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Adiabatic theorem for the time-dependent wave operator
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The application of time-dependent wave operator theory to the development of a quantum adiabatic pertur-
bation theory is treated both theoretically and numerically, with emphasis on the description of field-matter
interactions which involve short laser pulses. It is first shown that the adiabatic limit of the time-dependent
wave operator corresponds to a succession of instantaneous static Bloch wave operators. Wave operator theory
is then shown to be compatible with the two-time Floquet theory of light-matter interaction, thus allowing the
application of Floquet theory to cases which require the use of a degenerate active space. A numerical study of
some problems shows that the perturbation strength associated with nonadiabatic processes can be reduced by
using multidimensional active spaces and illustrates the capacity of the wave operator approach to produce a
quasiadiabatic treatment of a nominally nonadiabatic Floquet dynamical system.

DOI: 10.1103/PhysRevA.71.052706 PACS nuntber03.65.Nk, 33.80-b

I. INTRODUCTION effective Hamiltonian approach attractive and Guérin and
. . . . Jauslin[2] have proposed such an approach, based on the
The numerical study of the interaction of a molecule with [2] prop bp

| field lead d for | ! a?uantum analog of the Kolmogorov-Arnold-Mos@¢AM )
a strong laser field leads to a need for long computation ansformation 9], with resonant effects being treated by a
times and large computer memory capacity, if use is made

K h which invol di . ~ “fotating wave approximation. The superadiabatic Floquet ap-
a wave-packet approach which involves a direct mtegrauorgoach[s], which uses a sequence of unitary transformations

of the time-dependent Schradinger equation. This prc_)blem i produce bases which follow the nonadiabatic evolution, is
even greater for the study .Of cqntrol Processes, since th&lso very similar to an effective Hamiltonian approach. The
repetition of many propagations is heeded to f|n_d the Opt_"time-dependent wave operator thedgyDWOT) is a third
mum va!ues of several adjustable parameters which desc_:rl ample of effective Hamiltonian theory for time-dependent
the nonlinear effects due to ultrashort laser pulses. Provided ctams. It has long been used to describe photoreactive pro-

that some of the parameters do npt vary too rapidly, adiabatigesseﬁo,l]] and has several features which make it useful
t(hachnlgu(sei}]_havedsgmelyalue V(\j"tgm the Codntﬁxlor: Flgquet in the search for an efficient description of nonadiabatic ef-
Leory, uerlnd and_ bau_s Iflgl] an reshe 3” - Otkal[. ] fects. It is consistent with Floquet theory and enables a gen-
ave proposed adiabatic Floquet methods. To take INto aGq)ization to the degenerate case of the adiabatic conjecture
count the nonadiabatic eff,eg:ts which are inevitably presenf, Floquet states. It proceeds by using an evolving target
for short Ia;er p_ulses, Guérin and Jau@ﬁﬁh assymed them space within which the description of the nonadiabatic tran-
to be localized, in the sense that the adiabatic transport C&lltions is concentrated. The several iterative techniques

| > . . ith local diabati uti fhich have been proposed to integrate the wave operator
along eigenstate trajectories, with local diabatic evolution,q, aiion of motion are sufficiently robust to work with

K of D d Holth h diabai | hQamiItonians which are rotated in the complex plane or
work of Drese and Holthaugs] the nonadiabatic couplings \ich include extra complex absorbing potentials. However,

were treated .approxima.tely qsing first-order pertgrbatipr‘;some basic theoretical properties of the TDWOT have not
theory. The principal difficulty in treating the nonadiabatic been rigorously demonstrated. The theoretical part of the

effects is due to the large representation spaces used in theqqo i work looks in particular at the adiabatic limit of the
Floguet formalism[2-6], since a large extended Hilbert

spacel ® L%(S',do/2) is used, involving a product of the R,U:tﬁsg eFr;ggStetV\tlﬁZgr; Z?]rg t\?\/;\?en %pztr;?gr Itlﬂléotr);tween the
bare molecule Hilbert space with the space of square inte- gection |1 of this work demonstrates an adiabatic theorem
grable functions on the circle of lengthr32,3]. . for the wave operator, after recalling the basic points of wave
Fortunately, it turns out that a reasonable description 0fserator theory and of the earlier adiabatic theorem of Nen-
the matter-field interaction can often be made by using an, [12]. This section also introduces the adiabatic principle
active space of small dimension, provided that the basis se{§ prese and HolthauE3], which uses two time variables
used consist of instantaneous Floquet eigenvedtofsor (like the (t,t") method of Peskin and Moiseyd3]) and
generalized Floquet eigenvectdf. This feature makes an shows how to generalize this earlier principle involving the
wave function so as to apply it to the wave operator. In Sec.
Il numerical applications illustrate our adiabatic theorem for
*Electronic address: viennot@obs-besancon.fr one-dimensional and degenerate active subspaces and deal
"Electronic address: george@obs-besancon.fr with electronic transitions produced by short laser pulses.
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They show how the effective adiabaticity of a dynamical Q(t) =UM)[PoU(H) Py, (4)
process can be increased by projecting the fast nonadiabatic ] .
effects into a multidimensional target space. Section IV sumwhere [PoU(t)Po]™*=Pg[PoU(t)Po]™*Pg is the inverse of
marizes the work, with a comment about further possibleJ(t) within S {dom{PaU(t)Po] =S}, dom is the domain of
applications. an operator.

One can split the wave operator as follows:

Il. THEORY Q(t) =Py + X(1), (5

TDWOT allows a generalization to the degenerate case of
the adiabatic conjecture for Floquet states, when the Floque,
spectrum satisfies some not very onerous conditions;
TDWOT can isolate the description of the diabatic part of the9
dynamics by restricting it to a relatively small target space, HhaX(®) =[1 - XOTHO[L +XD)]. (6)
with the strong nonadiabatic effects which affect the initial
state being included inside this target space. Although th®y introducing the Floquet Hamiltoniad=H -4/t and
above features have been abundantly illustrated by numerical generalized Hilbert space, formed by the product of the
calculations on a range of particular systems, we regard it aldilbert spaceH with the vector space arising from the time
useful to give a more careful theoretical proof of their gen-variablet, this partial differential equation can be rewritten
eral validity. In a recent reviel14] we made a heuristic as
conjecture that the adiabatic limit of the time-dependent
wave operator is a succession of instantaneous stationary HE(OQ() = QOHE()Q(). (7)
wave operators. In this section we demonstrate this theoreti-
cally, after giving a brief review of some necessary details of
previous work.

here the reduced wave operakit) satisfies the interme-
iate normalization conditiorQyXPy=X. This operator is
overned by a nonlinear partial differential equation

2. Stationary wave operator

We will now consider(in the same separable Hilbert

A. Wave operator concept spaceH) the operatoH and the eigenvalue equation

1. Time-dependent wave operator Hiy =Ny (8)

We consider a separable Hilbert spacevhich is used to  We consider two subspac&; and S of H such thatg,N'S
describe the states of a quantum system. The dynamical sys-@. We call them the active and target subspaces and we
tem is described by a time-dependent Hamiltort(t) and  denote the projectors of these subspaceBdgndP. We are
its associated time-dependent Schrédinger equation and hagerested in eigenvectors includedSrsuch thatPy=1. As
the time evolution operatdd(t) (0 te[0,T]). The idea of for the previous time-dependent problem, we reduce the
TDWOT is to consider a@active subspace,®f H, such that problem to one within the active subspace. We introduce the
the dynamics projected into this subspace can be integraté®loch wave operator:
using an effective Hamiltoniary, should be chosen to de-
scribe the strong and fast part of the dynamics issuing from QO S—S 9)
the initial state. Its choice has been made previously by using "o
artificial intelligence approach¢45,16 and a wave operator ) _ ) _ )
sorting algorithm[11,17). After solution of the Schrédinger Wherey is a solution of the eigenvalue equati@ andyy is
equation in the active spac the wave operatof) which @ solution of
generate$l; is used to transform the solution & into the

true solution in the Hilbert spack. The above description Hetttho = Mibo- (10)
can be summarized as follows: The effective operator is defined by.=PoHQ. The wave
St — H operator is formally given by the expression
Ot Q): , 1 _
© Po(t) — yAt) W QO =P(PoPPy) ™, (1)
where (t) is a solution of the Schrddinger equation where(PyPPy) ! is the inverse oP within . It is a solution
thag(t) = H(t) yd(t) @) of the generalized eigenvalue equation,
and whereyy(t), defined as the projection af into S, is a HQ = QHO = OHe. (12)
solution of the equation It is important to note that Eq7), which describes a time
i dibio(®) = Hor(®) (1) 3) evolution, is identical in form to Eq(12), except that the

Floguet HamiltoniarHg is taken in place oH. This similar-
The effective Hamiltoniariwhich describes the approximate ity indicates the compatibility of the TDWOT with the Flo-
dynamics inS) is defined byHqu(t)=PoH(1){(t) and the quet treatment of periodic or quasiperiodic dynamical pro-
target space iS(t) =PoU(1)SC S, Pp being the projector on cesses. More details about the wave operator theory can be
S The time-dependent wave operator can be written as  found in the review articlef8,14] and in Refs[4,5,10,11.
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B. Adiabatic theorem for the wave operator

This section considers the adiabatic limit of the time-

dependent wave operator when the active subsfgdde-
fined at timet=0) and the target subspacgt)}.jo1) can

be considered as instantaneous spectral subspaces which are

PHYSICAL REVIEW A 71, 052706(2005

The active space which participates in the definition of the
time-dependent wave operator can be identified with one of
the spectral subspaces introduced by the Nenciu theorem.
Indeed, suppose that the wave function is

lip(s)) = U..(9)]i), (14)

isolated permanently from the rest of the spectrum. This as- . o _ _

sumption is central and holds throughout our treatment. TavhereU.(s) is a simplified notation for lim_.. U(s). Gen-
demonstrate this wave operator adiabatic theorem we neefally a suitable normed vectx) e H must be included in
an adiabatic theorem which does not investigate the eigeribe active space iflo € [0,1] to ensure thaf(\|¢(0))| is
values separately, as does the standard adiabatic theordatge. This criterion is consistent with the wave operator sort-
(see, for example, Ref1]), but which considers some sub- ing algorithm proposed by Wyatt and lufg7], which con-

spectrum. Such a theorem was proposed by Neddiiand
is recalled here.
Theorem 1 Let s—H(s) be a family of self-adjoint

Hamiltonians. We writes=t/T for the reduced time on the

interval[0, T]. We suppose that thél(s)}s. [0, 1 have a dense
common domain irf{, and that the equation

i U(s) = TH(s)U(9)

admits a strongly continuous solutiar>U+(s) of unitary
operators(to fulfill this assumption see Ref18]). We sup-
pose that

(i) there exist real functionsai(s) and by(s) for j
=1,... N-1< +oo, defined on0,1], such that

aj(s) <bj(s) <aj(s), 0O}, 0s,

mininf[b;(s) - a;(s)] =d >0,
i s

and

N
o(H(S) = U oy(s),

o1(8) C - »,a(9)]

oi(s) C[bj_4(s),a(9)], O j=2,...N-1,

on(S) C [n-1(9), +<°I;

(i) Pi(s) e C4[0,1]; B(H));
(iii) R(s,2)=[H(s)-z]'is differentiable with respect t®
andO >0, OKze R* such that
Ks
dist(z,a(H(s)))

O s such that digiz,o(H(s)))> 4. Also, O j=2,... N-1,
we have

losR(s, )| <

lim U(s)P;(0) = P,-(s)TIir?oc U+(s)

T—+x

(13

(the limits are norm limits

siders the wave operatdn®(s) associated with the one-
dimensional active space generatediband which selects a
vector X if Ooe[0,1] such that|(A\[X%(o)i)] is large,
namely,

[l

O - —
=t (19
and
oraliy] = (N (9))
INXO(9)]i)] i) | (16)

This criterion thus also involves the same amplitude
[(N|¥(s))]. If the conditions of Nenciu’s theorem are fulfilled
and if the initial state satisfigds) € RanP,(0), whereP,(s) is
one of the spectral projectors of Nenciu's theor@mna sum

of spectral projectods then

(N(9)) = (N\|U(9)[1) = (NU(9)P(0)]i) = (A [Py () U(5)]i).-
17

The amplitude[(\|y(s))| is large only if |\) e RanP(s)
since [(\|P,(s)U..()]i}|=0 if [\) e RanP,(s)*. Thus a good
choice for the active space would U@l]RanP,(s)da but
unfortunately this space can be very large. By assuming that
the couplings are not strong enough to rotate significantly the
target space at each instant, i.8.sRanP,(0) N RanP,(s)*
={0}, a reasonable choice for the active subspace is
RanP,(0).

We can now formulate and prove an adiabatic theorem for
the time-dependent wave operator.

Theorem 2 Let s—H(s) be a family of self-adjoint
Hamiltonians, whers=t/T is the reduced time on the inter-
val [0,T]. We suppose that thgH(s)}s.[0.;) have a dense
common domain irf{, and that the equation

thdU(s) = TH(s)U+(s)

admits a strongly continuous solutisr> U+(s). We suppose
that the instantaneous spectratifs) have the decomposi-
tion

o(H(s) = ao(s) U o, (9)

The first assumption supposes that the spectrum is decom-
posed intoN isolated subspectra; the case where the spedvith the properties
trum has a continuous part is not excluded. Eigenvalue cross- (i) 0d>0, 0 se[0,1], dis{oy(s),o,(s))=d,
ings are permitted within each subspectrum. The third (ii) oo(s) is bounded] s and has a finite number of con-
assumption supposes that the variations of the resolvent arected parts ir(H(S));

slow far from the spectrum.

(i) P(s),Q(s) e C4[0,1]; B(H)), whereP(s) is the spec-
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X %) o® G
T - G(H(s))
FIG. 1. Example of the de-
H+H— - ; H-H i —+ Go(s) composition ofa(H(9)).
H- } i H GJ_(S)
tral projector associated withiy(s): and Q(s) is that associ- lim Q(s)P(0) lim U(s)P(0) = lim U+(s)P(0),
T—+x T—+4x T—4x

ated witho | (9);
(iv) Ose[0,1], RanP(s)® RanQ(s)=H;
(v) RanP(0) L RanQ(0); lim Q(s)P(0)P(s) lim U+(s) = P(s) lim U(s).
(vi) O se[0,1], RanP(s)* NRanP(0)={0}; i T o
(vii) R(s,2)=[H(s)-z] ! is differentiable with respect to Sinced T U(s) is invertible, then lim_.. U(s) is invert-

sandd >0, OKze R* such that ible,
dR|| _ Ks lim Q(s)P(0)P(s) = P(s),
e e — T—+x
ds|| dist(z,a(H(s))’
0 z|dist(z, o(H(9))) > 6. lim Q+(s)P(0)P(s)P(0) = P(s)P(0),
Let Q(s)=U(s)[P(0)U+(s)P(0)]™* be the wave operator Tt
with  RanP(0) as associated active space. Then ] a1
limr_... Q4(S) is a succession of instantaneous stationary T'L”;‘x Qr(s) = P(S)P(O)[PO)P(s)P(0)] " u

wave operators with RaR(0) as associated active space and

RanP(s) as target space. We thus have It is important to note that it is the different subspaces which

globally evolve adiabatically and not the states individually.
lim Q(s) = P()[P(0)P(s)P(0)] . (18)  Inside each subspace nonadiabatic transitions can occur at
T the conical intersections or near avoided crossings, since this
Demonstration We decomposes(H(s)) as follows: The generalized theorem refers to subspaces and not just to indi-
spectral values ofoy(s) and of o,(s) are ordered and Vidual levels. Theorem PEqg. (18)] shows an adiabatic limit
grouped from the smallest value up to the largest onef the wave operator which is a pure stationary operator
The spectra thus have the decompositian(H(s)) wit.hout.an.y _rapid phase, by contrast With Fhe equivalent
=Ujo(8) U U, (9) (cf. Fig. D), adiabatic limit of the wave function, which includes both
Because of the condition disty(s),o,(9)=d, all the dynamical and Berry phases. This should be related to the

- ; fact that the basic equations of the time-dependent wave op-
parts of the decomposition are isolated and separated by a4 .
distance equal to or larger thah We can thus apply the ©ratorEd.(7)] and of the stationary wave operaféi. (12)]

Nenciu adiabatic theorem are identical in form.

Oi lim U(s)P;(0) C. Wave operator in the Floquet(s, ¢) treatment of laser
T
pulses
=Pi(s)lim Ur(s) O lim Ur(s) > P;(0) Calculations treating photoreactive processes and the con-
T—oo T—ox i

trol of molecular dynamics by laser fields generally involve
large vector spaces. However, the number of eigenvectors

- 2,: P‘(S)L”l Ur(s), effectively contributing to the dynamical processes can be
reduced if suitably adapted representations are used, thus of-
2iPi(s)=P(s), U s, then fering favorable circumstances for the use of adiabatic treat-

ments. In the case of field-matter interactions the semiclassi-
cal picture of the interaction of a laser pulse with a molecule
makes use of a periodic or a quasiperiodic Hamiltonian. The
above adiabatic theorem obviously cannot be applied di-
rectly. It is first necessary to separate dynamically the fast
oscillating terms from the adiabatic evolution of parameters

lim U(s)P(0) = P(s) lim U+(s),
T—oo

T—o

Q(9) = Ur(9[P(0OU(s)P(0)] ™,

— -1
Qr(s) = Ur(s)PO[P(O)U(s)P(O)], such as the chirped frequency and the electric field envelope.
In the standard adiabatic approach this separation is the goal
Q1(s)P(0)U+(s)P(0) = Ur()P(0), of the theories using two time variables. This concept of two
_ . times was introduced by Breuet al.[19] and by Peskin and
lim [Q(9)P(0)U+(s)P(0)] = lim U(s)P(0). Moiseyev in the(t,t’) theory[13], where it avoided the in-
T+ T—o . . .
troduction of the time-ordering operator and allowed the use
We also have: of techniques originally developed for time-independent
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Hamiltonians. In the Floquet theory of Drese and Holthausbe identified with ¥X(¢,s=¢)? This is the subject of the
[3] the same concept is used together with perturbatioffiollowing theorem.
theory to construct adiabatic trajectories plus nonadiabatic Theorem 3Let X(¢), the reduced wave operatorH, be

corrections. a solution of
We must adapt these two-time variables theories to the
TDWOT in order to make the wave operator theory consis- 1gX(¢) = [1=X($)JH(, P)[1 + X(H)]. (22

tent with the Floquet treatment of quasiperiodic dynamicsy ¢ Xe(,9), the reduced wave operator #® L2(S), be a
To illustrate this formal development we consider an atom ok tion of

a molecule interacting with a classical radiation pulse. The

Hamiltonian of the system is taken to be 1IXe(h,S) =[1 = Xe(,9)JHE(S, D)1 + X(,9)] (23)
H(t) = Ho + uf(sin (], (19)  with
whereH, is the Hamiltonian of the free molecule defined in He(s, @) =H(s, @) —id,.

the Hilbert spacé—{Z M is the electric dipolef(t) 'is the field Then, Xe(é,¢) is a solution of Eq.(22), such that
envelope, ando(t) is the instantaneous radiation frequencyx (¢, b)=X(¢b)

(possibly chirpell We suppose that the envelope variations™ ' ' '
and frequency chirping are slow with respect to the instanta-
neous frequencies. Our aim is to sepaf@tethe framework Xe:S® LS — S5 © LASY.

of the wave operator formulatiprthe slow dynamics corre- o o
lated to the adiabatic parameters and the fast dynamics pr&€t {la)}, be a basis it and{|m)}n.7 a basis inL*(S)),

Proof:

duced by the periodic terms. To this end, we introduce the +o 4w
phased, Xe(39= 2 2 2 2 BB X am(Smd)al
aeSO BE% n=—o0 m=-w%
t .
20— s = 0l + 01, @ .

and take this phase as the time variable corresponding to the ~ xgn.am(S) = (8] ® (nXg(¢,9)|a) ® M)
fast dynamics. We then have 2 deb

. = | (BXe(dSla)nl)im .

H(s, ¢) = [Ho + uf(s)sin(4)], (21 0

fwen(s) LetI={a, 8,1, M},cq pestnezmez- We find, using Eq(23),

wheres is the reduced tims=t/T andT is the duration of

the pulse. Note tha < [0,1] and[0, 1 = S'\{27}. 2 |BX By (9)(ml )

As a consequence of going from the varialbléo the !
variable ¢, H(s, ¢) is periodic with respect t@ even if the =[1 - Xe(h,9)H(S, P)[1 + Xe(,9)]
frequency is chirped. We can then use Floquet thegris
considered as a parameter of the configuration space, and ~ 1 -X(,9]2 [Bxi(9 (BN (m[ep)
He(s, ¢)=H(s,¢)-1d, is an operator of the spacé{ !
® L4(S',d¢/27) which depends on thetime. For more de- +(pn)(m| ) ).

tails about this Floquet theory, see R€f3,3,6]. B B "

We suppose thatl(s, ¢) considered as a function sfis We have Xg[8)=0 becauseXg=QoX¢Py and |B) € S;
adiabatic, i.e., we assume that the time intervals duringnen we have
which o and the envelope amplitudechange significantly , ,
are large compared to the instantaneous oscillation period. Lz,: B A (mib)x(s) + (dnXmi4)'xi(9)
We investigate this adiabatic dynamics by applying the wave ]
operator adiabatic theoretwith respect tcs) and by work- +(pnXm|)xi(9) Kal
ing with Hg(s,¢) in the extended Hilbert spacé{ =[1 = Xe(,9)JH(S, d)[1 + Xe(,9)].
® LA(St,d¢/2m). This approach first requires us to define a . [1=%:{e . HH(s &)l Fl(b_ ] . o
convenient well isolated active spaggs L2(St,d¢/2m) and The previous property is tru€] ¢, se S; in particular it is
the corresponding target spac8(s)=P,®1 2qU(9S Y€ fors=¢, so that
® L2(St, d¢p/ 27r). This construction will be described later. A / /

' ny'{m + (p[n)y(m

second important question concerns the relationship of the L; B (mig)xi (@) +(imimig) xi(9)
generalized wave operatof(¢,s) defined in the Floquet

space to the wave operat¥(¢) corresponding to the real +(pIn{(m| &)xi(¢) K
time-dependent problem. This question, which appeared in =[1 - Xe(, ) H(b, P)[1 + Xe(b, )]
the(t,t’) theory for the wave function, is important, since we

wish to extract physical results frod(¢,s). The question = WXe($,¢)

can be formulated as follow€an the wave operator (%) =[1 - Xe(p, P)IH(p, P)[1 + Xe(, D)].
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ThenXg(o, ¢) is the solution of Eq(22). | ground surfaceéEg+) to the upper structureless surfa&,").

Thus the two-time wave operat¥i(¢,s) can be used to For strong enough laser intensities stimulated emissions of
extract the physical results by considering the ligsitp. The  photons appear during the interaction, invoIvingEbé con-
interest of the Floquet approach is that the time-dependeritnuum, so that the two molecular continua participate in the
dynamics is described by using a stationary formalism. Welynamics. The spectrum of the Floquet Hamiltonian
can then use a spectral criterion to justify the use of the wav&lF(S, ) =H(S, #)—id, consists then of discrete bound states
operator adiabatic theorem. If at each time the spectrum g¢mbedded in the molecular and photonic continua. The theo-
the instantaneous target space is isolated sufficiently far frorfeMs demonstrated in the previous section cannot be applied

the rest of the spectrum ¢q(¢,s) in H®L3(SY), then we directly in this casg21]. The dissipative character of the
’ ' process is not really a handicap because one can use bior-

can write . .
thogonal basis sets to reproduce the outgoing quantum
lim QL(s) = P(9)[Py® 125 P(S)Po ® 1 2] 72, fluxes. It might appear to pe impossible to define isolated
T subspaces including the initial state. One can, nevertheless,

(24)  recover correct conditions by discretizing both the photonic

i e and the molecular continua. The discretization of the photo-
where the target spac&t) is a subspace d®L(S), and  pic continuum is simply obtained by using a finite basis set

T | .
{2 is an operator of the same space. exp(ing) to span the space’(S',d¢/2m). This approxima-

tion is consistent with the Floquet formalism itself since the

Il ILLUSTRATION: A MEASURE OF ADIABATICITY Floguet Hamiltonian is identical, up to an additive constant,

to the quantum Hamiltonian of the field-matter interaction if

This section illustrates the wave operator theorem and thSne assumes that the number of photons exchanged during
two-time formalism by analyzing two simple models of mol- ¢ fie|q-molecule interaction is small compared to the aver-

ecules subjected to an ultrashort laser pulse. Both models alfe photon numbde2]. Preliminary tests reveal that a basis
represented by Eq21). The numerical study of these two set ofN=256 states, namelyexp(ind)}
il n=

systems has the double objective of illustrating the adiabatigiem to represent the full laser pulse and to give well con-

theorem(that the generalized wave operator is, at the ad'aVerged results in the spadé® L2(S). The initial Floquet

bl I 8 ccesson of Mlanlaneous Weve OBRLTSyate s taken o b ~|,=0,1=0) wherev=0's the roune
9 Vibrational state of’S.". The arbitrary choice of the first

effects outside the active space when an appropriate multidis illouin zone n=0 cofresponds to taking a phase between

; . . [
mensmnal active space Is use_d. The two systems are.treatghde molecular state and the field which is uniformly averaged
in the two-time (s, ¢) formulation so that our illustration

. . - on [0, 27]. This choice is appropriate for experimentals re-
simultaneously accords with the two original theorems, theo- [0, 2] ppropria P
sults, where many molecules contribute.

rem 2 and theorem 3. In other words, it correctly obeys Eq. The discretization of the molecular continua is obtained

E’;\%(L)l)m\il\(l:r;l(ijhnilti(: uc)ogfeeﬂzzg ifr?rtrr?egfe tge 'It;/(\:/gti'glrfsorems. Theby using the optical potential modgd2], i.e., by introducing
' P ' a finite asymptotic complex potential\4,(r) along the ra-
dial axis of the two energy surfaces. This is a coarse grained

—~170-n=+85 is suffi-

A. A pure adiabatic case procedure which destroys the exact representation of the con-
The first system involves the photodissociation of Hia tinuum; all the scattering states are modified in the interac-
the process tion region and their spectrum is rotated in the complex
plane. Nevertheless, some fundamental features are pre-
Hy" (*2, v =0,J=0) +fiw — H," (°2,") — H" + H(1s). served. This transformation assures the analytical continua-

(25) tion of the Green function through the cut constituted by the
real axis and can be used to explore the second Riemann
The two electronic potential-energy surfaces and the transisheet and the complex resonance states; it can thus be used to
tion dipole moment are taken from Bunkin and Tod@d].  investigate photoreactive processes which are dominated by
The laser is characterized by its carrier wave frequengy the influence of field-matter resonances. These results can be
=0.295 868 a.u., a maximum intensitylef10"> W/cn? and  understood by noting that the optical potential model modi-

a Gaussian envelope of the form fies the rigorous energy-based definition of the Green func-
( t—t.\2 tion lim__o:[E—(He—i€)] ! into the new more tractable form
€ exp[— ( 1) } fort<t, {E-[He=iVou(H 1™
T In the new discretized spa¢é® L%(S') the wave function
f(t) =9 & fort;<ts<t, (26)  which issues from the molecular stditecan be expanded on
t—t,)2 the complete basis set of generalized Floguet eigenstates
€ exp - ( . ) fort=t, [i.e., the eigenvectors dfi(s, ¢)], giving the expansiof8]

\
with a rise time ofr=25 a.u. and with a large plateau be- () :Z 5N DX ot = 0)li). (27)
tweent; =200 a.u. and,=300 a.u. :

This system has been extensively studied in the literatureThis equation, which assumes a state-to-state correspondence
The photodissociation process is a direct transition from théetween the nonperturbed statgs) (the eigenstates dfi.
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without the field-matter interactiorand the Floquet eigen- the wave operator algorithm because they imply higher per-
states(\; ) clearly shows that only the Floquet eigenvectorsturbation orders. By contrast this algorithm selects con-
of the first Brillouin zone(n=0) contribute. By using the tinuum states even if they move away from the real axis. One
wave operator sorting algorithm of Wyatt and IUig’], one  can then expect that the adiabatic character is roughly pre-
can easily select a finite group of stafesn=0) (k=1-N) to  served. This analysis is confirmed by Fig. 3 which presents
constitute the active space and limit the sum in BY) to  the transition probabilities.

this group. The dimensioN depends directly on the more or  Figure 3 reveals that the inelastic transition probabilities
less adiabatic character of the dynamics and also, to a certaiake small values<10"). The dissociation probability is
extent, on the precision which is required. One can then dislarger but its value is due to the complex eigenva';[géao and
tinguish adiabatic processes when a single state constitut@s not produced by nonadiabatic transitions. One can thus
the active space and nonadiabatic processes when a fesgnclude that the photodissociation ofHs not perfectly
states constitute this active space. A similar analysis wagdiabatic but possesses a strong adiabatic character. A single
made by Baraslet al. [23], who distinguished “adiabatic state|i,n=0) mainly constitutes the model space, so that a
ionization” (caused by the presence of complex enejgiesl  single Floquet staté\; ,-o) Significantly participates in Eq.
“nonadiabatic ionization”(caused by nonadiabatic transi- (27). The initial conditions require that this single state be
tions. However, Barash used a basis set of instantaneousharacterized by the asymptotic condition&] \; o(t=0))
Floguet eigenstates. In such a picture the signature of th§<k|7\i,0(t:T)>:5i,k [8], so that this single Floquet’state is, at

nonadiabaticity i; the presence of nonadigbatic transitipn&o, about identical the instantaneous Floquet state=0).
between the basis states, while the expression of the basis sgf st the adiabatic theorem corresponding to the two-time
at t=0 (when the field-matter interaction is equal to 2er0 46 operatofEq. (24)] we propose the test described below
satisfies in every case the equati@h; o(t=0))=6 . INOUr {0 this one-dimensional case.

generalized Floquet eigenstate picture satisfaction of this The exact wave operator corresponding to the selected

equation is, on the contrary, the exclusive signature of aRtive space is calculated by integrating the equation
adiabatic process. In the nonadiabatic case the Floquet eigen-

states\; o(t=0) spread out at the initial time over many non- HeQ1(,9) = Q1(b,9HEQ (0,9 = Qr(h,)Herr  (28)

perturbed statelk, 0). The size of the active space is then the

number of generalized Floquet eigenstates which participaten the whole duratiorit=0,t=T=500 a.u} of the interac-

in Eg.(27) and which are necessary to reconstitute=dl the  tion, using an iterative treatmef24] and a basis consisting

initial stateli). of the tensorial product of the free molecular basis set and
A good indicator of the adiabaticity is the complex spec-the Fourier basis exm¢). Then a local Floquet Hamil-

trum of the Floguet Hamitonian near the initial eigenvaluetonian H is formed by freezing the value of the adiabatic

EMO. As the size of the extended Hilbert space is very largetime variable at a grid point valués=s) and Eq.(29) is

it is impossible to calculate this spectrum but the picture oftested locally by using this local Floquet Hamiltonian,

the unperturbed pattig=H,~i% 3/t (Fig. 2) remains sig- namely,

nificant insofar as the spectral distortions due to the field-

matter interaction are small. The initial stqtepresented by [HEQT(¢>,S)]¢:;Si = [QT(¢,S)H§ﬁ]¢:.;§. (29)

a black square in Fig.)ds not perfectly isolated as it should

have been in a perfect adiabatic process. Nevertheless, thethis equatiorH3; is a local effective Hamiltonian obtained

nearest eigenvalues correspond to bound states of the grouhy taking a narrow Gaussian average centered os tedue

surfacesjv=1,n=0), [v=2,n=0), which are not selected by (different calculations have shown that the test is not affected

052706-7



VIENNOT et al. PHYSICAL REVIEW A 71, 052706(2005

0

2t
3
E 4T | FIG. 3. Transition probabilities on a logarith-
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by the width of this distribution as long as only a few points (¢,s,) for k#i. The kinetic part has a nondiagonal repre-

of the grid contribute to this average sentation but its influence tends to zero at the adiabatic limit.
If the Floquet wave operator is rigorously a succession ofThis is a direct consequence of the wave operator adiabatic

instantaneous wave operators then the two members of Etheorem (Theorem 2 the time-dependent reduced wave

(29 are equal and the symbo&" should take the place of operator which is the solution of W Xg(¢,5)=[1

“=" A first local measure of the nonadiabaticity is thus the - X (¢,s)]Hg(s, $)[1+Xe(¢,9)] [Eq. (23)] tends at the adia-

modulus of the difference of the right-hand and left-handpatic limit to the stationary reduced wave operator, a solution

sides of Eq.(29), of [1-Xe(,9)THE(S, $)[1+X(¢,5)]=0. One can then pro-
pose a second measure of the nonadiabaticity, based on the
CHEDY 2 ((HROQ - OHZ o) . (30)  variations ofH.g, and given by
i

25=2 2 |(Herij — (Hgpi, > (31)
A more detailed analysis of this equation proves that, in spite o
of the changeHr— Hg, this measure of the nonadiabaticity  Figure 4 presents these two measures in the case’of H
tends to zero if the successive effective Hamiltonieiisare  For this quite adiabatic system the active space is one dimen-
constant and equal tblet as defined in Eq(28). This is  sjonal and the reduced wave operator is given by a single
because the difference betweeeQ|s and HRQ|s is due  column, The amplitude of the field is selected as the single
to the kinetic partds solely. The coupling parif(s)sin(¢)  adiabatic parameter. The variations of this parameter are rep-
[Eq.(21)] has a diagonal representation in the DVR basis setesented in the upper part of this figure.
|s¢ associated to the FBR basis set @r@ws) so that the This figure reveals that the two measures are more or less
matrix product HFQ|% does not make use of the values proportional and that the departures from adiabaticity appear

0F m

5 F 4

4 FIG. 4. The two measures of nonadiabaticity
in a logarithmic scale in the case of the photodis-
sociation of B, solid line: E;; dashed lineE,.
The envelope of the field is represented in the
upper part of the figure.

nonadiabatcity factor

N NI I

Py | 1 1 1 /J
0 50 100 150 200 250 300 350 400 450 500
Time (a.u.)
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when the adiabatic parametfis) [Eq. (21)] does not vary is taken to be the potential of Hulburt and Hirschfelfi2s]

smoothly on the time scale determined by/2. It shows in place of the structureless surface. These two surfaces are

both the consistency of the wave operator theoatmich is  represented in Fig. 6.

satisfied with a precision less than #®when the adiabatic Four bound states exist in the well of this upper surface

parameter is constagnand the use of a two-time formalism and three shape resonance are clearly identified by a spectral

in the framework of wave operator theory. analysis. The field amplitude is characterized by a maximum
The departures from pure adiabaticity mainly come fromintensity | =10'° W/cn¥? and a Gaussian envelope given by

two photon processggbsorption+emissigrwhich connect  Eq. (26) with 7=25 a.u.,t;=50 a.u., andt,=450 a.u. The

the initial state to other bound states of the same ground-stagarrier wave frequency i®,=0.544 a.u. with a chirping am-

surface. These transitions are favored by strong laser fieldditude 6o=0.002 a.u., namely,

and rapid variations of the laser envelope which broaden its ( _
spectrum. By increasing the rise time from 25 a.u. up to @o fort<ts
7=100 a.u. one increases the adiabaticity of the process by wot Sw(t—t3)/(ty—ty) fortz<st<t,
making the laser fields more monochromatic. This is con- o) =9 w,+ o forty<t<ts

firmed by Fig. 5, which show a signifant decrease of about
one order of magnitude of the maxima of the two measures
El and Ez.

Wq + 5w(t6 - t)/(te - t5) for t5 =t= te
o fort=tq

B. A nonadiabatic case (32

The second system is a model system similar to the firstwith ;=130 a.u.,t;=230 a.u.,t;=350 a.u., andg=450 a.u.
The reduced mass and the dipole moment are those,of H Linear variations ofw have been chosen so as to obtain
The ground surface is a Morse potential but the upper surfacanalytical relationships betweerand ¢ [Eq. (20)].

1 T T T T T

0.8 -
3
s
0 06 _
Q
(3}
(1]
©
e}
2 04rf -
2 FIG. 6. Representation of the two electronic
S potential surfaces for our second model system.
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€
[
&
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Because of the modulation of the frequency, the laser istapidly. The effect is particularly important at the times for
at certain instants, tuned to the bound-state—bound-state trawhich d¢/dt is discontinuous. As the intensity of the field is
sition (v=0—v’=0). This produces a nonadiabatic picture a hundred times smaller than foi,H the defects correspond-
in which the target space incorporates the Floquet state issiRg to the use of a one-dimensional active space are com-
ing from the bound statly’ =0) of the upper surface. Figure Paratively larger in this second system. The most important
7 presents the spectrum of the unperturbed Floguet HamifRoint is that one can reduce these defects by selecting a con-
tonian near the initial eigenvalug,—o-o and confirms this venient degenerate active space. One can, fqr example, make
analysis by revealingnearE, o ,-o) a subgroup of eigenval- an improvement of about four order of magnitude by going
ues situated far from the rest of the spectrum. More preciselgorn N=1 toN=5. This result confirms that the wave opera-
the wave operator sorting algorithm selects on the real axi or formulation can increase the domain of variation of the

o ) o diabatic parameters in which the adiabatic liffit). (24)]
the Floquet states issuing from the first vibrational states of ; - 4
the two surfacesp=i), i=0,1.2 andv’ =), }=0,1,2. can be used, by using a finite target space to describe the

X : . . s ..strong nonadiabatic effects. In this sense the time-dependent
_ Figure 8 presents the biggest inelastic transition probabiliy oye” gperator is an ideal tool to generalize the guantum
ties and confirms the selection made by the sorting algozgiapatic theorem in multidimensional spaces. It should be
rithm, for example the probabiliti?,-o._.,1=o has much larger  qted that the discretization of the two continua by the intro-
valugs than the other inelastic transition probabilities. duction of asymptotic absorbing potentials is necessary to

Figure 9 presents the meastie for our second system. work with finite representations and to reduce the size of the
In this case the frequency is chirped. The envelope of thective spaces; this optical potential approach is common to
field f(s) and the frequency(s) are represented in the upper the majority of works which use a DVR approach to describe
part of the figure. dynamical processd6,27.

As in the previous case the departures from adiabaticity Figure 10 presents the measig and confirms the pro-

increase when one of the two adiabatic parameters varies tqumrtionality of the two measures of adiabaticity.

0

FIG. 8. Transition probabilities on a logarith-
mic scale. The solid lines represdifitom top to
bottom), the survival probabilityP,-q_,,-¢o and
the inelastic transition probabilitid3,-_,,-; and
P,=0_.v=2- The dashed line represerifsom top to
bOttOm Pv:0~>z)':0l PUZOHU’:ZL! and PUZOHU’:Z'

Transition probabilities
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FIG. 9. The measurg; of nonadiabaticity in
15 %\ ' :{\%//[ ﬂCﬁ a logarithmic scale for our second system. The
- envelopef(s) (solid line) and the frequency varia-

tions w(s) (dotted ling are represented in the up-
per part of the figure. Three cases are represented:
a one-dimensional active spa@ashed lingand

-25 | . two degenerate active space of increasing dimen-
sionsN=5 andN=10 (solid lines.

nonadiabaticity factor
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V. CONCLUSION laser pulses can be dealt with by using an effective Hamil-

onian approach together with an appropriate target space.

In this work the standard quantum-mechanical adiabati he effective Hamiltoni take int tthe d X
theorem, which applies to the wave function of a single state € eriective ramilionian can take Into account the dynami-
al effects usually associated with level crossings and

is generalized so as to apply to the time-dependent wavg

operator associated with a multidimensional active spac:(glVOided crossings; the multidimensional target space man-
; . . es to capture the fast dynamical processes internally while
[Eqg. (18)]. It is also shown that the two-time formalisms g P y b y

hich h . . he ti itself evolving in a more adiabatic manner with respect to the
which have sometimes been used to describe the time ev@yq gisjoint subspaces within the overall Hilbert spéas

lution of periodic systems can be adapted for use with thgjascriped by the generalized adiabatic theofExp (18)].
wave operator approadlEgs. (22) and (23)]. The value of A further study of the use of this formalism to describe
our adiabatic theorem and of the two-time wave operatophotoreactive processes is currently in progress, with the aim
formalism are demonstrated by numerical studies of twaf adapting it to produce an adiabatic transport theory which
specimen problems involving laser-molecule interaction. Theyses a discrete lattice within the manifold of control param-
calculations show that within this formalism it is possible to eters which is needed to describe control processes. The
enhance the effective adiabaticity of the dynamical processasain problem of control theory is not to solve the math-
involved by choosing an appropriate degenerate active spa@natical inverse problem, because its solution is generally
and capturing the nonadiabatic effects within correspondingionrealistic from an experimental point of view and is some-
target spaces. times unstable. The central problem is rather to select and to
The formalism developed here appears to provide an efunderstand the few basic processes which influence a full
fective approach to the study of the inelastic and reactivghotoreactive experiment. This understanding gives the pos-
processes caused by the interaction of a molecule with a lassibility of modifying some of these basic processes by moni-
pulse, since the nonadiabatic effects associated with shotbring some adiabatic parameters and also by introducing

per part of the figure. The case represented corre-
sponds to a degenerate active space of dimension

N=5.
=30 | L,.N\A/ N~ AN S -

_35 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Time (a.u.)
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g

2

052706-11



VIENNOT et al. PHYSICAL REVIEW A 71, 052706(2005

quantum interference effects between them. Two fundamerfloquet states, leading to an approach which involves driving
tal concepts involved in the basic theory are those of th&imultaneously interfering adiabatic trajectories on the
adiabatic evolution on the Floquet eigentrajectories and th@ressed state energy surfaces while concentrating the adia-
nonadiabatic transitions between individual levels. For in-paiic transition inside the evolving target space. In our pic-

stance, the study of Guérin and Jauslin connects the effy, o the nonadiabatic coupling processes can overlap and in-
ciency of the population transfer between the initial and the(erfere during the same time intervals

target states to the topology of the dressed state energy sur- . )
faces, which varies as a function of the time-dependent ex- The present work is thus a first step forward for molecular

ternal field parameters. The adiabatic transport appears fPntrol theory. The complete plan of this original approach
their study as a global adiabatic passage along one eigenstdfgCcessitates two supplementary studies which are currently
trajectory, combined with the local diabatic evolution near!n Progress: a discretization within the manifold of control
conical intersections. The present study and the two origingparameters to make the numerical treatment possible and a
theorems that it proposes offers a natural generalization tg10re precise analysis of the consistency of the geometric
the degenerate case of the adiabatic conjecture for singlghase with the wave operator formalism.
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