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The application of time-dependent wave operator theory to the development of a quantum adiabatic pertur-
bation theory is treated both theoretically and numerically, with emphasis on the description of field-matter
interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent
wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory
is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the
application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of
some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by
using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a
quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system.
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I. INTRODUCTION

The numerical study of the interaction of a molecule with
a strong laser field leads to a need for long computational
times and large computer memory capacity, if use is made of
a wave-packet approach which involves a direct integration
of the time-dependent Schrödinger equation. This problem is
even greater for the study of control processes, since the
repetition of many propagations is needed to find the opti-
mum values of several adjustable parameters which describe
the nonlinear effects due to ultrashort laser pulses. Provided
that some of the parameters do not vary too rapidly, adiabatic
techniquesf1g have some value within the contex of Floquet
theory; Guérin and Jauslinf2g and Drese and Holthausf3g
have proposed adiabatic Floquet methods. To take into ac-
count the nonadiabatic effects which are inevitably present
for short laser pulses, Guérin and Jauslinf2g assumed them
to be localized, in the sense that the adiabatic transport can
be considered as made up of lengthy adiabatic passages
along eigenstate trajectories, with local diabatic evolution
near conical intersections between these trajectories. In the
work of Drese and Holthausf3g the nonadiabatic couplings
were treated approximately using first-order perturbation
theory. The principal difficulty in treating the nonadiabatic
effects is due to the large representation spaces used in the
Floquet formalismf2–6g, since a large extended Hilbert
spaceH ^ L2sS1,du /2pd is used, involving a product of the
bare molecule Hilbert space with the space of square inte-
grable functions on the circle of length 2p f2,3g.

Fortunately, it turns out that a reasonable description of
the matter-field interaction can often be made by using an
active space of small dimension, provided that the basis sets
used consist of instantaneous Floquet eigenvectorsf7g or
generalized Floquet eigenvectorsf8g. This feature makes an

effective Hamiltonian approach attractive and Guérin and
Jauslinf2g have proposed such an approach, based on the
quantum analog of the Kolmogorov-Arnold-MosersKAM d
transformationf9g, with resonant effects being treated by a
rotating wave approximation. The superadiabatic Floquet ap-
proachf3g, which uses a sequence of unitary transformations
to produce bases which follow the nonadiabatic evolution, is
also very similar to an effective Hamiltonian approach. The
time-dependent wave operator theorysTDWOTd is a third
example of effective Hamiltonian theory for time-dependent
systems. It has long been used to describe photoreactive pro-
cessesf10,11g and has several features which make it useful
in the search for an efficient description of nonadiabatic ef-
fects. It is consistent with Floquet theory and enables a gen-
eralization to the degenerate case of the adiabatic conjecture
for Floquet states. It proceeds by using an evolving target
space within which the description of the nonadiabatic tran-
sitions is concentrated. The several iterative techniques
which have been proposed to integrate the wave operator
equation of motion are sufficiently robust to work with
Hamiltonians which are rotated in the complex plane or
which include extra complex absorbing potentials. However,
some basic theoretical properties of the TDWOT have not
been rigorously demonstrated. The theoretical part of the
present work looks in particular at the adiabatic limit of the
time-dependent wave operator and at the link between the
two-time Floquet theory and wave operator theory.

Section II of this work demonstrates an adiabatic theorem
for the wave operator, after recalling the basic points of wave
operator theory and of the earlier adiabatic theorem of Nen-
ciu f12g. This section also introduces the adiabatic principle
of Drese and Holthausf3g, which uses two time variables
slike the st ,t8d method of Peskin and Moiseyevf13gd and
shows how to generalize this earlier principle involving the
wave function so as to apply it to the wave operator. In Sec.
III numerical applications illustrate our adiabatic theorem for
one-dimensional and degenerate active subspaces and deal
with electronic transitions produced by short laser pulses.
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They show how the effective adiabaticity of a dynamical
process can be increased by projecting the fast nonadiabatic
effects into a multidimensional target space. Section IV sum-
marizes the work, with a comment about further possible
applications.

II. THEORY

TDWOT allows a generalization to the degenerate case of
the adiabatic conjecture for Floquet states, when the Floquet
spectrum satisfies some not very onerous conditions.
TDWOT can isolate the description of the diabatic part of the
dynamics by restricting it to a relatively small target space,
with the strong nonadiabatic effects which affect the initial
state being included inside this target space. Although the
above features have been abundantly illustrated by numerical
calculations on a range of particular systems, we regard it as
useful to give a more careful theoretical proof of their gen-
eral validity. In a recent reviewf14g we made a heuristic
conjecture that the adiabatic limit of the time-dependent
wave operator is a succession of instantaneous stationary
wave operators. In this section we demonstrate this theoreti-
cally, after giving a brief review of some necessary details of
previous work.

A. Wave operator concept

1. Time-dependent wave operator

We consider a separable Hilbert spaceH which is used to
describe the states of a quantum system. The dynamical sys-
tem is described by a time-dependent HamiltonianHstd and
its associated time-dependent Schrödinger equation and has
the time evolution operatorUstd s∀ tP f0,Tgd. The idea of
TDWOT is to consider anactive subspace S0 of H, such that
the dynamics projected into this subspace can be integrated
using an effective Hamiltonian.S0 should be chosen to de-
scribe the strong and fast part of the dynamics issuing from
the initial state. Its choice has been made previously by using
artificial intelligence approachesf15,16g and a wave operator
sorting algorithmf11,17g. After solution of the Schrödinger
equation in the active spaceS0 the wave operatorV which
generatesHeff is used to transform the solution inS0 into the
true solution in the Hilbert spaceH. The above description
can be summarized as follows:

∀ t, Vstd:
Sstd → H

c0std ° cstd
, s1d

wherecstd is a solution of the Schrödinger equation

i"]tcstd = Hstdcstd s2d

and wherec0std, defined as the projection ofc into S0, is a
solution of the equation

i"]tc0std = Heffstdc0std. s3d

The effective Hamiltonianswhich describes the approximate
dynamics inS0d is defined byHeffstd=P0HstdVstd and the
target space isSstd=P0UstdS0,S0, P0 being the projector on
S0. The time-dependent wave operator can be written as

Vstd = UstdfP0UstdP0g−1, s4d

where fP0UstdP0g−1=P0fP0UstdP0g−1P0 is the inverse of
Ustd within S0 hdomfP0UstdP0g−1=S0j, dom is the domain of
an operator.

One can split the wave operator as follows:

Vstd = P0 + Xstd, s5d

where the reduced wave operatorXstd satisfies the interme-
diate normalization conditionQ0XP0=X. This operator is
governed by a nonlinear partial differential equation

i"]tXstd = f1 − XstdgHstdf1 + Xstdg. s6d

By introducing the Floquet HamiltonianHF=H−i"] /]t and
a generalized Hilbert space, formed by the product of the
Hilbert spaceH with the vector space arising from the time
variable t, this partial differential equation can be rewritten
as

HFstdVstd = VstdHFstdVstd. s7d

2. Stationary wave operator

We will now consider sin the same separable Hilbert
spaceHd the operatorH and the eigenvalue equation

Hc = lc. s8d

We consider two subspacesS0 and S of H such thatS0ùS
Þx. We call them the active and target subspaces and we
denote the projectors of these subspaces byP0 andP. We are
interested in eigenvectors included inS such thatPc=c. As
for the previous time-dependent problem, we reduce the
problem to one within the active subspace. We introduce the
Bloch wave operator:

V:
S0 → S

c0 ° c
, s9d

wherec is a solution of the eigenvalue equations8d andc0 is
a solution of

Heffc0 = lc0. s10d

The effective operator is defined byHeff=P0HV. The wave
operator is formally given by the expression

V = PsP0PP0d−1, s11d

wheresP0PP0d−1 is the inverse ofP within S0. It is a solution
of the generalized eigenvalue equation,

HV = VHV = VHeff. s12d

It is important to note that Eq.s7d, which describes a time
evolution, is identical in form to Eq.s12d, except that the
Floquet HamiltonianHF is taken in place ofH. This similar-
ity indicates the compatibility of the TDWOT with the Flo-
quet treatment of periodic or quasiperiodic dynamical pro-
cesses. More details about the wave operator theory can be
found in the review articlesf8,14g and in Refs.f4,5,10,11g.
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B. Adiabatic theorem for the wave operator

This section considers the adiabatic limit of the time-
dependent wave operator when the active subspaceS0 sde-
fined at timet=0d and the target subspaceshSstdjtPg0,Tg can
be considered as instantaneous spectral subspaces which are
isolated permanently from the rest of the spectrum. This as-
sumption is central and holds throughout our treatment. To
demonstrate this wave operator adiabatic theorem we need
an adiabatic theorem which does not investigate the eigen-
values separately, as does the standard adiabatic theorem
ssee, for example, Ref.f1gd, but which considers some sub-
spectrum. Such a theorem was proposed by Nenciuf12g and
is recalled here.

Theorem 1. Let s°Hssd be a family of self-adjoint
Hamiltonians. We writes= t /T for the reduced time on the
intervalf0,Tg. We suppose that thehHssdjsPf0,1g have a dense
common domain inH, and that the equation

i"]sUTssd = THssdUTssd

admits a strongly continuous solutions°UTssd of unitary
operatorssto fulfill this assumption see Ref.f18gd. We sup-
pose that

sid there exist real functionsajssd and bjssd for j
=1, . . . ,N−1, +`, defined onf0,1g, such that

ajssd , bjssd , aj+1ssd, ∀ j , ∀ s,

min
j

inf
s

fbjssd − ajssdg ù d . 0,

and

s„Hssd… = ø
j=1

N

s jssd,

fs1ssd , g −f`,a1ssdg

s jssd , fbj−1ssd,ajssdg, ∀ j = 2, . . . ,N − 1,

sNssd , fbN−1ssd, + `f;

sii d PjssdPC2(f0,1g ;BsHd);
siii d Rss,zd=fHssd−zg−1 is differentiable with respect tos

and∀ d.0, ∃ KdPR+ such that

i]sRss,zdi ø
Kd

distsz,s„Hssd…d

∀ s such that distsz,s(Hssd)d.d. Also, ∀ j =2, . . . ,N−1,
we have

lim
T→+`

UTssdPjs0d = Pjssd lim
T→+`

UTssd s13d

sthe limits are norm limitsd.
The first assumption supposes that the spectrum is decom-

posed intoN isolated subspectra; the case where the spec-
trum has a continuous part is not excluded. Eigenvalue cross-
ings are permitted within each subspectrum. The third
assumption supposes that the variations of the resolvent are
slow far from the spectrum.

The active space which participates in the definition of the
time-dependent wave operator can be identified with one of
the spectral subspaces introduced by the Nenciu theorem.
Indeed, suppose that the wave function is

ucssdl = U`ssduil, s14d

whereU`ssd is a simplified notation for limT→` UTssd. Gen-
erally a suitable normed vectorullPH must be included in
the active space if∃ sP f0,1g to ensure thatukl ucssdlu is
large. This criterion is consistent with the wave operator sort-
ing algorithm proposed by Wyatt and Iungf17g, which con-
siders the wave operatorV0ssd associated with the one-
dimensional active space generated byuil and which selects a
vector l if ∃ sP f0,1g such that ukluX0ssduilu is large,
namely,

V0ssd =
ucssdlki u
ki ucssdl

s15d

and

ukluX0ssduilu = U klucssdl
ki ucssdl

U . s16d

This criterion thus also involves the same amplitude
ukl ucssdlu. If the conditions of Nenciu’s theorem are fulfilled
and if the initial state satisfiesuilPRanPIs0d, wherePIssd is
one of the spectral projectors of Nenciu’s theoremsor a sum
of spectral projectorsd, then

klucssdl = kluU`ssduil = kluU`ssdPIs0duil = kluPIssdU`ssduil.

s17d

The amplitude ukl ucssdlu is large only if ullPRanPIssd
since ukluPIssdU`ssduilu=0 if ullPRanPIssd'. Thus a good
choice for the active space would beef0,1g

% RanPIssdds, but
unfortunately this space can be very large. By assuming that
the couplings are not strong enough to rotate significantly the
target space at each instant, i.e.,∀ sRanPIs0dùRanPIssd'

=h0j, a reasonable choice for the active subspace is
RanPIs0d.

We can now formulate and prove an adiabatic theorem for
the time-dependent wave operator.

Theorem 2. Let s°Hssd be a family of self-adjoint
Hamiltonians, wheres= t /T is the reduced time on the inter-
val f0,Tg. We suppose that thehHssdjsPf0,1g have a dense
common domain inH, and that the equation

i"]sUTssd = THssdUTssd

admits a strongly continuous solutions°UTssd. We suppose
that the instantaneous spectra ofHssd have the decomposi-
tion

s„Hssd… = s0ssd ø s'ssd

with the properties
sid ∃ d.0, ∀ sP f0,1g, dist(s0ssd ,s'ssd)ùd;
sii d s0ssd is bounded∀ s and has a finite number of con-

nected parts ins(Hssd);
siii d Pssd ,QssdPC2(f0,1g ;BsHd), wherePssd is the spec-
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tral projector associated withs0ssd: andQssd is that associ-
ated withs'ssd;

sivd ∀ sP f0,1g, RanPssd % RanQssd=H;
svd RanPs0d'RanQs0d;
svid ∀ sP f0,1g, RanPssd'ùRanPs0d=h0j;
svii d Rss,zd=fHssd−zg−1 is differentiable with respect to

s and∀ d.0, ∃ KdPR+ such that

IdR

ds
I ø

Kd

distsz,s„Hssd…d
,

∀ zudistsz,s(Hssd)d.d.
Let VTssd=UTssdfPs0dUTssdPs0dg−1 be the wave operator
with RanPs0d as associated active space. Then
limT→+` VTssd is a succession of instantaneous stationary
wave operators with RanPs0d as associated active space and
RanPssd as target space. We thus have

lim
T→+`

VTssd = PssdfPs0dPssdPs0dg−1. s18d

Demonstration. We decomposes(Hssd) as follows: The
spectral values ofs0ssd and of s'ssd are ordered and
grouped from the smallest value up to the largest one.
The spectra thus have the decompositions(Hssd)
=øis0

i ssdøø js'
j ssd scf. Fig. 1d.

Because of the condition dist(s0ssd ,s'ssd)ùd, all the
parts of the decomposition are isolated and separated by a
distance equal to or larger thand. We can thus apply the
Nenciu adiabatic theorem

∀ i lim
T→`

UTssdPis0d

= Pissd lim
T→`

UTssd ⇒ lim
T→`

UTssdo
i

Pis0d

= o
i

Pissd lim
T→`

UTssd,

oiPissd=Pssd, ∀ s, then

lim
T→`

UTssdPs0d = Pssd lim
T→`

UTssd,

VTssd = UTssdfPs0dUTssdPs0dg−1,

VTssd = UTssdPs0dfPs0dUTssdPs0dg−1,

VTssdPs0dUTssdPs0d = UTssdPs0d,

lim
T→+`

fVTssdPs0dUTssdPs0dg = lim
T→`

UTssdPs0d.

We also have:

lim
T→+`

VTssdPs0d lim
T→+`

UTssdPs0d = lim
T→+`

UTssdPs0d,

lim
T→+`

VTssdPs0dPssd lim
T→+`

UTssd = Pssd lim
T→+`

UTssd.

Since∀ T UTssd is invertible, then limT→` UTssd is invert-
ible,

lim
T→+`

VTssdPs0dPssd = Pssd,

lim
T→+`

VTssdPs0dPssdPs0d = PssdPs0d,

lim
T→+`

VTssd = PssdPs0dfPs0dPssdPs0dg−1 . j

It is important to note that it is the different subspaces which
globally evolve adiabatically and not the states individually.
Inside each subspace nonadiabatic transitions can occur at
the conical intersections or near avoided crossings, since this
generalized theorem refers to subspaces and not just to indi-
vidual levels. Theorem 2fEq. s18dg shows an adiabatic limit
of the wave operator which is a pure stationary operator
without any rapid phase, by contrast with the equivalent
adiabatic limit of the wave function, which includes both
dynamical and Berry phases. This should be related to the
fact that the basic equations of the time-dependent wave op-
eratorfEq. s7dg and of the stationary wave operatorfEq. s12dg
are identical in form.

C. Wave operator in the Floquet „s,f… treatment of laser
pulses

Calculations treating photoreactive processes and the con-
trol of molecular dynamics by laser fields generally involve
large vector spaces. However, the number of eigenvectors
effectively contributing to the dynamical processes can be
reduced if suitably adapted representations are used, thus of-
fering favorable circumstances for the use of adiabatic treat-
ments. In the case of field-matter interactions the semiclassi-
cal picture of the interaction of a laser pulse with a molecule
makes use of a periodic or a quasiperiodic Hamiltonian. The
above adiabatic theorem obviously cannot be applied di-
rectly. It is first necessary to separate dynamically the fast
oscillating terms from the adiabatic evolution of parameters
such as the chirped frequency and the electric field envelope.
In the standard adiabatic approach this separation is the goal
of the theories using two time variables. This concept of two
times was introduced by Breueret al. f19g and by Peskin and
Moiseyev in thest ,t8d theory f13g, where it avoided the in-
troduction of the time-ordering operator and allowed the use
of techniques originally developed for time-independent

FIG. 1. Example of the de-
composition ofs(Hssd).
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Hamiltonians. In the Floquet theory of Drese and Holthaus
f3g the same concept is used together with perturbation
theory to construct adiabatic trajectories plus nonadiabatic
corrections.

We must adapt these two-time variables theories to the
TDWOT in order to make the wave operator theory consis-
tent with the Floquet treatment of quasiperiodic dynamics.
To illustrate this formal development we consider an atom or
a molecule interacting with a classical radiation pulse. The
Hamiltonian of the system is taken to be

Hstd = H0 + mfstdsinfvstdtg, s19d

whereH0 is the Hamiltonian of the free molecule defined in
the Hilbert spaceH, m is the electric dipole,fstd is the field
envelope, andvstd is the instantaneous radiation frequency
spossibly chirpedd. We suppose that the envelope variations
and frequency chirping are slow with respect to the instanta-
neous frequencies. Our aim is to separatesin the framework
of the wave operator formulationd the slow dynamics corre-
lated to the adiabatic parameters and the fast dynamics pro-
duced by the periodic terms. To this end, we introduce the
phasef,

]fstd
]t

= veffstd = vstd + v̇stdt, s20d

and take this phase as the time variable corresponding to the
fast dynamics. We then have

Hss,fd =
T

"veffssd
fH0 + mfssdsinsfdg, s21d

wheres is the reduced times= t /T andT is the duration of
the pulse. Note thatsP f0,1g and f0,1f.S1\ h2pj.

As a consequence of going from the variablet to the
variablef, Hss,fd is periodic with respect tof even if the
frequency is chirped. We can then use Floquet theory.f is
considered as a parameter of the configuration space, and
HFss,fd=Hss,fd−i]f is an operator of the spaceH
^ L2sS1,df /2pd which depends on thes time. For more de-
tails about this Floquet theory, see Refs.f2,3,6g.

We suppose thatHss,fd considered as a function ofs is
adiabatic, i.e., we assume that the time intervals during
which v and the envelope amplitudef change significantly
are large compared to the instantaneous oscillation period.
We investigate this adiabatic dynamics by applying the wave
operator adiabatic theoremswith respect tosd and by work-
ing with HFss,fd in the extended Hilbert spaceH
^ L2sS1,df /2pd. This approach first requires us to define a
convenient well isolated active spaceS0 ^ L2sS1,df /2pd and
the corresponding target spaceSssd=P0 ^ 1L2sS1dUFssdS0

^ L2sS1,df /2pd. This construction will be described later. A
second important question concerns the relationship of the
generalized wave operatorXFsf ,sd defined in the Floquet
space to the wave operatorXsfd corresponding to the real
time-dependent problem. This question, which appeared in
thest ,t8d theory for the wave function, is important, since we
wish to extract physical results fromXFsf ,sd. The question
can be formulated as follows:Can the wave operator Xsfd

be identified with XFsf ,s=fd? This is the subject of the
following theorem.

Theorem 3. Let Xsfd, the reduced wave operator inH, be
a solution of

i]fXsfd = f1 − XsfdgHsf,fdf1 + Xsfdg. s22d

Let XFsf ,sd, the reduced wave operator inH ^ L2sS1d, be a
solution of

i]sXFsf,sd = f1 − XFsf,sdgHFss,fdf1 + XFsf,sdg s23d

with

HFss,fd = Hss,fd − i]f.

Then, XFsf ,fd is a solution of Eq. s22d, such that
XFsf ,fd=Xsfd.

Proof:

XF:S0 ^ L2sS1d → S0
'

^ L2sS1d.

Let hualja be a basis inH and humljmPZ a basis inL2sS1d,

XFsf,sd = o
aPS0

o
bPS0

'

o
n=−`

+`

o
m=−`

+`

ublkfunlxbn,amssdkmuflkau

with

xbn,amssd = kbu ^ knuXFsf,sdual ^ uml

=E
0

2p

kbuXFsf,sdualknuflkfuml
df

2p
.

Let I =ha ,b ,n,mjaPS0,bPS0
',nPZ,mPZ. We find, using Eq.s23d,

io
I

ublkfunlẋIssdkmuflkau

= f1 − XFsf,sdgHss,fdf1 + XFsf,sdg

− if1 − XFsf,sdgo
I

ublxIssdskfunl8kmufl

+ kfunlkmufl8dkau.

We have XFubl=0 becauseXF=Q0XFP0 and ublPS0
';

then we have

io
I

ublfkfunl8kmuflxIssd + kfunlkmufl8xIssd

+ kfunlkmuflẋIssdgkau

= f1 − XFsf,sdgHss,fdf1 + XFsf,sdg.

The previous property is true,∀ f, sPS1; in particular it is
true for s=f, so that

io
I

ublfkfunl8kmuflxIsfd + kfunlkmufl8xIsfd

+ kfunlkmuflẋIsfdgkau

= f1 − XFsf,fdgHsf,fdf1 + XFsf,fdg

⇔ i]fXFsf,fd

= f1 − XFsf,fdgHsf,fdf1 + XFsf,fdg.
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ThenXFsf ,fd is the solution of Eq.s22d. j

Thus the two-time wave operatorXFsf ,sd can be used to
extract the physical results by considering the limits=f. The
interest of the Floquet approach is that the time-dependent
dynamics is described by using a stationary formalism. We
can then use a spectral criterion to justify the use of the wave
operator adiabatic theorem. If at each time the spectrum of
the instantaneous target space is isolated sufficiently far from
the rest of the spectrum ofHFsf ,sd in H ^ L2sS1d, then we
can write

lim
T→+`

VF
Tssd = PssdfP0 ^ 1L2sS1dPssdP0 ^ 1L2sS1dg−1,

s24d

where the target spaceSstd is a subspace ofH ^ L2sS1d, and
VF

T is an operator of the same space.

III. ILLUSTRATION: A MEASURE OF ADIABATICITY

This section illustrates the wave operator theorem and the
two-time formalism by analyzing two simple models of mol-
ecules subjected to an ultrashort laser pulse. Both models are
represented by Eq.s21d. The numerical study of these two
systems has the double objective of illustrating the adiabatic
theoremsthat the generalized wave operator is, at the adia-
batic limit, a succession of instantaneous wave operatorsd
and also of demonstrating the decrease of the nonadiabatic
effects outside the active space when an appropriate multidi-
mensional active space is used. The two systems are treated
in the two-time ss,fd formulation so that our illustration
simultaneously accords with the two original theorems, theo-
rem 2 and theorem 3. In other words, it correctly obeys Eq.
s24d which is a condensed form of the two theorems. The
atomics unitssa.u.d are used in these applications.

A. A pure adiabatic case

The first system involves the photodissociation of H2
+, via

the process

H2
+s2Sg

+,v = 0,J = 0d + "v → H2
+s2Su

+d → H+ + Hs1sd.

s25d

The two electronic potential-energy surfaces and the transi-
tion dipole moment are taken from Bunkin and Togovf20g.
The laser is characterized by its carrier wave frequencyvo
=0.295 868 a.u., a maximum intensity ofI =1012 W/cm2 and
a Gaussian envelope of the form

fstd =5eo expF− S t − t1
t

D2G for t ø t1

eo for t1 ø t ø t2

eo expF− S t − t2
t

D2G for t ù t2
6 s26d

with a rise time oft=25 a.u. and with a large plateau be-
tweent1=200 a.u. andt2=300 a.u.

This system has been extensively studied in the literature.
The photodissociation process is a direct transition from the

ground surfacesog
+d to the upper structureless surfacesou

+d.
For strong enough laser intensities stimulated emissions of
photons appear during the interaction, involving theog

+ con-
tinuum, so that the two molecular continua participate in the
dynamics. The spectrum of the Floquet Hamiltonian
HFss,fd=Hss,fd− i]f consists then of discrete bound states
embedded in the molecular and photonic continua. The theo-
rems demonstrated in the previous section cannot be applied
directly in this casef21g. The dissipative character of the
process is not really a handicap because one can use bior-
thogonal basis sets to reproduce the outgoing quantum
fluxes. It might appear to be impossible to define isolated
subspaces including the initial state. One can, nevertheless,
recover correct conditions by discretizing both the photonic
and the molecular continua. The discretization of the photo-
nic continuum is simply obtained by using a finite basis set
expsinfd to span the spaceL2sS1,df /2pd. This approxima-
tion is consistent with the Floquet formalism itself since the
Floquet Hamiltonian is identical, up to an additive constant,
to the quantum Hamiltonian of the field-matter interaction if
one assumes that the number of photons exchanged during
the field-molecule interaction is small compared to the aver-
age photon numberf2g. Preliminary tests reveal that a basis
set ofN=256 states, namely,hexpsinfdjn=−170–n=+85, is suffi-
cient to represent the full laser pulse and to give well con-
verged results in the spaceH ^ L2sS1d. The initial Floquet
state is taken to beuil= uv=0,n=0l, wherev=0 is the ground
vibrational state of2og

+. The arbitrary choice of the first
Brillouin zone n=0 corresponds to taking a phase between
the molecular state and the field which is uniformly averaged
on f0,2pg. This choice is appropriate for experimentals re-
sults, where many molecules contribute.

The discretization of the molecular continua is obtained
by using the optical potential modelf22g, i.e., by introducing
a finite asymptotic complex potential −iVoptsrd along the ra-
dial axis of the two energy surfaces. This is a coarse grained
procedure which destroys the exact representation of the con-
tinuum; all the scattering states are modified in the interac-
tion region and their spectrum is rotated in the complex
plane. Nevertheless, some fundamental features are pre-
served. This transformation assures the analytical continua-
tion of the Green function through the cut constituted by the
real axis and can be used to explore the second Riemann
sheet and the complex resonance states; it can thus be used to
investigate photoreactive processes which are dominated by
the influence of field-matter resonances. These results can be
understood by noting that the optical potential model modi-
fies the rigorous energy-based definition of the Green func-
tion lime→0+fE−sHF− iedg−1 into the new more tractable form
hE−fHF− iVoptsrdgj−1.

In the new discretized spaceH ^ L2sS1d the wave function
which issues from the molecular stateuil can be expanded on
the complete basis set of generalized Floquet eigenstates
fi.e., the eigenvectors ofHFss,fdg, giving the expansionf8g

ucstdl = o
j

e−iEl j ,0
t/"ul j ,0stdlkl j ,0st = 0duil. s27d

This equation, which assumes a state-to-state correspondence
between the nonperturbed statesu j ,nl sthe eigenstates ofHF
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without the field-matter interactiond and the Floquet eigen-
statessl j ,nd clearly shows that only the Floquet eigenvectors
of the first Brillouin zonesn=0d contribute. By using the
wave operator sorting algorithm of Wyatt and Iungf17g, one
can easily select a finite group of statesuk,n=0l sk=1–Nd to
constitute the active space and limit the sum in Eq.s27d to
this group. The dimensionN depends directly on the more or
less adiabatic character of the dynamics and also, to a certain
extent, on the precision which is required. One can then dis-
tinguish adiabatic processes when a single state constitutes
the active space and nonadiabatic processes when a few
states constitute this active space. A similar analysis was
made by Barashet al. f23g, who distinguished “adiabatic
ionization” scaused by the presence of complex energiesd and
“nonadiabatic ionization”scaused by nonadiabatic transi-
tionsd. However, Barash used a basis set of instantaneous
Floquet eigenstates. In such a picture the signature of the
nonadiabaticity is the presence of nonadiabatic transitions
between the basis states, while the expression of the basis set
at t=0 swhen the field-matter interaction is equal to zerod
satisfies in every case the equationkkul j ,0st=0dl=d j ,k. In our
generalized Floquet eigenstate picture satisfaction of this
equation is, on the contrary, the exclusive signature of an
adiabatic process. In the nonadiabatic case the Floquet eigen-
statesl j ,0st=0d spread out at the initial time over many non-
perturbed statesuk,0l. The size of the active space is then the
number of generalized Floquet eigenstates which participate
in Eq. s27d and which are necessary to reconstitute att=0 the
initial stateuil.

A good indicator of the adiabaticity is the complex spec-
trum of the Floquet Hamitonian near the initial eigenvalue
Eli,0

. As the size of the extended Hilbert space is very large,
it is impossible to calculate this spectrum but the picture of
the unperturbed partHF

o =Ho− i "] /]t sFig. 2d remains sig-
nificant insofar as the spectral distortions due to the field-
matter interaction are small. The initial statesrepresented by
a black square in Fig. 2d is not perfectly isolated as it should
have been in a perfect adiabatic process. Nevertheless, the
nearest eigenvalues correspond to bound states of the ground
surfaces:uv=1,n=0l, uv=2,n=0l, which are not selected by

the wave operator algorithm because they imply higher per-
turbation orders. By contrast this algorithm selects con-
tinuum states even if they move away from the real axis. One
can then expect that the adiabatic character is roughly pre-
served. This analysis is confirmed by Fig. 3 which presents
the transition probabilities.

Figure 3 reveals that the inelastic transition probabilities
take small valuessø10−4d. The dissociation probability is
larger but its value is due to the complex eigenvalueEl0,0

and
is not produced by nonadiabatic transitions. One can thus
conclude that the photodissociation of H2

+ is not perfectly
adiabatic but possesses a strong adiabatic character. A single
stateui ,n=0l mainly constitutes the model space, so that a
single Floquet stateuli,n=0l significantly participates in Eq.
s27d. The initial conditions require that this single state be
characterized by the asymptotic conditions:kkuli,0st=0dl
=kkuli,0st=Tdl=di,k f8g, so that this single Floquet state is, at
t=0, about identical the instantaneous Floquet stateui ,n=0l.
To test the adiabatic theorem corresponding to the two-time
wave operatorfEq. s24dg we propose the test described below
for this one-dimensional case.

The exact wave operator corresponding to the selected
active space is calculated by integrating the equation

HFVTsf,sd = VTsf,sdHFVTsf,sd = VTsf,sdHeff s28d

on the whole durationft=0,t=T=500 a.u.g of the interac-
tion, using an iterative treatmentf24g and a basis consisting
of the tensorial product of the free molecular basis set and
the Fourier basis expsinfd. Then a local Floquet Hamil-
tonian HF

si is formed by freezing the value of the adiabatic
time variable at a grid point valuess=sid and Eq.s28d is
tested locally by using this local Floquet Hamiltonian,
namely,

fHF
siVTsf,sdgf=s=si

. fVTsf,sdHeff
si gf=s=si

. s29d

In this equationHeff
si is a local effective Hamiltonian obtained

by taking a narrow Gaussian average centered on thesi value
sdifferent calculations have shown that the test is not affected

FIG. 2. The unperturbed Floquet spectrum of
H2

+ around the initial statesblack squared. The
ten first states selected by the wave operator sort-
ing algorithm are represented by squares, the
other states by the symbol “1.”
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by the width of this distribution as long as only a few points
of the grid contribute to this averaged.

If the Floquet wave operator is rigorously a succession of
instantaneous wave operators then the two members of Eq.
s29d are equal and the symbol “5” should take the place of
“..” A first local measure of the nonadiabaticity is thus the
modulus of the difference of the right-hand and left-hand
sides of Eq.s29d,

J1
si = o

i
o

j

usfHF
siV − VHeff

si gsi
di,ju2. s30d

A more detailed analysis of this equation proves that, in spite
of the changeHF→HF

si, this measure of the nonadiabaticity
tends to zero if the successive effective HamiltoniansHeff

si are
constant and equal toHeff as defined in Eq.s28d. This is
because the difference betweenuHFVusi

and uHF
siVusi

is due
to the kinetic parti]s solely. The coupling partmfssdsinsfd
fEq. s21dg has a diagonal representation in the DVR basis set
uskl associated to the FBR basis set expsin2psd so that the
matrix product uHFVusi

does not make use of the values

Vsf ,skd for kÞ i. The kinetic part has a nondiagonal repre-
sentation but its influence tends to zero at the adiabatic limit.
This is a direct consequence of the wave operator adiabatic
theorem sTheorem 2d: the time-dependent reduced wave
operator which is the solution of i]sXFsf ,sd=f1
−XFsf ,sdgHFss,fdf1+XFsf ,sdg fEq. s23dg tends at the adia-
batic limit to the stationary reduced wave operator, a solution
of f1−XFsf ,sdgHFss,fdf1+XFsf ,sdg=0. One can then pro-
pose a second measure of the nonadiabaticity, based on the
variations ofHeff, and given by

J2
si = o

i
o

j

usHeffdi,j − sHeff
si di,ju2. s31d

Figure 4 presents these two measures in the case of H2
+.

For this quite adiabatic system the active space is one dimen-
sional and the reduced wave operator is given by a single
column. The amplitude of the field is selected as the single
adiabatic parameter. The variations of this parameter are rep-
resented in the upper part of this figure.

This figure reveals that the two measures are more or less
proportional and that the departures from adiabaticity appear

FIG. 3. Transition probabilities on a logarith-
mic scale. The solid lines representsfrom top to
bottomd the survival probabilityP0→0 and the in-
elastic transition probabilitiesP0→1 and P0→2.
The dashed line represents the dissociation
probability.

FIG. 4. The two measures of nonadiabaticity
in a logarithmic scale in the case of the photodis-
sociation of H2

+, solid line:J1; dashed line:J2.
The envelope of the field is represented in the
upper part of the figure.
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when the adiabatic parameterfssd fEq. s21dg does not vary
smoothly on the time scale determined by 2p /v. It shows
both the consistency of the wave operator theoremswhich is
satisfied with a precision less than 10−30 when the adiabatic
parameter is constantd and the use of a two-time formalism
in the framework of wave operator theory.

The departures from pure adiabaticity mainly come from
two photon processessabsorption+emissiond which connect
the initial state to other bound states of the same ground-state
surface. These transitions are favored by strong laser fields
and rapid variations of the laser envelope which broaden its
spectrum. By increasing the rise time fromt=25 a.u. up to
t=100 a.u. one increases the adiabaticity of the process by
making the laser fields more monochromatic. This is con-
firmed by Fig. 5, which show a signifant decrease of about
one order of magnitude of the maxima of the two measures
J1 andJ2.

B. A nonadiabatic case

The second system is a model system similar to the first.
The reduced mass and the dipole moment are those of H2

+.
The ground surface is a Morse potential but the upper surface

is taken to be the potential of Hulburt and Hirschfelderf25g
in place of the structureless surface. These two surfaces are
represented in Fig. 6.

Four bound states exist in the well of this upper surface
and three shape resonance are clearly identified by a spectral
analysis. The field amplitude is characterized by a maximum
intensity I =1010 W/cm2 and a Gaussian envelope given by
Eq. s26d with t=25 a.u., t1=50 a.u., andt2=450 a.u. The
carrier wave frequency isvo=0.544 a.u. with a chirping am-
plitude dv=0.002 a.u., namely,

vstd =5
vo for t ø t3
vo + dvst − t3d/st4 − t3d for t3 ø t ø t4
vo + dv for t4 ø t ø t5
vo + dvst6 − td/st6 − t5d for t5 ø t ø t6
vo for t ù t6

6
s32d

with t3=130 a.u.,t4=230 a.u.,t5=350 a.u., andt6=450 a.u.
Linear variations ofv have been chosen so as to obtain
analytical relationships betweent andf fEq. s20dg.

FIG. 5. The same caption as for Fig. 4 but for
a more slowly varying field envelope obtained by
increasing the rise time fromt=25 a.u. up tot
=100 a.u.

FIG. 6. Representation of the two electronic
potential surfaces for our second model system.

ADIABATIC THEOREM FOR THE TIME-DEPENDENT… PHYSICAL REVIEW A 71, 052706s2005d

052706-9



Because of the modulation of the frequency, the laser is,
at certain instants, tuned to the bound-state–bound-state tran-
sition sv=0→v8=0d. This produces a nonadiabatic picture
in which the target space incorporates the Floquet state issu-
ing from the bound stateuv8=0l of the upper surface. Figure
7 presents the spectrum of the unperturbed Floquet Hamil-
tonian near the initial eigenvalueEv=0,n=0 and confirms this
analysis by revealingsnearEv=0,n=0d a subgroup of eigenval-
ues situated far from the rest of the spectrum. More precisely
the wave operator sorting algorithm selects on the real axis
the Floquet states issuing from the first vibrational states of
the two surfaces:uv= il, i =0,1,2 anduv8= jl, j =0,1,2.

Figure 8 presents the biggest inelastic transition probabili-
ties and confirms the selection made by the sorting algo-
rithm, for example the probabilityPv=0→v8=0 has much larger
values than the other inelastic transition probabilities.

Figure 9 presents the measureJ1 for our second system.
In this case the frequency is chirped. The envelope of the
field fssd and the frequencyvssd are represented in the upper
part of the figure.

As in the previous case the departures from adiabaticity
increase when one of the two adiabatic parameters varies too

rapidly. The effect is particularly important at the times for
which df /dt is discontinuous. As the intensity of the field is
a hundred times smaller than for H2

+, the defects correspond-
ing to the use of a one-dimensional active space are com-
paratively larger in this second system. The most important
point is that one can reduce these defects by selecting a con-
venient degenerate active space. One can, for example, make
an improvement of about four order of magnitude by going
from N=1 to N=5. This result confirms that the wave opera-
tor formulation can increase the domain of variation of the
adiabatic parameters in which the adiabatic limitfEq. s24dg
can be used, by using a finite target space to describe the
strong nonadiabatic effects. In this sense the time-dependent
wave operator is an ideal tool to generalize the quantum
adiabatic theorem in multidimensional spaces. It should be
noted that the discretization of the two continua by the intro-
duction of asymptotic absorbing potentials is necessary to
work with finite representations and to reduce the size of the
active spaces; this optical potential approach is common to
the majority of works which use a DVR approach to describe
dynamical processesf26,27g.

Figure 10 presents the measureJ2, and confirms the pro-
portionality of the two measures of adiabaticity.

FIG. 7. The unperturbed Floquet spectrum of
our second system around the initial statesblack
squared. The ten first states selected by the wave
operator sorting algorithm are represented by
squares, the other states by the symbol “1.”

FIG. 8. Transition probabilities on a logarith-
mic scale. The solid lines representsfrom top to
bottomd, the survival probabilityPv=0→v=0 and
the inelastic transition probabilitiesPv=0→v=1 and
Pv=0→v=2. The dashed line representssfrom top to
bottomd Pv=0→v8=0, Pv=0→v8=1, andPv=0→v8=2.
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IV. CONCLUSION

In this work the standard quantum-mechanical adiabatic
theorem, which applies to the wave function of a single state,
is generalized so as to apply to the time-dependent wave
operator associated with a multidimensional active space
fEq. s18dg. It is also shown that the two-time formalisms
which have sometimes been used to describe the time evo-
lution of periodic systems can be adapted for use with the
wave operator approachfEqs. s22d and s23dg. The value of
our adiabatic theorem and of the two-time wave operator
formalism are demonstrated by numerical studies of two
specimen problems involving laser-molecule interaction. The
calculations show that within this formalism it is possible to
enhance the effective adiabaticity of the dynamical processes
involved by choosing an appropriate degenerate active space
and capturing the nonadiabatic effects within corresponding
target spaces.

The formalism developed here appears to provide an ef-
fective approach to the study of the inelastic and reactive
processes caused by the interaction of a molecule with a laser
pulse, since the nonadiabatic effects associated with short

laser pulses can be dealt with by using an effective Hamil-
tonian approach together with an appropriate target space.
The effective Hamiltonian can take into account the dynami-
cal effects usually associated with level crossings and
avoided crossings; the multidimensional target space man-
ages to capture the fast dynamical processes internally while
itself evolving in a more adiabatic manner with respect to the
other disjoint subspaces within the overall Hilbert spacesas
described by the generalized adiabatic theoremfEq. s18dg.

A further study of the use of this formalism to describe
photoreactive processes is currently in progress, with the aim
of adapting it to produce an adiabatic transport theory which
uses a discrete lattice within the manifold of control param-
eters which is needed to describe control processes. The
main problem of control theory is not to solve the math-
ematical inverse problem, because its solution is generally
nonrealistic from an experimental point of view and is some-
times unstable. The central problem is rather to select and to
understand the few basic processes which influence a full
photoreactive experiment. This understanding gives the pos-
sibility of modifying some of these basic processes by moni-
toring some adiabatic parameters and also by introducing

FIG. 9. The measureJ1 of nonadiabaticity in
a logarithmic scale for our second system. The
envelopefssd ssolid lined and the frequency varia-
tions vssd sdotted lined are represented in the up-
per part of the figure. Three cases are represented:
a one-dimensional active spacesdashed lined and
two degenerate active space of increasing dimen-
sionsN=5 andN=10 ssolid linesd.

FIG. 10. The measureJ2 of nonadiabaticity
in a logarithmic scale for our second system. The
envelopefssd ssolid lined and the frequency varia-
tions vssd sdotted lined are represented in the up-
per part of the figure. The case represented corre-
sponds to a degenerate active space of dimension
N=5.
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quantum interference effects between them. Two fundamen-
tal concepts involved in the basic theory are those of the
adiabatic evolution on the Floquet eigentrajectories and the
nonadiabatic transitions between individual levels. For in-
stance, the study of Guérin and Jauslin connects the effi-
ciency of the population transfer between the initial and the
target states to the topology of the dressed state energy sur-
faces, which varies as a function of the time-dependent ex-
ternal field parameters. The adiabatic transport appears in
their study as a global adiabatic passage along one eigenstate
trajectory, combined with the local diabatic evolution near
conical intersections. The present study and the two original
theorems that it proposes offers a natural generalization to
the degenerate case of the adiabatic conjecture for single

Floquet states, leading to an approach which involves driving
simultaneously interfering adiabatic trajectories on the
dressed state energy surfaces while concentrating the adia-
batic transition inside the evolving target space. In our pic-
ture the nonadiabatic coupling processes can overlap and in-
terfere during the same time intervals.

The present work is thus a first step forward for molecular
control theory. The complete plan of this original approach
necessitates two supplementary studies which are currently
in progress: a discretization within the manifold of control
parameters to make the numerical treatment possible and a
more precise analysis of the consistency of the geometric
phase with the wave operator formalism.
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