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Three-body problem for ultracold atoms in quasi-one-dimensional traps
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We study the three-body problem for both fermionic and bosonic cold-atom gases in a parabolic transverse
trap of length scala, . For this quasi-one-dimension@juasi-1D problem, there is a two-body bound state
(dimen for any sign of the 3D scattering length and a confinement-induced scattering resonance. The
fermionic three-body problem is universal and characterized by two atom-dimer scattering Eepgthdb,g.

In the tightly bound “dimer limit"a, /a— <0, we findb,q=0 anda,g is linked to the 3D atom-dimer scattering
length. In the weakly bound “BCS limita, /a— —«, a connection to the Bethe ansatz is established, which
allows for exact results. The full crossover is obtained numerically. The bosonic three-body problem, however,
is nonuniversala,q and b,y depend both ora, /a and on a parameteR” related to the sharpness of the
resonance. Scattering solutions are qualitatively similar to fermionic ones. We predict the existence of a single
confinement-induced three-body bound si@tener) for bosons.
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I. INTRODUCTION BCS crossover and its bosonic complement appear to be ex-

The physics of cold atoms has recently enjoyed a gred€rimentally feasible. Recent progress towards the realiza-
amount of attention. A particularly interesting phenomenortion of 1D traps has been tremend¢@8-27 and could lead
in that context has been the experimental observation dP the observation of interesting aspects of 1D many-body
dimer (moleculg formation in ultracold binary Fermi gases physics as outlined below. Moreover, on the theoretical side,
[1], where a Feshbach resonance is exploited. This has apowerful many-body techniques are available in 1D
lowed experimental access to the full crossover from a Bosesystems—e.g., bosonizati¢28] or the Bethe ansaf29,30.
Einstein condensat@EC) to a BCS-type superfluid by sim- Such methods often allow for exact statements. Below we
ply tuning a magnetic fielfl2—6]. Because of the Feshbach- analytically solve the three-body problem for ultracold fer-
resonant behavior, the three-dimensiof8D) scattering mions or bosons that are confined to quasi-1D by a trans-
length a describing thes-wave interaction strength among verse trap potential. We show that, for low energies, atom-
different fermions can be tuned almost at will. Ror 0, one  dimer scattering solutions can be completely described in
has a two-body bound staté&limer”) that eventually can be terms of two scattering lengttegy andb,g, wherea,q can be
Bose condensed, while fa<0, Cooper pairs are formed. linked to the standard 3D atom-dimer scattering length. The
The corresponding BEC-BCS crossover theory has beenonstandard scattering lengbhy must be introduced to de-
worked out on a mean-fieltplus fluctuationslevel [7-10]  scribe 1D scattering processes in general. While(tbeni-
and is widely believed to account for the basic experimentapnic and bosonicthree-body problem in 3D systems has a
observation$11]. The Feshbach resonance has also interestather long history, reviewed in Refgl9,31], the quasi-1D
ing implications for bosonic systems—e.g., the existence of gituation has not received much attention so far.
similar crossover from atomic BEC to molecular BEC In what follows, we assume two different hyperfine states
[12-14 or Bose-enhanced “quantum superchemistry”of afermion species of mass, or a single boson species, to
[15,16. be trapped in the parabolic transverse confinement potential

A related but different quasi-1D problem arises for either
a two-specieg1,]) Fermi gas or a single-species Bose gas.
When such a cold-atom gas is confined to a sufficiently tight Ug(r) = }mowi(xh_ v?), (1.2
harmonic transverse trap, it enters a 1D regime. On the two- 2
body level, there is always a bound state, everafarO, and
one has a confinement-induced resonaf@@kr) in the 1D
atom-atom scattering length,, [17,18. This “shape”(or
“geometric’) resonance is similar to a Feshbach resonance
[19]. Instead of a magnetic field, the ratida, between the
3D scattering length and the transverse confinement length
scalea, [see Eq(1.2) below] is now used to sweep through
the resonance. Albeit there are strong quantum fluctuations iRor a nonparabolic potential, the treatment is more involved
1D, preventing both BEC and a true BCS superfluid in the32] and new effects appear—e.g., additional resonances.
thermodynamic limit, the presence of the CIR leads to aJnder the standard pseudopotential approximaf8]j, for
rather similar scenario as for the stand@8id) BEC-BCS the low-energy limit of interest here, the 3D interaction can
crossovef20-22. Moreover, this 1D analog of the 3D BEC- be written as

with associated confinement length scale

al:\"Zﬁ/mOwi. (1.2)
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aa(r)%(r ), (1.3 Val2.7) = 0aad2-7),  Gaa= -

J aa

V(r) = A (1.8

which assumes that the interaction range is the shortedihe CIR, whereg,,— *, then occurs fora,,=0, corre-
length scale of relevance in the problem. On the two-bodysponding to{2g=1, and can be reached by tuniag or a.
level, interactions between atoms are thereby described ihhe physical picture behind the emergence of the resonance
terms of the 3D scattering lengéh Normally, at low-energy has been elucidated in R¢18] and shown to be similar to a
scales onlys-wave interactions matter. Identical fermions Feshbach resonance. Atoms in the lowest transverse level
then do not interact because of the Pauli principle, but interfopen channglare coupled resonantly to a bound state in the
actions among different ones will be present and are given bjwo-body sector restricted to excited chann@lesed chan-

Eg. (1.3. The free(unconfined problem is well known to nel). This picture has also recently been extended to nonpa-
possess exactly one bound stét@imer”) on the two-body rabolic potential§32]. Although up to now no clear experi-
level for a>0 [34]. Once the confinemeriil.1) is present, mental evidence for CIR behavior has been published, there
however, there ialwaysa two-body bound state with dimen- are several possibilities to observe it using standard

sionless binding energy techniqgues—e.g., via the momentum distribution or Bragg
spectroscopy.
Q= (hw, —-Eg)2hw, = (kga,/2)?, (1.4 The above considerations suggest that it is mandatory to

analyze the consequences of this CIR on the many-body
whereag=1/xg is the (longitudina) size of the dimer. This scattering propertief20,21]. As a first step towards a full

guantity is determined by the conditi¢h7,18] understanding of this problem, we discuss the analytic solu-
tion of the corresponding three-body problem, which here
[(1/20g) +a,/a=0. (1.55 becomes possible due to the short rangedness of the atom-

atom interaction. A natural question then concerns the scat-
For our purposes, the Hurvitz zeta function can be definedering properties of the atom-dimer system—for instance, the

via its integral representatioisee the Appendix scattering lengtta,g4. For fermions, this problem was solved
already a long time ago by Skorniakov and Ter-Martirosian
“odt [ e 1 (STM) [35], who foundayy=1.2a. (This result was recov-
{1rz0)= o ﬁ( 1-et {) (1.9 ered recently36] as a particular limit for different masses of

the two fermion species.One may then wonder whether
atom-dimer scattering will also show resonance enhance-
ment, whether three-body physics remains univejiisal de-
termined by two-body quantities onlyand whether a three-
%ody bound staté¢‘trimer”) is possible. We find that in the
fermionic casgwith equal massgsthe low-energy physics
‘ A= is universal like in the 3D casi87] and there is no trimer
below]. Fora, /a— -, t.he ,B,CS limit” is reached, where — gia0 However, in the bosonic case, important differences to
Qg=(al/a,)?<1. (For simplicity, we shall use the phrase these answers for fermions can and do arise.
“BCS limit” also for bosons, even though there is no Cooper ¢ this point, we pause in order to briefly discuss the
pairing in that casg¢.The dimer is then very elongated, with ) sqonic three-body problem in 3[L9]. It was shown by
sizeag=~aj /|aj>a, in the axial direction, and confined to Thomas in 193938] that there is no lower bound on the
the transverse ground state. The dimer in this limit can benergy of a system of three bosons interacting via zero-range
effectively described by a 1D contact interaction obtained by ces (“Thomas collapse, The corresponding integral
projecting the pseudopotentlél.S)“ onto the _|?W35t trans- - equation for the scattering amplitude was derived by STM
verse state. In the tightly bound “dimer limitl, /a—+%,  [35] byt in Ref.[39] it was shown that their equation is not
the dimer becomes spherically symmetric with the sige \ye|| defined, since it allows for an infinite number of solu-
~a<a, . Here, one recovers the pseudopotential bound stalg,ns. A scheme of choosing the correct solution based on the
of the unconfined problerﬁozr a>0) with the large reduced o rihogonality of wave functions with different energies was
binding energylg=(a, /2a)°> 1. _ ~ suggested. A related equation for the bound states was inves-
The analog of the Feshbach resonance in a 1D confinegyated in Ref[40], where an infinite number of three-body
system is then realized by the CIR. Solving the two-bodyyound states with arbitrarily low energies was found. Fur-
scattering problem with just one open channel, the 1D sCathermore, in the unitary limia— e, bound states condense
tering length between two atoms can be extracted and igt the continuum threshold. The condition of REF9] was
found to be{17,18 identified as a self-adjoint extension of the involved operator.
Finally, Efimov solved the problerhi37] by introducing a
_ajan —_ _ three-body short-distance parameter. Away from the unitary
2 [ a C}’ €=-{(1/2)=1.4603. (1.7 limit, there is at most a finite number of bound statéfi-
mov states), but in the unitary limit a peculiar hierarchy of
At low energies, this implies that one can use the 1D atominfinitely many bound states emergeld,37. This regular-
atom interaction potential ization also affects the scattering solution. To summarize, the

Since {(1/2,Q2) is monotonic in(}, there is precisely one
bound state for any givea, /a. This bound-state wave func-
tion can then be expressed in terms of the single-particl
Green'’s functiorGg(r ,r’) for the cylindrical harmonic oscil-
lator with reduced masey/2 [see Egs.(2.14 and (2.15

8aa=
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3D integral equations for bosons generally require both &x,y,z) in order to decouple the center-of-mass coordizate
long-distance cutofscattering lengtk) and a short-distance _ _ —
cutoff. Efimov’s real-space implementation of the short- X 2N3 —1N3 -1N3\[x;

distance cutoff is not very convenient for the confined prob- yl=| O -1 1 X5 |. (2.1
lem. Fortunately, Petro{41] recently suggested a different e ==

and in the present context more useful regularization based z V23 N2l3  N2I3 | \Xs

on the energy dependence of the scattering length, For the harmonic confinemertt.1), the potential remains
aloal+ RmEJh2, (1.9 diagonal in the positions and the Schrodinger equation reads
2
evaluated at the collision energl. of the atom-dimer (_ﬁ_ 2 L U(X —E)‘If X) = = S V(1 )W(X
complex—i.e., the total energy minus tklénetic and con- moVX UeX) *) % (r)¥X),

finemen} energy of the relative motion. HeR¢ is a param- 29)
eter related to the sharpness of the Feshbach resonance, ap- (2.

pearing also in the effective range expansion for the 3DyhereX =(x,y) is a six-dimensional vector. With these defi-
scattering amplitudg34], nitions, the distances between thearticle and each par-
1 ticle are

fap(k) :_—a‘1+ik+R*k2' (1.10

ry= V3x/2 +y/2 =(sin §)x + (cosh)y, (2.3
We shall use the regularizatidf.9) in our discussion of the  \yhere we introduce the anglé= /3 for notational conve-
boson_lc three-_body probl_em. Alt_hough in str_lctly 1D systemsyjence (see also Ref[36]) such that sim:sin(Za):\E/Z
there is no Efimov physicpl9], in the quasi-1D case of & 4§ cosg=—cog26)=1/2. Equation(1.3) then allows us to
confined gas under study here, Efimov states can and will bﬁcorporate the interaction(r,) via boundary conditions

relevant in certain limits. : _— :
- . . imposed for vanishing distances betwédeand | atoms. For
The tunability of the scattering lengthin cold-atom ex- r.—0, this implies the singular behavior

periments is obtained by using Feshbach resonances. For dis-
tances on the order of the interatomic potential, the two-body (L)
problem is coupled resonantly to a bound molecular state V(X)) = ¥ ———=
involving different spin stategclosed channgl For larger
distances, there is nevertheless only a small admixture of thiwhere the vectors, .=(cosé)x = (sin 6)y are orthogonal to
closed channel and the two-body scattering is essentially rg-,, respectively. Since the pseudopotentibld) acts onV¥
produced by a one-channel zero-range potential with theccording to
scattering amplitud¢€l.10, omitting the(small) background
scattering length. We refer to Ré#2] for more details. For
fermions, we will assume thaR" does not appear in Eq.
(1.10 under the condition thatR < 1. This implies in par-
ticular thatR" <ag andR' <a, . the Schrédinger equatiof2.2) becomes
The structure of this paper is as follows. In Sec. Il, we 5 52
derive an integral equation that determines the complete so- <_ —V2 +Ug(X) - E)\II(X) => F M&(n)
lution of the fermionic three-body problem. This integral Mo + Mo -
equation can be solved explictly after projection to the trans- B
verse ground state of the trap, as is discussed in Sec. lll. The =Sx.y). (2.5
role of the higher transverse channels is then addressed pjow we introduce the two-particle Green’s function
Sec. IV, where also explicit contact to previous work in the

1-r/a), (2.9

o

- IOV W00 = F ()30,

unconfined cas¢35,3¢ is established. A brief account of I (T (1)t (ra)d (ry)
some of these results for fermions has been given in Ref. G&(ry,ryirar)= > — E2 TE L = 2
[43]. The bosonic three-body problem is then studied in de- Ao NPT

tail in Sec. V. In Sec. VI, we highlight the tight connections (2.6)

to the Bethe ansatz existing in the BCS limit for fermions ] ] ] )

and bosons, and present exact results obtained from this link/here ¢, denotes the eigenfunctions to the single-particle

Finally, we conclude in Sec. VII. problem(for reduced masgsy/2) with eigenenergyg,. The
quantum numbera include the longitudinal1D) momen-

tumk, the integer angular momentum and the radial quan-

Il. FERMIONIC THREE-BODY PROBLEM tum numbem=0,1,2...,whence
In this section, we consider the fermionic three-body Ey=fho, (2n+|m|+ 1) + 2%k%/my,
problem(17]) with two identical fermions, where the “spin”
indicates two selected hyperfine states of the atom. We de- b = MR (p)e?, 2.7)

note byx; (X, 3 the position of the| (the twoT) particles
and perform an orthogonal transformation to variableswith radial functiongsee also Eq(1.2)]
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vma,

Vil (n -+ m! (pla ML p2rad e #ra 2,

Ram(p) =
(2.8

whereL'(x) denotes standard Laguerre polynomials. Using

Eq. (2.6), the general solution of Eq2.5) can be expressed
as

W(X)=Wo(X) + f dx'dy’ G2 (x,y;x",y )S(X",y"),
(2.9

whereWy(X), only present for positive enerdy, is a homo-
geneoudfree) solution. In this paper, we restrict our atten-
tion to states witlE<<0, such thatV';=0, and write

E=-20ghw, +#2K3m,, (2.10

where the relative momentuknof the atom-dimer complex
is sent to zero later.
SinceS(x,y) in Eq. (2.9 involves the variables , . and
r. [see Eqg.(2.5)], it is advantageous to switch to these by
virtue of the orthogonal transformation
y

()=l Zomal

Similarly, we can switch fromr, _,r_) to (r, ,,r,) using

) o)

Since these are orthogonal transformaticmgf stays invari-
ant:

+cosd
*sing

sin@
cosé

My

(2.11)

Mo«

—-cos 2 sin20
sin20 cos 2%

ry r_

(2.12

I‘Lﬁ. I’L_

GE(x,y;x"y) = CE(r ol | 41Tl ).

Furthermore, the integration measure in E2}9) is also in-
variant,dx’dy’ =dr’, .dr}. We thus find from Eq(2.9)

%%WHJ=JWUUDm9mn£JD

- GZ(- coq26)r +sin(20)r | ,sin(26)r
+co926)r ;0,r')], (2.13

wherer=r_ andr =r, _. Next we implement the —0
limit according to Eq.(2.4) to obtain a closed equation for
f(r ). This limit can be directly taken for the nonsingular
second term in Eq(2.13), while the first term contains the
singular behavior necessary from Eg.4). Once this singu-

lar behavior is removed, one obtains a regular integral equa-

tion for f(r ;) [36,35.

It is then convenient to transform into the complete basi
{¢n} specified abovef(r )==,f, ¢, (r ). Notably, the last
term in Eq.(2.13 can be expressed in terms of the single-
particle Green’s function

(D) (r")
E-E ' (2.19

Ge(r,r)=2
A

since

PHYSICAL REVIEW A71, 052705(2005

fdr’lG(Ez)(sin(ZH)rL,cos{20)ri;0,rl)f(rl)
=2 Geg (Sin20)r ., 0044, (cog20)r |)f,.
A

The Green'’s functiori2.14) for r'=0 has the integral repre-
sentation

m [*.dt e™
Amh?a, J, mtl-et

d

where ) =(fiw, —E)/2hw . This can be obtained from the
Feynman (imaginary-time representation of the Green’s
function (2.14),

GE(I’ ,0) =

o2

a’t 2a

cotr(t/2)> , (2.15

Gelr,r') = F At da(r)yn(r e &P,
0 N

and the expressions for the eigenfuncti¢is} and eigenen-
ergiesk, [see Eqgs(2.7) and(2.9)], where only states with
m=0 contribute. One has to perform a straightforward
Gaussian integral over momeriteand the sum oven fol-
lows from the remarkable identity

2 Lg = e_znh‘”ﬁ - ex
n=0 a

leading finally to Eq(2.15. Using the orthonormality of the
{¢}, the first term in the integral appearing in E§.13 can
be written as

J

1 e_Zﬁ‘"Lt

p2
1- e—Zﬁth 2

ai e—Ztht -1

(N5 (0)
d /G(Z) ' ,0’ "V(r') = 1 1
r'G2(r,r ;0,r)f(r’) %1—EM+E}\_E

= E GE—E)\(r L) (r fy.
\

ZNGEDAN

(2.16

For r — 0, the integral representation in E@.15 is domi-

nated by small values df Its asymptotic behavior is then
obtained by substracting and adding the leading term, such
that

my Todt 2.2
Gdnwzmm%JJ;J%memr@uIamﬂ)
+ND>

Swhere the integral representation of the Hurvitz zeta function

(1.6) has been used. Finally, performing theéntegral, we
find that forr —0, Eq. (2.15 has the asymptotic behavior
Ge(r,0) = (mg/4mh?a )[a, Ir+{(1/2,Q)]. This implies that
the leading term in Eq(2.16) givesmyf(r | )/(4h°r), which
coincides with the singular part af,W(r,r)/#? in ther
—0 limit.

Using Eq.(2.4) and canceling the— 0 singular terms in
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Eq. (2.13, straightforward algebra leads to emtegral equa-
tion for f(r). In the {¢,} representation, it reads

PHYSICAL REVIEW A 71, 052705(2005

Taking into account the above rescaling and noting that only
m=0 modes have nonzero overlap with the lowest state,

LOIH =S Afy, (2.17) L0 = f LYW 3.1
N o 2T '
where we use the functidrsee also Eqg.1.6) and(1.5)] where
L(Q)=¢£(1/12,Q) - £(1/12,Qp) (2.18 0, = O + SiIr(20) (K2 _)a.
and the frequencies Straightforward algebra gives
QA:QB—(aLk/2)2+E)\/2ﬁwL. (219) * 1+CO$40) P
We find the kernel in the form A = g)( 2 )
Amh?a . 1
A = L f dr 4 (r )i (cod20)r ) X —. (3.2
p+ Qg+ [K2+K'2+KK]/4 - 3?16
X GE-Ew(Sm(Z‘g)ri’o)' (2.20 Note that the energy reads after the rescaling
In the following, it will be more convenient to us@g in- 312 k 2
stead ofa/a, to parametrize the interaction strenfgiee Eq. E=-2ho, Qg+ ——(—) , (3.3
(1.9]. dmg\a,

Using Eq.(2.19, A, can be evaluated explicitly, but
before proceeding further, we shall perform a rescaling. Unti
now, f has only been considered as a function of the variabl&
r, =(p,z). However, in the asymptotic three-body scattering
solution consisting of a dimer and one unbound atom, the
atom-dimer distance (which is then much bigger than the
dimer sizeag) coincides withr , only after a proper rescal-  Following STM [35], we now make an ansatz for the
ing. The asymptotic solution is expected to be of the form solution of this integral equation,

W(r,r)=dyr)x(d), (2.21)
wherer =r_ and the atom-dimer distance is

yvhere?is interpreted as the relative momentum of a free
article with reduced masar/3.

A. Atom-dimer scattering solution

f(k) = 28k = K) +if (K K) >, _;,
: kxk+i0*

(3.9

with a regular function (scattering amplituo}e?(k,?). This
ansatz gives the expected asymptotic scattering state after
Fourier transforming to real space,

d= (X1+X3)/2—X2:I‘+—I’_/2.

Hered(r) is the wave function of the confinement-induced
two-body bound stat¢l7], and x(d) gives the asymptotic
solution for the scattering of the free particle by the dimer.
The connection witl is made by looking at the— 0 limit

of Eq.(2.21). The leading term is

H(2) =€+ T(sgrink N2, |2 — +e,

such that standard transmission and reflection amplitudes
[34] can be inferred,

1 . — ~— — o~ —
Wrory) = o x(Sin2or L), 10 =1+T(kK), r()=T(-kK. (3.5
In the low-energy Iimitk,F—>0, the general expansion of the
scattering amplitude applies,

where we have used E(®.12) to express, as a function of
r andr . In the asymptotic limit, si(R)r | is thus the atom-
dimer distance. Therefore, after the rescaling,
—sin(26)r |, the functionf matches the asymptotic scatter-
ing solution y. This length rescaling also implies wave-
vector rescalingk—k/sin(2), as well as an extra factor ., qimer scatteringrocess. In generah,q and b,y are
sin(26) in Ay, In addition, from now on, we switch 0 tojated to the even and odd partial scattered waves, respec-
dimensionless lengths and wave vectors by measuring thefely, as will be discussed in more detail in Sec. VI A. Let
in units ofa, and 14, respectively. us just note at this point that for a sufficiently short-ranged
potential—namely, with suppodg smaller than the typical
length scale for the wave-function variations—the potential
can be effectively described by a containteraction. This

Let us then proceed by projecting the integral equationrequiresas,<|a,g andk<1/a, In that case, odd waves are
(2.1 to the lowest transverse stage=m=0). The role of not scattered by the potential and herzg=0 from Eq.
the higher transverse channels will be discussed in Sec. I\¥6.11). This is the case in particular for the two-body prob-

T(k,k) = — 1 +ikbyg+ ikagg+ O KA kK.  (3.6)

Here a4 and b,y are the two 1D scattering lengths for the

IIl. LOWEST TRANSVERSE CHANNEL
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lem where only one scattering length,, in Eq. (1.7), is
usually given.
Inserting the ansat@.4) into Eq.(3.1), we obtain

£ 2ikF(kK) =i P f i
K% - k2 + Jow

dk' Ak~ —
= 2Tk k)
2T K+ K

- kA Tk A=A (37

PHYSICAL REVIEW A71, 052705(2005

f du,,z[G(u,U’)h(u’) - G(u,0h(0)]
_ 27U
/Q_ 3u2
_ NZ_UZBE(QB{l + TDh(u)
- aad\/Q_B

G(u,0) +iH(u). (3.11

L

Note that the realimaginary part ofh(u) is even(odd) in u.
The scattering length, finally follows from the real part of

where P denotes a principal value integration. One can chedkd. (3.11) and the conditiorh(0)=-1 [see Eq.(3.6)], while

that the functionZ(€,)/(k2-K?) is regular wherk— k, and
we used above thaf((),)=0. Equation(3.7) is an inhomo-
geneous integral equation of the second kind for a give

b,q can be extracted from the imaginary part of E8.11).
The integral equatio3.11) shows in particular thad,4/a

hamd b.q/@, depend only of)g, and hence only on the bind-

ing energy of the dimer. This already suggests universality of

value ofk, which has a unique solution if the correspondinga three-fermion problem.

kernel is invertible. In principle, it may be solved numeri-
cally for any value ok to extract the value o,

B. Dimer limit

However, the subsequent analysis is simplified consider- The solution of this integral equation is discussed first for

ably by lettingk— 0. Formally, we expand Eq3.7) in k and

a,/a>1, where tightly bound dimers of sizeg=a and

keep only the lowest order. To that purpose, we first rewritdarge binding energyQg=(a, /2a)?>1, are realized. Ex-

Eqg. (3.7) in the form

!

L(Q dk’ ~ —
(n) (K + kKA
2k’ '

Y

2ikF(k,k) +i P f

~ — 1~ — U
=k =k AGed = STk RAG T kA

Ak

Expanding ink and dividing by 27 we then get to lowest
order

L0 7 dK -
=1 k2 f(k, 0) +1 Pf_w ﬁ&k’[AK,k’f(k ,O)]

k—0

Finally, we integrate by parts, use E¢8.2) and(3.6), and
switch to dimensionless momenta by writikg 2yQgu. Col-

Tk +1
2k

1

+ EakrAk'krzo. (38)

lecting terms, we then arrive at a tractable integral equation

for h(u) ENf‘(u,O). With the weaklyQg-dependent functions

© 4_p
G(u,u’) = , 3.9
(uu) pgol+u2+u’2+uu’+p/QB (3.9
- 47Py
Hw=2> (3.10

0 2(1 + U+ p/Qg) ™%’

this integral equation reads

panding the real part of E¢3.11) in 1/Qg, carefully includ-
ing the Qg dependence ofG(u,0) and £, and using
£(1/2,Q>1)=-2yQ, we obtain to first order

3 hQu L3 ho(u)
41 +\1+30%4 16Qg1+3u%4 +1+3u%4
41 f du’ ( ho(u’) 1 )
+—_
30g) 27U\ 1+ +Uu?+ud  1+0?
_( 8ad )(4_1 11 W )
- a_l\r'fQ_B 31+U2 QB(1+U2)2 '

with G(0,0=4/3 andWy=2,p(1/4)P=4/9. Here, we use
the zeroth-order approximatiohy(u) to the full solution
h(u). The lowest order gives

11+V1+30%4
2 1+
where a,q=-(9/ 32)V’STB fixes hy(0)=-1. The next order

gives fromh(0)=-1 a correction to the atom-dimer scatter-
ing length, such that

ho(u) (3.12

8aq= — ke, Qg + Ba, NQg = - k% [2a+ 23a,

(3.13
wherek.,,=9/32=0.28125 and
9 3V3+4r 3
=——+——— - —=0. . .
B 128 8 3 0.5426 (3.19

Similarly, we can then compute(u) to first order in 10y
and thereby obtaih,4 from the imaginary part of Eq3.11).
Straightforward algebra gives

bada, = (8/9)05%? (3.19

for Qg>1. The vanishing value db,4 is a consequence of
the short rangedness of the effective atom-dimer potential
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[43]. The support of this potential is the dimer siag=a du * e V10
and goes to zero in the dimer limit. This validates a repulsive B(2) :f 2—e"Z“G(u,O) = 4P
zero-range 1D atom-dimer potential in the low-energy limit, ™ p=0  2V1+p/Qg

Vad(2) =0240(2) with guqc(=1/a,9), very similar to the 1D
atom-atom scattering potentiél.8). In cold-atom systems, ) o ) . )
the validity of our treatment in the dimer limit is always Using the above auxiliary relations, some algebra gives with

limited by the constraint that the 3D scattering lengthe ~ X(0= |2 +2/2|1\3t and the probability functio®(X) a con-
larger than the typical size of the actual atom-atom potentialvenient representation for the functiéq,

—
V3 fw —t ~Z2/4t
Nl

e e
X {X(t)(l)(x(t)) + %e-xzm} . (319
N

(3.18

C. Numerical solution Ki(z2) =~ dt

1- _e—t/QB
Outside the dimer limit, in general a numerical solution of 4
Eq. (3.1) is necessary. We describe next how an accurate
numerical solution to Eq(3.11) can be obtained in practice.
One has to be quite careful to ensure regularith@f), for
which we found it beneficial to Fourier transform to real |, 5 similar fashion, Witrz(t):|z_zf|/vr§, we find
space, where the Fourier-transfornted well behaved and
allows for a quickly converging solution of the integral equa- L1 3 (7 dte™
tion. In order to implement an efficient, fast, and reliable KZ(Z_Z):Z 7). 1-e0%
numerical solution, it is mandatory to find a convenient rep- 0
resentation of the integral kernel. As this is a nontrivial prob- g 2°
lem, we outline its solution in some detail here. X

+Z()[D(Z(1) - 1]) . (3.20

[
/

NTT

Let us first give some auxiliary relations that will be use-
ful below. The functionZ appearing in Eq(3.11) can be
written as

L(u) = £(1/2,Qg(1 + 3u%/4)) - £(1/2,Qp)
S ———)
\“JQB 0 V’th_e_tIQB
In addition, G(u,u’) in Eqg. (3.9 can alternatively be ex-
pressed in the form

Gy, (U,W) = AU oy

0 1- _e—t/QB
4
We then switch back to real space by writing

h(u) = - fw dz&Yy(2), (3.16)

which leads to the Fourier transform of E®.11). The real
part of this equation is

[ ‘JQ
f dzZK(z,2)g(z') = - %B(Z),

L

(3.17
with

K(z,z’):f(zj—:f

2

du” .
> u,Ze"Z“[G(u,u’)e'Z U —G(u,0)]
T

d o
f Fl:zﬁ(u)e"(z‘z M=K (z,Z)+Kyz-7)

With K(z,z')=K;+K, andB(z) given, one numerically com-
putesg(z) from Eq.(3.17) and then fixes,q from the nor-
malization conditionfdzgz)=1 corresponding tt(0)=-1.

Let us first discuss this program in the BCS limi)g
<1. Importantly, the kernek(z,z’) is not invertiblein this
limit, since there is a zero-mode solutigg(z). This function
can be found analytically in momentum space using the
Bethe ansatz as described in Sec. VIB, with the result
ho(u)=u/(1+u?), leading to the real-space forng,(2)
=sgn(z)e’?. Fortunately, the zero mode does not affect the
determination of the scattering lengty,. To see this, note
thatgy(z) has odd parity and hence does not contribute to the
normalization condition/dzgz)=1. Since also the function
B(z) in Eq. (3.17 is even, we can restrict the numerical
solution to even functiong(z). On this spaceK(z,z') is
invertible even in the BCS limit, and hence the numerical
procedure is stable and reliable.

The numerical result foa,q/a, as a function of)g, cov-
ering the full crossover, is shown in Fig. 1. In the BCS limit,
wherea, /a<-1 andQg<1, the real part of Eq(3.1]) is
solved by h(u)=-1/(1+u?? [see EQq.(6.20 below], and
hence we find the exact result

8= zailv’(TB =0.7%2/|al. (3.21)
The numerical solution shown in Fig. 1 for arbitrafyg
nicely matches the analytically available limi38.13 and
(3.21). Remarkably, aroun@lg~=2.2, there is a zero of the
atom-dimer scattering lengti,;. One may suspect that this
behavior is the analog of the two-body CIR in Ed..7).
However, first one may notice that the atom-dimer “reso-
nance” occurs at a differeff}g than the CIR. In addition, it

is important to check whether one still has a simple contact
S-interaction potential, since otherwise the simple relation-
ship gaqc —1/a,q breaks down.
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8 3 A for n=m=0. We still need to investigate the full Equa-
6’_ 6 1] tion (2.17) including higher transverse channels. In this sec-
| 4r 1] tion, we address their effect in detail. For the lowest channel
4l 2r 1] n=0, we keep using the ansa.4) for f(k). For the higher
ot i _(2); channels, we have the functiofgk) instead. The full inte-
& 2r S 001 0T UTTM0 100 gral equation(2.17 (taking into account the rescaling dis-
0'__ Qg ] cussed abovdeads to a system of coupled integral equations
I ] for f(k) andf,(k). For the limitk— 0, following the line of
2F . reasoning in the last section, we arrive at the previous inte-
P TR % S R 1) ST gral equation forh(u) that now includes a coupling to the
Qs higher-channel modes
FIG. 1. Scattering length,q/a, versus dimensionless binding hy(u) =[-if,(k= 2\“’IQBU)/kaﬂ0-

energyQg. The solid curve is the numerical solution to §.12), . . .
and the dotteddashedl curves represent the analytical results in the The real and imaginary parts {f(u),h,(u)} decouple in the

dimer (BCS) limit, respectively. In the insebuq/a, is plotted ver-  esulting equations. For clarity, we show only the real part,
susQg. The solid curve gived,y from the numerical solution of ~Which is sufficient to analyze the effect of the higher chan-

Eq. (3.11), and the dashed line represeatg for comparison. nels on the scattering lengéy,. After some algebra, we find

o0 u,
Let us then address the numerical evaluatiob.gfin Eq. f > u,z[GO’O(U,U')h(U') - G%%u,0h(0)]
(3.6), which is performed by looking at the imaginary part = &

corresponding to Eq.3.17), N
. = g2 £(QelL + 374Dh(u)
f dZK(z,2')9(z') = - By(2), (3.22
- _a 0
FadV2B0.01y,0) + QO S, f v’ son' (u,u")hy (U,
where a, ' £0
d ] z +o 1 pe—\s‘l+p/QB\z| (4.1)
BZ(Z) :J‘ _ue—lZUuH(u) = - |—2 (—) . . ,
2w 8p=0\4/ V1+p/Qg where the matrix elemen™" (u,u’) can be extracted from

the matrix eIementsAkk,’ defined in Eqg. (2.20, with

. G (u,u")=QgA’r, and the rescaling=2/Qgu. We shall
%z l_ dz £-ig(2)]. (3.23 specify them in the limiting cases below, but their general
a, 2v0gJ-= form for arbitrary parameters is of no interest here. Note that
G%%u,u’)=G(u,u’) is given by Eq(3.9). Furthermore, only
modes withm=m’=0 are coupled to the lowest transverse
mode and thus have to be kept. Clearly, E31J) is repro-
duced, but now includes a correction due to the higher chan-
nels. The integral equation is then closed by

Once this integral equation is solvdd,q follows as

Even though the kernel in E@3.22 is the same as for the
computation of,g, the situation is quite different in the BCS
limit. The functionB,(2) is an odd function oz and there-
fore not orthogonal tay(z). This implies that the integral
equation(3.22 has no solution whef}g is taken directly to
zero. However, for any finit€g, the kerneK(z,z') becomes P B [V ) o
invertible, but the corresponding solution of E&.22 di- s f W[G ~(u,u")h(u’) = G™(u,0h(0)]
verges forQlg— 0. The numerical result foo,q is shown in -

the inset of Fig. 1. While in the dimer limii,q stays small, in + L£(n+Qg[1 + 3u?4])h,(u)

accordance with our analytical resul8.15, in the BCS 0

limit, it is found to diverge a®,q> Q5> We will see in Sec. _ 3,gG"(u,0) Q12 f Gnn (W u)ho(u').
VI that this divergence originates from the reflectionless a, QOp B

. . - '#0
scattering property encountered in the BCS limit. Moreover, "

these results fob,q imply that one cannot use an effectige (4.2

potential for the atom-dimer scattering outside the dimerrhe system of integral equations given by E¢.1) and
limit. Notably, the vanishing of,q for (g=2.2 does not (4.2) will now be analyzed in the two limiting cases. In fact,
correspond to an atom-dimer resonance sige(-1/a,  we will see that in the BCS limi&, /a— -, higher chan-

breaks down away from the dimer limit. nels are completely negligible, while in the opposite dimer
limit, they cause a renormalization afy but noqualitative
IV. ROLE OF HIGHER TRANSVERSE CHANNELS change in the picture put forward in the last section. More-

over, in the dimer limit, we can solve the problem analyti-
So far, the role of transverse excited statest0) has cally and establish a connection to the solution of the uncon-
been taken into account only through the exact calculation ofined (3D) problem[35]. Since the effect of higher channels
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does not cause profound changes even in the dimer limit, we — (1 +3W2+p)4 - 11h(u
conclude that the physical picture of Sec. Il is reliable and N1+ P) Iny(w
qualitatively correct for alg, /a. _ 8 GPO(,0)
A. BCS limit aV{
We now show that higher channels are indeed negligible + §f dprj d_qu,p’(u'u/)ﬁp,(ur), (4.4)
in the BCS limit, Qg<1. As the channel inder has to be 2Jo — 2

compared with the reduced enerfy, it is intuitively clear — ) .
that only small values ofi can contribute. In addition, the Where we usey(u)=Qgh(u). The second equation of this
relevant wave vectors obdy; k' « Q. To make this more System is now independent of the first one and can be solved

which in turn determine€"™ (u,u’) appearing in Eqg4.)) > 1 follows from Al [see Eq(2.20], which has the inte-

and(4.2). For Qz<1, the integral representation gral representation
i * ’ * dt ’ 120120 11!
: i , nn' _ (g’ +[K 2+ kK )/4)3t/4
AEIT’ — J dte Qe+’ +[k 21124 kk ]/4}tf dXG_XLn(X)Lnr(X/4) Ak,k’ = J Te {Qg+n’ +[K' 2+k2+kK' 1/4}3t
0 0

follows from Eq.(2.20. Both integrals can be directly com- % fw dx L,(X)L, (x/4)e™" (4.5)
’ n/ . .
puted, and we find\;y, =0 for n>n’ within these approxi- 0

mations; otherwise, there are small corrections of order unityTO evaluate the integral, let us analyze the integral
Forn=n’, with anQg-independent constaft,,, we obtain '

[

on' Cow I :f dx €L (AL (ux) :tf dy YL, (\ty)Ly (uty).
Adke = Qg+ (K+K2+KkK)/4+n"" ° °

) an' Now we definex=\nt and m=un't, which stay constant in
Therefore, excep'F for the open channein’ =0, Ak'k,'|s al-  the limit n, n’—, and use an asymptotic property of the
ways of order unity. Let us then analyze the scaling of thq_aguerre polynomials, lim...L,(x/n)=Jo(2VX), whereJ, is

various terms in Eq(4.2) as a function off}g<1. On the 5 Bessel function. Therefore, the integtain the limit of
left-hand side, the first term scales@g"? and the second as largen, n’ is given by

h,. On the ri/ght-hand side, the first term is a;tzmost of order .
a.g/a, < Q5% and the last term scales d3%h,. Power _ f -y ~ =3
counting then gives, = Qg"% From Eg.(4.1), we now see =t 0 dye ‘]0(2\/)\—}/)‘]‘)(2\“)’)
that the Ias/t term{describing the effect of higher channels .
scales a@%z and is thus negligible compared to the leading _ f X2 N ~

X : . =2t xdxe” Jg(2VAX)Jp(2Vux).
terms, which are of order unity. This fact allows us to safely ol i Wo(2V7x)
conclude that higher transverse levels do not affect the low-

0

energy scaling behavior di,g/a; in the BCS limit. This e =z
conclusion also holds fdr,q as one can show using a similar =te (2R
power-counting reasoning. SettingA=1 and u=1/4, using the integral representation

_ . for the Bessel functiorhg,

B. Dimer limit )
The situation is quite different in the dimer lim#, /a lo(X) :f dﬁe—x cose

— +oo, where excited levels contribute to the asymptotic be- 0o 2m

havior ofa,q andb,y. We first focus on the calculation of this

correction fora,y. In the dimer limit, relevant values for the and performing the integral in Eq.(4.5), we obtain

channel numben are of orde)g, and we later introduce the a4 27 de 5 ,
rescaled continuous variabfg=4n/3(Qg and convert then kk' =3 ZT[QB+ (k" + k= +KK')/4
summation into an integration. Keeping only leading terms 0 o
in 1/Qg, Eqgs.(4.1) and(4.2) read +4(n+n’ +nn’ cose)/3]™L.
3 h(u = %00y, 0 After rescalingk=2yQgu and n=3p/4Qg, we finally arrive
41+\1+30%4 a0 U at the expression
2
3 o , °°du’ 0p' . , Gp’p’uu/:ﬂf d_@1+u2+u/2+uu/+ +n
3,00 ) S win=g, 2t e
4.3 + \W cose] L.
and Inserting this result into Eq4.4), we can identify(u, Vp, ¢)
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L2F ‘ ' 1 1D and 3D atom-dimer scattering lengtis units ofa, ) is
1t . a universal constant, independent of the atomic properties. In
081" Wolr) 1 fact, we shall see later that it is even independent of statis-
tics.
06 1

Let us then turn to the determination lafy in the dimer

04 ] -t , = a¢ ;
w (r) limit, including the contribution of higher transverse chan-
021w el ] nels. The calculation follows closely the one fgy, and we
% | 5 a4 s shall therefore only briefly outline the various steps. Starting

r with the imaginary part of the general coupled equations
resulting from Eq.(2.17), we arrive at new coupled equa-
tions very similar to Eqs(4. 1) and (4.2). We then use the
asymptotic expression fo@&  in the dimer limit and per-

form the rescaling k= Z\QBu n= 3p/4QB, and hp(u)
=Qgh,(u). Once again we identifyu, \Vp, ¢) as the cylindri-
cal coordlnates of a 3D vector, and in order to obtain an

FIG. 2. Solutionswg(r) to Eq.(4.8) andwy(r) to Eq.(4.1D.

as the cylindrical coordinates of a 3D vectofwhich is of
course still a momentum operatowhereh(r) is now a func-
tion of r. Writing hy(r)=r?h(r), we obtain for the integral

equation of the higher-channel modes4) the form integral equation with a spherically symmetric solution, we
v1+ 1+3%4-1 ho(r’) define Imh(r)=—(u/r?)(1/Qg)w,(r). After some algebra, we
r2 ho(r) + 2ﬂ2r12(1 +r24+0' 2471 1) eventually obtain an integral equation fwi(r) very similar
to Eqg. (4.8): namely,
N Z( e (4.6 \
- 3la g/ 1+ . 3wl L k) = e
1 d1i1+a%a =), (r,r)wy(r’) 31+

This integral equation is exactly the one governing the fer-

mionic three-body problem without confinemd®5]. The (4.11
symmetry of Eq.(4.6) implies thathy(r) only depends om with the kernel

=|r|. We therefore write

— 1, 1412472 (1+r2+r’2+rr’)}
ho(r) = = (2/3)(agda, VQg)Wy(r), 4. K(r,r'y==|2- n
'o() (' ) (@ad/a; V(2g)Wo(r) (4.7) (r,r') rz{ oy T+r2+r2_qp
wherewy(r) is the solution to (4.12
12
lf ar’, <1+r+—rz+rr> wo(r') + 3w The numerical solution to this equation is shown in Fig. 2.
o I \1+r2+r2-yr 41+\1+3%4 Including the higher channels, we thus find by instead of
1 Eq. (3.15 the result
= . 4.8
1+ (48 bag_ W1(0)

=—35, Wy(0)=0.952. (4.13
The numerical solution to this equation is shown in Fig. 2. L B
We find wy(0)=1.179, in accordance with STM's result Notably, this is essentially the same behavior as in Eq.
Wo(0)~1.2[35,36. (3.15, where the higher channels were neglected. Even the

We now go back to Eq4.3) and consideu=0. Straight-  coefficient of the asymptotic behavior, 0.952 compared to
forward algebra then gives to leading order in(dk/the  8/9=0.889, is very close.
atom-dimer scattering length in the dimer limit as To summarize, we conclude that in the deep dimer limit,

a 3 the relevant physics is not changed by the confinement po-
-2 = ~0.636. (4.9 tential.
a Qg 4w(0)

This value should be comparedAgQ=9/32=0.28125, which
results when higher channels are negledtet Eq.(3.13]. V. BOSONIC THREE-BODY PROBLEM
Note that our result makes explicit contact with the previous
solution for the unconfined ca$g5,36. This is also seen by bo
writing Eq. (4.9) as

In this section, we consider the problem of three identical
sons in a tight transverse harmonic confinement, allowing
us to analyze the 1D bosonic analog of the problem studied
,f;\rze(iL up to now for fermions. The main difference is that the three-
Gad=~ mv (4.10 body wave function is now totally symmetric. On a formal
0 level, the calculation is similar to the fermionic one, so in
with the confinement scala,ed‘L=(3h/2mowL)1’2 for re-  what follows we go through it, highlighting the differences
duced mass,/3 of the atom-dimer complex. With the 3D and keeping the same notation as much as possible. The
atom-dimer scattering lengtivg(0)a=wg(0)/ «g, this result  definition of the coordinate system remains the sameeg.,
exactly matches the dimer limit of the analogous two-bodyx,, andx; are the 3D positions of the bosons. Next the or-
result(1.7). Equation(4.10 predicts that the product of the thogonal transformatio(®.1) to the variablesx,y,z) is per-
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formed. The harmonic trap potential is still diagonal in the ~ 8mh%a, .

positions after this transformation, and the center-of-mass Ay == fdxl/fx(x)llfw(—XCOSH)
coordinatez again decouples. Hence the three-body problem Mo

reduces to X GE_Ei(x sin 6,0). (5.8

When compared to the fermionic equatid2.20, the

bosonic equatioi(5.8) carries an overall factor of -2, imply-

ing that an effective repulsion has turned into an attractive
(5.9 force. Moreover, the integrand in E¢h.8) remains unaltered

As in Eq.(2.9), r, denotes the distance between the boson aince cos 2=—cosd and sin Z=sin¢. In addition, the.

x; and thex, or x; particles, respectively, whilg=x,-x,.  function(2.18 is modified to

Note that all three bosons interact, leading to the extra term _ B o2 e

V(y) in Eqg. (5.1) compared to the fermionic equatidg.2). 'C(Q*) ={(1/2.0)) - {(1/2.08) - R (K"~ K™+ 2n),

Incorporating atom-atom interactions via the pseudopotential (5.9

approach, one boundary condition now reads

2
(— %Vi +U(X) - E)\Ifm =- [V(w > V(rg]\If(X).

where, from now on, all lengthémomenta will again be

fx)|1 1 given in units ofa, (1/a,). Note that the distance between
W(X) = Arlyv al’ y—0, (5.2 the center of mass of the two bosofs; and the one at; is
y X sin 6. Since sind=sin(26), exactly the same rescaling as in
while the other two are the fermionic case will be employed in what follows.
W(X) = f(r, ) [_ i }]’ f 0. 5.3 A. Scattering solution
4 |r, a Let us then proceed by projecting E¢.7) onto the

wherer, ,=—cog@)x*sin(f)y carries an extra minus sign ground state. We use the same scatterlng an8ady as for

compared to Eq(2.11). Because the three-body wave func- fermions, and after expanding k=205 U, one easily ob-
tion is fully symmetric, the conditioné5.3) are redundant, tains the bosonic version of E(3.11),

and it is sufficient to satisfy only Eq5.2) in what follows. % / N

As discussed in the Introduction, the bosonic three-body f [G(u,u’)h(u’)—G(u,O)h(O)]+Efﬁ(u)h(u)

12
problem requires a short-distance regularizati®n which ~= 27U
we implement using Petrov's scherfél]. The regulariza- a, o
tion (1.9 is formulated via the action of a differential opera- = MG(u,O) +iH(u), (5.10
tor on the scattering amplitude that describes the relative a,
kinetic and confinement energy. The boundary conditionith the functionsG(u,u’) andH(u) defined as for fermions
(5.2 (for y—0) is thereby modified to [see Egs(3.9) and(3.10]. Furthermore, Eq(5.9) gives
2 -~ *
W(X) = {l S ( mE L v2- 2_51) } f® (5.4 L(u) = £(1/2,05(1 + 30%/4)) - £(1/2,0g) - 3R Qpl2.
y a h a, /| am

(5.11

wherep, is the component ok along the transverse direc- In the bosonic case, the atom-dimer scattering leagiba,

tion. The boundary condition for the two-body problem alsotherefore depends on the two dimensionless paramégrs
changes, now leading to a modified equation for the dimen NandR’ /a, . In that sense, the bosonic problem is nonuniver-
sionless binding energg defined in Eq.(1.4). Instead of ., [19].

Eq. (1.5, it now reads Let us start with theimer limit Qg> 1. In that case it is

{(1/2,0p) +a,/la- 4R Qgla, = 0. (5.5) useful to introduce the dimensionless regularization param-
eter
In the dimer limitQg>1, the 3D resulf41] follows,

R | 4R
1 <\/1+TE—1> 56 r =xgR =5 1+?—1 . (5.12
“BTOR a ’ '

The solution to Eq(5.10 in the dimer limit can be found
while in the BCS limit,R" gives only subleading corrections. analytically again, with the result
In an identical way as for fermions, we then obtain the a 9 B
bosonic analog of E¢2.13), take they — 0 limit according Sad _ \QB+ =, (5.13
to Eq. (5.4), and finally obtain the integral equation like in a, 641+2) VQg
Eq. (2.17. This modified integral equation for bosons reads,here the coefficieng is given forr =0 as

LOOVH =2 A, (5.7 8= 9/256 +(3\/3 + 4m)/8 + 3/64~ 0.6638.

N We also findb,g/a, =—(4/9)Qg>? which resembles the fer-
where(), is given by Eq(2.19 and the matrix elements are mionic equivalent equatiof8.15.
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However, as in the fermionic case, H§.10 is not suf- L6p—— " " 0 ‘ ]
ficient in the dimer limit, and higher transverse channels wi(0)
must be included. Skipping details of the calculation—which 12r iy
closely parallels the fermionic one in Sec. IV B—and keep- 0sl |
ing the same notation, we find instead of E4.6) the )
bosonic scattering solution 04l i
V1+3%4-1+3'1%4 0 b ‘ ‘ ]
2 ho(r) 001 01 1 10 100
r : )
R*/a
dr’ ho(r’ 4/ a, 1
ﬂi > o ,)2 — =+ —( aL) 5. FIG. 3. Solutionw;(0) (solid line) to Eq.(5.19 as a function of
FAL+r?+rZeror’) 3 a \VQg/1+r R'/a. The dotted curve gives the asymptotic behavies(0)

(5.14  =(8/9va/R for largeR/a.

Defining the functionwy(r) as in Eq.(4.7), we obtain after
angle integration, instead of EG4.8), the equation

V1+3%4-1+3"r%4

In the limit of largeR’", one can solve Eq5.15 analyti-
cally by expanding in inverse powers of [41],

8
2 Wo(r) Wo(r) = - — +0(1/r"?).
2r o(r) 3 1472 V[ y
0 ’ 12
1 iAo <1+r+—r+rr> wo(r'). Taking into account Eqg5.6) and (5.12, it is easily seen
1412 wfy o’ N1+ 4=’ that the 3D scattering length becomes independen® of

(5.15 while for the 1D scattering length, the contribution of higher
' channels clearly becomes negligible. We then obtain from

At r"=0, this is precisely STM’'s Eq5) [35], once the 3D Eq. (5.13
scattering length is identified wittvg(0)ag=wy(0)/ «xg. For 2
finite ", it is equivalent to the equation recently studied by Ang= ga—i, (5.17
Petrov, since Eq(5.15 follows from Eq.(12) of Ref.[41] 64 a
upon substitution of the standard 3D scattering ansatz. Tl\?/hlch is a universal result in the sense that it does not de-
scattering length can be extracted in a way similar to thepend onR’.
fermionic case. For that purpose, we it in the bosonic Higher channels can also be taken into account exactly for
version of Eq.(4.3) and arrive at the calculation ob,g in the dimer limit. We follow the fer-

3( ) 8 ay { zf“ Wo(f)] mionic case in Sec. IV B and obtain
_— 1 + = —— — _—
8 3a, Qg mlo 1417 bag _ wi(0) (5.18
- 3/2 '
On the other hand, taking— 0 in Eq.(5.15 yields a, Qg
WO(O) 2 (" wer) where, in contrast to the fermionic case(r) solves the
—(1 ) —— 5 =T 1+;J d 1412 integral equation
0
3 wy(n) f
Consequently we have —————+r'w —K r,r )wy(r’
q y , 41+\1+3rz/4 8 1(r) - (r,r")wa(r’)
a
?T:_mmmf (5.16) 1
a Y 0 = oo 519
LR 3(1+r2)?2 (6-19

i.e., the same relation as for fermions, leading to @gl0 ) ) )

and matching the analogous two-body resalf). We con-  With K(r,r’) given by Eq.(4.12. The solution fom;(0) as a
clude that in the dimer limit, for both fermions and bosons,function of R'/a is shown in Fig. 3. Apparently, there is no
the 1D scattering length,g is always inversely proportional divergence due to Efimov states. In particular, &e-0

to the 3D scattering lengtiv,(0)/ kg. The latter has been limitis well defined, withw;(0)=1.59 and

studied in .deta|l in Ref[41] as a funcpon ofR"/a. It was b= — 12.7a3/a2l, (5.20
found to diverge whenever a new Efimov state splits from

the continuum, going through zero in between the resonanceslidating a zero-range atom-dimer potential in the low-
(see Fig. 1 of Ref[41]). According to Eq.(5.16), the atom-  energy limit. The other limit isR'>a, where wy(0)
dimer scattering length,y will behave in the opposite man- =(8/9)ya/R" and therefore

ner; i.e., it vanishes every time a new bound state emerges B "

and diverges in between. Note that in order to derive Eq. by =~ (64/9R (/a,)”. (5.21)
(5.14, one needs to imposey(0)/kg<<a,, which follows  Comparing this result to Eq5.17), we find that the zero-
from Qg>1, so that divergences ofy(0)/ g will in practice  range potential approximation requirBa®/aj <1, which
be smeared out on length scates, >a. self-consistently holds fof)g>1.
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2 T ' asymptotic behavior, except for larg€/a (see above In
particular, the influence of Efimov states agy becomes
important and affects the physics in the dimer limit in a
significant way. This is in contrast to the fermionic case,

] where the projection onto the lowest transverse state already
yields the qualitatively correct behavior even in the dimer
limit.

7 B. Bound states: Trimers
10 100

For the bosonic problem, one expects atom-dimer bound
states(trimer9 to form under certain conditions. We there-

FIG. 4. Plot ofa,q and b,q (solid lineg as function of the di- fore next derive the relevant integral equation. In this case,
mensionless binding enerdyg for the three-boson problem &  the scattering ansatz cannot be used, and the resulting homo-
=0. The asymptotic behavior is showin for b,y in the BCS limit, ~ geneous integral equation must be considered. The total en-
-1/\Qg, and (i) for a, in the dimer limit, (9/64VQg  ergy of the system is noE=-2kw, Qg—E;, where the tri-

+0.66384/ g, mer binding energy is written as
o . 3%, ,
In the BCS limit Qg<1, the same argument as in Sec. Er=——xgUy, (5.29
IV A can be applied to the bosonic case. Therefore higher 4my

channels can again be disregarded in that limit. Moreovekyjith u, being the inverse size of the trimer in units af

the regularization paramet drops out to leading order, =1/, Projecting Eq(5.7) onto the transverse ground state,
since relevant momenta are smé#y(g) and the short- e find

ranged cutoff ceases to matter. In this sense, the three-body

problem becomes universal again in the BCS limit. The g(l ) <1+§(u2+u2)>)
asymptotic behavior of,q andb,4 can be analytically com- 2B 4 0

puted using the Bethe ansdiee Sec. )l One can verify

that h(u)=-2u/(1+u?? solves the imaginary part of Eq. _g(},QB) _3QBR*(UZ+U(2))]]‘(U)
(5.10 in the BCS limit, leading to 2

[’

' 2 '
%:@:_;. (5.22) =- A du'Gy (u,u)f(u’), (5.29
aj_ ZV’QB \‘JQB ValgJ —oo

For the real part of Eq(5.10, we obtain from the Bethe Where the functiorG, (u,u’) is defined by
ansatz the solution

0. Gy (u,u’) = :
) = 4220 e\ (5.23 W)= 2 g e i

a, 1+u? . . . :
Equation(5.25 is then an eigenvalue equation fay.

in the BCS limit. Evidently, the condition(0)=-1 cannot be First, we study Eq(5.25 in the dimer limit. In order to
fulfilled for any finite a,q. Similarly to b,y for the fermionic  obtain a nontrivial solution, we need to considgr 1. Then
case, the asymptotic behavior @f; is therefore expected to f(u) is dominated by its smalk behavior, and using Eq.
diverge asaadoc—l/()g’2 when approaching the BCS limit. (5.12), Eq. (5.25 is simplified to give
We shall discuss this point in detail in Sec. VI. .

For the general case of arbitraay /a, we have solved f(u) = 1 32 dufu’), (5.26

. . . - 2 2 * y .

numerically the real-space version of E§.10 as in Sec. Ug+u9mQg(1+2r) ),
[ll C, neglecting higher channels. For the sake of simplicity, ) )
we takeR =0. When compared to the fermionic equationWhich impliesf(u)e1/(u?+uj). Self-consistency of this ex-
(3.17, the kernel(3.18 is now K=K;-K,/2, with K;,  Pression leads to
given in Egs.(3.19 and(3.20, respectively. The results are 32
shown in Fig. 4. Clearly, they closely match the predicted Up= ——————. (5.27
behavior in both limits. A finiteR" in Eq. (3.17) gives similar 9NMp(1+2r)
results. From the above discussion, this is clear in the BCRjote that we have supposed here thap is an even func-
limit. Moreover, \_/vh_en just kgep_mg the Io_v\_/est_ transverseyq . Taking instead an odd function, we get
channel, the qualitative behavior is not modified in the dimer
limit either. Therefore we expect a very similar picture for u 32 1 o
arbitraryR" as the one shown fd® =0 in Fig. 4, as long as f(u) = 229 a0 1+ 2) du'uf(u’),
higher channels can be neglectgds presumed in Eq. 0 . -
(3.17]. While this approximation is justified in the BCS which does not allow for a nontrivial and self-consistent so-
limit, in the dimer limit it does not capture the correct lution. Thereforef(u) cannot be odd in the dimer limit. For
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FIG. 5. Parameteu, appearing in the trimer binding energy, Eq. FIG. 6. Reduced energy= (E/%w, )(a, /a)? for the CIT in the
(5.24), as a function of)g for various values oR'/a, . The dotted  dimer limit as a function oR’/a.
lines correspond to the asymptotic behavior in the dimer limit, Eq.

(5.29. confined trimer statgsee Eq(5.31)] is larger than the typical
. . o . _length scalea of Efimov states, so that the two problems
larger”, the trimer binding energy becomes universal and isdecouple. However, when moving towards the dimer limit,

given by the interplay between the confined trimer state and Efimov
2 .2 states plays a role.
T:%ﬁ—%_ (5.29 In the dimer limit, it is possible to study the CIT in a
27 mya’ guantitative manner, including the way it is affected by Efi-

Note that the existence of this novednfinement-induced MOV trimer states. In fact, we have shown in Sec. V A, for

trimer state(CIT) is consistent with the positive 1D atom- the dimer limit, that the low-energy atom-dimer scattering
dimer scattering length for bosons found in the dimer ”mitproperznes are described by a 1D contact potenvia)
[see Eq(5.17)]. =(-2h°Imya,y) 8(2). This potential has a bound state for

In the BCS limit, Eq.(5.25 for the bound states reduces @d>0 and its energy is given by

to
h2
1 E-= (5 32)
—_ 1 f u T 2 .
—_—
{ V1 +3u?+ uj)/4 ] W Mo &ad
2 (” du’f(u’) ; ; ;
-_= . (5.29 The corresponding 1D scattering length is related through
7, 1+ 3034 +0P+ U2+ ud Eq. (4.10 to the 3D atom-dimer scattering lengtty(0)ag

. i.e., without external confinemenobtained from the solu-
The fact that one can use the Bethe ansatz to solve dlrect& 9

L - Hon of Eq. (5.15. This quantity is shown, e.g., in Fig. 1 of
the BCS limit also holds for bound states. Indeed, we will : oL
verify in Sec. VI that Eq.(5.29 follows from a 1D Ref. [41]. The bound state of this 1D contact potential

. . present only fora,q>0—describes the CIT as long as its
g;gé?gg?jﬁgr?quatlofsee Eq/(6.4) below] and leads to the energy Er<fiw,. This impliesa,g>a,, which in turn is

equivalent to the conditiorwy(0)ag<<a,. This coincides
with the condition in Sec. V A for the validity of Ed5.14),
(5.30 and therefore of Eq(4.10 for bosons. The CIT is thus
present only forwy(0)ag<<0, and its energy follows from
for up=2. We have verified numerically that there are noEgs.(5.32 and(4.10 in the form
other solutions, neither even nor odd. In fact, in real space,
Eq. (5.30 is nothing but the known bound-state Bethe func- E, ( a )232<W0(O)a5>2

f(u)=

) 2
u®+ ug

tion for three attractively interacting bosof9], (5.33

ho, \a,/ 9 a

o exd- (12— 2| + |z zg + |25~ z1])/@qa] . (5.3

In between the BCS and the dimer limits, we have invesfrom the numerical solution of E@¢5.15), we obtain results
tigated Eq.(5.25 numerically(see Fig. 5. Qualitatively, we  for E; as a function olR'/a (see Fig. 6. Obviously, in the
see that the trimer energy barely dependsRdrand in the  dimer limit, the CIT only exists for certain values & /a.
BCS limit even becomes completely independent of thisWhile it is present for all values larger thai/a=2.2, be-
regularization parameter. However, E&.25 is only ap- low this threshold, it disappears and reappears periodically
proximate since it is derived by projecting H§.7) onto the  for decreasingR’/a. One such cycle is shown in Fig. 6,
lowest transverse state and therefore does not include tivehere the CIT has disappeared in the window &R /a
effect of higher channels. Notably, Efimov trimer states can=2.2, but reappears f&® /a=<0.17. ForR" <a, the behav-
not be recovered within this approximation. Such states aré@r is exactly periodic as a function of (R"/a) and can be
irrelevant in the BCS limit, where the length scalg of the  obtained analytically using the known res[19]
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wo(0)ag _
a

. 2% 4ah?
= 1.46 - 2.15 tafl.00624 IfaA”) + 0.09], - 2

2
2 5= [ oo 0 e Rk

(5.34 (6.2

together withA" =6.6/R" [41]. The ultimate fate of the CIT We then closely follow Sec. Il, with the 1D boundary
and its evolution in between the BCS and the dimer limitscondition fory — 0,

remains a difficult open question that is outside the scope of ¥

our paper. xy) = f(x)(l - l), 6.3

aa

VI. BETHE ANSATZ IN THE BCS LIMIT obtained by projecting Eq(2.4) to the lowest transverse
o . state. One finally obtains, after some algebra and the rescal-
In the BCS limit Qg— 0, the role of transverse excited éng k=(13/2a,,)1, the integral equation

states is negligible. Confined in the transverse ground state,
the motion of particles becomes effectively 1D, with contact

¢ interactions between bosons or between distinguishable Troa s =
fermions. This strong simplification of the original 3D hamil- V13- /4
tonian hence allows for exact solutions on the many-body 2i°° du’f(u’)

o 1+U%+Uu?+ud -3u¥4’

- 1if(u)

level—namely, the Lieb-Liniger model for bosof#] or the = (6.4

Yang-Gaudin model for fermionp45], both based on the

powerful Bethe ansatz. Recently, these two models hav@hich can also be obtained from the integral equati®)
been used to study the many-body properties of cold atomi the BCS limit—i.e., from the scattering approach. For
in 1D confined geometrig20,21]. In this section, we use the fermions, the same line of reasoning can be followed, and
Bethe ansatf29] to solve the three-body problem for bosons one obtains the integral equati¢®.4) with an overall factor
and fermions in the BCS limit. This leads to analytical pre--1/2 factor on the right-hand side. We conclude that the
dictions for a,g and by, as well as for the bosonic trimer direct solution of Eq(6.1) can provide exact results in the

state. We thereby derive some of the results presented BCS limit for a,q andb,q and possible trimer bound states.
previous sections. Noting that the atom-dimer scattering does

not lead to any reflected wave, we also clarify the connection A. Bosonic case

between the divergence @gq (byg for bosons(fermions Equation(6.1) can be solved by using the Bethe ansatz.

and the fact that the scattering process is reflectionless. Thgne corresponding bosonic three-body wave function is writ-
reduction of the original problem to a 1D model is not com-ten in the fundamental domaiR;={z, <z,< z} as

pletely straightforward and needs to be considered cau-

tiously. Even in the BCS limit, the few-body wave function ) 3

is not restricted to the transverse ground state. In order to W(21,2,25) = N2 A(P)ex '_2 ijPi)’ (6.5
build up a boundary condition like E¢R.4), imposed by the P 1=

two-body potential for small particle distances, many excitedyvhere A/ is a normalization constant and the sum extends

transverse states have to be involved. However, as soon @ser all permutations of1,2,3, with coefficients[29]
distances between particles are larger tlaan essentially

i 2i/a,
only the transverse ground state can be occuplled. In our case, AP = [I (1 + aa > (6.6)
the relevant length scale is the 1D scattering lenath k
=a’ /2|a|>a,, which justifies the neglect of transverse ex- _ o
cited states. This simplification becomes incorrect for probln other domains, the wave function is recovered by symme-
lems involving |ength sca|e§a_e_g_, when describing tl’y arguments. There is Only one trimer bound-state solution
deeply bound Efimov states or three-body recombinatioh46.47
processes. _ _ _

Let us first explicit the connection between our integral W21.22.29) = N exil= 223 = 21)/gal, 6.7
equations in the BCS limit and the 1D reduced problem. Wehere given in the fundamental domdn or in general form

m

1<j<I<3 Pl kPj

start with bosons. The 1D Schrddinger equation is by Eg. (5.31). Using the boundary conditio(6.3), we find
omE that f(u)=1/(u?+4) solves Eq.(6.4) with u=iuy=2i, as dis-
(P +P+E)- mg W24,25,25) cussed in Sec. V B.
S N We now turn to the atom-dimer scattering problem, put-
4 ting a,k,=U, a,.K,=—i—u/2 anda,Kks=i—u/2, with the cor-
= —[dz-2)+ 8z -2 + 82, - 25) | 21,2, 25), responding total energy
aa

h? 3
(6.1) E=— i—1+—azi 6.9

Mo8aa 4

where the two-body 1D contact interaction can be recovered
by projecting the 3D pseudopotential to the lowest transversgsee Eq.(3.3)] in the BCS limit. From Eq(6.5), the three-
state, boson wave function is explicitly given. Using then the 1D
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boundary condition6.3), we find in real space after some B. Fermionic case

algebra, up to an overall normalization constant, We now consider the fermionid 1) three-body problem
_ . . i . T2 and solve it via the Bethe ansatz. The Schrddinger equation

f(0=(2- I~ (2 -iewe™+ 22 +iewe 2], is essentially Eq(6.1) with the threes functions replaced by
(6.9  8(zy-2))+8(zy—-25). This equation does not lead to any tri-
_ . mer state. The Bethe ansatz for fermions is slightly different
vyrere e—sgr(_x) and we _have performed the _rescall_ng from the one for bosons. The form, E®.5), also applies to
V3x/2a,,—x In order to give the correct atom-dimer dis- e fermionic case, but the coefficient&P) are not given by
tance in units of,,. Remarkably, the atom-dimer scattering Eq. (6.6) anymore. Moreover, the fundamental domaipis

dpes not give any reflected wave. '_I'he gtom JUSF passes tmeot sufficient, and we need to know the wave function in one
dimer and only acquires a phase shift, without being actuaII)fnore domain[48]: e.g., D,={z,<2z,<z}. The wave func-

backscattered. Consequently, one can neither use the scattgr-_ . ; - )
ing ansatz(3.4) nor definea and b, as in Eq.(3.6). We t_gg in other domains then follows by antisymmetry proper

therefore need a more general definition to take into accounl
the reflectionless situation found in the BCS limit. From Eq'mentaaaaklz—i ~UI2, agko=i—U/2, anda,ks=U, with total

(6.9 and its counterpart withi—-u, we can use a simple .energy(6.8). Imposing the fermionic antisymmetry and nor-

?:r:ticsoyrx?nnelter?; 2;?5 :srtg;zr;nggn;np?lﬁivsvz ﬁi--g('(?:cs)’?’nr?nrgetr'ﬁ;naIizabiIity, the problem reduces to the determination of
= T . three variablesy The wave function is given i, b
from the left plus a plane wave " (—e %) from the right. 1.2.3 9 19y

In that basis, the scattering process is described by the I1(21,25,25) = €Rrtatkeztiozd) — dlazntiozthkes) (6,14
2 X 2 scattering matrix30]

To study atom-dimer scattering, we now consider the mo-

and inD, by
. (_ gl oW 0 ) B (t +r O ) (6.10 Uo(24,25,25) = alei(k321+k122+k223) + azei(klzl+k322+k223)
0 EA) Lot ) . + a'3ei(k221+k122+k323) ) (6.15

wherer and t are again energy-dependent reflection andrhe variablesa; are then obtained by imposing boundary
transmission coefficients that can be read off from @c).  conditions for the wave function and its first derivative with

At low energy, after expanding ik=u/a,, the phases),;  respect toz; and z, at the boundary betweeP; and D,

define two scattering lengths according to {z1=2,<z3}. The result isa;=1-x, a,=x and az=-1,
o . - o . where
84(K) = — 2kagg+ O(K?),  8,(k) = 2kbyg+ O(K?). 243U
(613 AEPIETT

This definition is more general than E(@.G) and reduces to Once the wave functiow(zllzzlzs) is known, we can use the

it when the ansat43.4) applies. We also observe that in oyndary condition(6.3 and the rescaling3x/2a,,— X to
general two scattering lengths are needed to completely d%’et

scribe an arbitrary scattering process in 1D. _ _

Using Eg.(6.9), we find for this atom-dimer scattering f(x) = €(2 - 3ieu) (e 2% - ), (6.16
problem the resuly,y=—2a,,=—1/VQg. This agrees with the
asymptotic result in Fig. 4 for the BCS limit. Furthermore
we find a,q=-, in accordance with the divergeneg~
-1/Q¥? (see Fig. 4 Finally, we infer analytical results from
Eq. (6.9 for the integral equatiort5.10 in the BCS limit.
Switching to Fourier space and expandifgn u as f(u)
=fy(u)+uf,(u), we find

where agaire=sgr(x). Similar to the bosonic case, for arbi-

" trary u, there is no reflected wave. The scattering only leads
to a phase shift that goes toat zero energy. This implies a
transmission coefficiertt=—1, in contrast to the bosonic re-
sultt=1. This discrepancy originates from the antisymmetry
of the fermionic wave function with respect to exchange of
the two 7 atoms. As has been discussed in Sec. Il C, we
obtain from Eq.(6.16 and the definition(6.11) that a,q

5, (6.12  =(3/2a3,=0.75N Qg and b,y=+. These results confirm

1+u the asymptotic behaviors shown in Fig. 1 for the BCS limit.

Also in the fermionic case, we can obtain analytical re-

fo:—W&U)+

2 sults for the integral equatio(8.11) in the BCS limit. We
fi=-md'(u) + WD (6.13 first Fourier transform Eq(6.16). The lowest order ini gives
_ i
where each of these functions satisfies E4) for u=0. fo(u) = (6.17

Plugging f, into Eq. (6.4 for u=0, we confirm the ud+u?)
asymptotic behaviob,q=-1/1€g in the BCS limit[see Eq.  Plugged into the fermionic equivalent of E@.4) for u=0,

(5.22]. Pluggingf, into Eq. (6.4) for u=0, we obtain the one finds the zero mode responsible for the divergentgof
solution (5.23 with h(0)=0 for any finitea,y. Therefore the (see Sec. Il @& More preciselyhy=(-i)u?fo(u) satisfies the
conditionh(0)=-1 impliesa,g=—°. imaginary part of Eq(3.11) in the BCS limit. The next order
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in u cannot be taken directly, since the resulting integral iNarising for potentials withy=0. In that case, the limik— 0
the fermionic equivalent of E¢(6.4) is not well defined for s gifferent and characterized by

u—0 andu— 0. Instead, we use thdéfu) has the form
t(0)=ty= %1, r(0)=ry=0, (6.22
1

3 _ . 1
f(u) = fo(u) + 5'77U5(U -u)+ IF(U,UB(_T + —> , corresponding to a reflectionless situation at zero energy. For
u-u - u very small but finitev, Eq. (6.21) still holds, but the reflec-
(6.18 tion and transmission amplitudes change on the scale of

whereT'(u,U) is a regular function. We insert this expression Unity in a narrow momentum regida~ v. Fork> v (but still

into the fermionic equivalent of Eq6.4) and look at they ~ Smaller than all other momentum scale€q. (6.22 is
.0 limit. After some algebra as in Sec. Ill A, we obtain reached and the potential is effectively reflectionless. We

now show that forv=0, the conditiongi), (ii), and(iii) are

Todu e satisfied and equivalent to each other, while for finite
f_m W[G(u,u )h(u’) = G(u,0)h(0)] strictly speaking, none of them holds.

We first observe from the general definitionsagfandb,
1 h(u 3 1 see[Egs. (6.10 and (6.11)] that Eq.(6.22 leads to the di-

) V1 +3u%4 -1 202 41+02 (6.19 vergence ofa; (by) for ty=1 (t,=-1). For v+0, a; and b,

are finite so thati) holds iff (iii ) is true. The small regime

with is also interesting to investigate. Using H.21), we find
u(2 +u2) 1 that for t(k~»)=1(-1), a; (b;) diverges as -2/ To see if

h(uy=T'u0=-1+ (6.20  there is a quasibound state at zero energy, we consider the

22 ~ 2\2
(1+07) (1+u) asymptotic form of the wave function
andG(u,u’)=(1+u+u’?+uu’)™L. This shows explicitly that
Eqg. (6.20 is a solution to the real part of E§3.11) in the
BCS limit, with the expected asymptotic behaviay/a,
=0.75/NQg. Although the form(6.18 seems similar to the -
general ansat@.4), it is different since there is no reflection for which we takek=0. If »#0, Eq.(6.21) givesy=0 in the
in the BCS limit and Eq(3.4) cannot apply. asymptotic region. Since a quasibound state at zero energy
can only be an extended state, we conclude thaanishes
identically in this case. Conversely, far=0, we obtain
#(x)=1 for x—-o and ¢(x)=ty=+1 for x— +o. This

We have seen above that the divergencégf(a,g for  means that there is an extended quasibound state at zero
fermions(bosongin the BCS limit was due to the reflection- energy. Its parity follows from the asymptotic behavior, and
less character of the atom-dimer effective potential. We shallve find that it is even ift,=+1 but odd forty=—1. This
now generalize this idea and show that for 1D scatteringhows thafii) and (iii), and hence als€), are equivalent.
processes of a particle by afgossibly nonlocalsymmetric In our specific case, the zero-energy mode is found by
potential, the following statements are equivaléntthere is  takingu— 0 in Eqgs.(6.9) and (6.16). This leads tdgagain,

a divergence of the 1D scattering length(the “odd” scat- e=sgnx)]
tering lengthb,), (ii) the potential has a quasibound state
fo(x) = {

kx4 r(?)e—ikx, X — — 0,

X) = (6.23

t(f)eig‘, X— +o,

C. Reflectionless potential

4(2e™ - 1), for bosons,
2¢(e™-1), for fermions,

with even(odd) parity precisely at zero energy, afiil) there

is no reflection at zero energy. The atom-dimer scattering
problem in the BCS limit, where higher channels are negli- , .
gible, is in fact equivalent to a 1D scattering problem with ©" EAs.(6.12 and(6.17 in momentum space. Now(x) is
such an effective nonlocal potent{@3]. Therefore, the con- &N even(odd function for bosongfermions, corresponding
siderations in this section directly lead to physical insightst0 @ divergence o, (b,), as expected from our discussion
for the BCS limit. The fact that in our case the reflection @bove. _ - _
coefficient is zero fomny incoming energy is an additional ~ To conclude, let us discuss the position of the quasibound
feature that cannot be inferred from the behavioapénd/or ~ State for largea; or b; by analyzing the poles of the scatter-

(6.29

b,. ing matrixS in Eq.(6.10. If a pole appears for the scattering
Symmetric potentials imply the low-energy scatteringamplitude €% (&%®K) the corresponding bound state is
propertieq 34] even(odd). For large values of;, we can use the expansion
_ (6.1, and the equation for the even bound state is given by
— 2ik _
t(k)kw:—j, r0=-1, (6.21) 1 +ika, = 0. (6.29

wherek is the wave vector of the incoming plane wave andAnalytic continuation to the physical shektix («>0)

v#0 is areal parameter that depends on the potential. Thedives a real bound state witt=1/a; for a; >0, with energy
incoming wave is then totally reflected at zero energy. TheréEe=—#%/mgaj. However, fora; <0, we find, by analytic con-
is only one exception to this general low-energy behaviortinuation to the unphysical shelet —i k, avirtual bound state
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with positive energyE,=%2/mya2. For the three-boson prob- ing is described by the three-particle Bethe ansatz equations;
lem in the BCS limit,a,q— —. Consequently, the virtual i.e., we are dealing with two-body contact interactions. Then
guasibound state here comes down to zero from positive emtom-dimer scattering cannot be viewed as potential scatter-
ergies and thus never becomes a real bound state of the thriggy anymore. Although an effective potential can be defined,
bosons. It simply reaches zero energy in the BCS limit, leadit is nonlocal and not short rang¢d3]. Instead atom-dimer

ing to the divergence o#;. The situation is similar for an scattering is found to be reflectionless;y diverges for
odd bound state. With the expansion, E811), we find the  bosons, whileb,y diverges for fermions. In fact the Bethe
bound-state equation ikb;=0, so that the same conclu- @nsatz equations remain applicable also forNHsody prob-
sions as above can be formulated, with just a sign differenctem in the BCS limit. o .

for b;. Concerning the three-fermion problem, the same sce- We have found a novel confined-induced trimer state for

nario for the virtual bound state is encountered, since therB0Sons. We trace the trimer state numerically from the dimer
bg— + in the BCS limit. to the BCS limit provided Efimov physics can be neglected.

Specifically, in the dimer limit, we have discussed the inter-

play between this confined trimer state and the usual Efimov

bound states. The trimer state is unique, its energy is nearly
In this paper, we presented the results of our study of theniversal, and it matches the known Bethe ansatz three-

three-body problem in a quasi-1D confinement. We defingarticle bound state in the BCS limit.

and calculate two different 1D atom-dimer scattering lengths

VIl. CONCLUSIONS

a,q and b,y which are directly accessible in scattering ex- ACKNOWLEDGMENTS
periments. Physicallyg,q reflects the low-energy properties . ) ) .
of the scattering phase shift for a symmetric wave whilg We thank A. Komnik for discussions. This work was sup-

is the equivalent for an antisymmetric wave. Both can bePorted by the SFB TR12 of the DFG.
inferred from the energy dependence of the transmission and

reflection coefficients. Technically, we derive a system of APPENDIX
integral equations for the 1D scattering amplitudes with dif-
ferent transverse channel indices. For the sake of simplicit
the above system is projected onto the transverse grou?—%q
state. We solve the ground-state equation numerically in gen-

We show here how to obtain the integral representation,
.(1.6), from the more standard expressi@ee Ref[49],
r exampleg

eral and analytically in the dimer and BCS limits. Note that N 1
the dimer and BCS limits each correspond to different ap- £(1/2,Q) = lim > —1,2—2(N+Q)1’2 . (A1)
proaches to the 3D probleiija) <a,). Therefore we have N\ p=p (N +€))

invlestigsteg in detail the role of the higher transverse chanWe define AN:[EN—o(n’fQ)_llz]—Z\fm such that
nels in both cases. . _ =0h : )

In the dimer limit, indeed it turns out that the higher chan-IImN_’+°° An=¢(1/2,0Q). Using the integral representations
nels contribute on the same footing. Their role is described 1 “odt
by the 3D equations derived previoudl$5]. Note that the — =f —e
definition of the 1D scattering length remains distinct from Vn+ Q- Jo vt
that of the 3D scattering length even in the dimer limit. We . e
establish a simple analytic relation between the lattersggd N7 0= dtl-e

(n+Q)t

[ l

valid both for bosons and fermions. In this limty— 0, o Vit t

indicating that atom-dimer scattering can be regarded as po-

tential scattering with a short-range effective potential. Theand the geometrical summatioB). e "=(1-e N1 /(1

resultinga,q is negative for fermions but positive for bosons, —€™), Ay can be written as

pointing to the existence of the confinement-induced trimer - ot " "

state in the latter case. Indeed we find such a state from thg :J d_i< € _ }) +J d_i(l - e_>e—(N+Q>t.

bound-state equation for bosons. Its energy is independent of | o Vat\l-e"t t o Vat\t 1-e

the bosonic regularization parameRrin the largeR" limit. (A2)
The BCS limit is even more interesting: we show that

higher channels can always be neglected here as far as thi@@e second term in EqA2) vanishes for larg&l so that we

low-energy scattering is concerned. We find that the scattewmbtain the integral representation of Ed.6).
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