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The transmission of a nonsymmetric potential barrier is a two-channel quantum problem. In this aspect it is
analogous to the two-channel radial problem. The analytical properties of theS matrix are similar for both
generic quantum-mechanical systems. We here develop an explicit mapping between the two problems. It
allows us to formulate barrier transmission in terms of the Siegert pseudostates similarly to the approach
developed recently for the two-channel radial case. This results in an efficient method of treating barrier
transmission including on equal footing both resonance effects and smooth background behavior.
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I. INTRODUCTION

In this study we carry out a comparative analysis of two
generic problems in quantum mechanics. One of them is the
two-channelsTCd radial problem described by a set of two
coupled equations

−
1

2

d2c1

dr2 + V11srdc1 + V12srdc2 = Ec1,

−
1

2

d2c2

dr2 + V22srdc2 + V21srdc1 = Ec2. s1d

The wave function here has two componentsc1srd andc1srd
defined on the semiaxis 0ø r ,` and subject to the bound-
ary conditionc1s0d=c2s0d=0. The potential matrixVijsrd is
real and symmetric and for larger has the asymptoteVijsrd
=vidi j where the constantsv1 andv2 are threshold energies.

The other problem is the one-dimensional barrier trans-
mission sBTd described by a Schrödinger equation for a
single functioncsxd considered on the entire axis −`,x
,`,

sH − Edcsxd = 0, H = −
1

2

d2

dx2 + Vsxd. s2d

The potential functionVsxd generally is asymmetric and, in
particular, has different limits forx→ ±`: uVsxdux→−`=v1

and uVsxdux→`=v2.
The importance of the two problems for quantum me-

chanics and their application does not require an extended
substantiation. We here only stress that resonance effects in
BT play an important role in semiconductors and that the BT
problem represents the simplest and most frequently used
model of chemical reactions. In this applicationx plays the
role of an effective reaction coordinate.

Apparently quite different, the TC and BT problems have
an important common feature: they are two-channel prob-
lems with channel threshold energiesv1 andv2. This implies
a number of common general properties intrinsic for the two-
channel problems. From the standpoint of an approach based
on analytical properties of the scattering matrix, or Green
function, the common features arise from the basic fact that
the plane of complex energyE has two square-root branch
pointsv1 andv2. Respectively, the complex energy plane has
four Riemann sheets. This is clear from the fact that in both
cases the essential variables are the channel momentak1,2
=ÎE−v1,2. To the best of our knowledge this quite evident
observation was not duly emphasized before, to say nothing
about its practical use. The sort of analytical isomorphism of
the two problems suggests a possibility of some mapping of
one problem onto other, although a convenient concrete way
to implement this general idea is not obvious at first sight. In
order to illustrate the difficulties it is sufficient to indicate
that the TC problem is characterized by essentially three po-
tential functionsV11srd, V22srd, andV12srd=V21srd of the ra-
dial variabler s0ø r ,`d, whereas in BT one finds a single
potentialVsxd defined on the entire axis −̀,x,`.

The objective of the present study is to implement map-
ping based on the discretized representation in terms of the
Siegert pseudostates. The Siegert pseudostates approach was
developed at first for the one-channel radial problemf1,2g
where it was demonstrated as a convenient and quite univer-
sal tool. Subsequently the TC radial problem was thoroughly
analyzed along these linesf3g. The mapping allows us to
transfer these results, with proper modifications, to the BT
problem. The full analysis of the BT problem in terms of
Siegert pseudostates has not yet been carried out, although
the case of symmetric barriers was considered in relation to
the theory of cumulative reaction probabilityf4g. The sym-
metric barrier in terms of the two-channel problem implies a
degeneracy of channel thresholds which is a particular subset
of the general situation. It requires a special technical treat-
ment being reducible to a set of two one-channel problems as
shown in Ref.f4g; probably the issue deserves more attention
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in application to the barrier transmission problem, but we
postpone its analysis to the future. It is worthwhile here to
stress the terminology used below. The case of a symmetric
barrier should be distinguished from the more general case of
threshold degeneracy. Any symmetric barrier is necessarily
degenerate, but degeneracy generally might also occur for
nonsymmetric barriers.

The mapping developed belowsSec. IId demonstrates how
the BT problem is formulated in terms of Siegert pseu-
dostates. Besides its general interest this is a pragmatically
useful representation effective for a quantitative description
of resonance effects. The Siegert representation for the BT
coefficient conveniently includes both the resonance effects
and smooth background variation. This is an important as-
pect, since, as already indicated, the BT problem is a generic
model for a variety of complicated processes in quantum
physics.

Now to our demonstration examplesSec. IIId: the indi-
vidual Siegert states for a BT problem were considered in
Refs. f5–7g. The Siegert poles were located there by using
the method of complex coordinate rotation. The particularly
refined calculations of Ref.f7g report the position of 45 Sieg-
ert poles. The symmetric model potential considered had two
humps with a dip between them. It is able to support bound
states as well as resonances. The generalized forms43d of
this potential is used below in our illustrative calculations.
Later the cumulative reaction probability was evaluatedf8g
in terms of Siegert states, but only for the special case of the
exactly solvable model of the Eckart potential. Using the
nonsymmetric Eckart potential the authors were able to ana-
lyze a model problem with nondegenerate thresholds. Note,
however, that the cumulative reaction probability was ex-
pressed via Siegert poles only for the symmetric version, and
thus the analytical features of the nondegenerate two-channel
problem did not appear. Moreover, all the construction was
substantially based on the exact analytical solution available
for the Eckart potential without the possibility of generaliza-
tion. The rigidness of the exactly solvable model led to sub-
stantial physical restrictions: a purely repulsive potential did
not permit consideration of resonance effects. Later Siegert
states appeared in a number of publications on the BT prob-
lem f9–12g. Besides the coordinate complex rotation method
f5–7,10g, direct integration of the Schrödinger equation was
employed to locate their positionsf9,12g.

In the aspect of modeling chemical reactions the sym-
metrical sas well as nonsymmetrical but degenerated model
looks unnecessarily restrictive, since the chemical reactions
of interest normally do not correspond to the energy reso-
nance between reagents and products. Nonetheless, the BT
problem for general nonsymmetric potentials attracted much
less attention in the literature compared to the symmetrical
version. To the best of our knowledge we are not aware of
any previous calculations of resonances for the asymmetric
potential, although for symmetrical and/or degenerate cases
similar calculations are quite abundantssee the papers cited
aboved. This means that the material for numerical compari-
son and testing of the results is absent.

It can be noted that more complicated BT models with
two interacting potential curves were studied recently quite
extensively within the scattering calculation approach, in-

cluding resonance effectsf13–15g. However, accurate calcu-
lations of resonance, for instance, within the complex dila-
tion approach, are not known for this model. Note that the
problem of two interacting potential curves on the axis −`
,x,` generally corresponds to the four-channel problem,
with a more complicated analytical structure than in the two-
channel case considered in the present study.

II. TRANSMISSION THROUGH A BARRIER
IN THE GENERAL NONDEGENERATE CASE

A. Green function and S matrix

Suppose that the potential energyVsxd is constant whenx
lies outside intervala1,x,a2:

Vsxd = v1, x , a1,

Vsxd = v2, x . a2. s3d

Then solutions of Eq.s2d outside this interval correspond to
plane waves with wave numbersk1,k2:

E = v1 +
1

2
k1

2 = v2 +
1

2
k2

2. s4d

As already indicated, the parametersv1 and v2 have the
meaning of channel thresholds.

The outgoing-wave Green functionGsx,x8d obeys the
equation

F−
1

2

d2

dx2 + Vsxd − EGGsx,x8d = dsx − x8d, s5d

with boundary conditions

S d

dx
+ ik1DGsx,x8d = 0, x , a1, x , x8, s6d

S d

dx8
− ik2DGsx,x8d = 0, x8 . a2, x8 . x. s7d

The scattering matrix is defined via the solution of the
Schrödinger equationc±sxd with appropriate normalization:

c+sxd =
1

Îk1

expsik1xd + S11
1

Îk1

expsik1xd, x , a1,

c+sxd = S12
1

Îk2

expsik2xd, x . a2, s8d

c−sxd = S21
1

Îk1

exps− ik1xd, x , a1,

c−sxd =
1

Îk2

exps− ik2xd + S22
1

Îk2

expsik2xd, x . a2.

s9d

By direct calculations theS matrix could be straightfor-
wardly related to the Green function:

V. N. OSTROVSKY AND N. ELANDER PHYSICAL REVIEW A71, 052707s2005d

052707-2



S11 = − exps2ik1a1df1 + ik1Gsa1,a1dg, s10d

S22 = − exps− 2ik2a2df1 + ik2Gsa2,a2dg, s11d

S12 = − iÎk1k2expsik1a1 − ik2a2dGsa1,a2d, s12d

S21 = − iÎk1k2expsik1a1 − ik2a2dGsa1,a2d. s13d

B. Siegert states

The Siegert statesfsxd are conventionally defined as so-
lutions of the Schrödinger equations2d that satisfy outgoing-
wave boundary conditions

US d

dx
+ ik1DU

x=a1

fsxd = 0,

US d

dx
− ik2DU

x=a2

fsxd = 0. s14d

Such solutions exist only for discrete values of the energy
En. The energiesEn are generally complex valued and corre-
spond to poles of theS matrix or Green function.

C. Discretization and Siegert pseudostates

We introduce a finite real basis

pmsxd, m= 1,2, . . . ,N, s15d

which is orthonormal in the intervala1,x,a2:

E
a1

a2

pmsxdpnsxddx= dmn. s16d

We expand the Siegert state over this basis,

fsxd = o
n=1

N

cnpnsxd, s17d

and substitute the expansion into Eq.s2d to obtain the matrix
equation

SH̃ −
i

2
k1L 1 −

i

2
k2L 2 − EIDc = 0. s18d

Here we introduced N-component column vectorc
=hc1,c2, . . . ,cNj andN3N symmetric matricesH̃,L 1,L 2:

H̃ij =
1

2
E

a1

a2 dpisxd
dx

dp jsxd
dx

dx+E
a1

a2

pisxdVsxdp jsxddx,

s19d

sL1di j = pisa1dp jsa1d, sL2di j = pisa2dp jsa2d. s20d

I is anN3N unit matrix.
In the case when the basisp jsxd is nonorthogonal, with

the overlap matrixW,

Wij =E
a1

a2

pisxdp jsxddx, s21d

formula s18d is generalized to

SH̃ −
i

2
k1L 1 −

i

2
k2L 2 − EWDc = 0. s22d

Equation s18d or s22d formulates a nonlinear eigenvalue
problem for the spectral parameter: the energyE and related
eigenvectorc. It is exactlylinearized by using uniformization
and quadrupling the dimension of the Hilbert space,N.

D. Uniformization of the barrier transmission
problem

Equations18d or s22d is a nonlinearsirrationald eigenvalue
problem, since it containsE, k1, and k2 connected by the
energy conservation relations4d. The uniformization proce-
duref17g makes the problem rational in terms of the variable
u defined on a single Riemann sheet in the complexu plane:

E = v̄ − q21 + u4

2u2 , s23d

q =Îv2 − v1

2
, v̄ =

v1 + v2

2
, s24d

k1 = iq
u2 − 1

u
, k2 = iq

u2 + 1

u
. s25d

Then Eq.s18d is recast as

sI + uB− + u2A + u3B+ + u4I dc = 0, s26d

B+ =
1

q
sL 1 + L 2d, B− =

1

q
s− L 1 + L 2d, A =

2

q2sH̃ − v̄I d.

s27d

Formally the BT problem equationss26d and s27d coincide
with those obtained by Sitnikov and Tolstikhinf3g for the
radial TC problem. Thus the mapping of two problems on
each other is achieved. Both problems are characterized in a

discrete-basis representation by threeN3N matricesH̃, L 1,
andL 2. Of course the physical meaning of these matrices is
somewhat different. The dimensionality of the problems in
the discretized representation is worthy of some attention. In
the radial two-channel system the dimension of the nonlinear
eigenvalue problems26d is sN1+N2d where N1 and N2 are
dimensions of bases used in the channels 1 and 2, respec-
tively. In the barrier penetration problem the dimensionN is
the dimension of the basiss15d on the −̀ ,x,` axis.

For a nonorthogonal basis formulas26d is modified to

sW + uB− + u2A + u3B+ + u4Wdc = 0, s28d

A =
2

q2sH̃ − v̄Wd. s29d
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E. Relation between barrier transmission problem and radial
two-channel problem

The formulation of the exactly linearized representation
of the eigenvalue problems26d coincides with formulas31d
in Ref. f3g. Namely, the manifold of Siegert pseudopolesun
sin terms of uniformization variableud and related Siegert
pseudostatescsnd sin the discrete basisd is found as eigenval-
ues and eigenstates of the linear problem with dimension 4N:

1
0 W 0 0

0 0 W 0

0 0 0 W

− W − B− − A − B+
21

c

uc

u2c

u3c
2

= u1
W 0 0 0

0 W 0 0

0 0 W 0

0 0 0 W
21

c

uc

u2c

u3c
2 . s30d

We present here the equation for general case of a nonor-
thogonal basis. The special structure of eigenvectors shown
in Eq. s30d is not a restrictive additional assumption, since it
is easy to show that all eigenvectors automatically have such
a structure.

Since the linearized problems are essentially the same for
the BT and TC problems, the derivations of their corollaries
in the discrete-basis representation coincide. Note, however,
that the connection formulass10d relating theS matrix and
Green function contain exponents with a plus and minus in
the arguments, whereas in the two-channel radial problem
one always finds a plus. More differences in the formulas
appear in the course of the transition to the coordinate rep-
resentation.

For instance, the normalization condition is derived as in
Ref. f3g and in the coordinate representation is

E
a1

a2

fnsxdfmsxddx+ i
fnsa1dfmsa1d

k1
snd + k1

smd + i
fnsa2dfmsa2d

k2
snd + k2

smd = dnm.

s31d

Here k1
snd and k2

snd are expressed in terms of uniformization
variable eigenvaluesun via formulass25d.

The completeness relation reads

o
n=1

`

fnsxdfnsx8d = 4dsx − x8d. s32d

The expressions for the Green function in terms of the Sieg-
ert pseudostates formally looks as related expressionss70d
and s71d from Ref. f3g swithin the obvious substitutionr
→xd:

Gsx,x8d =
1

q2o
n=1

4N
un

3fnsxdfnsx8d
s1 − un

4dsun − ud
. s33d

ik1Gsx,x8d =
1

q
o
n=1

4N
un

2fnsxdfnsx8d
sun

2 + 1dsun − ud
, s34d

ik2Gsx,x8d =
1

q
o
n=1

4N
un

2fnsxdfnsx8d
sun

2 − 1dsun − ud
. s35d

However, the implications are somewhat different. In the TS
problem each Siegert pseudostatefnsrd is a vector
function—i.e., a two-dimensional column vector with a com-
ponent in each channel; respectively, the Green function is a
232 matrix. In the BT problem the Siegert pseudostate

TABLE I. The energies for the optional bound state and lowest
resonances obtained for various values of the potential parameterJ,
s=0.1,b=0.5, andD=0.2 in Eq.s43d. Atomic unitssa.u.d are used.

J ResEd −ImsEd

0.8 −0.320 597 26 0

0.614 234 779 1.548 704310−4

1.313 607 466 2.615 328310−2

1.799 336 045 0.189 467

0.3 0.171 168 91 4.141 506310−7

1.026 959 39 1.222 212310−3

1.649 140 21 6.073 172310−2

2.078 474 00 0.276 736

−0.2 0.643 042 62 9.141 66310−6

1.429 909 65 6.081 867310−3

1.983 517 56 0.110 1469

2.361 119 54 0.387 6087

FIG. 1. The potentials in Eq.s43d with sad J=0.8, sbd J=0.3, andscd J=−0.2, respectively. Atomic unitssa.u.d are used.
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fnsxd and Green functionGsx,x8d are plain sscalard func-
tions.

Useful expressions in terms of the Siegert pseudostates,

1 + ik1Gsa1,a1d = p
n=1

4N
1 − uun

u − un
, s36d

1 + ik2Gsa2,a2d = p
n=1

4N
1 + uun

u − un
, s37d

f1 + ik1Gsa1,a1dgf1 + ik2Gsa2,a2dg + k1k2fGsa1,a2dg2

= p
n=1

4N
u + un

u − un
, s38d

are obtained from related TC formulasf3g by the replace-
mentGmnsa,ad⇒Gsam,and.

The expressions for theS-matrix elements might be cast
in various forms:

S11 = e2ik1a1p
n=1

4N
1 − uun

u − un
= e2ik1a1p

n=1

4N
i

2q

k1k2
snd + k2k1

snd

k1 − k1
snd

= e−2ik1a1
1

s2qd4Np
n=1

4N
k1k2

snd + k2k1
snd

k1 − k1
snd , s39d

S22 = e−2ik2a2p
n=1

4N
1 + uun

u − un
= e−2ik2a2p

n=1

4N
− i

2q

k1k2
snd + k2k1

snd

k2 − k2
snd

= e−2ik2a2
1

s2qd4Np
n=1

4N
k1k2

snd + k2k1
snd

k2 − k2
snd , s40d

S12 = eik1a1−ik2a2Îp
n=1

4N
1 − u2un

2

su − und2 − p
n=1

4N
u + un

u − un

= eik1a1−ik2a2Îp
n=1

4N
1

2q2

sk1k2
snd + k2k1

sndd2

sk1 − k1
snddsk2 − k2

sndd
− p

n=1

4N
k1 + k1

snd

k2 − k2
snd .

s41d

These formulas enable us to express the probability that a
particle, with a total energyE, first located on one side of the
barrier will appear on the other side. We define the transmis-
sion coefficientNsEd as a function of the energyE as

NsEd = uS12sEdu2. s42d

Additional information is contained in the phases of the scat-
tering matrix elementsSjksEd. Since it is less important
physically, in our model examples below we consider only
NsEd.

FIG. 2. sad The overall view of the transmission coefficientNsEd defined in Eq.s42d as a function of the energyE obtained for the
potentials1d with J=0.8.sbd The characteristic threshold cusp is seen in the vicinity of the second channel threshold. Atomic unitssa.u.d are
used.

FIG. 3. UsingJ=0.8. we showsad the transmission coefficient in the vicinity of the first resonance andsbd the transmission coefficient
in the vicinity of the second resonance. Atomic unitssa.u.d are used.
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III. MODEL ASYMMETRIC BARRIER POTENTIAL:
CALCULATION AND RESULTS

To illustrate the theory above we use a nonsymmetrical
double-hump potential capable of supporting bound states
and resonances:

Vsxd = S1

2
x2 − JDexps− sx2d + D tanhsbxd. s43d

The parameterD is half difference of threshold energies
being related toq introduced by formulas23d asq=ÎD. The
average threshold energyv̄, Eq. s23d, is zero, v̄=0. In the
degenerate caseD=0 the potentials43d is reduced to the
model potential considered previouslyf5–7g. For the param-
eterss and b we keep values adopted in the cited publica-
tions, s=0.1, b=0.5. As for the parameterJ, earlier it was
chosen asJ=0.8; in the present study we varyJ sas in Table
Id to see evolution of transmission coefficient pattern.

As a basis setpmsxd we employed a finite-element basis
as used in Ref.f16g snote that we do not carry out complex
coordinate dilation as in the cited paperd. We tested that for
small threshold splittingsD and J=0.8 the positions of the
first Siegert pseudostates approach results obtained for the
degenerate casef7g. In the subsequent calculations we em-
ployed a relatively large parameterD=0.2. Thus the thresh-
old splitting is equal to 0.4. The barrier penetration now
starts from the energy aboveE=0.2 swe recall that the en-
ergy zero is chosen halfway between the channel thresholdsd.

The potentials for various values ofJ are displayed in Fig.
1. The energies of the first bound statessd sif anyd and reso-
nances obtained with theses potentials are given in Table I.

The overall energy dependence of the transmission coef-
ficient NsEd related to the left potential in Fig. 1sJ=0.8d is
shown in the left part of Fig. 2. This potential supports one
bound state withE=−0.303, as shown in the table. The low-
est resonances lie atE1=0.614, E2=1.314, andE3=1.799.
Note also the characteristic cusp behavior in the transmission
coefficient NsEd in the vicinity of the second thresholdE
=0.2, as shown in the right part of Fig. 2.

We show the vicinities of the first and second resonances
in Fig. 3. The first of them is so narrow that it is not noticable
in the overall view in Fig. 2. The other examples of very
narrow resonances are presented in Figs. 5 and 7 below. The
location of such narrow resonances within the scattering cal-
culations would pose a problem, but within the Siegert pseu-
dostates formulation they are located immediately.

On the other hand, the influence of the second resonance
E2 is clearly seen even in the overall viewsFig. 2d as a
relatively sharp peak; it is detailed in the right part of Fig. 3.
The third resonanceE3 apparently is the origin of the hump
aroundE=1.8 in Fig. 2.

As the potential parameterJ decreases, the bound state is
pushed out into the continuum. The potential forJ=0.3, as
displayed in middle of Fig. 1, already does not support any
bound state. We have here computed four resonancesssee
Table Id of which the lowest,E1=0.0171, is in the lowest
continuum, below the second energy threshold. This means
that it is decays with particle emission only in the left but not
in the right direction. Such a resonance is not manifested in
the transmission coefficientNsEd falthough it induces step-
like behavior of the elastic scattering phase—i.e., half-phase
of the matrix elementS11sEdg. In the overall transmission
coefficient, which is displayed in the left of Fig. 4, we barely

FIG. 5. UsingJ=0.3 we displaysad the transmission coefficient in the vicinity of the first resonance andsbd a closer look. Atomic units
sa.u.d are used.

FIG. 4. sad The overall view of the transmission coefficientNsEd ffrom Eq. s42dg obtained for the potentials43d for J=0.3. sbd NsEd in
the vicinity of the third resonance. Atomic unitssa.u.d are used.
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see the influence of the second resonanceE2=1.0269, also
displayed to the right in Fig. 5, while the influence of the
third resonanceE3=1.649, also displayed in the right part of
Fig. 4, is more pronounced. The effects on the fourth reso-
nanceE4=2.078 are not seen individually, which means that
they constitute part of the scattering background. Notice the
pecularities in the behavior of the transmission coefficient
around the third resonance as displayed in the right part of
Fig. 5. Two dips surround this peak: one is just below and the
other is just above the real part of the second resonance
energy. This is a manifestation of the interference between
the resonance transmission and weak and smooth back-
ground.

The potential is still more shallow whenJ=−0.2 as seen
in the rightmost part of Fig. 1. We report four resonances in
Table I. The lowest resonance in this case is pushed above
the second energy thresholdE1=0.643. This implies that the
resonance is capable of decaying with particle emission in
both left and right directions. In turn, this means that it is
manifested in the transmission coefficientNsEd. This reso-
nance is very narrow. The second resonanceE2=1.430 is
clearly seen in the overall plotsFig. 6d. Both resonances are
shown in more detail in Fig. 7. The third resonanceE3
=1.9835 generates the broad structure in Fig. 6.

The figures provide detailed information on the transmis-
sion coefficient’s rapid variation in the resonance region. In
particular, it is demonstrated how the resonances are pushed
to higher energies as the potential well becomes shallower as
the potential parameterJ decreases. The bound states be-
come resonances, at first capable of decaying only to the first
continuum swhich corresponds to particle emission to the
left, x→−`d. As J decreases further, the resonances evolve
to the second continuum where they are capable of emitting

particles in both directions. Only in this situation are reso-
nances manifested in the transmission coefficientNsEd. The
resonance width increases in the course of this evolution.
Some details of the resonance evolution deserve further
study which is beyond the scope of the present work.

Another characteristic feature—the vertical tangentscuspd
behavior at the opening of the second channel—is clearly
seen, although its experimental observation requires high-
energy resolution, as is typical in other casesf18g.

IV. CONCLUSIONS

The analytical considerations play an important role in the
quantum theory of scattering. However, for a theoretically
similar problem of transmission through an asymmetric po-
tential barrier this type of approach was not applied to a due
extent. We have applied analytical methods to the problem of
transmission through an asymmetric potential barrier.

The transmission of an asymmetric barrier is a two-
channel problem, just as a standard radial two-channel prob-
lem extensively studied in the scattering theory. This “ana-
lytical isomorphism” looks so obvious that it does not
require any special proof, as soon as it is noticed. It suggests
that some mapping of the one generic quantum problem onto
another exists. However, construction of the mapping is non-
obvious. In the present study the mapping is carried out after
first casting the problems in a discrete form via expansion
over some basis. This apparently technical step is essential;
presently it looks inavoidable. It remains unclear how the
mapping could be achieved by operating directly with differ-
ential equations.

For the one-channel problem the Siegert poles represen-
tation explicitly demonstrates meromorphic character of the
scattering matrix on the complex momentum plane. For a
multichannel quantum system theS matrix was shown to be
a meromorphic function on the complex plane of a uni-
formization variableu. The barrier transmission problem be-
longs to the class of two-channel problems, and as such it
allows quite simple explicit uniformization. A pragmatic way
to implement advantages of this approach is to use the Sieg-
ert pseudostates representation. In this case all the calcula-
tions are carried out by standard methods of linear algebra.

In the present study we demonstrated how the barrier
transmission problem can be solved in terms of the two-
channel version of the Siegert pseudostates formalism.
Within this scheme the resonance effects are treated on equal
footing with background scattering and all analytical features
of a two-channel quantum system are reproduced. In the nu-

FIG. 6. Overall view of the transmission coefficient forJ
=−0.2. Atomic unitssa.u.d are used.

FIG. 7. The transmission coef-
ficient NsEd as a function of the
energyE sad in the vicinity of the
first resonance andsbd in the vi-
cinity of the second resonance.
Atomic units sa.u.d are used.
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merical application to the model potentials43d we traced the
evolution of bound states and resonances as the potential
depth decreases. We hope that our results are of interest both
from a general point of view and as a practical method of
calculation.
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