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We study the three-body problem for both fermionic and bosonic cold-atom gases in a parabolic transverse
trap of length scalea'. For this quasi-one-dimensionalsquasi-1Dd problem, there is a two-body bound state
sdimerd for any sign of the 3D scattering lengtha and a confinement-induced scattering resonance. The
fermionic three-body problem is universal and characterized by two atom-dimer scattering lengthsaad andbad.
In the tightly bound “dimer limit”a' /a→`, we findbad=0 andaad is linked to the 3D atom-dimer scattering
length. In the weakly bound “BCS limit”a' /a→−`, a connection to the Bethe ansatz is established, which
allows for exact results. The full crossover is obtained numerically. The bosonic three-body problem, however,
is nonuniversal:aad and bad depend both ona' /a and on a parameterR* related to the sharpness of the
resonance. Scattering solutions are qualitatively similar to fermionic ones. We predict the existence of a single
confinement-induced three-body bound statestrimerd for bosons.
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I. INTRODUCTION

The physics of cold atoms has recently enjoyed a great
amount of attention. A particularly interesting phenomenon
in that context has been the experimental observation of
dimer smoleculed formation in ultracold binary Fermi gases
f1g, where a Feshbach resonance is exploited. This has al-
lowed experimental access to the full crossover from a Bose-
Einstein condensatesBECd to a BCS-type superfluid by sim-
ply tuning a magnetic fieldf2–6g. Because of the Feshbach-
resonant behavior, the three-dimensionals3Dd scattering
length a describing thes-wave interaction strength among
different fermions can be tuned almost at will. Fora.0, one
has a two-body bound states“dimer”d that eventually can be
Bose condensed, while fora,0, Cooper pairs are formed.
The corresponding BEC-BCS crossover theory has been
worked out on a mean-fieldsplus fluctuationsd level f7–10g
and is widely believed to account for the basic experimental
observationsf11g. The Feshbach resonance has also interest-
ing implications for bosonic systems—e.g., the existence of a
similar crossover from atomic BEC to molecular BEC
f12–14g or Bose-enhanced “quantum superchemistry”
f15,16g.

A related but different quasi-1D problem arises for either
a two-speciess↑,↓d Fermi gas or a single-species Bose gas.
When such a cold-atom gas is confined to a sufficiently tight
harmonic transverse trap, it enters a 1D regime. On the two-
body level, there is always a bound state, even fora,0, and
one has a confinement-induced resonancesCIRd in the 1D
atom-atom scattering lengthaaa f17,18g. This “shape” sor
“geometric”d resonance is similar to a Feshbach resonance
f19g. Instead of a magnetic field, the ratioa/a' between the
3D scattering length and the transverse confinement length
scalea' fsee Eq.s1.2d belowg is now used to sweep through
the resonance. Albeit there are strong quantum fluctuations in
1D, preventing both BEC and a true BCS superfluid in the
thermodynamic limit, the presence of the CIR leads to a
rather similar scenario as for the standards3Dd BEC-BCS
crossoverf20–22g. Moreover, this 1D analog of the 3D BEC-

BCS crossover and its bosonic complement appear to be ex-
perimentally feasible. Recent progress towards the realiza-
tion of 1D traps has been tremendousf23–27g and could lead
to the observation of interesting aspects of 1D many-body
physics as outlined below. Moreover, on the theoretical side,
powerful many-body techniques are available in 1D
systems—e.g., bosonizationf28g or the Bethe ansatzf29,30g.
Such methods often allow for exact statements. Below we
analytically solve the three-body problem for ultracold fer-
mions or bosons that are confined to quasi-1D by a trans-
verse trap potential. We show that, for low energies, atom-
dimer scattering solutions can be completely described in
terms of two scattering lengthsaad andbad, whereaad can be
linked to the standard 3D atom-dimer scattering length. The
nonstandard scattering lengthbad must be introduced to de-
scribe 1D scattering processes in general. While thesfermi-
onic and bosonicd three-body problem in 3D systems has a
rather long history, reviewed in Refs.f19,31g, the quasi-1D
situation has not received much attention so far.

In what follows, we assume two different hyperfine states
of a fermion species of massm0, or a single boson species, to
be trapped in the parabolic transverse confinement potential

Ucsr d =
1

2
m0v'

2 sx2 + y2d, s1.1d

with associated confinement length scale

a' = Î2"/m0v'. s1.2d

For a nonparabolic potential, the treatment is more involved
f32g and new effects appear—e.g., additional resonances.
Under the standard pseudopotential approximationf33g, for
the low-energy limit of interest here, the 3D interaction can
be written as
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Vsr d =
4p"2a

m0
dsr d

]

]r
sr · d, s1.3d

which assumes that the interaction range is the shortest
length scale of relevance in the problem. On the two-body
level, interactions between atoms are thereby described in
terms of the 3D scattering lengtha. Normally, at low-energy
scales onlys-wave interactions matter. Identical fermions
then do not interact because of the Pauli principle, but inter-
actions among different ones will be present and are given by
Eq. s1.3d. The freesunconfinedd problem is well known to
possess exactly one bound states“dimer”d on the two-body
level for a.0 f34g. Once the confinements1.1d is present,
however, there isalwaysa two-body bound state with dimen-
sionless binding energy

VB = s"v' − EBd/2"v' = skBa'/2d2, s1.4d

whereaB=1/kB is the slongitudinald size of the dimer. This
quantity is determined by the conditionf17,18g

zs1/2,VBd + a'/a = 0. s1.5d

For our purposes, the Hurvitz zeta function can be defined
via its integral representationssee the Appendixd,

zs1/2,Vd =E
0

` dt
Îpt

S e−Vt

1 − e−t −
1

t
D . s1.6d

Since zs1/2,Vd is monotonic inV, there is precisely one
bound state for any givena' /a. This bound-state wave func-
tion can then be expressed in terms of the single-particle
Green’s functionGEsr ,r 8d for the cylindrical harmonic oscil-
lator with reduced massm0/2 fsee Eqs.s2.14d and s2.15d
belowg. For a' /a→−`, the “BCS limit” is reached, where
VB.sa/a'd2!1. sFor simplicity, we shall use the phrase
“BCS limit” also for bosons, even though there is no Cooper
pairing in that case.d The dimer is then very elongated, with
sizeaB<a'

2 / uau@a' in the axial direction, and confined to
the transverse ground state. The dimer in this limit can be
effectively described by a 1D contact interaction obtained by
projecting the pseudopotentials1.3d onto the lowest trans-
verse state. In the tightly bound “dimer limit”a' /a→ +`,
the dimer becomes spherically symmetric with the sizeaB
<a!a'. Here, one recovers the pseudopotential bound state
of the unconfined problemsfor a.0d with the large reduced
binding energyVB.sa' /2ad2@1.

The analog of the Feshbach resonance in a 1D confined
system is then realized by the CIR. Solving the two-body
scattering problem with just one open channel, the 1D scat-
tering length between two atoms can be extracted and is
found to bef17,18g

aaa = −
a'

2
Fa'

a
− CG, C = − zs1/2d . 1.4603. s1.7d

At low energies, this implies that one can use the 1D atom-
atom interaction potential

Vaasz,z8d = gaadsz− z8d, gaa = −
2"2

m0aaa
. s1.8d

The CIR, wheregaa→ ±`, then occurs foraaa=0, corre-
sponding toVB=1, and can be reached by tuninga' or a.
The physical picture behind the emergence of the resonance
has been elucidated in Ref.f18g and shown to be similar to a
Feshbach resonance. Atoms in the lowest transverse level
sopen channeld are coupled resonantly to a bound state in the
two-body sector restricted to excited channelssclosed chan-
neld. This picture has also recently been extended to nonpa-
rabolic potentialsf32g. Although up to now no clear experi-
mental evidence for CIR behavior has been published, there
are several possibilities to observe it using standard
techniques—e.g., via the momentum distribution or Bragg
spectroscopy.

The above considerations suggest that it is mandatory to
analyze the consequences of this CIR on the many-body
scattering propertiesf20,21g. As a first step towards a full
understanding of this problem, we discuss the analytic solu-
tion of the corresponding three-body problem, which here
becomes possible due to the short rangedness of the atom-
atom interaction. A natural question then concerns the scat-
tering properties of the atom-dimer system—for instance, the
scattering lengthaad. For fermions, this problem was solved
already a long time ago by Skorniakov and Ter-Martirosian
sSTMd f35g, who foundaad<1.2a. sThis result was recov-
ered recentlyf36g as a particular limit for different masses of
the two fermion species.d One may then wonder whether
atom-dimer scattering will also show resonance enhance-
ment, whether three-body physics remains universalsi.e., de-
termined by two-body quantities onlyd, and whether a three-
body bound states“trimer” d is possible. We find that in the
fermionic caseswith equal massesd, the low-energy physics
is universal like in the 3D casef37g and there is no trimer
state. However, in the bosonic case, important differences to
these answers for fermions can and do arise.

At this point, we pause in order to briefly discuss the
bosonic three-body problem in 3Df19g. It was shown by
Thomas in 1935f38g that there is no lower bound on the
energy of a system of three bosons interacting via zero-range
forces s“Thomas collapse”d. The corresponding integral
equation for the scattering amplitude was derived by STM
f35g, but in Ref.f39g it was shown that their equation is not
well defined, since it allows for an infinite number of solu-
tions. A scheme of choosing the correct solution based on the
orthogonality of wave functions with different energies was
suggested. A related equation for the bound states was inves-
tigated in Ref.f40g, where an infinite number of three-body
bound states with arbitrarily low energies was found. Fur-
thermore, in the unitary limita→`, bound states condense
at the continuum threshold. The condition of Ref.f39g was
identified as a self-adjoint extension of the involved operator.
Finally, Efimov solved the problemf37g by introducing a
three-body short-distance parameter. Away from the unitary
limit, there is at most a finite number of bound statess“Efi-
mov states”d, but in the unitary limit a peculiar hierarchy of
infinitely many bound states emergesf19,37g. This regular-
ization also affects the scattering solution. To summarize, the
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3D integral equations for bosons generally require both a
long-distance cutoffsscattering lengthad and a short-distance
cutoff. Efimov’s real-space implementation of the short-
distance cutoff is not very convenient for the confined prob-
lem. Fortunately, Petrovf41g recently suggested a different
and in the present context more useful regularization based
on the energy dependence of the scattering length,

a−1 → a−1 + R*m0Ec/"
2, s1.9d

evaluated at the collision energyEc of the atom-dimer
complex—i.e., the total energy minus theskinetic and con-
finementd energy of the relative motion. HereR* is a param-
eter related to the sharpness of the Feshbach resonance, ap-
pearing also in the effective range expansion for the 3D
scattering amplitudef34g,

f3Dskd = −
1

a−1 + ik + R*k2 . s1.10d

We shall use the regularizations1.9d in our discussion of the
bosonic three-body problem. Although in strictly 1D systems
there is no Efimov physicsf19g, in the quasi-1D case of a
confined gas under study here, Efimov states can and will be
relevant in certain limits.

The tunability of the scattering lengtha in cold-atom ex-
periments is obtained by using Feshbach resonances. For dis-
tances on the order of the interatomic potential, the two-body
problem is coupled resonantly to a bound molecular state
involving different spin statessclosed channeld. For larger
distances, there is nevertheless only a small admixture of this
closed channel and the two-body scattering is essentially re-
produced by a one-channel zero-range potential with the
scattering amplitudes1.10d, omitting thessmalld background
scattering length. We refer to Ref.f42g for more details. For
fermions, we will assume thatR* does not appear in Eq.
s1.10d under the condition thatkR* !1. This implies in par-
ticular thatR* !aB andR* !a'.

The structure of this paper is as follows. In Sec. II, we
derive an integral equation that determines the complete so-
lution of the fermionic three-body problem. This integral
equation can be solved explictly after projection to the trans-
verse ground state of the trap, as is discussed in Sec. III. The
role of the higher transverse channels is then addressed in
Sec. IV, where also explicit contact to previous work in the
unconfined casef35,36g is established. A brief account of
some of these results for fermions has been given in Ref.
f43g. The bosonic three-body problem is then studied in de-
tail in Sec. V. In Sec. VI, we highlight the tight connections
to the Bethe ansatz existing in the BCS limit for fermions
and bosons, and present exact results obtained from this link.
Finally, we conclude in Sec. VII.

II. FERMIONIC THREE-BODY PROBLEM

In this section, we consider the fermionic three-body
problems↑↑↓d with two identical fermions, where the “spin”
indicates two selected hyperfine states of the atom. We de-
note byx1 sx2,3d the position of the↓ sthe two ↑d particles
and perform an orthogonal transformation to variables

sx ,y ,zd in order to decouple the center-of-mass coordinatez,

1x

y

z
2 = 12/Î3 − 1/Î3 − 1/Î3

0 − 1 1

Î2/3 Î2/3 Î2/3
21x1

x2

x3
2 . s2.1d

For the harmonic confinements1.1d, the potential remains
diagonal in the positions and the Schrödinger equation reads

S−
"2

m0
¹X

2 + UcsXd − EDCsXd = − o
±

Vsr ±dCsXd,

s2.2d

whereX =sx ,yd is a six-dimensional vector. With these defi-
nitions, the distances between the↓ particle and each↑ par-
ticle are

r ± = Î3x/2 ± y/2 = ssinudx ± scosudy, s2.3d

where we introduce the angleu=p /3 for notational conve-
nience ssee also Ref.f36gd such that sinu=sins2ud=Î3/2
and cosu=−coss2ud=1/2. Equations1.3d then allows us to
incorporate the interactionsVsr ±d via boundary conditions
imposed for vanishing distances between↑ and↓ atoms. For
r ±→0, this implies the singular behavior

CsXd . 7
fsr ',±d
4pr±

s1 − r±/ad, s2.4d

where the vectorsr ',±=scosudx7 ssinudy are orthogonal to
r ±, respectively. Since the pseudopotentials1.3d acts onC
according to

−
m0

"2 Vsr ±dCsXd = 7 fsr ',±ddsr ±d,

the Schrödinger equations2.2d becomes

S−
"2

m0
¹X

2 + UcsXd − EDCsXd = o
±

7
"2fsr ',±d

m0
dsr ±d

= Ssx,yd. s2.5d

Now we introduce the two-particle Green’s function

GE
s2dsr 1,r 2;r 3,r 4d = o

l1,l2

cl1
sr 1dcl2

sr 2dcl1

* sr 3dcl2

* sr 4d

El1
+ El2

− E
,

s2.6d

where cl denotes the eigenfunctions to the single-particle
problemsfor reduced massm0/2d with eigenenergyEl. The
quantum numbersl include the longitudinals1Dd momen-
tum k, the integer angular momentumm, and the radial quan-
tum numbern=0,1,2. . .,whence

El = "v's2n + umu + 1d + "2k2/m0,

cl = eimfRnmsrdeikz, s2.7d

with radial functionsfsee also Eq.s1.2dg
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Rnmsrd =
1

Îpa'

În!/sn + umud!sr/a'dumuLn
umusr2/a'

2 de−sr/a'd2/2,

s2.8d

whereLn
msxd denotes standard Laguerre polynomials. Using

Eq. s2.6d, the general solution of Eq.s2.5d can be expressed
as

CsXd = C0sXd +E dx8dy8GE
s2dsx,y;x8,y8dSsx8,y8d,

s2.9d

whereC0sXd, only present for positive energyE, is a homo-
geneoussfreed solution. In this paper, we restrict our atten-
tion to states withE,0, such thatC0=0, and write

E = − 2VB"v' + "2k̄2/m0, s2.10d

where the relative momentumk̄ of the atom-dimer complex
is sent to zero later.

SinceSsx ,yd in Eq. s2.9d involves the variablesr ',± and
r ± fsee Eq.s2.5dg, it is advantageous to switch to these by
virtue of the orthogonal transformation

S r ±

r ',±
D = Ssinu ±cosu

cosu 7sinu
DSx

y
D . s2.11d

Similarly, we can switch fromsr ',−,r −d to sr ',+,r +d using

S r +

r ',+
D = S− cos 2u sin 2u

sin 2u cos 2u
DS r −

r ',−
D . s2.12d

Since these are orthogonal transformations,GE
s2d stays invari-

ant:

GE
s2dsx,y;x8,y8d = GE

s2dsr ±,r ',±;r ±8,r ',±8 d.

Furthermore, the integration measure in Eq.s2.9d is also in-
variant,dx8dy8=dr ',±8 dr ±8. We thus find from Eq.s2.9d

m0

"2 Csr ,r 'd =E dr '8 fsr '8 dfGE
s2dsr ,r ';0,r '8 d

− GE
s2d
„− coss2udr + sins2udr ',sins2udr

+ coss2udr ';0,r '8 …g, s2.13d

where r ; r − and r '; r ',−. Next we implement ther →0
limit according to Eq.s2.4d to obtain a closed equation for
fsr 'd. This limit can be directly taken for the nonsingular
second term in Eq.s2.13d, while the first term contains the
singular behavior necessary from Eq.s2.4d. Once this singu-
lar behavior is removed, one obtains a regular integral equa-
tion for fsr 'd f36,35g.

It is then convenient to transform into the complete basis
hclj specified above,fsr 'd=olflclsr 'd. Notably, the last
term in Eq.s2.13d can be expressed in terms of the single-
particle Green’s function

GEsr ,r 8d = o
l

clsr dcl
* sr 8d

El − E
, s2.14d

since

E dr '8 GE
s2d
„sins2udr ',coss2udr ';0,r '8 …fsr '8 d

= o
l

GE−El
„sins2udr ',0…cl„coss2udr '…fl.

The Green’s functions2.14d for r 8=0 has the integral repre-
sentation

GEsr ,0d =
m0

4p"2a'
E

0

` dt
Îpt

e−Vt

1 − e−t

3 expS−
z2

a'
2 t

−
r2

2a'
2 cothst/2dD , s2.15d

whereV=s"v'−Ed /2"v'. This can be obtained from the
Feynman simaginary-timed representation of the Green’s
function s2.14d,

GEsr ,r 8d =E
0

`

dto
l

clsr dcl
* sr 8de−tsEl−Ed,

and the expressions for the eigenfunctionshclj and eigenen-
ergiesEl fsee Eqs.s2.7d and s2.8dg, where only states with
m=0 contribute. One has to perform a straightforward
Gaussian integral over momentak and the sum overn fol-
lows from the remarkable identity

o
n=0

`

Ln
0S r2

a'
2 De−2n"v't =

1

1 − e−2"v't expS r2

a'
2

e−2"v't

e−2"v't − 1
D ,

leading finally to Eq.s2.15d. Using the orthonormality of the
hclj, the first term in the integral appearing in Eq.s2.13d can
be written as

E dr '8 GE
s2dsr ,r ';0,r '8 dfsr '8 d = o

l,l1

cl1
sr dcl1

* s0d

El1
+ El − E

clsr 'dfl

= o
l

GE−El
sr ,0dclsr 'dfl.

s2.16d

For r →0, the integral representation in Eq.s2.15d is domi-
nated by small values oft. Its asymptotic behavior is then
obtained by substracting and adding the leading term, such
that

GEsr ,0d =
m0

4p"2a'
SE

0

` dt
Îpt3/2

e−Vt−r2/a'
2 t + zs1/2,Vd

+ os1dD ,

where the integral representation of the Hurvitz zeta function
s1.6d has been used. Finally, performing thet integral, we
find that for r →0, Eq. s2.15d has the asymptotic behavior
GEsr ,0d.sm0/4p"2a'dfa' / r +zs1/2,Vdg. This implies that
the leading term in Eq.s2.16d givesm0fsr 'd / s4p"2rd, which
coincides with the singular part ofm0Csr ,r 'd /"2 in the r
→0 limit.

Using Eq.s2.4d and canceling ther →0 singular terms in
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Eq. s2.13d, straightforward algebra leads to anintegral equa-
tion for fsr d. In the hclj representation, it reads

LsVldfl = o
l8

Al,l8fl8, s2.17d

where we use the functionfsee also Eqs.s1.6d and s1.5dg

LsVd = zs1/2,Vd − zs1/2,VBd s2.18d

and the frequencies

Vl = VB − sa'k̄/2d2 + El/2"v'. s2.19d

We find the kernel in the form

All8 =
4p"2a'

m0
E dr 'cl

* sr 'dcl8„coss2udr '…

3 GE−El8
„sins2udr ',0…. s2.20d

In the following, it will be more convenient to useVB in-
stead ofa/a' to parametrize the interaction strengthfsee Eq.
s1.5dg.

Using Eq. s2.15d, Al,l8 can be evaluated explicitly, but
before proceeding further, we shall perform a rescaling. Until
now, f has only been considered as a function of the variable
r '=sr ,zd. However, in the asymptotic three-body scattering
solution consisting of a dimer and one unbound atom, the
atom-dimer distanced swhich is then much bigger than the
dimer sizeaBd coincides withr ' only after a proper rescal-
ing. The asymptotic solution is expected to be of the form

Csr ,r 'd = F0sr dxsdd, s2.21d

wherer ; r − and the atom-dimer distance is

d ; sx1 + x3d/2 − x2 = r + − r −/2.

HereF0sr d is the wave function of the confinement-induced
two-body bound statef17g, and xsdd gives the asymptotic
solution for the scattering of the free particle by the dimer.
The connection withf is made by looking at ther →0 limit
of Eq. s2.21d. The leading term is

Csr ,r 'd .
1

4pr
x„sins2udr '…,

where we have used Eq.s2.12d to expressr + as a function of
r andr '. In the asymptotic limit, sins2udr ' is thus the atom-
dimer distance. Therefore, after the rescalingr '

→sins2udr ', the functionf matches the asymptotic scatter-
ing solution x. This length rescaling also implies wave-
vector rescaling,k→k/sins2ud, as well as an extra factor
sins2ud in Al,l8. In addition, from now on, we switch to
dimensionless lengths and wave vectors by measuring them
in units of a' and 1/a', respectively.

III. LOWEST TRANSVERSE CHANNEL

Let us then proceed by projecting the integral equation
s2.17d to the lowest transverse statesn=m=0d. The role of
the higher transverse channels will be discussed in Sec. IV.

Taking into account the above rescaling and noting that only
m=0 modes have nonzero overlap with the lowest state,

LsVkdfk =E
−`

` dk8

2p
Ak,k8fk8, s3.1d

where

Vk = VB + sin2s2udsk2 − k̄2d/4.

Straightforward algebra gives

Ak,k8 = o
p=0

` S1 + coss4ud
2

Dp

3
1

p + VB + fk2 + k82 + kk8g/4 − 3k̄2/16
. s3.2d

Note that the energy reads after the rescaling

E = − 2"v'VB +
3

4

"2

m0
S k̄

a'

D2

, s3.3d

where k̄ is interpreted as the relative momentum of a free
particle with reduced mass 2m0/3.

A. Atom-dimer scattering solution

Following STM f35g, we now make an ansatz for the
solution of this integral equation,

fskd = 2pdsk − k̄d + i f̃ sk,k̄do
±

1

k̄ ± k + i0+
, s3.4d

with a regular function sscattering amplituded f̃sk, k̄d. This
ansatz gives the expected asymptotic scattering state after
Fourier transforming to real space,

fszd = eik̄z + f̃„sgnszdk̄,k̄…eik̄uzu, uzu → + `,

such that standard transmission and reflection amplitudes
f34g can be inferred,

tsk̄d = 1 + f̃sk̄,k̄d, rsk̄d = f̃s− k̄,k̄d. s3.5d

In the low-energy limitk, k̄→0, the general expansion of the
scattering amplitude applies,

f̃sk,k̄d = − 1 + ikbad + ik̄aad + Osk2,k̄2,kk̄d. s3.6d

Here aad and bad are the two 1D scattering lengths for the
atom-dimer scatteringprocess. In general,aad and bad are
related to the even and odd partial scattered waves, respec-
tively, as will be discussed in more detail in Sec. VI A. Let
us just note at this point that for a sufficiently short-ranged
potential—namely, with supportas smaller than the typical
length scale for the wave-function variations—the potential
can be effectively described by a contactd interaction. This

requiresas! uaadu and k̄!1/as. In that case, odd waves are
not scattered by the potential and hencebad=0 from Eq.
s6.11d. This is the case in particular for the two-body prob-
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lem where only one scattering length,aaa in Eq. s1.7d, is
usually given.

Inserting the ansatzs3.4d into Eq. s3.1d, we obtain

LsVkd

k̄2 − k2
2ik̄ f̃sk,k̄d − i Po

±
E

−`

` dk8

2p

Ak,k8

k̄ ± k8
f̃sk8,k̄d

−
1

2
f f̃sk̄,k̄dAk,k̄ + f̃s− k̄,k̄dAk,−k̄g = Ak,k̄, s3.7d

where P denotes a principal value integration. One can check

that the functionLsVkd / sk̄2−k2d is regular whenk̄→k, and
we used above thatLsVk̄d=0. Equations3.7d is an inhomo-
geneous integral equation of the second kind for a given

value of k̄, which has a unique solution if the corresponding
kernel is invertible. In principle, it may be solved numeri-

cally for any value ofk̄ to extract the value ofaad.
However, the subsequent analysis is simplified consider-

ably by lettingk̄→0. Formally, we expand Eq.s3.7d in k̄ and
keep only the lowest order. To that purpose, we first rewrite
Eq. s3.7d in the form

LsVkd

k̄2 − k2
2ik̄ f̃sk,k̄d + i PE

−`

` dk8

2pk8
f f̃sk8 + k̄,k̄dAk,k8+k̄

− f̃sk8 − k̄,k̄dAk,k8−k̄g −
1

2
f f̃sk̄,k̄dAk,k̄ + f̃s− k̄,k̄dAk,−k̄g

= Ak,k̄.

Expanding ink̄ and dividing by 2k̄, we then get to lowest
order

− i
LsVkd

k2 f̃sk,0d + i PE
−`

` dk8

2pk8
]k8fAk,k8 f̃sk8,0dg

= Ak,0S f̃s0,k̄d + 1

2k̄
D

k̄→0

+
1

2
]k8Ak,k8=0. s3.8d

Finally, we integrate by parts, use Eqs.s3.2d and s3.6d, and
switch to dimensionless momenta by writingk=2ÎVBu. Col-
lecting terms, we then arrive at a tractable integral equation

for hsud; f̃su,0d. With the weaklyVB-dependent functions

Gsu,u8d = o
p=0

`
4−p

1 + u2 + u82 + uu8 + p/VB
, s3.9d

Hsud = o
p=0

`
4−pu

2s1 + u2 + p/VBd−2 , s3.10d

this integral equation reads

E
−`

` du8

2pu82fGsu,u8dhsu8d − Gsu,0dhs0dg

−
ÎVB

2u2 LSVBF1 +
3u2

4
GDhsud

=
aad

ÎVB

a'

Gsu,0d + iHsud. s3.11d

Note that the realsimaginaryd part ofhsud is evensoddd in u.
The scattering lengthaad finally follows from the real part of
Eq. s3.11d and the conditionhs0d=−1 fsee Eq.s3.6dg, while
bad can be extracted from the imaginary part of Eq.s3.11d.
The integral equations3.11d shows in particular thataad/a'

andbad/a' depend only onVB, and hence only on the bind-
ing energy of the dimer. This already suggests universality of
the three-fermion problem.

B. Dimer limit

The solution of this integral equation is discussed first for
a' /a@1, where tightly bound dimers of sizeaB<a and
large binding energy,VB=sa' /2ad2@1, are realized. Ex-
panding the real part of Eq.s3.11d in 1/VB, carefully includ-
ing the VB dependence ofGsu,0d and L, and using
zs1/2,V@1d<−2ÎV, we obtain to first order

3

4

hsud
1 +Î1 + 3u2/4

+
3

16

1

VB

h0sud
1 + 3u2/4 +Î1 + 3u2/4

+
4

3

1

VB
E

−`

` du8

2pu82S h0su8d
1 + u2 + u82 + uu8

+
1

1 + u2D
= S aad

a'
ÎVB

DS4

3

1

1 + u2 −
1

VB

W0

s1 + u2d2D ,

with Gs0,0d=4/3 andW0=opps1/4dp=4/9. Here, we use
the zeroth-order approximationh0sud to the full solution
hsud. The lowest order gives

h0sud = −
1

2

1 +Î1 + 3u2/4

1 + u2 , s3.12d

where aad=−s9/32dÎVB fixes h0s0d=−1. The next order
gives fromhs0d=−1 a correction to the atom-dimer scatter-
ing length, such that

aad = − k`a'
ÎVB + ba'/ÎVB = − k`a'

2 /2a + 2ba,

s3.13d

wherek`=9/32=0.28125 and

b = −
9

128
+

3Î3 + 4p

8p
−

3

32
. 0.5426. s3.14d

Similarly, we can then computehsud to first order in 1/VB

and thereby obtainbad from the imaginary part of Eq.s3.11d.
Straightforward algebra gives

bad/a' = s8/9dVB
−3/2 s3.15d

for VB@1. The vanishing value ofbad is a consequence of
the short rangedness of the effective atom-dimer potential
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f43g. The support of this potential is the dimer sizeaB.a
and goes to zero in the dimer limit. This validates a repulsive
zero-range 1D atom-dimer potential in the low-energy limit,
Vadszd=gaddszd with gad~ s−1/aadd, very similar to the 1D
atom-atom scattering potentials1.8d. In cold-atom systems,
the validity of our treatment in the dimer limit is always
limited by the constraint that the 3D scattering lengtha be
larger than the typical size of the actual atom-atom potential.

C. Numerical solution

Outside the dimer limit, in general a numerical solution of
Eq. s3.11d is necessary. We describe next how an accurate
numerical solution to Eq.s3.11d can be obtained in practice.
One has to be quite careful to ensure regularity ofhsud, for
which we found it beneficial to Fourier transform to real
space, where the Fourier-transformedh is well behaved and
allows for a quickly converging solution of the integral equa-
tion. In order to implement an efficient, fast, and reliable
numerical solution, it is mandatory to find a convenient rep-
resentation of the integral kernel. As this is a nontrivial prob-
lem, we outline its solution in some detail here.

Let us first give some auxiliary relations that will be use-
ful below. The functionL appearing in Eq.s3.11d can be
written as

Lsud = z„1/2,VBs1 + 3u2/4d… − zs1/2,VBd

=
1

ÎVB
E

0

` dt
Îpt

e−t

1 − e−t/VB
se−3u2t/4 − 1d.

In addition, Gsu,u8d in Eq. s3.9d can alternatively be ex-
pressed in the form

GVB
su,u8d =E

0

` dt

1 −
1

4
e−t/VB

e−s1+u2+uu8+u82dt.

We then switch back to real space by writing

hsud = −E
−`

`

dzeizugszd, s3.16d

which leads to the Fourier transform of Eq.s3.11d. The real
part of this equation is

E
−`

`

dz8Ksz,z8dgsz8d = −
aad

ÎVB

a'

Bszd, s3.17d

with

Ksz,z8d =E du

2p
E du8

2pu82e−izufGsu,u8deiz8u8 − Gsu,0dg

−
ÎVB

2
E du

2pu2Lsude−isz−z8du = K1sz,z8d + K2sz− z8d

Bszd =E du

2p
e−izuGsu,0d = o

p=0

`

4−p e−Î1+p/VBuzu

2Î1 + p/VB

.

s3.18d

Using the above auxiliary relations, some algebra gives with
Xstd;uz8+z/2u /Î3t and the probability functionFsXd a con-
venient representation for the functionK1,

K1sz,z8d = −
Î3

4Îp
E

0

`

dt
e−te−z2/4t

1 −
1

4
e−t/VB

3 FXstdF„Xstd… +
1

Îp
e−X2stdG . s3.19d

In a similar fashion, withZstd= uz−z8u /Î3t, we find

K2sz− z8d =
1

4
Î 3

p
E

0

` dte−t

1 − e−t/VB

3 Se−Zstd2

Îp
+ ZstdfF„Zstd… − 1gD . s3.20d

With Ksz,z8d=K1+K2 andBszd given, one numerically com-
putesgszd from Eq. s3.17d and then fixesaad from the nor-
malization conditionedzgszd=1 corresponding tohs0d=−1.

Let us first discuss this program in the BCS limit,VB
!1. Importantly, the kernelKsz,z8d is not invertible in this
limit, since there is a zero-mode solutiong0szd. This function
can be found analytically in momentum space using the
Bethe ansatz as described in Sec. VI B, with the result
h0sud=u/ s1+u2d, leading to the real-space formg0szd
=sgnszde−uzu. Fortunately, the zero mode does not affect the
determination of the scattering lengthaad. To see this, note
thatg0szd has odd parity and hence does not contribute to the
normalization conditionedzgszd=1. Since also the function
Bszd in Eq. s3.17d is even, we can restrict the numerical
solution to even functionsgszd. On this space,Ksz,z8d is
invertible even in the BCS limit, and hence the numerical
procedure is stable and reliable.

The numerical result foraad/a' as a function ofVB, cov-
ering the full crossover, is shown in Fig. 1. In the BCS limit,
wherea' /a!−1 andVB!1, the real part of Eq.s3.11d is
solved by hsud=−1/s1+u2d2 fsee Eq.s6.20d belowg, and
hence we find the exact result

aad =
3

4
a'/ÎVB = 0.75a'

2 /uau. s3.21d

The numerical solution shown in Fig. 1 for arbitraryVB
nicely matches the analytically available limitss3.13d and
s3.21d. Remarkably, aroundVB<2.2, there is a zero of the
atom-dimer scattering lengthaad. One may suspect that this
behavior is the analog of the two-body CIR in Eq.s1.7d.
However, first one may notice that the atom-dimer “reso-
nance” occurs at a differentVB than the CIR. In addition, it
is important to check whether one still has a simple contact
d-interaction potential, since otherwise the simple relation-
ship gad~−1/aad breaks down.
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Let us then address the numerical evaluation ofbad in Eq.
s3.6d, which is performed by looking at the imaginary part
corresponding to Eq.s3.17d,

E
−`

`

dz8Ksz,z8dgsz8d = − B2szd, s3.22d

where

B2szd =E du

2p
e−izuuHsud = − i

z

8o
p=0

+` S1

4
Dpe−Î1+p/VBuzu

Î1 + p/VB

.

Once this integral equation is solved,bad follows as

bad

a'

=
1

2ÎVB
E

−`

`

dz zf− igszdg. s3.23d

Even though the kernel in Eq.s3.22d is the same as for the
computation ofaad, the situation is quite different in the BCS
limit. The functionB2szd is an odd function ofz and there-
fore not orthogonal tog0szd. This implies that the integral
equations3.22d has no solution whenVB is taken directly to
zero. However, for any finiteVB, the kernelKsz,z8d becomes
invertible, but the corresponding solution of Eq.s3.22d di-
verges forVB→0. The numerical result forbad is shown in
the inset of Fig. 1. While in the dimer limitbad stays small, in
accordance with our analytical results3.15d, in the BCS
limit, it is found to diverge asbad~VB

−3/2. We will see in Sec.
VI that this divergence originates from the reflectionless
scattering property encountered in the BCS limit. Moreover,
these results forbad imply that one cannot use an effectived
potential for the atom-dimer scattering outside the dimer
limit. Notably, the vanishing ofaad for VB.2.2 does not
correspond to an atom-dimer resonance sincegad~ s−1/aadd
breaks down away from the dimer limit.

IV. ROLE OF HIGHER TRANSVERSE CHANNELS

So far, the role of transverse excited statessnÞ0d has
been taken into account only through the exact calculation of

Ak,k8 for n=m=0. We still need to investigate the full Equa-
tion s2.17d including higher transverse channels. In this sec-
tion, we address their effect in detail. For the lowest channel
n=0, we keep using the ansatzs3.4d for fskd. For the higher
channels, we have the functionsfnskd instead. The full inte-
gral equations2.17d staking into account the rescaling dis-
cussed aboved leads to a system of coupled integral equations

for fskd and fnskd. For the limit k̄→0, following the line of
reasoning in the last section, we arrive at the previous inte-
gral equation forhsud that now includes a coupling to the
higher-channel modes

hnsud = f− i f nsk = 2ÎVBud/k̄gk̄→0.

The real and imaginary parts ofhhsud ,hnsudj decouple in the
resulting equations. For clarity, we show only the real part,
which is sufficient to analyze the effect of the higher chan-
nels on the scattering lengthaad. After some algebra, we find

E
−`

` du8

2pu82fG0,0su,u8dhsu8d − G0,0su,0dhs0dg

−
ÎVB

2u2 LsVBf1 + 3u2/4gdhsud

=
aad

ÎVB

a'

G0,0su,0d + VB o
n8Þ0

E
−`

` du8

p
G0,n8su,u8dhn8su8d,

s4.1d

where the matrix elementsGn,n8su,u8d can be extracted from

the matrix elementsAk,k8
n,n8 defined in Eq. s2.20d, with

Gn,n8su,u8d=VBAk,k8
n,n8 and the rescalingk=2ÎVBu. We shall

specify them in the limiting cases below, but their general
form for arbitrary parameters is of no interest here. Note that
G0,0su,u8d=Gsu,u8d is given by Eq.s3.9d. Furthermore, only
modes withm=m8=0 are coupled to the lowest transverse
mode and thus have to be kept. Clearly, Eq.s3.11d is repro-
duced, but now includes a correction due to the higher chan-
nels. The integral equation is then closed by

VB
−3/2E

−`

` du8

2pu82fGn,0su,u8dhsu8d − Gn,0su,0dhs0dg

+ Lsn + VBf1 + 3u2/4gdhnsud

=
aad

a'

Gn,0su,0d
VB

+ VB
−1/2 o

n8Þ0

E
−`

` du8

p
Gn,n8su,u8dhn8su8d.

s4.2d

The system of integral equations given by Eqs.s4.1d and
s4.2d will now be analyzed in the two limiting cases. In fact,
we will see that in the BCS limita' /a→−`, higher chan-
nels are completely negligible, while in the opposite dimer
limit, they cause a renormalization ofaad but noqualitative
change in the picture put forward in the last section. More-
over, in the dimer limit, we can solve the problem analyti-
cally and establish a connection to the solution of the uncon-
fined s3Dd problemf35g. Since the effect of higher channels

FIG. 1. Scattering lengthaad/a' versus dimensionless binding
energyVB. The solid curve is the numerical solution to Eq.s3.11d,
and the dottedsdashedd curves represent the analytical results in the
dimer sBCSd limit, respectively. In the inset,bad/a' is plotted ver-
susVB. The solid curve givesbad from the numerical solution of
Eq. s3.11d, and the dashed line representsaad for comparison.
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does not cause profound changes even in the dimer limit, we
conclude that the physical picture of Sec. III is reliable and
qualitatively correct for alla' /a.

A. BCS limit

We now show that higher channels are indeed negligible
in the BCS limit,VB!1. As the channel indexn has to be
compared with the reduced energyVB, it is intuitively clear
that only small values ofn can contribute. In addition, the
relevant wave vectors obeyk,k8~ÎVB. To make this more

quantitative, we specifyAk,k8
n,n8 in Eq. s2.20d for the BCS limit,

which in turn determinesGn,n8su,u8d appearing in Eqs.s4.1d
and s4.2d. For VB!1, the integral representation

Ak,k8
n,n8 . E

0

`

dte−hVB+n8+fk82+k2+kk8g/4jtE
0

`

dxe−xLnsxdLn8sx/4d

follows from Eq.s2.20d. Both integrals can be directly com-

puted, and we findAk,k8
n,n8=0 for n.n8 within these approxi-

mations; otherwise, there are small corrections of order unity.
For nøn8, with anVB-independent constantCnn8, we obtain

Ak,k8
n,n8 =

Cnn8

VB + sk2 + k82 + kk8d/4 + n8
.

Therefore, except for the open channeln=n8=0, Ak,k8
n,n8 is al-

ways of order unity. Let us then analyze the scaling of the
various terms in Eq.s4.2d as a function ofVB!1. On the
left-hand side, the first term scales asVB

−1/2 and the second as
hn. On the right-hand side, the first term is at most of order
aad/a'~VB

−1/2 and the last term scales asVB
1/2hn. Power

counting then giveshn~VB
−1/2. From Eq.s4.1d, we now see

that the last termsdescribing the effect of higher channelsd
scales asVB

3/2 and is thus negligible compared to the leading
terms, which are of order unity. This fact allows us to safely
conclude that higher transverse levels do not affect the low-
energy scaling behavior ofaad/a' in the BCS limit. This
conclusion also holds forbad as one can show using a similar
power-counting reasoning.

B. Dimer limit

The situation is quite different in the dimer limita' /a
→ +`, where excited levels contribute to the asymptotic be-
havior ofaad andbad. We first focus on the calculation of this
correction foraad. In the dimer limit, relevant values for the
channel numbern are of orderVB, and we later introduce the
rescaled continuous variablep=4n/3VB and convert then
summation into an integration. Keeping only leading terms
in 1/VB, Eqs.s4.1d and s4.2d read

3

4

hsud
1 +Î1 + 3u2/4

=
aad

a'
ÎVB

G0,0su,0d

+
3

2
E

0

`

dp8E
−`

` du8

2p
G0,p8su,u8dh̄p8su8d

s4.3d

and

− 2fÎ1 + 3su2 + pd/4 − 1gh̄psud

=
aad

a'
ÎVB

Gp,0su,0d

+
3

2
E

0

`

dp8E
−`

` du8

2p
Gp,p8su,u8dh̄p8su8d, s4.4d

where we useh̄psud=VBhpsud. The second equation of this
system is now independent of the first one and can be solved
consistently. The kernelGp,p8su,u8d in the dimer limit VB

@1 follows from Ak,k8
n,n8 fsee Eq.s2.20dg, which has the inte-

gral representation

Ak,k8
n,n8 =E

0

` dt

t
e−hVB+n8+fk82+k2+kk8g/4j3t/4

3 E
0

`

dx LnsxdLn8sx/4de−x/t. s4.5d

To evaluate thex integral, let us analyze the integral

I =E
0

`

dx e−x/tLnslxdLn8smxd = tE
0

`

dy e−yLnsltydLn8smtyd.

Now we definel̃=lnt and m̃=mn8t, which stay constant in
the limit n, n8→`, and use an asymptotic property of the
Laguerre polynomials, limn→`Lnsx/nd=J0s2Îxd, whereJ0 is
a Bessel function. Therefore, the integralI in the limit of
largen, n8 is given by

I = tE
0

`

dye−yJ0s2Îl̃ydJ0s2Îm̃yd

= 2tE
0

`

xdxe−x2
J0s2Îl̃xdJ0s2Îm̃xd.

=te−sl̃+m̃dI0s2Îl̃m̃d.

Setting l=1 and m=1/4, using the integral representation
for the Bessel functionI0,

I0sxd =E
0

2p dw

2p
e−x cosw,

and performing thet integral in Eq.s4.5d, we obtain

Ak,k8
n,n8 =

4

3
E

0

2p dw

2p
fVB + sk2 + k82 + kk8d/4

+ 4sn + n8 + Înn8 coswd/3g−1.

After rescalingk=2ÎVBu andn=3p/4VB, we finally arrive
at the expression

Gp,p8su,u8d =
4

3
E

0

2p dw

2p
f1 + u2 + u82 + uu8 + p + p8

+ Îpp8 coswg−1.

Inserting this result into Eq.s4.4d, we can identifysu,Îp,wd
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as the cylindrical coordinates of a 3D vectorr swhich is of

course still a momentum operatord, whereh̄sr d is now a func-

tion of r . Writing h0sr d=r2h̄sr d, we obtain for the integral
equation of the higher-channel modess4.4d the form

Î1 + 3r2/4 − 1

r2 h0sr d +E dr 8

2p2

h0sr 8d
r82s1 + r2 + r82 + r · r 8d

= −
2

3S aad

a'
ÎVB

D 1

1 + r2 . s4.6d

This integral equation is exactly the one governing the fer-
mionic three-body problem without confinementf35g. The
symmetry of Eq.s4.6d implies thath0sr d only depends onr
= ur u. We therefore write

h0sr d = − s2/3dsaad/a'
ÎVBdw0srd, s4.7d

wherew0srd is the solution to

1

p
E

0

` dr8

rr 8
lnS1 + r2 + r82 + rr 8

1 + r2 + r82 − rr 8
Dw0sr8d +

3

4

w0srd
1 +Î1 + 3r2/4

=
1

1 + r2 . s4.8d

The numerical solution to this equation is shown in Fig. 2.
We find w0s0d.1.179, in accordance with STM’s result
w0s0d<1.2 f35,36g.

We now go back to Eq.s4.3d and consideru=0. Straight-
forward algebra then gives to leading order in 1/VB the
atom-dimer scattering length in the dimer limit as

−
aad

a'
ÎVB

; k` =
3

4w0s0d
. 0.636. s4.9d

This value should be compared tok`=9/32=0.28125, which
results when higher channels are neglectedfsee Eq.s3.13dg.
Note that our result makes explicit contact with the previous
solution for the unconfined casef35,36g. This is also seen by
writing Eq. s4.9d as

aad = −
ared,'

2

2fw0s0dag
, s4.10d

with the confinement scaleared,'=s3" /2m0v'd1/2 for re-
duced mass 2m0/3 of the atom-dimer complex. With the 3D
atom-dimer scattering lengthw0s0da=w0s0d /kB, this result
exactly matches the dimer limit of the analogous two-body
result s1.7d. Equations4.10d predicts that the product of the

1D and 3D atom-dimer scattering lengthssin units of a'd is
a universal constant, independent of the atomic properties. In
fact, we shall see later that it is even independent of statis-
tics.

Let us then turn to the determination ofbad in the dimer
limit, including the contribution of higher transverse chan-
nels. The calculation follows closely the one foraad, and we
shall therefore only briefly outline the various steps. Starting
with the imaginary part of the general coupled equations
resulting from Eq.s2.17d, we arrive at new coupled equa-
tions very similar to Eqs.s4.1d and s4.2d. We then use the

asymptotic expression forAk,k8
n,n8 in the dimer limit and per-

form the rescaling k=2ÎVBu, n=3p/4VB, and h̄psud
=VBhpsud. Once again we identifysu,Îp,wd as the cylindri-
cal coordinates of a 3D vectorr , and in order to obtain an
integral equation with a spherically symmetric solution, we

define Imh̄sr d=−su/ r2ds1/VBdw1srd. After some algebra, we
eventually obtain an integral equation forw1srd very similar
to Eq. s4.8d: namely,

3

4

w1srd
1 +Î1 + 3r2/4

+
1

p
E

0

`

dr8Ksr,r8dw1sr8d =
1

3s1 + r2d2 ,

s4.11d

with the kernel

Ksr,r8d =
1

r2F2 −
1 + r2 + r82

rr 8
lnS1 + r2 + r82 + rr 8

1 + r2 + r82 − rr 8
DG .

s4.12d

The numerical solution to this equation is shown in Fig. 2.
Including the higher channels, we thus find forbad instead of
Eq. s3.15d the result

bad

a'

=
w1s0d
VB

3/2 , w1s0d . 0.952. s4.13d

Notably, this is essentially the same behavior as in Eq.
s3.15d, where the higher channels were neglected. Even the
coefficient of the asymptotic behavior, 0.952 compared to
8/9.0.889, is very close.

To summarize, we conclude that in the deep dimer limit,
the relevant physics is not changed by the confinement po-
tential.

V. BOSONIC THREE-BODY PROBLEM

In this section, we consider the problem of three identical
bosons in a tight transverse harmonic confinement, allowing
us to analyze the 1D bosonic analog of the problem studied
up to now for fermions. The main difference is that the three-
body wave function is now totally symmetric. On a formal
level, the calculation is similar to the fermionic one, so in
what follows we go through it, highlighting the differences
and keeping the same notation as much as possible. The
definition of the coordinate system remains the same; i.e.,x1,
x2, andx3 are the 3D positions of the bosons. Next the or-
thogonal transformations2.1d to the variablessx ,y ,zd is per-

FIG. 2. Solutionsw0srd to Eq. s4.8d andw1srd to Eq. s4.11d.
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formed. The harmonic trap potential is still diagonal in the
positions after this transformation, and the center-of-mass
coordinatez again decouples. Hence the three-body problem
reduces to

S−
"2

m0
¹X

2 + UcsXd − EDCsXd = − FVsyd + o
±

Vsr ±dGCsXd.

s5.1d

As in Eq.s2.3d, r ± denotes the distance between the boson at
x1 and thex2 or x3 particles, respectively, whiley=x2−x3.
Note that all three bosons interact, leading to the extra term
Vsyd in Eq. s5.1d compared to the fermionic equations2.2d.
Incorporating atom-atom interactions via the pseudopotential
approach, one boundary condition now reads

CsXd .
fsxd
4p

F1

y
−

1

a
G, y → 0, s5.2d

while the other two are

CsXd .
fsr ',±d

4p
F 1

r±
−

1

a
G, r ± → 0, s5.3d

where r ',±=−cossudx±sinsudy carries an extra minus sign
compared to Eq.s2.11d. Because the three-body wave func-
tion is fully symmetric, the conditionss5.3d are redundant,
and it is sufficient to satisfy only Eq.s5.2d in what follows.
As discussed in the Introduction, the bosonic three-body
problem requires a short-distance regularizationR* , which
we implement using Petrov’s schemef41g. The regulariza-
tion s1.9d is formulated via the action of a differential opera-
tor on the scattering amplitude that describes the relative
kinetic and confinement energy. The boundary condition
s5.2d sfor y→0d is thereby modified to

CsXd . F1

y
−

1

a
− R*Sm0E

"2 + ¹x
2 −

2rx
2

a'
4 DG fsxd

4p
, s5.4d

whererx is the component ofx along the transverse direc-
tion. The boundary condition for the two-body problem also
changes, now leading to a modified equation for the dimen-
sionless binding energyVB defined in Eq.s1.4d. Instead of
Eq. s1.5d, it now reads

zs1/2,VBd + a'/a − 4R*VB/a' = 0. s5.5d

In the dimer limitVB@1, the 3D resultf41g follows,

kB =
1

2R* SÎ1 +
4R*

a
− 1D , s5.6d

while in the BCS limit,R* gives only subleading corrections.
In an identical way as for fermions, we then obtain the

bosonic analog of Eq.s2.13d, take they→0 limit according
to Eq. s5.4d, and finally obtain the integral equation like in
Eq. s2.17d. This modified integral equation for bosons reads

L̃sVldfl = o
l8

Ãl,l8fl8, s5.7d

whereVl is given by Eq.s2.19d and the matrix elements are

Ãl,l8 = −
8p"2a'

m0
E dxcl

* sxdcl8s− x cosud

3 GE−E
l8
sx sinu,0d. s5.8d

When compared to the fermionic equations2.20d, the
bosonic equations5.8d carries an overall factor of −2, imply-
ing that an effective repulsion has turned into an attractive
force. Moreover, the integrand in Eq.s5.8d remains unaltered
since cos 2u=−cosu and sin 2u=sinu. In addition, theL
function s2.18d is modified to

L̃sVld = zs1/2,Vld − zs1/2,VBd − R*sk2 − k̄2 + 2nd,

s5.9d

where, from now on, all lengthssmomentad will again be
given in units ofa' s1/a'd. Note that the distance between
the center of mass of the two bosonsx2,3 and the one atx1 is
x sinu. Since sinu=sins2ud, exactly the same rescaling as in
the fermionic case will be employed in what follows.

A. Scattering solution

Let us then proceed by projecting Eq.s5.7d onto the
ground state. We use the same scattering ansatzs3.4d as for

fermions, and after expanding ink̄=2ÎVB ū, one easily ob-
tains the bosonic version of Eq.s3.11d,

E
−`

` du8

2pu82fGsu,u8dhsu8d − Gsu,0dhs0dg +
ÎVB

4u2 L̃sudhsud

=
aad

ÎVB

a'

Gsu,0d + iHsud, s5.10d

with the functionsGsu,u8d andHsud defined as for fermions
fsee Eqs.s3.9d and s3.10dg. Furthermore, Eq.s5.9d gives

L̃sud = z„1/2,VBs1 + 3u2/4d… − zs1/2,VBd − 3R*VBu2.

s5.11d

In the bosonic case, the atom-dimer scattering lengthaad/a'

therefore depends on the two dimensionless parametersVB
andR* /a'. In that sense, the bosonic problem is nonuniver-
sal f19g.

Let us start with thedimer limit VB@1. In that case it is
useful to introduce the dimensionless regularization param-
eter

r* = kBR* =
1

2
SÎ1 +

4R*

a
− 1D . s5.12d

The solution to Eq.s5.10d in the dimer limit can be found
analytically again, with the result

aad

a'

=
9

64s1 + 2r*d
ÎVB +

b

ÎVB

, s5.13d

where the coefficientb is given for r* =0 as

b = 9/256 +s3Î3 + 4pd/8p + 3/64. 0.6638.

We also findbad/a'=−s4/9dVB
−3/2, which resembles the fer-

mionic equivalent equations3.15d.
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However, as in the fermionic case, Eq.s5.10d is not suf-
ficient in the dimer limit, and higher transverse channels
must be included. Skipping details of the calculation—which
closely parallels the fermionic one in Sec. IV B—and keep-
ing the same notation, we find instead of Eq.s4.6d the
bosonic scattering solution

Î1 + 3r2/4 − 1 + 3r*r2/4

r2 h0sr d

−E dr 8

p2

h0sr 8d
r82s1 + r2 + r82 + r · r 8d

= +
4

3S aad

a'
ÎVB

D 1

1 + r2 .

s5.14d

Defining the functionw0srd as in Eq.s4.7d, we obtain after
angle integration, instead of Eq.s4.8d, the equation

Î1 + 3r2/4 − 1 + 3r*r2/4

2r2 w0srd

= −
1

1 + r2 +
1

p
E

0

` dr8

rr 8
lnS1 + r2 + r82 + rr 8

1 + r2 + r82 − rr 8
Dw0sr8d.

s5.15d

At r* =0, this is precisely STM’s Eq.s15d f35g, once the 3D
scattering length is identified withw0s0daB=w0s0d /kB. For
finite r* , it is equivalent to the equation recently studied by
Petrov, since Eq.s5.15d follows from Eq. s12d of Ref. f41g
upon substitution of the standard 3D scattering ansatz. The
scattering length can be extracted in a way similar to the
fermionic case. For that purpose, we putu=0 in the bosonic
version of Eq.s4.3d and arrive at

−
3

8
s1 + 2r*d = −

8

3

aad

a'
ÎVB

F1 −
2

p
E

0

`

dr
w0srd
1 + r2G .

On the other hand, takingr →0 in Eq. s5.15d yields

3

8
s1 + 2r*d

w0s0d
2

= − 1 +
2

p
E

0

`

dr
w0srd
1 + r2 .

Consequently we have

aad

a'
ÎVB

= −
3

4w0s0d
, s5.16d

i.e., the same relation as for fermions, leading to Eq.s4.10d
and matching the analogous two-body results1.7d. We con-
clude that in the dimer limit, for both fermions and bosons,
the 1D scattering lengthaad is always inversely proportional
to the 3D scattering lengthw0s0d /kB. The latter has been
studied in detail in Ref.f41g as a function ofR* /a. It was
found to diverge whenever a new Efimov state splits from
the continuum, going through zero in between the resonances
ssee Fig. 1 of Ref.f41gd. According to Eq.s5.16d, the atom-
dimer scattering lengthaad will behave in the opposite man-
ner; i.e., it vanishes every time a new bound state emerges
and diverges in between. Note that in order to derive Eq.
s5.14d, one needs to imposew0s0d /kB,a', which follows
from VB@1, so that divergences ofw0s0d /kB will in practice
be smeared out on length scales<a'@a.

In the limit of largeR* , one can solve Eq.s5.15d analyti-
cally by expanding in inverse powers ofr* f41g,

w0srd = −
8

3r*

1

1 + r2 + Os1/r*2d.

Taking into account Eqs.s5.6d and s5.12d, it is easily seen
that the 3D scattering length becomes independent ofR* ,
while for the 1D scattering length, the contribution of higher
channels clearly becomes negligible. We then obtain from
Eq. s5.13d

aad =
9

64

a'
2

a
, s5.17d

which is a universal result in the sense that it does not de-
pend onR* .

Higher channels can also be taken into account exactly for
the calculation ofbad in the dimer limit. We follow the fer-
mionic case in Sec. IV B and obtain

bad

a'

= −
w1s0d
VB

3/2 , s5.18d

where, in contrast to the fermionic case,w1srd solves the
integral equation

3

4

w1srd
1 +Î1 + 3r2/4

+
3

8
r*w1srd −E

0

` dr8

p
Ksr,r8dw1sr8d

=
1

3s1 + r2d2 , s5.19d

with Ksr ,r8d given by Eq.s4.12d. The solution forw1s0d as a
function of R* /a is shown in Fig. 3. Apparently, there is no
divergence due to Efimov states. In particular, theR* →0
limit is well defined, withw1s0d.1.59 and

bad . − 12.7a3/a'
2 , s5.20d

validating a zero-range atom-dimer potential in the low-
energy limit. The other limit is R* @a, where w1s0d
.s8/9dÎa/R* and therefore

bad = − s64/9dR*sa/a'd2. s5.21d

Comparing this result to Eq.s5.17d, we find that the zero-
range potential approximation requiresR*a3/a'

4 !1, which
self-consistently holds forVB@1.

FIG. 3. Solutionw1s0d ssolid lined to Eq.s5.19d as a function of
R* /a. The dotted curve gives the asymptotic behaviorw1s0d
=s8/9dÎa/R* for largeR* /a.
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In the BCS limit VB!1, the same argument as in Sec.
IV A can be applied to the bosonic case. Therefore higher
channels can again be disregarded in that limit. Moreover,
the regularization parameterR* drops out to leading order,
since relevant momenta are smalls~ÎVBd and the short-
ranged cutoff ceases to matter. In this sense, the three-body
problem becomes universal again in the BCS limit. The
asymptotic behavior ofaad andbad can be analytically com-
puted using the Bethe ansatzssee Sec. VId. One can verify
that hsud=−2u/ s1+u2d2 solves the imaginary part of Eq.
s5.10d in the BCS limit, leading to

bad

a'

=
h8s0d
2ÎVB

= −
1

ÎVB

. s5.22d

For the real part of Eq.s5.10d, we obtain from the Bethe
ansatz the solution

hsud = 4
aad

ÎVB

a'

u2

1 + u2 s5.23d

in the BCS limit. Evidently, the conditionhs0d=−1 cannot be
fulfilled for any finite aad. Similarly to bad for the fermionic
case, the asymptotic behavior ofaad is therefore expected to
diverge asaad~−1/VB

3/2 when approaching the BCS limit.
We shall discuss this point in detail in Sec. VI.

For the general case of arbitrarya' /a, we have solved
numerically the real-space version of Eq.s5.10d as in Sec.
III C, neglecting higher channels. For the sake of simplicity,
we takeR* =0. When compared to the fermionic equation
s3.17d, the kernel s3.18d is now K=K1−K2/2, with K1,2
given in Eqs.s3.19d and s3.20d, respectively. The results are
shown in Fig. 4. Clearly, they closely match the predicted
behavior in both limits. A finiteR* in Eq. s3.17d gives similar
results. From the above discussion, this is clear in the BCS
limit. Moreover, when just keeping the lowest transverse
channel, the qualitative behavior is not modified in the dimer
limit either. Therefore we expect a very similar picture for
arbitraryR* as the one shown forR* =0 in Fig. 4, as long as
higher channels can be neglectedfas presumed in Eq.
s3.17dg. While this approximation is justified in the BCS
limit, in the dimer limit it does not capture the correct

asymptotic behavior, except for largeR* /a ssee aboved. In
particular, the influence of Efimov states onaad becomes
important and affects the physics in the dimer limit in a
significant way. This is in contrast to the fermionic case,
where the projection onto the lowest transverse state already
yields the qualitatively correct behavior even in the dimer
limit.

B. Bound states: Trimers

For the bosonic problem, one expects atom-dimer bound
statesstrimersd to form under certain conditions. We there-
fore next derive the relevant integral equation. In this case,
the scattering ansatz cannot be used, and the resulting homo-
geneous integral equation must be considered. The total en-
ergy of the system is nowE=−2"v'VB−ET, where the tri-
mer binding energy is written as

ET =
3

4

"2

m0
kB

2u0
2, s5.24d

with u0 being the inverse size of the trimer in units ofaB
=1/kB. Projecting Eq.s5.7d onto the transverse ground state,
we find

FzX1

2
,VBS1 +

3

4
su2 + u0

2dDC
− zS1

2
,VBD − 3VBR*su2 + u0

2dG fsud

= −
2

pÎVB
E

−`

`

du8Gu0
su,u8dfsu8d, s5.25d

where the functionGu0
su,u8d is defined by

Gu0
su,u8d = o

p=0

`
4−p

1 + 3u0
2/4 + u2 + u82 + uu8 + p/VB

.

Equations5.25d is then an eigenvalue equation foru0.
First, we study Eq.s5.25d in the dimer limit. In order to

obtain a nontrivial solution, we need to consideru0!1. Then
fsud is dominated by its small-u behavior, and using Eq.
s5.12d, Eq. s5.25d is simplified to give

fsud =
1

u0
2 + u2

32

9pVBs1 + 2r*dE−`

`

du8fsu8d, s5.26d

which implies fsud~1/su2+u0
2d. Self-consistency of this ex-

pression leads to

u0 =
32

9VBs1 + 2r*d
. s5.27d

Note that we have supposed here thatfsud is an even func-
tion. Taking instead an odd function, we get

fsud =
u

u0
2 + u2

32

9

1

pVBs1 + 2r*dE−`

`

du8u8fsu8d,

which does not allow for a nontrivial and self-consistent so-
lution. Thereforefsud cannot be odd in the dimer limit. For

FIG. 4. Plot ofaad and bad ssolid linesd as function of the di-
mensionless binding energyVB for the three-boson problem atR*

=0. The asymptotic behavior is shownsid for bad in the BCS limit,
−1/ÎVB, and sii d for aad in the dimer limit, s9/64dÎVB

+0.6638/ÎVB.
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larger* , the trimer binding energy becomes universal and is
given by

ET =
1024

27

"2

m0

a2

a'
4 . s5.28d

Note that the existence of this novelconfinement-induced
trimer statesCITd is consistent with the positive 1D atom-
dimer scattering length for bosons found in the dimer limit
fsee Eq.s5.17dg.

In the BCS limit, Eq.s5.25d for the bound states reduces
to

F 1

Î1 + 3su2 + u0
2d/4

− 1G fsud

= −
2

p
E

−`

` du8fsu8d
1 + 3u0

2/4 + u2 + u82 + uu8
. s5.29d

The fact that one can use the Bethe ansatz to solve directly
the BCS limit also holds for bound states. Indeed, we will
verify in Sec. VI that Eq. s5.29d follows from a 1D
Schrödinger equationfsee Eq.s6.4d belowg and leads to the
exact solution

fsud =
1

u2 + u0
2 s5.30d

for u0=2. We have verified numerically that there are no
other solutions, neither even nor odd. In fact, in real space,
Eq. s5.30d is nothing but the known bound-state Bethe func-
tion for three attractively interacting bosonsf29g,

c ~ expf− suz1 − z2u + uz2 − z3u + uz3 − z1ud/aaag. s5.31d

In between the BCS and the dimer limits, we have inves-
tigated Eq.s5.25d numericallyssee Fig. 5d. Qualitatively, we
see that the trimer energy barely depends onR* and in the
BCS limit even becomes completely independent of this
regularization parameter. However, Eq.s5.25d is only ap-
proximate since it is derived by projecting Eq.s5.7d onto the
lowest transverse state and therefore does not include the
effect of higher channels. Notably, Efimov trimer states can-
not be recovered within this approximation. Such states are
irrelevant in the BCS limit, where the length scaleaaa of the

confined trimer statefsee Eq.s5.31dg is larger than the typical
length scalea of Efimov states, so that the two problems
decouple. However, when moving towards the dimer limit,
the interplay between the confined trimer state and Efimov
states plays a role.

In the dimer limit, it is possible to study the CIT in a
quantitative manner, including the way it is affected by Efi-
mov trimer states. In fact, we have shown in Sec. V A, for
the dimer limit, that the low-energy atom-dimer scattering
properties are described by a 1D contact potentialVszd
=s−2"2/m0aadddszd. This potential has a bound state for
aad.0 and its energy is given by

ET =
"2

m0 aad
2 . s5.32d

The corresponding 1D scattering lengthaad is related through
Eq. s4.10d to the 3D atom-dimer scattering lengthw0s0daB

si.e., without external confinementd obtained from the solu-
tion of Eq. s5.15d. This quantity is shown, e.g., in Fig. 1 of
Ref. f41g. The bound state of this 1D contact potential—
present only foraad.0—describes the CIT as long as its
energy ET,"v'. This implies aad.a', which in turn is
equivalent to the conditionw0s0daB,a'. This coincides
with the condition in Sec. V A for the validity of Eq.s5.14d,
and therefore of Eq.s4.10d for bosons. The CIT is thus
present only forw0s0daB,0, and its energy follows from
Eqs.s5.32d and s4.10d in the form

ET

"v'

= S a

a'

D232

9
Sw0s0daB

a
D2

. s5.33d

From the numerical solution of Eq.s5.15d, we obtain results
for ET as a function ofR* /a ssee Fig. 6d. Obviously, in the
dimer limit, the CIT only exists for certain values ofR* /a.
While it is present for all values larger thanR* /a.2.2, be-
low this threshold, it disappears and reappears periodically
for decreasingR* /a. One such cycle is shown in Fig. 6,
where the CIT has disappeared in the window 0.17&R* /a
&2.2, but reappears forR* /a&0.17. ForR* !a, the behav-
ior is exactly periodic as a function of lnsR* /ad and can be
obtained analytically using the known resultf19g

FIG. 5. Parameteru0 appearing in the trimer binding energy, Eq.
s5.24d, as a function ofVB for various values ofR* /a'. The dotted
lines correspond to the asymptotic behavior in the dimer limit, Eq.
s5.27d.

FIG. 6. Reduced energye;sET/"v'dsa' /ad2 for the CIT in the
dimer limit as a function ofR* /a.
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w0s0daB

a
= 1.46 − 2.15 tanf1.00624 lnsaL*d + 0.09g,

s5.34d

together withL* .6.6/R* f41g. The ultimate fate of the CIT
and its evolution in between the BCS and the dimer limits
remains a difficult open question that is outside the scope of
our paper.

VI. BETHE ANSATZ IN THE BCS LIMIT

In the BCS limit VB→0, the role of transverse excited
states is negligible. Confined in the transverse ground state,
the motion of particles becomes effectively 1D, with contact
d interactions between bosons or between distinguishable
fermions. This strong simplification of the original 3D hamil-
tonian hence allows for exact solutions on the many-body
level—namely, the Lieb-Liniger model for bosonsf44g or the
Yang-Gaudin model for fermionsf45g, both based on the
powerful Bethe ansatz. Recently, these two models have
been used to study the many-body properties of cold atoms
in 1D confined geometriesf20,21g. In this section, we use the
Bethe ansatzf29g to solve the three-body problem for bosons
and fermions in the BCS limit. This leads to analytical pre-
dictions for aad and bad, as well as for the bosonic trimer
state. We thereby derive some of the results presented in
previous sections. Noting that the atom-dimer scattering does
not lead to any reflected wave, we also clarify the connection
between the divergence ofaad sbadd for bosonssfermionsd
and the fact that the scattering process is reflectionless. The
reduction of the original problem to a 1D model is not com-
pletely straightforward and needs to be considered cau-
tiously. Even in the BCS limit, the few-body wave function
is not restricted to the transverse ground state. In order to
build up a boundary condition like Eq.s2.4d, imposed by the
two-body potential for small particle distances, many excited
transverse states have to be involved. However, as soon as
distances between particles are larger thana', essentially
only the transverse ground state can be occupied. In our case,
the relevant length scale is the 1D scattering lengthaaa
=a'

2 /2uau@a', which justifies the neglect of transverse ex-
cited states. This simplification becomes incorrect for prob-
lems involving length scalesøa—e.g., when describing
deeply bound Efimov states or three-body recombination
processes.

Let us first explicit the connection between our integral
equations in the BCS limit and the 1D reduced problem. We
start with bosons. The 1D Schrödinger equation is

F− s]z1

2 + ]z2

2 + ]z3

2 d −
2m0E

"2 Gcsz1,z2,z3d

=
4

aaa
fdsz1 − z2d + dsz1 − z3d + dsz2 − z3dgcsz1,z2,z3d,

s6.1d

where the two-body 1D contact interaction can be recovered
by projecting the 3D pseudopotential to the lowest transverse
state,

−
2"2

m0aaa
dszd =E rdrdfR00srd

4p"2a

m0
dsr d

]

]r
sr · dR00srd.

s6.2d

We then closely follow Sec. II, with the 1D boundary
condition fory→0,

csx,yd = fsxdS1 −
uyu
aaa

D , s6.3d

obtained by projecting Eq.s2.4d to the lowest transverse
state. One finally obtains, after some algebra and the rescal-

ing k̄=sÎ3/2aaadū, the integral equation

F 1

Î1 + 3su2 − ū2d/4
− 1G fsud

= −
2

p
E

−`

` du8fsu8d
1 + u2 + u82 + uu8 − 3ū2/4

, s6.4d

which can also be obtained from the integral equations5.7d
in the BCS limit—i.e., from the scattering approach. For
fermions, the same line of reasoning can be followed, and
one obtains the integral equations6.4d with an overall factor
−1/2 factor on the right-hand side. We conclude that the
direct solution of Eq.s6.1d can provide exact results in the
BCS limit for aad andbad and possible trimer bound states.

A. Bosonic case

Equations6.1d can be solved by using the Bethe ansatz.
The corresponding bosonic three-body wave function is writ-
ten in the fundamental domainD1=hz1,z2,z3j as

csz1,z2,z3d = No
P

AsPdexpSio
j=1

3

zjkPjD , s6.5d

where N is a normalization constant and the sum extends
over all permutations ofh1,2,3j, with coefficientsf29g

AsPd = p
1ø j,lø3

S1 +
2i/aaa

kPl − kPj
D . s6.6d

In other domains, the wave function is recovered by symme-
try arguments. There is only one trimer bound-state solution
f46,47g

csz1,z2,z3d = N expf− 2sz3 − z1d/aaag, s6.7d

here given in the fundamental domainD1 or in general form
by Eq. s5.31d. Using the boundary conditions6.3d, we find
that fsud=1/su2+4d solves Eq.s6.4d with ū= iu0=2i, as dis-
cussed in Sec. V B.

We now turn to the atom-dimer scattering problem, put-
ting aaak1= ū, aaak2=−i − ū/2 andaaak3= i − ū/2, with the cor-
responding total energy

E =
"2

m0aaa
2 F− 1 +

3

4
ū2G s6.8d

fsee Eq.s3.3dg in the BCS limit. From Eq.s6.5d, the three-
boson wave function is explicitly given. Using then the 1D
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boundary conditions6.3d, we find in real space after some
algebra, up to an overall normalization constant,

fsxd = s2 − 3ieūdf− s2 − ieūdeiūx + 2s2 + ieūde−iūx/2e−uxug,

s6.9d

where e=sgnsxd and we have performed the rescaling
Î3x/2aaa→x in order to give the correct atom-dimer dis-
tance in units ofaaa. Remarkably, the atom-dimer scattering
does not give any reflected wave. The atom just passes the
dimer and only acquires a phase shift, without being actually
backscattered. Consequently, one can neither use the scatter-
ing ansatzs3.4d nor defineaad and bad as in Eq.s3.6d. We
therefore need a more general definition to take into account
the reflectionless situation found in the BCS limit. From Eq.
s6.9d and its counterpart withū→−ū, we can use a simple
but convenient basis for the incoming waves. The symmetric
santisymmetricd state is taken as a plane waveeiūx coming
from the left plus a plane wavee−iūx s−e−iūxd from the right.
In that basis, the scattering process is described by the
232 scattering matrixf30g

S ; S− eidssūd 0

0 eidasūd D = St + r 0

0 t − r
D , s6.10d

where r and t are again energy-dependent reflection and
transmission coefficients that can be read off from Eq.s6.9d.
At low energy, after expanding ink̄= ū/aaa, the phasesda,s
define two scattering lengths according to

dssk̄d = − 2k̄aad + Osk̄2d, dask̄d = 2k̄bad + Osk̄2d.

s6.11d

This definition is more general than Eq.s3.6d and reduces to
it when the ansatzs3.4d applies. We also observe that in
general two scattering lengths are needed to completely de-
scribe an arbitrary scattering process in 1D.

Using Eq. s6.9d, we find for this atom-dimer scattering
problem the resultbad=−2aaa=−1/ÎVB. This agrees with the
asymptotic result in Fig. 4 for the BCS limit. Furthermore,
we find aad=−`, in accordance with the divergenceaad~
−1/VB

3/2 ssee Fig. 4d. Finally, we infer analytical results from
Eq. s6.9d for the integral equations5.10d in the BCS limit.
Switching to Fourier space and expandingf in ū as fsud
= f0sud+ ūf1sud, we find

f0 = − pdsud +
2

1 + u2 , s6.12d

f1 = − pd8sud +
2

us1 + u2d2 , s6.13d

where each of these functions satisfies Eq.s6.4d for ū=0.
Plugging f1 into Eq. s6.4d for ū=0, we confirm the
asymptotic behaviorbad=−1/ÎVB in the BCS limit fsee Eq.
s5.22dg. Plugging f0 into Eq. s6.4d for ū=0, we obtain the
solutions5.23d with hs0d=0 for any finiteaad. Therefore the
conditionhs0d=−1 impliesaad=−`.

B. Fermionic case

We now consider the fermionics↑↑↓d three-body problem
and solve it via the Bethe ansatz. The Schrödinger equation
is essentially Eq.s6.1d with the threed functions replaced by
dsz1−z2d+dsz1−z3d. This equation does not lead to any tri-
mer state. The Bethe ansatz for fermions is slightly different
from the one for bosons. The form, Eq.s6.5d, also applies to
the fermionic case, but the coefficientsAsPd are not given by
Eq. s6.6d anymore. Moreover, the fundamental domainD1 is
not sufficient, and we need to know the wave function in one
more domainf48g: e.g., D2=hz2,z1,z3j. The wave func-
tion in other domains then follows by antisymmetry proper-
ties.

To study atom-dimer scattering, we now consider the mo-
mentaaaak1=−i − ū/2, aaak2= i − ū/2, andaaak3= ū, with total
energys6.8d. Imposing the fermionic antisymmetry and nor-
malizability, the problem reduces to the determination of
three variablesa1,2,3. The wave function is given inD1 by

c1sz1,z2,z3d = eisk1z1+k3z2+k2z3d − eisk1z1+k2z2+k3z3d s6.14d

and inD2 by

c2sz1,z2,z3d = a1e
isk3z1+k1z2+k2z3d + a2e

isk1z1+k3z2+k2z3d

+ a3e
isk2z1+k1z2+k3z3d. s6.15d

The variablesai are then obtained by imposing boundary
conditions for the wave function and its first derivative with
respect toz1 and z2 at the boundary betweenD1 and D2
hz1=z2,z3j. The result is a1=1−x, a2=x and a3=−1,
where

x = −
2 + 3iū

2 + 3iū
.

Once the wave functioncsz1,z2,z3d is known, we can use the
boundary conditions6.3d and the rescalingÎ3x/2aaa→x to
get

fsxd = es2 − 3ieūdse−iūx/2e−uxu − eiūxd, s6.16d

where againe=sgnsxd. Similar to the bosonic case, for arbi-
trary ū, there is no reflected wave. The scattering only leads
to a phase shift that goes top at zero energy. This implies a
transmission coefficientt=−1, in contrast to the bosonic re-
sult t=1. This discrepancy originates from the antisymmetry
of the fermionic wave function with respect to exchange of
the two ↑ atoms. As has been discussed in Sec. III C, we
obtain from Eq. s6.16d and the definitions6.11d that aad

=s3/2daaa=0.75/ÎVB and bad= +`. These results confirm
the asymptotic behaviors shown in Fig. 1 for the BCS limit.

Also in the fermionic case, we can obtain analytical re-
sults for the integral equations3.11d in the BCS limit. We
first Fourier transform Eq.s6.16d. The lowest order inū gives

f0sud =
i

us1 + u2d
. s6.17d

Plugged into the fermionic equivalent of Eq.s6.4d for ū=0,
one finds the zero mode responsible for the divergence ofbad
ssee Sec. III Cd. More precisely,h0=s−idu2f0sud satisfies the
imaginary part of Eq.s3.11d in the BCS limit. The next order
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in ū cannot be taken directly, since the resulting integral in
the fermionic equivalent of Eq.s6.4d is not well defined for
u→0 andū→0. Instead, we use thatfsud has the form

fsud = f0sud +
3

2
ipūdsu − ūd + iGsu,ūdS 1

ū − u
+

1

u
D ,

s6.18d

whereGsu,ūd is a regular function. We insert this expression
into the fermionic equivalent of Eq.s6.4d and look at theū
→0 limit. After some algebra as in Sec. III A, we obtain

E
−`

` du8

2pu82fGsu,u8dhsu8d − Gsu,0dhs0dg

− S 1
Î1 + 3u2/4

− 1Dhsud
2u2 =

3

4

1

1 + u2 , s6.19d

with

hsud = Gsu,0d = − 1 +
u2s2 + u2d
s1 + u2d2 = −

1

s1 + u2d2 s6.20d

andGsu,u8d=s1+u2+u82+uu8d−1. This shows explicitly that
Eq. s6.20d is a solution to the real part of Eq.s3.11d in the
BCS limit, with the expected asymptotic behavioraad/a'

=0.75/ÎVB. Although the forms6.18d seems similar to the
general ansatzs3.4d, it is different since there is no reflection
in the BCS limit and Eq.s3.4d cannot apply.

C. Reflectionless potential

We have seen above that the divergence ofbad saadd for
fermionssbosonsd in the BCS limit was due to the reflection-
less character of the atom-dimer effective potential. We shall
now generalize this idea and show that for 1D scattering
processes of a particle by anyspossibly nonlocald symmetric
potential, the following statements are equivalent:sid there is
a divergence of the 1D scattering lengtha1 sthe “odd” scat-
tering lengthb1d, sii d the potential has a quasibound state
with evensoddd parity precisely at zero energy, andsiii d there
is no reflection at zero energy. The atom-dimer scattering
problem in the BCS limit, where higher channels are negli-
gible, is in fact equivalent to a 1D scattering problem with
such an effective nonlocal potentialf43g. Therefore, the con-
siderations in this section directly lead to physical insights
for the BCS limit. The fact that in our case the reflection
coefficient is zero forany incoming energy is an additional
feature that cannot be inferred from the behavior ofa1 and/or
b1.

Symmetric potentials imply the low-energy scattering
propertiesf34g

�tsk̄dk̄→0 = −
2ik̄

n
, rs0d = − 1, s6.21d

wherek̄ is the wave vector of the incoming plane wave and
nÞ0 is a real parameter that depends on the potential. The
incoming wave is then totally reflected at zero energy. There
is only one exception to this general low-energy behavior,

arising for potentials withn=0. In that case, the limitk̄→0
is different and characterized by

ts0d = t0 = ± 1, rs0d = r0 = 0, s6.22d

corresponding to a reflectionless situation at zero energy. For
very small but finiten, Eq. s6.21d still holds, but the reflec-
tion and transmission amplitudes change on the scale of

unity in a narrow momentum regionk̄,n. For k̄.n sbut still
smaller than all other momentum scalesd, Eq. s6.22d is
reached and the potential is effectively reflectionless. We
now show that forn=0, the conditionssid, sii d, andsiii d are
satisfied and equivalent to each other, while for finiten,
strictly speaking, none of them holds.

We first observe from the general definitions ofa1 andb1
seefEqs. s6.10d and s6.11dg that Eq.s6.22d leads to the di-
vergence ofa1 sb1d for t0=1 st0=−1d. For nÞ0, a1 and b1

are finite so thatsid holds iff siii d is true. The small-n regime
is also interesting to investigate. Using Eq.s6.21d, we find

that for tsk̄,nd=1s−1d, a1 sb1d diverges as −2/n. To see if
there is a quasibound state at zero energy, we consider the
asymptotic form of the wave function

csxd =Heik̄x + rsk̄de−ik̄x, x → − `,

tsk̄deik̄x, x → + `,
J s6.23d

for which we takek̄=0. If nÞ0, Eq.s6.21d givesc=0 in the
asymptotic region. Since a quasibound state at zero energy
can only be an extended state, we conclude thatc vanishes
identically in this case. Conversely, forn=0, we obtain
csxd=1 for x→−` and csxd= t0= ±1 for x→ +`. This
means that there is an extended quasibound state at zero
energy. Its parity follows from the asymptotic behavior, and
we find that it is even ift0= +1 but odd fort0=−1. This
shows thatsii d and siii d, and hence alsosid, are equivalent.

In our specific case, the zero-energy mode is found by
taking ū→0 in Eqs.s6.9d and s6.16d. This leads tofagain,
e=sgnsxdg

f0sxd = H4s2e−uxu − 1d, for bosons,

2ese−uxu − 1d, for fermions,
J s6.24d

or Eqs.s6.12d and s6.17d in momentum space. Nowf0sxd is
an evensoddd function for bosonssfermionsd, corresponding
to a divergence ofa1 sb1d, as expected from our discussion
above.

To conclude, let us discuss the position of the quasibound
state for largea1 or b1 by analyzing the poles of the scatter-
ing matrixS in Eq. s6.10d. If a pole appears for the scattering

amplitude eidssk̄d seidask̄dd, the corresponding bound state is
evensoddd. For large values ofa1, we can use the expansion
s6.11d, and the equation for the even bound state is given by

1 + ik̄a1 = 0. s6.25d

Analytic continuation to the physical sheetk̄= ik sk.0d
gives a real bound state withk=1/a1 for a1.0, with energy
Ee=−"2/m0a1

2. However, fora1,0, we find, by analytic con-

tinuation to the unphysical sheetk̄=−ik, avirtual bound state
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with positive energyEe="2/m0a1
2. For the three-boson prob-

lem in the BCS limit,aad→−`. Consequently, the virtual
quasibound state here comes down to zero from positive en-
ergies and thus never becomes a real bound state of the three
bosons. It simply reaches zero energy in the BCS limit, lead-
ing to the divergence ofa1. The situation is similar for an
odd bound state. With the expansion, Eq.s6.11d, we find the

bound-state equation 1−ik̄b1=0, so that the same conclu-
sions as above can be formulated, with just a sign difference
for b1. Concerning the three-fermion problem, the same sce-
nario for the virtual bound state is encountered, since there
bad→ +` in the BCS limit.

VII. CONCLUSIONS

In this paper, we presented the results of our study of the
three-body problem in a quasi-1D confinement. We define
and calculate two different 1D atom-dimer scattering lengths
aad and bad, which are directly accessible in scattering ex-
periments. Physically,aad reflects the low-energy properties
of the scattering phase shift for a symmetric wave whilebad
is the equivalent for an antisymmetric wave. Both can be
inferred from the energy dependence of the transmission and
reflection coefficients. Technically, we derive a system of
integral equations for the 1D scattering amplitudes with dif-
ferent transverse channel indices. For the sake of simplicity,
the above system is projected onto the transverse ground
state. We solve the ground-state equation numerically in gen-
eral and analytically in the dimer and BCS limits. Note that
the dimer and BCS limits each correspond to different ap-
proaches to the 3D problemsuau!a'd. Therefore we have
investigated in detail the role of the higher transverse chan-
nels in both cases.

In the dimer limit, indeed it turns out that the higher chan-
nels contribute on the same footing. Their role is described
by the 3D equations derived previouslyf35g. Note that the
definition of the 1D scattering length remains distinct from
that of the 3D scattering length even in the dimer limit. We
establish a simple analytic relation between the latter andaad,
valid both for bosons and fermions. In this limitbad→0,
indicating that atom-dimer scattering can be regarded as po-
tential scattering with a short-range effective potential. The
resultingaad is negative for fermions but positive for bosons,
pointing to the existence of the confinement-induced trimer
state in the latter case. Indeed we find such a state from the
bound-state equation for bosons. Its energy is independent of
the bosonic regularization parameterR* in the large-R* limit.

The BCS limit is even more interesting: we show that
higher channels can always be neglected here as far as the
low-energy scattering is concerned. We find that the scatter-

ing is described by the three-particle Bethe ansatz equations;
i.e., we are dealing with two-body contact interactions. Then
atom-dimer scattering cannot be viewed as potential scatter-
ing anymore. Although an effective potential can be defined,
it is nonlocal and not short rangedf43g. Instead atom-dimer
scattering is found to be reflectionless:aad diverges for
bosons, whilebad diverges for fermions. In fact the Bethe
ansatz equations remain applicable also for theN-body prob-
lem in the BCS limit.

We have found a novel confined-induced trimer state for
bosons. We trace the trimer state numerically from the dimer
to the BCS limit provided Efimov physics can be neglected.
Specifically, in the dimer limit, we have discussed the inter-
play between this confined trimer state and the usual Efimov
bound states. The trimer state is unique, its energy is nearly
universal, and it matches the known Bethe ansatz three-
particle bound state in the BCS limit.
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APPENDIX

We show here how to obtain the integral representation,
Eq. s1.6d, from the more standard expressionssee Ref.f49g,
for exampled

zs1/2,Vd = lim
N→+`

So
n=0

N
1

sn + Vd1/2 − 2sN + Vd1/2D . sA1d

We define AN=fon=0
N sn+Vd−1/2g−2ÎN+V such that

limN→+` AN=zs1/2,Vd. Using the integral representations

1
În + V

=E
0

` dt
Îpt

e−sn+Vdt,

ÎN + V =E
0

` dt
Îpt

1 − e−sN+Vdt

t
,

and the geometrical summationon=0
N e−nt=s1−e−sN+1dtd / s1

−e−td, AN can be written as

AN =E
0

` dt
Îpt

S e−Vt

1 − e−t −
1

t
D +E

0

` dt
Îpt

S1

t
−

e−t

1 − e−tDe−sN+Vdt.

sA2d

The second term in Eq.sA2d vanishes for largeN so that we
obtain the integral representation of Eq.s1.6d.
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