the matrix scattering amplitudes, we in-
troduce 2< 2 and 4x 4 matrix scattering kernels through the

vy on(vo) = + 1(wy), (3.3  relationships
normalized to unity in the sense of . ik .,
y g )(Evnrvno) = 5(2)(nr - no)l + ZTF( )(Evnrvno)
7' (vo) p(vg) = 1. (3.9

(3.12
Then, it follows from Egs(2.1), (2.7b), (2.123, (2.12h, and
(2.13 that asymptotically the wave function?™(E, and
vy,Ng, 1) excited by the wavé3.1) is of the form ik
21

S OEN.NG) = 82N, —ng)T + —7 D(En.ng),

—00

r
WO(E, vo,Ng,r) ~ asympe o™ 4(E, vo,n
(E,v5,no,1) rzw pe (E,v0,ng) (3.13

ikr

+ e—f“)(E,Vo,nnno), (3.5)  respectively, wheré'?(n—n’) is the Dirac delta function on
r the unit sphere. Since
where [ amikr ikr
. 2mi| € e
asympeo” = ST =—52(n, +ng) - —52(n, = ng) |,
f(+)(E ) ( f("’)(E,]}O'nr,no) ) (3 6) r—oo k r r
I 1n 1n = y .
Yool = o, - o f(E, wo,n;,No) (3.14

with from Egs.(3.5), (3.1, (3.11), and(3.13 we infer that
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PO(E, vo.no,r)rfcz%i[ e"r‘kr 82(n, +ngp).7 e(wo) = 7(v) 7'(wo) = 3[1 + g 0] (3.24

is the 2X 2 spin density matrix for the incident wave. Since
eikr B

- T}/ﬁ(*—)(E,nr,no):|u(E,V0,n0).
(3.195

Similarly, if we definez//f)(E,vo,no,r) to be the upper com-

é d2VoQ(V0) =2l, (325)
A

a differential cross section averaged over all orientations of

ponent of ¥ )(E, vg,ng,r), vor
$(+)(E VO no r) dZQ(EanrvnO) - i% dzvosz(E!VOInrano)
‘P(+)(E1V01n0!r) :< . — ’ ' (+’) , )! dznl’ 477 41 dznr '
~ieko - V y(E, vp,ng,1) )
(3.16 (329
and exploit the asymptotic relatiof3.14), from Egs.(3.5), is given by
3.1), (3.2, (3.6), (3.9), and(3.12 we obtain d’Q(E,n,, 1
(30, 32,04 )r ( 2)”« Q(dz:—r nO)=ETr[F(”(E,nr.no)F“”(E,nr,no)].
R 2w | e r
Evonor) ~ T[Té(z)(nr +ng)l (3.27)

eikr

—Ts”(E,nr,no)}n(:zo). (317

D. Total cross sections
Three kinds of total cross sections will be considered in

this work. The first one is a total cross section for a fixed

The angular distribution of scattered particles in thegirection of incidencen, and a fixed initial spin orientation
asymptotic zone may be characterized by a differential crosg, defined as

section defined as

dZQ(E-VOannnO) — lim rzjsca(EVO-nO:r)
dznr r—oo jinC(E! Vo,no,r) '

C. Differential cross sections

d2 E, b 1
Q(E,wo,n) =P dn, QE.von, nO)-

2
(3.18 an d’n, (3.29

The second total cross section of interest is an average of one

where defined in Eq(3.28 over all initial spin orientations,

Jscal Es¥0,No, 1) = Cq’;rca{E! vo,No, 1N - W of E,v,N, 1),

1
(3.19 Q(E,ng) = e d?voQ(E, vo,ng). (3.29a
41
with .
® It follows from Eq.(3.26) that it may be also found from the
Vool E,v0,n0,1) = W(E, w,ng, 1) = P(E, wo,Ng,T ), formula
(3.20 )
d“Q(E,n,,ng)
_ 2, r

is the radial current density in the scattered wave, while Q(E.ng) = dn, d?n, ) (3.29b

A

i = T . =
Jinc(E,v0.M0,1) = G (E, v0,10,1 )N - (B, w,no. 1) = 2Ce with the integrand given by E¢3.27). Finally, the third kind

(3.21) of the total cross section we shall be interested in is obtained
is the current density in the incident plane wa8el) [on the by averaging one defined in E@®.299 over all directions of

right-hand side of Eq(3.21), use has been made of the nor- Incidence,
malization condition (3.4]. On combining Egs. 1
(3.18—3.21), (3.5), and(3.6), one obtains QB = d’neQ(E,no). (3.30
TJ 4n
d’Q(E, ¥5,1;,No)
% = fNE, wo,n,,ng) I (E, wg,1;,N), It seems worthwhile to note that the cross sectidr28
' may be expressed as
(3.22
47
and further, after exploiting E43.9), Q(E, wo,ng) = Fa“”(E, vo,Ng)La(E)a™(E, wp,ng).
dZQ(EIV ln !n ) + +
— g = TIFYEN.noe(r)F(En,no)], (331
' 3.3 Here a®(E,vy,no) is the N-component column vector
(3.23 composed of the spinon{s(ﬁf)(E,vO,no)} [cf. Eq.(2.24] and
where LA(E) has been defined in E(R.29. To prove the validity of
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Eq. (3.3, we combine the definitio(B.28 with Egs.(3.22
and (3.7), which yields

N
1
Q(E,Vo,no):k_z > Xﬁ)T(E,Vo.no)X::r)(E,Vo,no)

nn'=1

X 3@ d?n, &) (3.32
4ar
Applying the well-known formula
35 e ™) = aqjo(Klr = r'|) (3.33
A

to the integral on the right-hand side of H8.32 gives

é dznreiknr-(rn—rnr) = 471'[é\nn’ + jO(k|rn - rn’|)(1 - 5nn’)]-
A7

(3.39
Hence, after invoking Eq2.31), one arrives at Eq3.31.

IV. EIGENCHANNELS FOR SYSTEMS OF ZERO-RANGE
SCATTERERS

A. An auxiliary matrix eigenproblem

Consider an auxiliary weighted eigenproblem
Lu(E)x(E) = A (E)LA(E)X(E), (4.1
with the weight matrixL,(E) defined in Eq.(2.29; in Eq.

(4.1, \,(E) is an eigenvalue and,(E) is an associated ei-
genvector. We already know that both matrices appearing i
the problem(4.1) are Hermitian; moreover, it is proved in

Appendix C thatL(E) is at least positive semidefinitdf

PHYSICAL REVIEW A 71, 052708(2009

X(ELAEX,(E)=0 [N\(E) #Ap(B)]. (4.2

It is always possible to choose eigenvectors associated with
degenerate eigenvalu@bthere are anyso that the orthogo-
nality relation(4.2) holds for all eigenvectors. If, in addition,
the eigenvector§x,(E)} are normalized to unity in the sense
of

X(E)La(E)X,(E) =1,

then one has the weighted orthonormality relation

(4.3

X(E)LAE)X,(E) = 8,,,, (4.4)

which will play an important role in later considerations.
Finally, the Hermiticity ofL(E) andLA(E) implies that the
eigenvectorgx,(E)} form a complete set; the corresponding
closure relation, derived in Appendix D, is

2N 2N
2 X EXUEILAE) = LA(E) X x(E)X(E) =1, (4.5)
y=1 =1

wherel is the unit N X 2N matrix. The case when the matrix
LA(E) is positive semidefinite may be treated as a limiting
case ofLA(E) positive definite.

For some systems of zero-range potentials, due to their
inherent geometrical or “dynamical” symmetries, the prob-
lem of solving Eq(4.1) may appear to be reducible to that of
solving several lower-dimensional eigensystems. Two ex-
amples of such situations, being consequences of particular
forms of the “interaction” matrice$K,}, are considered in
Appendix E.

B. Eigenchannels, eigenphase shifts, eigenchannel bispinor and
n spinor harmonics

Let us express the eigenvectdrs(E)} in terms of two-

LA(E) is strictly positive definite, then, following a routine component spinoré, (E)},

procedure, it may be shown that alNZigenvalues to the
problem(4.1) are real and that eigenvectors associated with

different eigenvalues are orthogonal in the sense of

x(E) = (&1,(E) -+ &, ().
With these spinors, we defindN2eigenchannels

(4.6)

Jo(Klr = 1) &n(E)

. /k<E+mc2>“{( Yo(KIr =) éq,(E) ) ( )}
GED=N g 2 | Nieyadr —rounn) - ot® ) N isislr - rouar) - ot®) | &7

where

cosz sinz

. sinz cosz
(@)= -

2 yl(z):_T 2 (4.9

eigenchannels satisfy the free-particle Dirac equation every-
where inR2 except at the pointfr .},

[-icha- V +mEB-E7 X (Er)=0

(r#ry;n=1,...N) (4.9

are, respectively, spherical Bessel and Neumann functions of

order 1[21]. [The factor in front of the sum in Eq4.7) has  [cf. Eqg. (2.2)]. With the aid of Eqs(4.1), (4.6), (2.30, and
been introduced to enforce compatibility of the asymptotic(2.31), it is also readily verifiable that at the poinfs,} the
formula (4.13 with Eq. (7.29 of Ref.[18].] Evidently, the eigenchannels obey the limiting conditions
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im [i(r =ry) - @, +s(|r —r [ 7+ K B.)IX(Er)=0 V. APPLICATIONS OF EIGENCHANNELS AND RELATED
r—ry OBJECTS IN SCATTERING PROBLEMS
(n=1,...N) (4.10 A. Scattering wave function: General case
[cf. Eq.(2.18)]. Since the eigenchannel vectors form the complete set, we

Introducing realeigenphase shiftselated to the redicf. ~ may use them as a basis for expanding the veatd(E)
the discussion preceding E@.2)] eigenvalues of the system defined in Eq.(2.24),

(4.2) through 2N
*(E) = ) ,
\,(E) = - cot5,(E), (4.10) a®(E) %ay/ (E)x, (E). (5.1)
Y=
we may rewrite Eq(4.7) in the form Substituting this expansion into E.27), making use of the
fact that
_ E+mé 1 .
BN ==sgrB) ) ;55— 58 L(E) = Ly(E) +iLA(E), (5.2
. and exploiting the eigenequatid4.1), we find
.S L LD Ploting the eigenequaded. 4
skl ) _ .
1\ IeK o, (B) -V Ir=rl S Dy (B) + I ELAEX, () =-bE). (5.3
(412) y'=1
Making in either of Eqs(4.7) or (4.12 the limiting passage Premultiplying Eq.(5.3) with x!(E) and using the weighted
r—oo, we arrive at orthonormality relatior{4.4) yields the expansion coefficient
a™(E) in the form
oo \/T 1 [ ikr-is () v L
X (E,r) ~ E —
HED ~ sgnB)\ o2z o 56 ; a(7+)(E):_7\ (E)Hx;(E)b(E). (5.4
jkr+i6.(E) y
XY ,(E,—n;) - . V(En) |, (4.13 Substituting this back into Ed5.1) gives
2N
where avE)=-2 [x}(E)b(E)]x,(E) (5.53
1 MJ(E) +i
N
V(En,)= ;22 e—ikn,-rn< &ny(E) ) or, equivalently, in terms of the eigenphase shifts,
V4mr(1+e%)n=1 en, - ‘Tfny(E) 2N
(4.1 a®(E) = 2 €79 sin 5 (E)X(E)b(E)]x,(E).

y=1

are eigenchannel bispinor harmonicsDefining two- (5.5b)
componenteigenchannel spinor harmonics '

\ Hence, for the spinor components af’(E) we have

1 r 2N N
Y (E,n,) = —>, e kg, (E), (4.19 . o
T Nampn v XT(E) =2 €5Fsins(B)| X & (E)pu(Ery) | &,(E).
=1 n'=1
we may rewrite the definitiori4.14) in the following more (5.6)
compact form: '

Combining Egs(2.1), (2.7b, and(5.6) results in the follow-

1 Y,(E,ny) ) ing expression for the total wave function induced by the
E,n)=——— 4 . 4.16
VEn) V1 + 82<snr oY (E,n,) 410 wave(2.4),

2N
In Appendix F, we show that the spinor harmonigs15 \If(")(E r)=®(E,r) + 2 é%®sin 5.(E)
form an orthonormal set on the unit sphere, i.e., it holds that ’ ' 4

y=1
N
394 P YYEN)Y (En)=6,,. (417 x| 2 & EgEry) |00ED, (5.7
4 n'=1
Combining this with Eq.(4.16), we see that the bispinor where
harmonics are also orthonormal, )
0W(E r):( b0y (E.1) ) (5.8
VT \zedl)(E) )

3€ &, VIE )Y, (En)=3,,. (4.18
47 with
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N
0, (E.r) = nzl hS(KIr =1 o) ,(E) (5.9

and

N
H(fY)(E’r) = E hg.i)(k“ - rn|)ﬂn(r) ) Ufny(E). (510)

n=1
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im [i(r = 1) - @+ s(|r =17+ KB IWR(E,r) =0

r—ry

(5.17

[cf. Egs.(2.18 and (4.10]. ConsequentlyW "(E,r) is es-
sentially that part oft)(E, r) which describes the scattering
process.

We conclude this thread observing that two alternative

[For the sake of brevity, two kinds of functions have beenexpressions for the noninteracting wayg(E,r), derivable
defined in Eqs(5.89—5.10; those with lower superscripts from Eq.(5.13, are

will find applications in later sectionk.
Manipulating Egs.(5.7)—<5.10 with the aid of the rela-
tions

h$(2) = +ijo(2) - yo(2), (5.113

h(2)=-1(2) 7 iy1(2), (5.11b

it is possible to split the functio®™(E,r) according to
PO(E,r) =Whn(EN) + THET), (5.12
with
2N N
\Pnint(Eir) = (I)(E!r) - E 2 g;r,y(E)(ls.'.(E,rnr)

v=1| n'=1

! ( jo(KIF =1 ) ény(E) )
ne1 \igja(KIr =) pa(r) 'O"fny(E)

(5.13
and
4mc?h? o
(+) —-_ e z S5(E)ai
Vind (BT V k(E +ma) Flel »sing,(B)

N
x{ > §§,V<E>¢+(E,rnr)]XY(E,r). (5.14

n’'=1

Evidently, the functionV,«(E,r) satisfies the free-particle

Dirac equatioreverywheren R2,
[-icha-V +mEB-E7 W, (E,r)=0 (r e R3.
(5.15
This means that it is that part &F)(E,r) which doesnot

1 2N N
Wrin(E,1) = D(E,r) =2, [ > gi,y(E)qx(E,rnr)]

v=1| n'=1

&n,(E) )sin Kr —r|

30

n=1 iSk_la'gny(E) -V |r - rn|
(5.183
and
1+¢&?
Yol E,r) = P(E,r) -

2N N

x 2 [ > fl,y(E>¢+(E,rnr>]
Y1 n'=1

X 3g d?nY,(E,n)knr. (5.18b

41

B. Scattering wave function: Plane-wave scattering

If the incoming wave is the plane way8.1), Egs.(5.6),
(3.8, and(4.15 yield

2N

XAE, vo,ng) = Vam >, €9 sin 8,(E)Y!(E,ng) n(v) &, (E)
y=1
2

N

4 .

= v/ — 3 d%® sin5.(E)V(E,no)
1 +82 - Y Y

X Z/{(E, Vo,no)ény(E). (519)

Further, application of Eq93.2) and (4.14 transforms the

experience scattering, i.e., for which the target is ideallyiot@! wave functions.7) into

transparent. The remaindﬂ‘lf;t)(E,r) is the superposition of
the eigenchannel@l.7) and therefore obeys the free-particle

Dirac equation

[~icha - V +m&B-E7 WH(E,r) =0

r#ryn=1,...N) (5.16

[cf. Egs. (2.2 and (4.9] everywhere inR® exceptat the

WO(E, wo,ng,r) = €X0TU(E, vo,Ng)
2N

4 .
T 5> €%F sins.(E)
1 +e =1

X YE,noU(E, v6,n0)0(E.r).
(5.20

target locations, where it is constrained to satisfy the limitingin the same manner, the genuine scattering wave function

conditions

(5.14 goes over into
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55 2N r—=o —ikr
\Ifl(:,—t(E VoNoyF) = 877;(: h E gl o(E) mt(E vo,No,l) ~ T|: r [5(2)(nr +Np)S
X sin 57(E)y;(E,no)U(E,Vo,no)Xy(E,r), ) /) (E ol
(5.2 -— /red(E nr,no)]Ll(E vo,No),

while the noninteracting wavés.13) may be rewritten in (5.25
either of the following three equivalent forms: '

) where
Wit E, vo,No, 1) = €07 U(E, vo,no) N

- SEN, %Oy (E,n)Y(E.ny (5.26
4 EyT(E nJUE 3010 (el Eingng) = E HAEN)Y(Eng) (5.26

1+

! ( jo<k|r ~ 1) ény(E) )
iej1(KIr = 1) pta(r) - 0, (E)

is the 4x 4 reducedscattermg kernel.

n=1 C. Matrix scattering amplitudes and matrix scattering kernels
(5.223 Combining Eqgs(3.7) and(5.19 gives
. 2N
Win(E, 0,0, 1) = €40 U(E, VOanO) f(E, wo,n;,Ng) = E é%F sin 8, (E)
1 4
_ =t t
N 1ss 22 YYE, noU(E, vo,no) X Yy(E,n,)Yy(E,no) n(vo). (5.27)

Hence, upon invoking Eq3.9), we deduce the expansion
2N

% ( (=) )sin Kr =r| |

e\~ iek o6y () - Y/ Ir -1 F®(E,n,,ng) = E é%®sins(E)Y,(E, nr)YJ’(E No)-
(5.22h
(5.28
. _ 2 ikn-r Substituting this result into E¢3.10 and making use of Eq.
Wrini( B, v0.M0,1) = 4ﬂd n7 (E,n,ng)e™ U(E, vo,No), (4.16) yields the analogous expansion
(5.229 a2
ZO(E,n;,ng) = — >, €248 sin 6,(E)V,(E,n) VI(E,no).
with K o1
n (5.29
Z(E,n,ng) = 82(n-np).7 - > yy(E,n)yT(E,no) Further, exploiting the expansiorts.28 and (5.29 in the
y=1 7 definitions(3.12 and(3.13 leads to the following represen-
(5.23 tations of the matrix scattering kernels:
2N
[we note parenthetically that the kernel(E,n,ny) is Her- SY(E,n,,ng) = 62(n, —np)l + >, [e2HE) - 1]

mitian and idempotent, so it is a projecting kefnd&lhe rep-

resentation in Eq(5.22b is suited for making comparison T
with its nonrelativistic analogufef. Eq. (4.16) of Ref.[13]], XYy (E.n)Y,(Eno), (5.30
while that in Eq.(5.229 is particularly convenient for inves-

tigating the asymptotics o¥ ,i(E, vg,ng,r). Indeed, on us 2\
nint\&=5 Yo, o, ). ’ - o+ — 2 _ g i6.(E) _
ing in Eq. (5.229 the asymptotic formul#3.14), we obtain 7 AEnng) = 8% (ne — g7 + E[ez' 7 -1]
i [ e XV(E,n) VI(E,no). (5.3
\Ijnint(Ei VO!nOIr) -~ T|: 7 (E!_ nr:nO) 7 vy °
r Finally, from Egs.(5.32), (5.26, and (5.23 we obtain the
ikr relationship
- _/) (E,nr,no) U(E,Vo,no) .
r —77(+)(E!nr1n0) /(E nl’!no) + red(E nr,no)
(5.24 (5.32
Similarly, for the asymptotic form of the interacting wave  The representationé.29 and (5.31) may be used for
(5.27) we find various purposes. For instance, with the aid of the latter one
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immediately proves that the scattering kert€l”(E,n,n’) is o 2N
unitary, because one has Q(E) = FE Sir? 5,(E). (5.37)
y=1

f d?n”. 7 (E,n,n").y DNE,n",n") = 8?2 -n")T
. VI. “FINAL-STATE” WAVE FUNCTION

(5.333 FOR PHOTODETACHMENT

Thus far, we have been concerned with scattering. A re-
lated process, belonging to the category of half-collisions, is
photodetachment. Attempting to describe this process theo-
% d?n”. DY E,n",n).sD(E,N",n")=8?(n-n")7 retically, one encounters an auxiliary mathematical object, a
4 so-called “final-state” wave functio®“)(E, v,,ng,r). This
(5.33b function is a counterpart of the scattering wave function
WH(E, vy,ng,r) considered before, but differs from the lat-
‘(”(E,n,n’), which appears ter in that asymptotically it has the form of a plane wave

the reduced scattering kernef arS  superposed with a radialljngoing rather than outgoing,
to be unitary only in the subspace spanned by the bispingggye.

and

[The reader may wish to show that the samedstrue for

harmonicg(4.14).] Similarly, exploiting the expansiofs.29), Proceeding in the same spirit as in Sec. Il in the presence
one arrives at the generalized optical relations of N zero-range scatterers, we shall sdeR)(E, v, ng,r) in
the form
§ dZn//.7(+)(E,n’nlr)'?(ﬂT(E,n/’nH) N
4 \Ir(_)(E, VO-nOIr) = eikn0'ru(E, v, nO) + E \I,I(W_)(E’ Vo, no,r) .
= 2T FOE N ) - 7O EN )] (5.343 "
|k . AR . ’ 1 " (6.1)
and Here U(E, vy,ng) is the plane-wave amplitudes.2), while
the N functions{‘lfﬁf)(E,vo,no,r)}, obeying the asymptotic

3€ d?n".7 HNE,n",n).7 D(E,n",n’) inflow conditions
o lim r[n, - @, +eB,IVO(E, w0, 1) =0 (6.29

27T r—oo
= —[7"(E,n,n") -7 DNE,n",n)]. (5.34
ik ] ( ) ( - b or equivalently(cf. Appendix A
Unitarity relations, analogous to those in E¢5.333 and lim r[n, - a_+ & B IW(E, w,ner) =0 (6.2
(5.33h, may be derived for the 22 scattering kernel r—=

S*(E,n,n’), while optical relations, counterpart to those in [cf. Egs.(2.143 and(2.14b and notice differences in sighs

Egs.(5.343 and(5.340, may be obtained for the’22 scat-  are explicitly given by

tering amplitude="(E,n,n’). ©) “
ho "(KIr = ra))xn ' (E, o,no) )

= sh(KIr =1 o) ptn(r) - oy (E, v, o)

It is possible to derive remarkably simple expressions, in (6.3
terms of the eigenphase shifts and the spinor harmonics, f
the three kinds of total cross sections introduced in Sec, . ) ) .

[Il D. From the definition(3.28), the relation(3.23, and the the fungtmns{ho or 112} defme_d n Eqs(_2._85) arj)d(2.8b). An
expansion(5.29, after making use of the orthonormality @lgebraic system for the spinor coefficiersg,(E, v, np)}

. ‘PL_)(E,Vo,no,r) = (
D. Total cross sections

Ef. Eqg.(2.7b and again notice the difference in signaith

property(4.17), one obtains results after inserting Eq$6.1) and (6.3) into the limiting
conditions
167225 S 7 4kl
Q(E,wg,ng) = ?21 sir? 8,(E)Y(E,ng)e(vp) Y (E,np). rIgrgn[l(r —ro) e+ e(|r —r [ 7+ KBy
=
(5.35 X WNE, vp,ne,r)=0 (n=1,...N) (6.4
Averaging this result ovep, with the aid of Eq(3.25 gives  Lcf. EQ.(2.18]; one obtains
N
8 ey NS OKlr =1y
Q(E,no)=F21 sir? 5,(E)Y!(E,no)Y,(E,no). [Kn =il Jxn (B, w0:n0) + El ho ' (KIrn = r DX (B, vo,n0)
Y=
(536) (n' #n)
— _ akngry -
Hence, after further averaging over all possible directions of “rpvg) (=1, N) 6.5
incidencen,, again exploiting Eq(4.17), one arrives at [cf. Eq.(2.23]. The systen{6.5 may be solved in the man-
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ZERO-RANGE POTENTIALS FOR DIRAC PARTICLES..

ner completely analogous to that in which in Sec. V we have
solved the systert2.23. Therefore, we shall skip details and

go directly to the final result,

2N
X (E vong) = Vam Y, €9/ sin 6,(E)
=1

X YI/(E, nO) W(Vo)fny(E)

pp—l

T )

= 5> €%F sins.(E)
1 +e =1

X yl-/(E! nO)Z/{(E! Vo, nO)gn'y(E)

[cf. Eq.(5.19]. Hence, after combining Eqé6.1), (6.3), and
(6.6), one obtains

(6.6)

\I’(_)(E, Vg, Ng, r) = eikno'rL{(E, Yo, no)
2N

4 .
T 5>, €198 sin g (E)
1 +e =1

X YI(E,NoU(E, v,ng) O (E,r),
6.7)

with ©(E,r) defined in Eqs(5.8~5.10. Asymptotically,
Eq. (6.7) becomes

r—o r

r—o ) e—ikr
VO(E, wo,ng,r) ~ {asympe'kno-f,y + 7 (E,n,,ng)

X U(E,Vo,no), (68)

with
A7 2N
F(E,n;ng) = 721 &% sin 8(E)V(E,~n) VI(E.ng),
¥=

(6.9

i.e., WO(E,vy,no,r) does indeed show the required

asymptotic behavior.

COETI) =

k ( (E+mAhE(Kr —r )TE(Er)
Amch?\ +chkh® (Kr =1 ) un(r) - oTE(Er")  £chkhE(Klr = r ) an(r) - oTE(E,r ")

PHYSICAL REVIEW A 71, 052708(2005

VII. GREEN FUNCTIONS

Finally, we turn to the problem of determining the outgo-
ing (the upper superscriptand ingoing(the lower super-
script matrix Green functionss ®(E,r,r’) in the presence
of N zero-range potentials. As before, we restrict our consid-
erations to energies real and such &t mc?. Everywhere
in R® except at the points where the potentials are located,
these functions obey the inhomogeneous equation

[-icha -V +mEB-EZ7 ] DErr")=8r-r")7
(r#ry;n=1,... N). (7.2

Asymptotically, they satisfy the analogues of the Sommer-
feld conditions,

lim r[n, - @, ¥ eB,]< ®(E,r,r')=0 (7.2a
r—oo
or equivalently(cf. Appendix A
limr[n, - a. ¥ 1B ] P(Er,r')=0, (7.2b

r—o

while at the locations of individual potentials they are con-
strained to obey the limiting conditions

im[i(r =rp) - a, +e(r —ry| 7 +k1B)]1< B (E,r,r')=0

r—rp

(n=1,...N).
We seek? ®(E,r,r’) in the forms

N

COE) = EEI)+> CEENT),
n=1

(7.3

(7.9

where

+ik|r—r’|

GEENT) =

[-icha -V +mEB+ET ]

47C%h? Ir=r’|

(7.9

are respective free-particle Dirac Green functions, while

() _ (£) /
(E+m02)h0 (k|r rn|)l—‘nl(E’r ) ) (n:]_, ,N)

(7.6)

+

are contributions due to theth zero-range potential. Thex22 matrices{I‘ElO)(E,r’)} and{FE]J‘rl)(E,r’)} are to be determined.
To find {T%)(E,r")} and{T%)(E,r")}, we exploit the fact that E¢(7.5) may be rewritten as

<§/(()t)(E,r,r /) -

k ( (E+mAhE(Kr —r ')l
Amc?h?\ xchikh® (Kr =1/ ulr,t') - o

+chkh(® (Kr =1/ u(r,r’) -0')1 @2

(E-mAhE(K|r —r'])I
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with

_r
r=rf’

a(r, r’)— (7.9

combine Eqs(7.4), (7.6), and(7.7), and substitute the result
into the limiting conditions(7.3). This yields the following

systems of algebraic equations:

N
[KatilITEE) + 2 (K= ry)T5yEr)
n'=1
(n"#n)
-hPKr =r)l (n=1,...N), (7.9
N
Kozl ITEE + X hPKry=ry)TE(E )
n'=1
(n"#n)
= +eh®Kr' -rhusr’) o (n=1,...N).
(7.10

PHYSICAL REVIEW A 71, 052708(2009

the system(2.23 (for upper superscriptsor to the system
(6.5 (for lower superscripds the only difference is that now
inhomogeneities and unknowns are<2 matrices rather
than two-component vectors. Solving the systdmh$) and
(7.10 by the expansion method presented in Sec. V A gives

TO(ETr") = 2 41948 sin 6,(E)&,,(E) 6, '(E,r")

(7.1
and
2N
THE) = 7 e e%Bsins (E)¢,(E) 6 (Er),
y=1
(7.12)

with {0(+(E r)} and {0+)(E r)} defined in Egs(5.9) and
(5.10, respectlvely Hence upon inserting E@8.11) and
(7.12 into Eq.(7.6), and the result into Ed7.4), one arrives
at the following explicit expressions for the sought Green

The system$7.9) and(7.10 are structurally similar either to functions:

FEEN = FEN thz,lei"sv(E)siné)‘y(E)
=

or equivalently, but more compactly,

CEE =S PENT)+ — o2

From Eqs(7.7), (7.8), and(7.14), one easily verifies that the

functions < @(E,r,r') obey the symmetry relations

(7.19

As the source recedes to infinity, i.e/,—«, the free-
particle Green functioné7.5) behave as

CENE ) =2 EEr" ).

COET ")

r'_’°°E+mczetikr'( [ Fen, -0') —_
= = ekt
Vo Ten o &2l
(7.106
Moreover, since
r'—ow \‘"ET gtikr
+ ’ !
Oy (Er') ~ o YHE £n) (7.17)

and

G ((E+mc2) EIE N6 (E )
*chk

k(E+—mc2)2 1% gin s AE)® +)(E f)®(+ "Er).

y=1

+ chikéf)(E,r) 6y (Er) )
- (E-md) 6 (Er)a NET")
(7.13

(E, r)&“”(E,r')

(7.14

r'—o "47Tetikr’

k r’

O(Er") ~ n/-oY,(E £n)), (7.18

one has
r’'—oo ’4 1+ 2\ ~Fikr!
OP(ET) ~ Mg V,(E £n)). (7.19
Hence, after employing Eq$3 2, (r5 20, and(6.7), it fol-
lows that

& E(Er,r"UE, v, ¥ 1))

1’ —oo +ikr’

E e
2mc?h? r!

VO, wp, ¥ 0/,r).  (7.20

VIIl. TWO EXAMPLES

A. Cross sections for scattering from a single zero-range
potential

As the first example, consider a Dirac particle scattered
from a single zero-range potential located at the origin of a
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coordinate system and characterized by the “interaction” ma- r = %R, r,=- %R, (8.1
trix,
respectively. Each potential is characterized by the interac-
K=xl+k-0. (8.)  tion matrix (8.1). A brief analysis shows that in this case
Then, the matrices in the spectral problénl) are Ly(E)=L(E) @1+l ®@ k- o (8.12
LH(E) = Kv LA(E) =1 ’ (82) and
and the problem has two eigenvalues, LAE)=LAE) ®1, (8.13
M(E) = —cotd(E) = » %k, (8.3)  whereL},(E) andL,(E) are 2x 2 matrices with elements
with associated orthonorméh the standard sense, since in [L{{(E)nw = #8ny = Yo(KR(1 = 8,)  (n,n'=1,2)

this particular case the weight matrix is the unit matrix

eigenvectors (8.14

%.(E) = £(E) = p(xn,). 8.4 2and

In Egs. (8.3 and (8.4), x=|«|, n,=x/«, while the spinors [LAE) ] = G + Jo(kR(L = &ny) - (N0 =1,2),
n(xn,) are defined, up to a phase factor, by equations analo- (8.15
gous to Egs.(3.3 and (3.4). The resulting eigenchannel

spinor harmonics are respectively; her®=|R|. After employing the results of Ap-

pendix E 2, with no difficulty we find that the eigenvalues of

1 the spectral problen.1) are
Y.(E,n) = Tn(ink). (8.9 . (kR
\amr -
M(E) = - cotdy(E) = YT (g 169
It appears that neither thex22 scattering amplitude 1+jo(kR)
1 x+i e
F(En,ng) = -+ —| __ _ %= k= Yo(kR
r: 1o k (%2 _ K2 _ 1) + i )\z(E) cot 52(E) 1 +Jo(kR) s (816b
+ 1 1 (8.6)
- T KO . + 1+ kR
k(32— k2=1) + 2ix )\3(E)E_00t63(E):%1i'—2/|2;))’ (8.169
nor the differential cross sections o
2 2.2 _ . - k+VY,(kR
d“Q(E,vo,Nn;,Np) _ 10+ K+ 1) - 2x - v 8.7) A(E) = — ot 8,(E) = % K. Yol ), (8.160
dn, K2 (52 + k2 + 1) = doPi? 1-jo(kR)
and while the suitably chosen associated orthonormalfzedhe
sense of Eq(4.4)] eigenvectors are
d’Q(E.nr.ng) _ 1 P+ KP+1 8.9
#n, KRG+ P+ 1) - AP ' x,(E) = —,—1 (7’(”“) ) : (8.173
o o . V2[1 +jo(kR]\7(n,)
depend on the direction of incidenog and the observation
directionn,. The total cross sectiof8.28 is _
¥,(E) = —1—<”( n“)) (8.17b
Q(E, vp,n )—4_77(%2""‘2"'1)_2%""’0 (8.9 20T 21 +jokRI\ (=) /)’ .
TOTU T 2 (P + K2 + 1) = 4P K? '
[notice that ifx=0 or k=0, the right-hand side of Eq8.9 X3(E) = '——( 7N ) (8.170
becomes independent @], while the total cross sections V2[1 = jo(kRI\= 7(n,)
(3.293 and(3.30 are found to be identical and given by
i (=n,)
Ar PP+l X Ez#(” <) (817
QEN=QE =15 (8.10 O ARl - eng ) AT

K2 (5P + K2+ 1) — 43P®
Hence, the relevant eigenchannel spinor harmonics are found

to be
B. Eigenphase shifts and eigenchannel spinor harmonics
for two identical zero-range potentials Y,(En,) = ’COS(k”r R/2) o). (8.184
As the second example, we shall find eigenphase shifts V21 +jo(kR)]

and eigenchannel spinor harmonics for a Dirac particle in a dk 2
field of two identical zero-range potentials located at the codkn, - R/2
9 P Yo(En) = ————7(-n,), (8.18D

points v2m{1 +jo(kR)]
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_sin(kn, -R/2) (N, a@y)B==n, " ay, (A3a)
Y3(E,np) = \J,m n(n,), (8.189
(N @) (N - @) = B,. (A3b)

YL(E.n) = zm(l;niRﬁ:\z A-n).  (8.189 Hence, we deduce that EGA2) may be simplified to
V271 - jo(kR)] lim r[n, - a_ F & *B]EW(E,r) =0 (A4)
Once the eigenvalue8.16g, (8.16h, (8.169, and e

(8.160 and the eigenchannel spinor harmoni&183, [cf. Egs.(2.14b, (6.2b), and(7.2b)].

(8.18b, (8.180, and(8.18d have been determined, with no  To show that Eq(A4) implies Eq.(A1), one should pre-
difficulty, from Eqgs.(5.28), (3.23, (3.27, and(5.39<5.37,  multiply the former with¥en,-a, and simplify the result,
one may derive explicit expressions for th&2 scattering again making use of Eq$A3a) and (A3b).

amplitude as well as for these particular differential and total

cross sections which are of interest. We do not present these APPENDIX B: THE LIMITING CONDITIONS (2.18)
formulas here for they are quite long. IN A TWO-COMPONENT FORM

We shall show that it is possible to transform the limiting
conditions(2.18 to a form very similar to one used in the
In this paper, we have presented the zero-range potentiaonrelativistic theory1,13). Let 4" (E,r) andy*'(E,r) de-
model for scattering of Dirac particles. There are two direc-note the upper and the lower components of the function
tions in which we plan to continue this work in the near (2.1), respectively. Expressed in terms:{aﬁ‘*)(E,r), the lim-

future. First, we are engaged in extending the formalism deiting conditions(2.18 are B

veloped in this paper to bound-state problems. Such an ex- ) - )
tension will be interesting not only for its own sake, but also r'ﬂ‘ [(1+Kr = r[K) g (Eyr) +ie7k(r = 1) - oy (Er)]
because, in conjunction with the results of Sec. VI of the "

present paper, it will offer the immediate possibility to carry =0 (n=1,...N). (B1)
out pertur_bative calcu_lations on photod_etac_hment ind_u_ced béﬁn the other hand, it follows from the Dirac equati¢h?2)
a weak time-harmonic electromagnetic field. Significant hat

progress towards achieving this goal has been already made,

and results, with applications, will be presented in a forth—,r/,(j)(E,r) =—icklo-V ,/,<++)(E,r) (r#ryn=1,... N).
coming publication. Second, we plan to extend the ZRPM (B2)
for Dirac particles to become applicable to time-dependent

processes in external electromagnetic fields of arbitrarynserting this relationship into E4B1) gives

strengths. In view of the fact that the nonrelativistic ZRPM is )
frequently used for investigating processes in strong laser r'ﬁ'r‘ {1 +Kr =1 K, +[(r =rp) - o)(o- V) (Er)=0
fields, the need for such an extension is evident. "

IX. CONCLUSIONS

ACKNOWLEDGMENTS (n=1,...N), (B3)

hich, after exploiting properties of the Pauli matrices, may
e rewritten as
Iim{l +Kkjr —=r |Ky+(r-r,) -1V +io-[(r-ry) X V
APPENDIX A: EQUIVALENCE OF TWO FORMS H,n{ Ir=rolKa+(r=ro) [(r=r) I
OF OUTFLOW (OR INFLOW) ASYMPTOTIC

CONDITIONS

Discussions with R. Augusiak are acknowledged. | than
Dr. AM. Alhasan for commenting on the manuscript.

xyEN=0 (n=1,...N). (B4)

In the next step, we make use of the explicit form of

L E<i) E, h . . .
et (E.r) obey the asymptotic conditions zpﬂr )(E,r) resulting from Egs.(2.1), (2.4), and (2.7b.

lim r[n, - @, * eB,]JE®(E,r)=0 (A1)  Because
r—ow
. —r) X Vh(Kr =)=
[cf. Egs.(2.143, (6.29, and(7.23]. If the upper(lower) sign (r=ro) X Vhg"(Kr =rq) =0, (B5)
in the square brackets is chosen, E41) represents the we have
outflow (inflow) condition. . )
lim(r—-r,) X Vy;”(Er)=0; (B6)

Operating on Eqg.Al) from the left with ¥&™'n,-a.
yields, after rearrangement,

r—ry

hence, it follows that Eq(B4) may be replaced b
im (0, - @), &M, - a)(n, - @) JESEN) =0, (484) may be repiaced by

i im 1 +Kr =1 Ko+ (r=ro) 1 Vg (Er) =0

(AZ) r—»rn
From the definitiong2.15 and from the well-knowr20] (n=1,... N). ®7)
properties of the Dirac matricas and g, it follows that If the matrices{K,} are simple multiplies of the unit 22
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matnx in Eq.(B7) there is no mixing between components
of z,b (E r) and both these components satisfy limiting con-
ditions which, apart from unimportant notational differences,
are identical with those used in the nonrelativistic thdafy
Eqg. (2.5 in Ref.[13]].

APPENDIX C: POSITIVE SEMIDEFINITENESS
OF THE MATRIX L A(E)

Let z be an arbitrary R-component column vector, com-
posed ofN two-component spinor&,},

z=( 0" (C1)

Since, as it follows from Eqg92.31) and(3.33, elements of
the matrixL,(E) may be rewritten in the form

1 )
[LA(E)]nV n’V’(E) = _5111/’ dznrelknr'(fn—rn’)' (CZ)
' 4

T A

employing Eq.(C1) one has

N
1 )
ZTLA(E)Z:4— E gl§n’§ dane|knr-(l’n-l‘n’)_ (C3)
n,n'=1 Am
If we define
oE,n) = PE e kg, (C4
V4 Tn=1
Eqg. (C3) may be cast into the form
ZTLA(E)z =j€ d’n, 7' (E,n,)AE,n,) =0.  (CH)
4

Equation(C5) implies that the matrix A(E) is at least posi-
tive semidefinite.

APPENDIX D: VALIDATION OF THE WEIGHTED
CLOSURE RELATIONS (4.5)

Assume that the Hermitian matrix,(E), defined in Eq.
(2.29, is positive definite. Then, it may be written as
LA(E) = LYAE)LRA(E) (D)

with LY*E) being also Hermitian and positive definite. Op-
erating on Eq.(4.1) from the left with the matrix.,"4(E),
transforms this equation into

L(E)X,(E) =\ (E)X,(E), (D2)
with the Hermitian matrix
Lu(B) = LiYAE)LW(E)LLYAE) (D3)
and with
%,(E) = LYAE)X,(E). (D4)

Equation(D2) constitutes the standard Hermitian matrix ei-
genvalue problem; it results from Eq4.4) and(D4) that all

PHYSICAL REVIEW A 71, 052708(2005

its all eigenvectorgX,(E)} are orthonormal in the standard
sense,

XE)X,(E) = &, (D5)

For finite-dimensional Hermitian matrices we are working
here with, Eq.(D5) implies the closure relation
2N

2 XEXNE) =1 (D6)
y=1

[just observe that EqgD5) and (D6) express, in alternative
ways, the fact that the modal matrix for the eigensyste)
is unitary]. Referring to the definitioiD4), we may rewrite
Eqg. (D6) in the form

2N

1’Z(E)E X, (EXI(E)LYAE) =1. (D7)

Operating on Eq(D7) from the left with LY%E) and from
the right with L,4(E) gives

2N

LA(E) 2 X,(E)X(E) =1. (D8)
y=1

Similarly, acting on Eq(D7) from the left withL,*%E) and
from the right withLY%E), yields

2N

2 XEXLE)LAE) =1.

y=1
Combining Egs(D8) and (D9) results in Eq(4.5).

(D9)

APPENDIX E: SOME PARTICULAR CASES WHEN
THE EIGENSYSTEM (4.1) MAY BE SIMPLIFIED

In this appendix, we shall discuss briefly two particular
situations when it is possible to simplify the process of solv-
ing the eigensyster®.1). In both cases, we shall be exploit-
ing the fact that, as it follows directly from E@2.31), the
weight matrixLA(E) may be written as the Kronecker prod-
uct

LAB) =LAB) ® 1, (ED
where theN X N matrix L,(E) has elements
[L,,A(E)]nn' = 5nn’ + jO(k|rn - rn’|)(1 - 5nn’)
(n,n"=1, ... N). (E2)

1. “Scalar” zero-range potentials

If all zero-range potentials are “scalar,” i.e., such that the
matrices{K,} are simple multiples of the unit’22 matrix,

Kn =2, (E3)
[cf. Eq.(2.2D)], from Eq.(2.30 one has
Ly(BE) =L (E) ®1, (E4)

where theN X N matrix L},(E) has elements

052708-15
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[L|’-|(E)]nn’ = %Oy — YO(k|rn - rn’|)(]— = o)

(n,n"=1,...N). (E5)
Consider theN X N eigensystem
LHEIXG(E) = \(E)LAEIXG(E), (E6)
with its eigenvectors orthonormalized according to
Xg (E)LAE)X}, (E) = 8gq - (E7)

It is evident that if)\é(E) is some particular eigenvalue to the
system(E6) and if xé(E) is its associated eigenvector, then

)\g(E):)\é(E) is a doubly degeneratéat this moment, we

disregard all possible additional degeneracies caused by

other factory eigenvalue to the systed.1) and its associ-
ated eigenvectors, orthonormal in the sense of(Ed), may
be chosen to be

1 0
Xg,1(E) = X4(E) ® <O> Xg,2(E) = X4(E) ®< ) (E9)

1

2. Zero-range potentials with identical vector parts

PHYSICAL REVIEW A 71, 052708(2009

L

I’y‘y’(E) = .

N
E gl‘}’(E) gn’ v (E)§ ('jzl']reiknr'(r nn’) ,
A

n,n'=1
(F2)
and further, after exploiting Eq$3.34) and(2.31), into

Ly (E) =X (E)LAE)X,, (E). (F3)

The right-hand side of EqF3) may be simplified with the
aid of Eq.(4.4); one obtains

| ,y,y/(E) = 5,},,}/, (F4)

which means that the eigenchannel spinor harmof#ckd)
form an orthonormal set on the unit sphere.

APPENDIX G: AN ALTERNATIVE MODEL OF ZERO-
RANGE POTENTIALS FOR DIRAC PARTICLES

Assume that interactions between a Dirac particle End

The second situation we consider is that when all zeropoint targets are described by the following limiting condi-

range potentials have identical vector parts, i.e.,

Kpn=sl + K- o (E9

tions:

im[i(r =r,) - a_+eX(r = 1.7, + KB TW(E,r) =0

(one may think about the target composed of such potentials r—r,

as being, in some sense, “completely polarize@hen the
matrix Ly(E) is

LyE) =L (B @1+’ ® k- o, (E10)

whereL/,(E) is defined by Eq(E5) andl’ is the unitNx N
matrix. Since
(E1)

a spectrum of the 2 X 2N eigensystent4.1) is the union of
spectra of the twd\ X N eigensystems

[LA(E) 'Ky o(E) = Ny L(E)LAE)X; .(E).

Provided the eigenvectors in EGE12) have been orthonor-
malized so that

Xg(E)LAEX, L(E) = 8y,

k-on(xn,)= £ ky(xn,),

(E12)

ot (E13

eigenvectors to the systed.1), orthonormal in accordance
with Eq. (4.4), are

Xg,i(E) = Xg,i(E) ® n(En,). (E14)
APPENDIX F: ORTHONORMALITY
OF THE EIGENCHANNEL SPINOR HARMONICS

Consider the integral

(F1)

Ly (B)=® dn,Y(En)Y, (En),

A

which is the scalar product of two eigenchannel spinor har-
monics over the unit sphere. Making explicit use of the defi-

nition (4.15, we transform Eq(F1) into

(GD

imposed on the particle’s wave functioE(E,r) at target
locations; here

5/‘-(0 0) G2
~“fn— 0 Kn . ( )

(Throughout this appendix, all objectgthout overlines are
defined as in the main textLet

(G3)

—ig i o VE_(E,r))
¢-(E,r)

S(E,r):<

be some particular solution to the free-particle Dirac equa-
tion in R3. If we look for these wave functions excited by the
wave (G3) which are of the form

N

VEEN=DET) + > VEET, (G4
n=1
with
— 5 (Kr = 1) pta(r) - a?i)(E)>
(i) _ 1 n n n
Pn(En) = ( he? (klr = r )X (E)
(GYH
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[cf. Egs.(2.7b and (6.3)], then, proceeding as in the main

text, we find that the spinor coeﬁicien{tﬁff)(E)} obey

N

Kot il XEE) + X hE K=y DXE(E) = - ¢ (E,ry)
n'=1
(n" #n)

(n=1,... N). (G6)

Solving this system by the method presented in Sec. V A,

one eventually arrives at

PHYSICAL REVIEW A 71, 052708(2005
. . 2N
VEE ) =DE,r) + 2 €% sins (E)
y=1

N
x{ > gi,y(E)E.(E,rnf)]5<$><E,r),
n’'=1

(G7)
with
+e 00 (E,1) )
wIED) (©9

Relevant eigenchannels are

O(Er) :(

— _ [KE-md) {(is-lyl(klr—rn|>un<r>-asny<E>>_ (is-ljl(klr—rnl)unm-afny(E))]
HEDEN g 1 okl - e ® N o - () - (69

Asymptotically, they behave as

_ r—oo E 1
X (E,;r) ~ E .
ABN) ~ sgrB) 2¢’h2ki sin 8, (E)

kr+i8,(E)_

yy(E,nr)] ., (G10

aikr=i5,(E)
r

XYV (E,~n,) = -

with

1 (s;_lnr oY (E,n)
V1+g72 Y (E.,n,)

V,(E.n) = ) (G11)

being orthonormal bispinor eigenchannel harmonics for the

problem at hand.

T O(E,n,,no)

2N
4 N . - —
= e%E sin  (E)V,(E, + nr)yf/(E, No)-

=1
(G14)

The differential cross section for scattering of a spin-
polarized plane wavé3.1) is

d?Q(E, .1y, o)

d2n = Tr[F(+)(Ea nrvnO)E(VOI nO)F(+)T(E! ne, nO)] ’
r

(G19

If the exciting wave(G3) is the spin-polarized monochro- where

matic plane wavé3.1), the wave function$G7) become

VO(E, vy, N, 1) = €X0TU(E, vo,Ng)

+

pp—l
T .

— >, €9%F sin 5 (E)
1 +e =1

X VN (EnU(E, v0,n) 0L (E,1).
(G12)

Asymptotically, one has

— r—e _ gtikr
VE(E, o,no, 1) ~ | asympekor7 +

r—o r
x/;(i)(E,nr,no)}u(E,vo,no),

(G13

with the far-field matrix amplitudes

2(¥o,Ng) =Ng- (w)Ng - 0. (G1o)

Its average over all orientations of is

dza(Ev n, nO) _ 1

n ‘5Tr[F<+>(E,nr,no)F“”(E,nr,no)]
r

(G17)

and is identical with the averaged differential cross section
(3.27). The total cross section, the total cross section aver-
aged over,, and the total cross section averaged both over
vy and overng are given by

- 167" <
Q(E, ¥p,np) = ?E sir? 8,(E)
y=1

XYNE,nge(ro,n)Y,(E.ny), (G189
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- g2 N
Q(E,ng) = k—ZE,l Sir? 6,(E)Y H(E,no) Y ,(E,ny),
Y=

PHYSICAL REVIEW A 71, 052708(2005

limr[n, - a, = sﬂ+]5;;)(i)(E,r,r’) =0

r—o

(G223

or equivalently

(G19 B
and m r(n,-a_ ¥ e B ] H(Er,r')=0, (G22b
. om N and to the “interaction” limiting conditions
QE)= F}% Sirf 5,(E), (G20 rIirrrl [i(r=r,) e+ e X(|r =1 2+ K 2615 @ET )
respectively. Notice that the averaged total cross sections n:O

(G19 and (G20 are identical with these in Eq$5.36 and

(5.37), respectively, but, in general, the analogous statement (n=1,...N), (G23
is not true for the cross section&18 and(5.35. sought in the forms

Finally, the Green functions, satisfying N

[—icha- V +m@B-E7 12 @Er,r) =69 -r")7 g BErT) =S FE)+ El S EEN T,
n=
(r#ry;n=1,...N) (G2)) (G24)

subject to the asymptotic conditions with

e =—K Z(icﬁkh&*%kh = ropalr) - TR EN) +CAKHKr = 1) () -ff(n%f(E,r’)) T
AR\ (E-mAhG (Kr - r)TE(Er") (E-mAh§ (K —r )T (E.r)
(G25)
are found to be
2N
COE) =S PEr)+ kir_czmh—f) > %8 sin s (E)OP(ENOET). (G26)
y=1
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