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Scattering resonances and background associated with an asymmetric potential barrier
via Siegert pseudostates
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The transmission of a nonsymmetric potential barrier is a two-channel quantum problem. In this aspect it is
analogous to the two-channel radial problem. The analytical properties & thatrix are similar for both
generic quantum-mechanical systems. We here develop an explicit mapping between the two problems. It
allows us to formulate barrier transmission in terms of the Siegert pseudostates similarly to the approach
developed recently for the two-channel radial case. This results in an efficient method of treating barrier
transmission including on equal footing both resonance effects and smooth background behavior.
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[. INTRODUCTION Apparently quite different, the TC and BT problems have
an important common feature: they are two-channel prob-
@ms with channel threshold energigsanduv,. This implies

a number of common general properties intrinsic for the two-
channel problems. From the standpoint of an approach based
on analytical properties of the scattering matrix, or Green

In this study we carry out a comparative analysis of two
generic problems in quantum mechanics. One of them is th
two-channel(TC) radial problem described by a set of two
coupled equations

1d%y, function, the common features arise from the basic fact that
T2 dr2 +V1a(N) by + Vaor) g = Egly, the plane of complex energy has two square-root branch

pointsv, andv,. Respectively, the complex energy plane has

1%, four Riemann shgets. This is clear from the fact that in both
e + Voo(1) ihy + Voy(r) iy = Eifsy. 1) cases the essential variables are the channel monkgpta

=\VE-v;, To the best of our knowledge this quite evident
The wave function here has two component&) andy,(r)  Observation was not duly emphasized before, to say nothing
defined on the semiaxis<Or <« and subject to the bound- about its practical use. The sort of analytical isomorphism of
ary conditiony(0) =,(0)=0. The potential matris;(r) is ~ the two problems suggests a possibility of some mapping of
real and symmetric and for largehas the asymptote;(r) ~ One problem onto other, although a convenient concrete way
=v,8; where the constants; andv, are threshold energies. to implement this general idea is not obvious at first sight. In
The other problem is the one-dimensional barrier transOrder to illustrate the difficulties it is sufficient to indicate

mission (BT) described by a Schrédinger equation for athat the TC problem is characterized by essentially three po-
single functiony(x) considered on the entire axise<x  tential functionsViy(r), Va,(r), andVi,(r) =Vyy(r) of the ra-

<o dial variabler (O<r <), whereas in BT one finds a single
potential V(x) defined on the entire axise—<x <o,
1d? At ; ; .
(H-E)y(x) =0, H=-=— +V(x). ) The objective of the present study is to implement map
’ 2dx? ping based on the discretized representation in terms of the

Siegert pseudostates. The Siegert pseudostates approach was

developed at first for the one-channel radial probleng]

where it was demonstrated as a convenient and quite univer-

sal tool. Subsequently the TC radial problem was thoroughly
nalyzed along these ling8]. The mapping allows us to
ansfer these results, with proper modifications, to the BT

The potential functiorV(x) generally is asymmetric and, in
particular, has different limits fox— +o:  V(X)|y__.=v;
and V(X)|y_.=v,.

The importance of the two problems for quantum me-
chanics and their application does not require an extend
substantiation. We here only stress that resonance effects i piem. The full analysis of the BT problem in terms of

BT play an important role in semiconductors and that the BTgjeqert pseudostates has not yet been carried out, although
problem represents the simplest and most frequently usegle case of symmetric barriers was considered in relation to
model of chemlt_:al react[ons. In thls applicatigrplays the o theory of cumulative reaction probabilieg]. The sym-
role of an effective reaction coordinate. metric barrier in terms of the two-channel problem implies a
degeneracy of channel thresholds which is a particular subset
of the general situation. It requires a special technical treat-
*Electronic address: Valentin.Ostrovsky@pobox.spbu.ru ment being reducible to a set of two one-channel problems as
"Electronic address: elander@physto.se shown in Ref[4]; probably the issue deserves more attention
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in application to the barrier transmission problem, but wecluding resonance effecf43-15. However, accurate calcu-
postpone its analysis to the future. It is worthwhile here tolations of resonance, for instance, within the complex dila-
stress the terminology used below. The case of a symmetrigon approach, are not known for this model. Note that the
barrier should be distinguished from the more general case gfroblem of two interacting potential curves on the axis —
threshold degeneracy. Any symmetric barrier is necessarily- x<« generally corresponds to the four-channel problem,
degenerate, but degeneracy generally might also occur fgith a more complicated analytical structure than in the two-

nonsymmetri_c barriers. channel case considered in the present study.
The mapping developed belaBec. I) demonstrates how

the BT problem is formulated in terms of Siegert pseu-

dostates. Besides its general interest this is a pragmatically IIl. TRANSMISSION THROUGH A BARRIER

useful representation effective for a quantitative description IN THE GENERAL NONDEGENERATE CASE

of resonance effe(;ts. Th_e Siegert representation for the BT A. Green function and S matrix

coefficient conveniently includes both the resonance effects

and smooth background variation. This is an important as- Suppose that the potential enefdfx) is constant whex
pect, since, as already indicated, the BT problem is a generiies outside intervad; <x<ay:

model for a variety of complicated processes in quantum
y P P g V(X)=vy, x<ay,

physics.
Now to our demonstration exampl&ec. lll): the indi-
vidual Siegert states for a BT problem were considered in V(X) =vy  X>ay. )

Refs.[5-7]. The Siegert poles were located there by usin
the method of complex coordinate rotation. The particularl
refined calculations of Reff7] report the position of 45 Sieg-
ert poles. The symmetric model potential considered had two 1, )
humps with a dip between them. It is able to support bound E=vi+Ski=vp+ Sho. (4)
states as well as resonances. The generalized 48nof
this potential is used below in our illustrative calculations.As already indicated, the parametars and v, have the
Later the cumulative reaction probability was evaludgigd  meaning of channel thresholds.
in terms of Siegert states, but only for the special case of the The outgoing-wave Green functioG(x,x’) obeys the
exactly solvable model of the Eckart potential. Using theequation
nonsymmetric Eckart potential the authors were able to ana- >
lyze a model problem with nondegenerate thresholds. Note, {_ -
however, that the cumulative reaction probability was ex- 2dx¥

ith boundary conditions

9Then solutions of Eq(2) outside this interval correspond to
yplane waves with wave numbekg,k,:

+V(X) - E]G(x,x’) =8(x-x), (5)

pressed via Siegert poles only for the symmetric version, an%
thus the analytical features of the nondegenerate two-channel
problem did not appear. Moreover, all the construction was d | , ,

substantially based on the exact analytical solution available dx ik |G x") =0, x<a,x<x, (6)

for the Eckart potential without the possibility of generaliza-

tion. The rigidness of the exactly solvable model led to sub- d

stantial physical restrictions: a purely repulsive potential did <—, - ikz)G(x,x’) =0, X >a, X' >X. (7)

not permit consideration of resonance effects. Later Siegert dx

states appeared in a number of publications on the BT probrpe scattering matrix is defined via the solution of the

lem [9—12]._ Besi_des the. coordinate corpp_lex rotation.methodSChrt-)dinger equation,(x) with appropriate normalization:
[5-7,10, direct integration of the Schrédinger equation was

employed to locate their positioh9,12]. 1 ) 1 ,
In the aspect of modeling chemical reactions the sym-  #+(X) = Texp(lklx) +SllTeXp('k1X)' X< 3y,
metrical (as well as nonsymmetrical but degeneratodel A v
looks unnecessarily restrictive, since the chemical reactions
of interest normally do not correspond to the energy reso- (X) :Slzi_exp(ikzx), X > ay, (8
nance between reagents and products. Nonetheless, the BT vk,
problem for general nonsymmetric potentials attracted much
less attention in the literature compared to the symmetrical 1
version. To the best of our knowledge we are not aware of P (x) = SalTexp(- ikix), X <ay,
any previous calculations of resonances for the asymmetric VF1
potential, although for symmetrical and/or degenerate cases

similar calculations are quite abunddsee the papers cited X) = i_ex —ik.x) + iex ikox). X>a
above. This means that the material for numerical compari- v Vky A= ikax) SZZ\FZ ko). z
son and testing of the results is absent. 9)

It can be noted that more complicated BT models with
two interacting potential curves were studied recently quite By direct calculations thé& matrix could be straightfor-
extensively within the scattering calculation approach, in-wardly related to the Green function:
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Si1 = - exp2ika)[1 +ik,G(ag,a;)], (10)
Sy, = - exp— 2ik,a,)[1 +ik,G(ay,a,)], (11)
Spo= — ivkgkoexplikiay — ikoa)G(ag,a),  (12)
Sy, = — ivkgkoexplikyay — ikoa)G(ag,a).  (13)

B. Siegert states

The Siegert stateg(x) are conventionally defined as so-
lutions of the Schrédinger equati@®) that satisfy outgoing-
wave boundary conditions

o
2+

d(x) =0,

X=a,

#(x) =0.

X=ay

(14)

Such solutions exist only for discrete values of the energy
E,. The energie&,, are generally complex valued and corre-

spond to poles of th& matrix or Green function.

C. Discretization and Siegert pseudostates

We introduce a finite real basis

mm(X), m=21,2,...N, (15)
which is orthonormal in the interval; <x<a,:
a
f T(X) T (X)X = S (16)
ag
We expand the Siegert state over this basis,
N
¢ =2 cymy(X), (17)
n=1

and substitute the expansion into E2). to obtain the matrix
equation

~ i

H-—-kL;-=kL,—-El |c=0. 18
P w
Here we introduced N-component column vectorc
={c;,Cy, ...,Cy} andN X N symmetric matrice$i,L ;,L

Fy- L [ dmb0dmtn [
a

2 dx  dx i (X)V(X) j(X)dX,
(Lp)ij = mi(a)mj(ay).

(19
(Lpij = mi(a) mj(aq), (20)

| is anN X N unit matrix.
In the case when the basig(x) is nonorthogonal, with
the overlap matrixtVv,

PHYSICAL REVIEW A 71, 052707(2005

ap
Vvijzf mi(X) 7 (X)dX, (21)
a
formula (18) is generalized to
(ﬁ_élel_éksz_EW>C:0. (22)

Equation (18) or (22) formulates a nonlinear eigenvalue
problem for the spectral parameter: the endfggnd related
eigenvectoc. It is exactlylinearized by using uniformization
and quadrupling the dimension of the Hilbert spade,

D. Uniformization of the barrier transmission
problem

Equation(18) or (22) is a nonlineafirrational) eigenvalue
problem, since it containg, k;, and k, connected by the
energy conservation relatidd). The uniformization proce-
dure[17] makes the problem rational in terms of the variable
u defined on a single Riemann sheet in the complgkane:

_ 1+t

E=v-o (23)

Uy~ Uq — vty
= L = L 24
q S V= (24)

2 2

uc - uc+

ki =iq , ko=iqg (25
Then Eq.(18) is recast as

(I +uB™+Uu?A +uB*+u®l)c=0, (26)

1 21 2 ~
B :a(l—1+|—2); B :a(_L1+L2), Azg(H_Ul)

(27)

Formally the BT problem equation®6) and (27) coincide

with those obtained by Sitnikov and Tolstikhj8] for the
radial TC problem. Thus the mapping of two problems on
each other is achieved. Both problems are characterized in a

discrete-basis representation by thié® N matricesH, L 4,
andL,. Of course the physical meaning of these matrices is
somewhat different. The dimensionality of the problems in
the discretized representation is worthy of some attention. In
the radial two-channel system the dimension of the nonlinear
eigenvalue probleni26) is (N;+N,) whereN; and N, are
dimensions of bases used in the channels 1 and 2, respec-
tively. In the barrier penetration problem the dimensibis
the dimension of the basid5) on the <o <x < axis.

For a nonorthogonal basis formul26) is modified to

(W +uB™ +U°A + U°B* +u*W)c=0, (28)

A= é(ﬁ -W). (29)
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E. Relation between barrier transmission problem and radial
two-channel problem

PHYSICAL REVIEW A71, 052707(2009

TABLE |. The energies for the optional bound state and lowest
resonances obtained for various values of the potential paratheter

s=0.1,8=0.5, andA=0.2 in Eq.(43). Atomic units(a.u) are used.

The formulation of the exactly linearized representation

of the eigenvalue problert26) coincides with formula31) 3 Re(E) _Im(E)
in Ref.[3]. Namely, the manifold of Siegert pseudopolgs
(in terms of uniformization variablel) and related Siegert 0.8 -0.320 597 26 0
pseudostates™ (in the discrete basidgs found as eigenval- 0.614 234 779 1.548 704104
ues and eigenstates of the linear problem with dimenshin 4 1.313 607 466 2 615 3281072
1.799 336 045 0.189 467
0 W 0 0 C
.
0 0 W 0 uc 0.3 0.171168 91 4.141 50610‘3
1.026 959 39 1.222 21210
0 0 0o W u’c )
_ o ot 3 1.649 140 21 6.073 17210
W -B" -A -B"/ \uc 2.078 474 00 0.276 736
w0 00 ¢ -0.2 0.643 042 62 9.141 6610°°
| W oo “ZC _ (30) 1.429 909 65 6.081 867107
0 0 W 0 [{uc 1.983 517 56 0.110 1469
0 0 0 W/ \uc 2.361 119 54 0.387 6087

We present here the equation for general case of a nonor-
thogonal basis. The special structure of eigenvectors shown
in Eq. (30) is not a restrictive additional assumption, since it

is easy to show that all eigenvectors automatically have such
a structure.

> dX)p(x') = 48(x = X').
n=1

(32)

The expressions for the Green function in terms of the Sieg-

Since the linearized problems are essentially the same fo pseudostates formally looks as related expresgisdls
the BT and TC problems, the derivations of their corollariesy,q (71) from Ref. [3] (within the obvious substitutiom

in the discrete-basis representation coincide. Note, however,, .
that the connection formulad.0) relating theS matrix and

Green function contain exponents with a plus and minus in ! N uﬁcﬁn(x)gﬁn(x’)
the arguments, whereas in the two-channel radial problem G(x,x') = q—22 m- (33
one always finds a plus. More differences in the formulas n=1 nAmn
appear in the course of the transition to the coordinate rep-
resentation. . 18 B0 bX)
For instance, the normalization condition is derived as in ikiG(x,x") = az W+ DU -u)’ (34
Ref.[3] and in the coordinate representation is n=1"n n
4N 2 ,
% dn(@) (@) . Pn(@) Prl@r) ; 1$ Unén(X) (X))
+i +i =5 ik,G(x,X') = = >, — (35)
fal d’n(x) qu(X)dX | k(ln) + k(lm) I k(zn) + k(zm) 5nm 2 (o] (Uﬁ _ 1)(un _ U)
(31 However, the implications are somewhat different. In the TS

problem each Siegert pseudostatg,(r) is a vector
Here k(l”) and k(zn) are expressed in terms of uniformization function—i.e., a two-dimensional column vector with a com-
variable eigenvalues, via formulas(25). ponent in each channel; respectively, the Green function is a
The completeness relation reads 2X2 matrix. In the BT problem the Siegert pseudostate

2
V) a) 1.5 b) <)
} 1.5 1.5
1 t 1
.5 5 0\s
-10 -5 5 10 -10 -5 \ 5 10 J10 _5 5 10
-0.5 X o

FIG. 1. The potentials in Eq43) with (a) J=0.8, (b) J=0.3, and(c) J=-0.2, respectively. Atomic unit&.u) are used.
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1
0.8l NE) 0.00012f g
0.0001
0.6 2) 0.00008 b)
0.4 0.00006
0.00004
0.2
E 0.00002 E
05 5 5 G 0205 0.21 0.215 0.22 0.22¢

FIG. 2. (a) The overall view of the transmission coefficieN{E) defined in Eq.(42) as a function of the energ§ obtained for the
potential(1) with J=0.8.(b) The characteristic threshold cusp is seen in the vicinity of the second channel threshold. Atom(a.uhise
used.

x) and Green functiorG(x,x’) are plain(scalaj func- (n)
358518) ( : P ( ) = —2|k2a2H = g 2k; a2H IM
) n
Useful expressions in terms of the Siegert pseudostates, =1 U un 120 k=K
: 1 kek3Y + Kok
1- uun =g e 2 4NH : k2 k(r21) =, (40)
1+ik,G(a,a) = H (36) (20" ko— k3
1 U= U
2 2 AN
1+ uun - Sy, = ekadrikea H 1-u<u 11 u+uy,

1+ |k2G(az,az) H

2
u-u, ne1 (U= Up)® 2 U= Uy

1 (kP +iok™)? kg + K

= lamiion H ™ w11 @
[1+ ikle(alaal)][l +ikyG(a,a9)] + kiko[G(ay,8,) ] 21 207 (ky — k") (ko = K3") o1 Ko — K"
+ (41)
AL (39)
n=1 u- un

These formulas enable us to express the probability that a
particle, with a total energk, first located on one side of the
barrier will appear on the other side. We define the transmis-
sion coefficientN(E) as a function of the enerdy as

are obtained from related TC formul@3] by the replace-
mentG,«(a,a) 0 G(ay,a,)-

The expressions for th&matrix elements might be cast
in various forms:

N(E) =[Si(E)|*. (42)
1- e
e2|kla1H uth, = g2k [ | 1Kk (2) 1
n
n=1 U~ Un 120 ko~ ky Additional information is contained in the phases of the scat-
) ) tering matrix elementsSy(E). Since it is less important
_ o2kga T kiky" + Koky . , :
= g 2kiag H (39) physically, in our model examples below we consider only
(2g)™ k -k
q n=1 1 1 N(E).
0.3
0.1
N(E) a) 0.25 b)
0.08
0.2
0.06 0 15
0.04 0.1
0.02 0.05 E
0.613 0.614 0.615 0.616 1.3 1.4 1.5 1.6 1.7

FIG. 3. UsingJ=0.8. we show(a) the transmission coefficient in the vicinity of the first resonance (@hdhe transmission coefficient
in the vicinity of the second resonance. Atomic urfiisu) are used.
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0.8
3 0.3 b

0.6

0.2
0.4
- 0.1

E
0.5 1.5 2 2.5 1.6 1.7 1.8 1.9

FIG. 4. (a) The overall view of the transmission coefficiedtE) [from Eq.(42)] obtained for the potentid¥3) for J=0.3.(b) N(E) in
the vicinity of the third resonance. Atomic unita.u) are used.

lIl. MODEL ASYMMETRIC BARRIER POTENTIAL: The overall energy dependence of the transmission coef-
CALCULATION AND RESULTS ficient N(E) related to the left potential in Fig. @=0.8) is
) ._shown in the left part of Fig. 2. This potential supports one
To illustrate the theory above we use a nonsymmetncaﬁound state witlE=-0.303. as shown in the table. The low-
double-hump potential capable of supporting bound stategst resonances lie &,=0.614, E,=1.314, andE;=1.799.
and resonances: Note also the characteristic cusp behavior in the transmission
1 coefficientN(E) in the vicinity of the second threshold
V(X) = —XZ—J)ex —s¥) + Atan _ 43 =0.2, as shown in t.hgnght part pf Fig. 2.
Y (2 o ) hp) (43 We show the vicinities of the first and second resonances

. . . InFig. 3. The first of them is so narrow that it is not noticable
The parameten is half difference of threshold energies i, the overall view in Fig. 2. The other examples of very

being related ta introduced by formuld23) asq=vA. The  narrow resonances are presented in Figs. 5 and 7 below. The
average threshold energy Eq. (23), is zero,u=0. In the  |ocation of such narrow resonances within the scattering cal-
degenerate casa=0 the potential(43) is reduced to the culations would pose a problem, but within the Siegert pseu-
model potential considered previougb-7]. For the param-  dostates formulation they are located immediately.
eterss and 8 we keep values adopted in the cited publica- On the other hand, the influence of the second resonance
tions, s=0.1, $=0.5. As for the parametel, earlier it was E, is clearly seen even in the overall vielffig. 2 as a
chosen ag=0.8; in the present study we vady(as in Table relatively sharp peak; it is detailed in the right part of Fig. 3.
I) to see evolution of transmission coefficient pattern. The third resonancg; apparently is the origin of the hump
As a basis setr,(x) we employed a finite-element basis aroundE=1.8 in Fig. 2.
as used in Refl16] (note that we do not carry out complex  As the potential parametdrdecreases, the bound state is
coordinate dilation as in the cited papeWe tested that for pushed out into the continuum. The potential 8+0.3, as
small threshold splittings\ and J=0.8 the positions of the displayed in middle of Fig. 1, already does not support any
first Siegert pseudostates approach results obtained for thwund state. We have here computed four resonafemss
degenerate cadd]. In the subsequent calculations we em-Table ) of which the lowestE;=0.0171, is in the lowest
ployed a relatively large parametdr=0.2. Thus the thresh- continuum, below the second energy threshold. This means
old splitting is equal to 0.4. The barrier penetration nowthat it is decays with particle emission only in the left but not
starts from the energy aboe=0.2 (we recall that the en- in the right direction. Such a resonance is not manifested in
ergy zero is chosen halfway between the channel thresholdghe transmission coefficieM(E) [although it induces step-
The potentials for various values dfire displayed in Fig. like behavior of the elastic scattering phase—i.e., half-phase
1. The energies of the first bound stajg(if any) and reso- of the matrix elemensS;;(E)]. In the overall transmission
nances obtained with theses potentials are given in Table Icoefficient, which is displayed in the left of Fig. 4, we barely

0.15) NG 0.025
a) b)
0.125 0.02
0.1 0.015
0.075
0.01
0.05 .
0.025 0.005
T.01 1.02 1.03 1.04 1.05 T.01 1.02 1.03 1.04 1.05

FIG. 5. UsingJ=0.3 we displaya) the transmission coefficient in the vicinity of the first resonance(&ha closer look. Atomic units
(a.u) are used.
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0.6 NE® particles in poth dirgctions. Only_in.this situgtion are reso-
' nances manifested in the transmission coeffich(t). The

0.5 resonance width increases in the course of this evolution.

0.4 Some details of the resonance evolution deserve further

study which is beyond the scope of the present work.

0.3 Another characteristic feature—the vertical tangenisp

0.2 behavior at the opening of the second channel—is clearly

0.1 E seen, although its experimental observation requires high-

| ) energy resolution, as is typical in other caf&g].
0.5 1.5 2
FIG. 6. Overall view of the transmission coefficient fdr IV. CONCLUSIONS

=-0.2. Atomic units(a.u) are used. The analytical considerations play an important role in the

quantum theory of scattering. However, for a theoretically
) similar problem of transmission through an asymmetric po-
see the influence of the second resonaige1.0269, alsO  tentjal barrier this type of approach was not applied to a due
displayed to the right in Fig. 5, while the influence of the gxtent. We have applied analytical methods to the problem of
third resonancé&;=1.649, also displayed in the right part of transmission through an asymmetric potential barrier.
Fig. 4, is more pronounced. The effects on the fourth reso- The transmission of an asymmetric barrier is a two-
nancek,=2.078 are not seen individually, which means thatchannel problem, just as a standard radial two-channel prob-
they constitute part of the scattering background. Notice théem extensively studied in the scattering theory. This “ana-
pecularities in the behavior of the transmission coefficientytical isomorphism” looks so obvious that it does not
around the third resonance as displayed in the right part afequire any special proof, as soon as it is noticed. It suggests
Fig. 5. Two dips surround this peak: one is just below and thehat some mapping of the one generic quantum problem onto
other is just above the real part of the second resonancanother exists. However, construction of the mapping is non-
energy. This is a manifestation of the interference betweenbvious. In the present study the mapping is carried out after
the resonance transmission and weak and smooth bacKest casting the problems in a discrete form via expansion
ground. over some basis. This apparently technical step is essential;
The potential is still more shallow whel=-0.2 as seen presently it looks inavoidable. It remains unclear how the
in the rightmost part of Fig. 1. We report four resonances inrmapping could be achieved by operating directly with differ-
Table I. The lowest resonance in this case is pushed abowntial equations.
the second energy threshdig=0.643. This implies that the For the one-channel problem the Siegert poles represen-
resonance is capable of decaying with particle emission imation explicitly demonstrates meromorphic character of the
both left and right directions. In turn, this means that it isscattering matrix on the complex momentum plane. For a
manifested in the transmission coefficieMtE). This reso-  multichannel quantum system tlematrix was shown to be
nance is very narrow. The second resonakge1.430 is a meromorphic function on the complex plane of a uni-
clearly seen in the overall pldFig. 6). Both resonances are formization variableu. The barrier transmission problem be-
shown in more detail in Fig. 7. The third resonanEg longs to the class of two-channel problems, and as such it
=1.9835 generates the broad structure in Fig. 6. allows quite simple explicit uniformization. A pragmatic way
The figures provide detailed information on the transmis+o implement advantages of this approach is to use the Sieg-
sion coefficient’s rapid variation in the resonance region. Inert pseudostates representation. In this case all the calcula-
particular, it is demonstrated how the resonances are pushéidns are carried out by standard methods of linear algebra.
to higher energies as the potential well becomes shallower as In the present study we demonstrated how the barrier
the potential parametel decreases. The bound states be-transmission problem can be solved in terms of the two-
come resonances, at first capable of decaying only to the firghannel version of the Siegert pseudostates formalism.
continuum (which corresponds to particle emission to the Within this scheme the resonance effects are treated on equal
left, x——). As J decreases further, the resonances evolvdooting with background scattering and all analytical features
to the second continuum where they are capable of emittingf a two-channel quantum system are reproduced. In the nu-

0.1 0.2
N b -

0.08 © 2 0.15 ) FIG. 7. The transmission coef-
0.06 ficient N(E) as a function of the

' 0.1 energyE (@) in the vicinity of the
0.04 first resonance an¢b) in the vi-

0.05 cinity of the second resonance.
0.02 . . .
E Atomic units(a.u) are used.
0.64295 0.64305 0.6431 0.64315 1.42 1.44 1.46 1.48 1.5
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