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The symmetry properties of tf@matrix in a fully relativistic distorted-wave treatment of electron-impact
ionization are investigated. It is shown that the square modulus of the scattering matrix element in which the
spin states of all four electrons are determined is not invariant under the reversal of the direction of alignment
of all spins. The largest of two contributions to this noninvariance originates from the relativistic modifications
of the continuum wave functions induced by the distorting potential of the target atom. A second smaller
contribution is manifested on reducing the eight-dimensional matrix elements of the QED covariant propagator
to purely spatial two-electron integrals. The triple differential cross se€liBCS) exhibits a spin asymmetry
unless the entire scattering process occurs in a single plane. There will be a difference in the TDCS between an
(e,2e) event in which the initial beam is polarized parallel or antiparallel with respect to the beam direction
even if the target is unpolarized and the final spin states are not determined. The TDCS will remain unchanged
if, in addition to reversal of the direction of spin alignment, one appropriate momentum component of one of
the two outgoing electrons is reversed.
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I. MOTIVATION a known energy of the incident electron have been measured

. - ._for copper, silver, gold, and uranium targdts—8]. The
The correct quantum-mechanical description of scattenn%ghly relativistic nature of the ionizations of gold and ura-

processes is important in many branches of physics ranginlgium atoms was demonstrated[®], who showed that the-

_fromhe(ljectrpn-telecttr on sgatter_lr[gtjl ég] e#rr)]erlments anolv- oretical calculations could reproduce the experimental TDCS
INg hadronic targets and projectiigal. 1he present paper ~only if all four electrons were described using Dirac four-

addrgsses some of the symmetry pfopefFieS of the Scattem?:%mponent wave functions and their interaction in the ion-
F“"’.“”’? descnblng_ thée,_Ze? process in which a target atom ization process was treated using a covariant propagator de-
s ionized by a smgle |nc_|dent electron to produce two UNived from guantum electrodynamics. All these experiments
bou_nd electrons in the final sta{@,{l. Such pyrely eIe.c?. and comparisons with numerical calculations were restricted
tronic processes form the most suitable subject for initiak, yhe coplanar case in which all the three unbound electrons
studies of symmetry properties of the scattering matrix betravel in the same plane. The present paper has four main

cause the fundamental field theory of quantum electrodygyiectives and is primarily concerned with describing scat-
namics controlling the scattering is much more firmly eStab'tering in noncoplanar geometries

lished and theoretically tractable than the theories underlying The first of the four objectives is to elucidate the time-
interactions involving hadrons. Furthermore, there is mucnndependent interaction expressed in purely spatial coordi-

purrent(ijnter?s(;, bOtg exper:_im'entaldand éheoretiggl, in (f)btam- ates that is implicit in the photon propagator appearing in
Ing a detalled and sophisticated understanding of SUCf,q eapjier theory9]. This objective is achieved in Sec. Il by

elec_tron-impact lonization processé3,4]._This_interest is showing that this interaction is just that previously derived in
particularly accentuatelb] for processes in which electrons [10] (see alsd11])

moving with relativistic energies collide with atoms of high = +14 second objective is to answer the question as to
nluclearbcharg'e”wher%";hed l:éeha\fo'r ,Of the bound electron Whether the square magnitude of scattering matrix elements
a3$ .Sllj S;?‘f?“a y_n?o ified by re at|¥:;y(.:s’ defini h in which the spin states of all four particles are defined
riple differential cross sectioné S defining the 5114 be invariant under reversal of the spins of all the elec-
probabilities with which the two unbound final-state elec-trons These square magnitudes directly determine the
trons emerge with specific energies in specific directions forn~g's in which the spin states of the outgoing electrons are
not determined. These TDCS’s are simply proportional to the
sums of the scattering matrix element square magnitudes.
*Electronic address: CWhelan@odu.edu Although the wave function for a freely traveling relativistic
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particle is only an eigenstate of a spin operator if the axis ofvhich one of the final-state electrons is detected out of the
spin quantization coincides with the direction of propagationscattering plane the TDCS will be sensitive to the direction
any linear combination of two such energetically degeneratef longtitudinal polarization of the impinging electron. We
spin eigenstates can be uniquely defined by its large comp@lso predict that the TDCS will be invariant under the simul-
nents. Such a linear combination, although not an eigenstataneous reversal of the direction of polarization and the out-
of any relativistic spin operator, does, in the nonrelativisticof-plane component of the momentum of the detected elec-
limit, reduce to an eigenstate of a Pauli spin operétg) tron.

although the directior(q=x,y,z) defined by this operator The relativistic distorted wave Born approximation
does not coincide with the direction of spatial propagation(rDWBA), as described in detail below, was introduced by
Furthermore, such a relativistic state would be observed téeller et al. [9] as a means to understand the inner-shell
have its spin aligned along the directiom,#becoming an ionization of heavy-metal targets. Nakel and his collabora-
eigenstate of the operatd,, defined below, if observed tors had measured absolute triple differential cross sections
from the rest frame of the electron. Thus it is always possiblén both asymmetric and symmetric geometries on a range of
to refer to the limiting spin state of any relativistic free elec- high-Z targets, including cooper, silver, gold, and uranium.
tron even if the spin is not aligned along the direction ofUntil the first 'DWBA calculation agreement between theory
propagation. It is assumed throughout this paper, except iand experiment was very poor. However, agreement between
Sec. IV C, that the spins are aligned in the scattering planghe rDWBA in coplanar symmetric and asymmetric geom-
defined by the directions of propagation of the incoming ancetries[9,16] and for spin-polarized electron experiments in
one of the outgoing electrons. The second objective of théhe plang14] is extremely good.

present paper is partly achieved by showing that the square All evidence indicates that the interaction between the
magnitude of the scattering matrix elements is not invarianfiucleus and incoming and exiting electrons has a dominant
under spin reversal except for the coplanar case for which gffect on the cross section. Explicitly it was shown that, un-
proof of the invariance of these square magnitudes can biéke the nonrelativistic lowZ case, the effect of final-state
advanced. The coplanar case is that in which the entire iorl€ctron-electron interactions is negligifje7]. The proper-
ization event occurs in just a single plane. In Sec. IV A it isties Of the atomic target enter the calculation through the
further shown that this noninvariance survives summatiorf{eCtive static potential generated by the nucleus and bound

over both the spin states of the final electrons as well as th& Ct'ons. In the rDWBA the static potential is used to gen-

of the initially bound level. This yields the prediction that the ;er:\atc?rtg]net V\Gae\;etigﬁnfr:grr;?ol;gr itsh\?vhctgt?\glrjl:#g]meelsﬁct)?rc])? érr:_
TDCS for ionization by an incident electron of known spin b N ’ y 9

d tina th | h d | eiating the static potential influences the TDCS[18], we
would, excepting the coplanar case, change under reversal 8 o req ysing different ways of generating this potential. In

its spin aI_|gnment. This result is o_f interest because sucrﬂ)articular, we used the Dirac-Fock approdske[19]) and
asymmetries could be measured using currently_ available expe density functional method ¢20]. We found negligible
perimental technologieis 2,13. This lack of invariance was gifference between the calculations for a range of neutral
not manifested in previous numerical computations or €xargets and geometries and found no sensitivity to any real-
periments because all were restricted to coplanar geometrigsic discription of the ground target state.
[9,14,13. In Sec. IV C a link is made between our new re-  The rDWBA is the only approximation to include the ef-
sults and previous theoretical and experimental studiefect of scattering of the incident and outgoing electrons in
[12,14 of scattering processes in which all three unbouncdthe field of the nucleus which is the dominant physical effect,
electrons travel in the same plane with the spins of the inand also this approximation is the only one that includes the
coming electrons being aligned perpendicular to that planefull QED photon propogator and thus includes magnetic and
The third objective of this paper, emerging as a conseretardation effects in the electron-electron interaction which
quence of achieving the second, is to elucidate the origin ofs important if we are to get the correct maximum position
the noninvariance of the scatting matrix under spin reversaior the TDCS[21].
in noncoplanar geometnes_. It is shown in Sec. Il C that Il. PHOTON PROPAGATOR AND THE
there are two causes to thl_s_asymmetry, both of which are CONFIGURATION-SPACE INTERACTION
found to be relativistic in origin. By far the largest effect is o . .
due to the relativistic interactions between the continuum In the relativistic(e, 2e) process a fast incoming electron
electrons and the atom in the elastic channels. To lowedp the state denoted by the symbol 0 ionizes a bound electron
order this is the “spin-orbit” interaction. A second smaller in the state denotek to produce a final state containing two
contribution is manifested on reducing the eight-dimensionafontinuum electrons in states labeled 1 and 2. The time-
integral elements of the QED covariant propogator to purehfépendent wave functiop,(x) for all four stategw=0,b, 1,
spatial two-electron integrals. It will be shown, however, thatOf 2 satisfies the time-dependent Dirac equation containing

this contribution also disappears if we use plane waves t@ SPatial potential energy operatdy(r), which can in prin-
describe the continuum electrons. ciple be either local or nonlocal. These wave functions sat-

The fourth objective of the present paper, achieved in Sed.sfy
11 D, is also raised by the non-spin-reversal invariance of the dik(X) R 5
scattering matrix. This is to elucidate the transformation con- [ at =[ca-p+ Bce+ V()] (X), (1)
taining the minimum number of changes, additional to rever-
sal of all spins, under which this matrix does remain un-whereq; (j=1,2,3 andg are the usual X 4 Dirac matrices
changed. We will show that for a kinematical arrangement if22]. Atomic units for which(A=m,=e=4wey=1) are used
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throughout the paper andis the four-vector: order, the elastic electron-atom interactions in the incident

and final channels are implicitly included to all orders by
x= (¢, x!x%x%) = (et x,y,2) = (ctr). (2 using distorted waves.

The scalar product between the arbitrary four vectoend . .TheSmatrix element'describing the scattering o_f th'e relg—

e ) tivistic electrons by their attendant electromagnetic fields is

Qg is defined by derived from QED and found using the previous assumptions

v.v' =g, (3) [OJtobe
whereg,,=diag1,-1,-1,-1. Equation(1) has the usual (kg8 ,kq81/Slkoeg, km) = ST — (7)
solution where the direc{S"") and exchangéS™ matrix elements
PalX) = tholr) €715, (4)  aregiven by
\évherg n(r) is the solution to the time-independent Dirac i — f d4)_(Af d4>_<BllfI(ZA)70(A)7“(A)l//o(>_<A)
quation
[ca- P+ Bc?+ Vi(N)]ga(r) = Enthinlr). (5 X DuXa— Xe) ¥(Xe) Y(B) ¥ (B)ho(xe),  (8a)
At large distances from the target atom, each of the
three wave functiongj,(r), w=0, 1, or 2, takes the form of X=j f d*a f dAZBlﬁ;(ZA)YO(A)V“(A)lﬂo()_(A)
a relativistic plane wave having a momentily and large
components defined by the quantum numgs J_r% corre- X Duv()_(A_)_(B)'r//I()_(B) Y°(B)y'(B)(xg).  (8b)

sponding to nonrelativistic plane waves having, respectively, ) o )
spin up or spin down so that,(r) = |k,e,). The bound state ~Herex, is the four-vectoxcta,r ») containing the coordinates

has the usual central-field form and is therefore defined bf €lectronA andy “(A) are the Dirac matrices acting on the
specifying the principal kappéx,) and m; (m) quantum Wave functions for this electron. These matrices are given by

numbers so thaty,(r) = |x,m), leaving the principal quantum YO(A) = B(A), (9a)
number as understood. All spin states are defined with re-
spect to thez axis even though, in general, none of the as- yI(A) =BA (A, j=1,2,3. (9b)

ymptotically free wave functions has its spatial linear mo- o _
mentum aligned along this axis. For the case of bosiod ~ The QED photon propagat®,,,(x,—Xg) is given in Feyn-
Py orbitals,m can only take the two valuesitand could ~Man gauge23] as

therefore, as previousli®], be denoted asy,. . dlq eiatae)
The TDCS for a spin-averaged scattering process is given D ,,(Xa—Xg) = —ig,, D —0,
a c M) 2m*q-g+i

by [9] g-9+in
do_ (2mkiks 1Ng (10
d0Q,d0,dE,  c° KEoElEZEW whereq is the momentum four-vector with components

~ — (0 Al A2 A3) = (~1 — (~]
XS [(kpepkierSkoso M2, (6) 4=(9%0°9%9") = (CE,pupy,P) = (C"E,;p). (11
£18082M In order to obtain a useful expression for the interaction

operator, we consider first EBa). Inserting the expression
for the photon propagator E¢L0), and separating the time
fvariables in the wave functions, noting thdd®=c 1dE and
dx3=cdty, gives

whereS is the S'matrix operator describing the two-electron

interaction mediated by exchange of a photon. The séglar

(w=0,1,2 is the magnitude of the asymptotic momentum o

the wave functiorg,. The TDCS is averaged over the two

possible asymptotic spin states of the incoming electron, thus . Eate ot i

generating the factor of 2 in the denominator. Furthermore S =~ 470,,, | €51g1(r ) Y°(A) y“(A) €50y (r )

we have summed over all asymptotic final spin states. The _ _

quantity Ng is the number of electrons in subshBllin the dEdp e EtatelgPare)

target atom, the factoNg/N enabling Eq.(6) to describe (2m* E%c2-|p|*+ipy

ionization from a subshell which is not closed. The maxi-

mum number of electrons that could be accommodated in iEstg, 1 0 (R} aiEpt

subshellB is denotedN, so that for ionization from a closed x fe 285(rg) ¥ (B) y"(B)e=08yyy(r g)dr adr gdtadts.

subshellNg/N reduces to unity. (12)
Since the electronic states are taken to be eigenfunctions

of a Dirac equation including an external potential and$he TNiS can be written as

operator is applied to first order, evaluation of the TDCS ,

through Eq. (6) corresponds to using the relativistic SEE —4779,wf fu(rarel(rarg)dradrg, (13
distorted-wave Born approximatid®]. Thus, although the

ionizing electron-electron interaction is retained only to firstwhere
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A A d -pr i
I(rarg) = S(AE Ep) 3 p s
(rare) = 6(AEg oir ) 2_pP+i

£ AT B) = YA A) 1P (A) YA (T )
X(rg) YO(B) Y (B)(rs), (149

7— 0. (21)

To evaluate Eq(21) one can apply the residue theorem and
(14b) evaluate the integral in the upper half plane. There is a pole
of order 1 enclosed and the integral is therefore given by

I(rpfg) = f e BoBDgmi By BlegmiE(ta~t8)g(E) dEdpdtaditg,

with 1e“ras
) I(rarg)=— 8(AEg— AEp) - . (22)
1 gP(raTp) 2 I'ng
g(B) = 152 17 (15) - . _— .
(2m*Ec?—|p|°+in Substitution of this result and the definiti¢di4a into Eq.

: L . (13) yields
with g(E) implicitly depending onr 4, rg, andp. One can

perform the time integrations iKr 5,rg) by rearranging the i =
corresponding variables to obtain an integration over Dirac-
delta functions:

2mo(Eo + By~ E1 ~ Ep)0,, f YA ) YA P (A) (T )

goras
X w%wﬂswswt,(rgadrldrz. (23)

1(r a,r ):Jei(El‘EO‘E)‘Aei(EZ"ED+E)‘Bg(E)dEct)dt dtg (163
. Ae Using the relation$9a) and(9b) and noting thap?=1 yields

S =27 8(Eg + E,— E; - Ey)
:(2w)2f 8E, - Ey-E)8(E, - E, + E)g(E)dE dp.

X f YA ) U (r ) Hebo(r ) thp(r)dr pdrg, (24
(16b)

We have to consider the product of two delta functions in quvhere the operatdt is defined as

(16b). One can show that the product of a functigk) with - goras
a delta functionS(E—-AE) is given as H=[1-a(A) - a(B)] Fas (258
f(E)S(E - AE) =f(AE)S(E - AE). (17 o
B coqwrpp) 1 SiN(wr Ag)
Defining the two positive energy differencésE,=Ey-E; =1-alA) - a(B)] AB ' (25b)
and AEg=E,-E, and replacingE in Eq. (17) by E+AEg o o )
while also substituting\Eg—AE, for AE yields A similar dgnvauon holds true for the exchangg matrix ele-
ment but with the labels 1 and 2 for the outgoing electrons
SE+ AEg)S(E + AE,) = S(AEg — AEA) S(E + AE,), interchanged. The operat¢254d is just the configuration-

space interaction originally derived [d0] (see alsd 11]).

The result(24) shows that the TDCS for spin-averaged
where the functiorf in Eq. (17) has itself been taken to be a energy-conserving processes can be expressed as
delta function. Substitution of this result into EJ.6b) ren- do 1
ders trivial theE integration so that one has

(18)

Ng . .
——————=ce=— > |(1,2H|0,b) - (1,2H]|b,0)|?,
d0,d0dE, 2N, S

P (raTp) (26)

. d 1
@m? ) =P +in "

I(rarg) = 8(AEg— AEp)

where
19 _ (27" Kkiky
wherew=AE c™L. The quantityS(AEg—AE,) represents the Ce="6 KEOElEZ (27
condition of energy conservation. The remaining integration
over p in Eq. (19) can be evaluated by a transformation of @"
coordinates. Assuming thai—rg lies along thez axis and R R
denoting|ra—rg| by rag and |p| by p, the scalar product (1,2|H|O,b>:f P(r ) 8) Habo(r p) thn(r g)dr pdr .
becomes

(28
P (ra=rg) =pragcosé, (20) -
For slowly moving electrong&y=E,;=E,=c?, H reduces to
whered is the angle betweep and the vectofr ,—r ). After r;\g, thus showing that Eq26) reduces to the standard non-
performing the integrations ovetand ¢, Eq. (19) becomes  relativistic expression.
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Ill. SPIN-RESOLVED SCATTERING MATRIX ELEMENTS along the direction defined by the polar angular varidbje
one must distinguish between incomifid’e) and outgoing
|koU%) solutions. For the statelkyeq), |Kie1), and |Kye,),
The scattering process controlled by Bimatrix depends  these superscripts are not required sifkge,) is clearly and
on the spin states of the free electrons amdthe quantum  incoming state whildk¢;) and|k282> are outgoing ones. It
number of the bound level. This collection of four quantumis convenient to expand tHh' 08> as a sum of part|a| waves
numbers is denoted by the symb®*(e,e,60m). We can  each having the standard relativistic central-field form thus
always choose a coordinate system in which the momentumarrying the labek. This expansion takes the forf8,24]
vectors of the incoming and fast scattered electrons define e
the scattering plane, chosen to be ®zelane. Hence, these io 1 : ilgtie],
two electrons havg momentum components equal to zero. kPe)=(@m 2 X i E Cll. 'J m=e,e,m
There are two distinct cases, in which the spins are aligned in
the scattering plane, which, however, do not need to be dis- OiXxm
tinguished in the following treatment because they follow X[Y)mee Q7T (If )
exactly the same theoretical development. In the first of these o
the incoming particle travels along tkalirection, so that its Here a positive sign is taken i« for an outgoing wave
direction of propagation is the same as the axis of spin align¢i/o=out) and the negative sign for the incoming casto
ment. The second case is physically different because thein). Each y, , is a standard two component spin-angular
spin alignment axigz) is perpendicular to the directiofx)  function which is an eigenfunction g with eigenvalue
along which the incoming electron is traveling. Furthermore,j(j+1) and| is the orbital angular momentum entering the
we introduce the Symbd{2y which denotes the asymptotic |large components of the partial wave defined by the quantum
y-momentum component of the slow electron at large disnhumber «. The spatial angular variablé® and ¢) upon
tances from the nucleus. which they, ,, and x_, , depend are implied by the notation
The square magnitude of any scattering matrix elemenin Eq. (32) as is the radial distance argument upon which
entering a TDCS26) will be denoted byS(s,k; ) so that both g, and f, depend. Fork=-1, the quantitiesy_; .1,
~ Ex 5 / reduce to the pure spin funcuo;sz;é”2 introduced in Eq(31).
S(skp) = MG, kp) = M=, k2y)| , 29 The real quantitys’. is the difference between the phase shift
d, and that equal to (1 +1)/2 occurring in the plane-wave
case, so that for the latte, =0. The phase shifé,, defined
and discussed more fully on pp. 205-20724], can include
M(sky ) =(e1,8k |7}|80,m>, (303 the logarithmic Coulomb contribution arising when the po-
Y Y tential experienced by the electron reduces to a Coulomb
field at large distances from the nucleus.

A. Overview

j=1/21=j-1/2 m=—j

(32

kA —Kk,M

where the direct and exchange matrix elements in (E§).
are denoted

M(sky ) = (e1,8:K |H|M,g0). (30b)
Y Y B. Transformations under pure spin inversion
Consequently, the square magnitude of the scattering matrix _
elements in which all four quantum numbers specified by the 1. Spin reversal operator
symbol s are reversed will be denoted k(-s,k; ). This In physical terms, time reversal changes the sign of both

process of changing the spins of all four quantum numberghe spin and spatial linear momentum of a particle. The ob-
defining the symbok will be called spin reversal, it being servation that a subsequent purely spatial inversion would
understood that this also involves changing the signs of theestore the spatial Imear momentum to its original value sug-
appropriate angular momenta in the bound orbital.

The spin- up[z,/; (r)] and spin- dowr{¢r \(r)] plane waves
to which the distorted waves tend at Iarge distancare

gests that the operatél for spin reversal is the product of
that for time reversal with that for spatial inversion, so that

given by O=1,T. (33)
+ th/2 ik-r ~ =
(1) = (As( )y +1/2>el ' (31) The relativistic operators, denotgglandT, corresponding to
spatial inversion and time reversal are given[Bg]
where they*'2 are the usual two-component spin functions . .
defined on p. 12 of24] and A, is the constant defined by Ir=p4l, (34a

AS:c(E+cz)‘1. Hereoy, oy, ando, are the usual X 2 Pauli
matrices whose % 4 equivalents,, =,, and2, are related
[25] to the Dirac matrices byy;=p,2%, with q=x for j=1
etc. Although theﬁ,(r) are not e|genstates of the relat|V|st|c
operatory,,, they are the relevant energy eigenstates wit
spin states uniquely defined by the large components as a
ready discussed in Sec. I. -
For distorted yet still unbound wave functions, which as- The spin-reversing properties 6f in the simplest case,
ymptotically become plane waves of momentlniraveling  that of the plane-wave statei;f,(r), is demonstrated by using

=iS,K, (34D

—>

wherel is the operator for purely spatial inversion aKds
he complex conjugation operator acting to the right as de-
noted by the arrow.
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the anticommutation relations obeyed by the Pauli matrices

and the result isoyx**?= ¥ /2 It then follows that

Qi (r) = AliSRyg(n)

:,BTiE ( . Xiilz . )e—ik-r
y As(_ oDyt pry_ O_ZpZ)Xﬂ/Z
(353
R IX:l/z i
:B'<As<a Bio?)S (35D
T X+l/2
_B("‘AS(O' p)X+1/2) =+ ‘szl(r) (350

2. Transformations of atomic eigenstates under spin
reversal

The action ofQ on a single Dirac central field orbital,
such as théx,m) bound state, is derived by combining the

results(2.18 and (2.16 of [27] for 'AI'|K,m> with the phase
factor (-1)' arising whenly acts on|«,m) [19]. This yields

Qliem) = (- 1)'(- D™~ D2 ). (36)

Herel is the orbital angular momentum associated with the

large components and=1 for k<0 anda=-1 for «>0.

Thus the phase factor is always +1. We note tﬁeﬂips the
spin of a plane wave and reverses thequantum number of
a bound state.

The effect of theQ) operator on the unbound states is
elucidated by considering the partial-wave expangig?).
For a spin—upe:% state, it follows that

ki/o} -
2

o

j+1/2

(277)—1/22 2 (_i)leiiﬁl'(

j=1/2 1=j-1/2

11
>< —_— —
E C(, .j,m- 2,2,m>
j+1/2

:(27T)_1/2 2 2 (_ i)leiib"'(

j=1/21=j-1/2

xEC(

m=—j

XYmoo Q) (= 1) (= M- 1)E-ar2

% <-gKXK,—m )

|f:<X—K,—m

)

kX k,m
if, x

kX—Kk,m

XY, m—1/2(Qk)Q< (379

[

(37b
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©

j+1/2

:(277)—1/2 E 2 ile:ia’K

j=1/21=j-1/2

Seltintion

XY () (- 1)T™(— )32

% <-gKXK,—m ) ,

i X, -m
where Eq.(36) was used in the second step and the order of
summation over the dummy variahie has been reversed in
the third step. By using the two results

mot1
2'2

(370

f1dim-1L
PRULEPIPU

=(- 1)"1’ZC<, g m+%—%m), (383
(D™ Y2, () =Y e Q)T (38b)

and then noting that for bota=1 (j=I+3) anda=-1 (j=I
1

5

(_ 1)j—|—1/2(_ 1)(1—{:1)/2 - 1, (39)
it follows that Eq.(370 can be developed as
. 1 o j+1/2
Q ki/o_> =(-De2m 2y Y ile¥id,
2 j=1/21=j-1/2
11
X 2 C( =j,m+ )
i 2 2
9icX k,m
X [YI m+1/2(Qk)] . (40)
|fKX—:<,m

Comparison of this result with that provided by E§2) for
[ki’°—2) shows that Eq(40) differs from|k”/°-2) only in the
overall =1 phase factor and in that the sign of every phase-
shift term has become reversed. This shows that

1

QKLY = - ko 1), (41a)

Qfkout) = - [kn- 1), (41b

Thus the action of) on a incoming spin-up state produces
an outgoing spin-down one. This might have been expected

in view of the time reversal operaté’rcomponent of). An
essentially identical calculation to that just presented shows
that

Ofkin - 3) = k1), (428
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Qlkin - 1) = [koud). (42b) Ups=-BAI(AS(ABB)I(B)Z,(B). (48

For the case of plane waves, vanishes so that the results Using the expression fd s given by Eq.(47), Eq.(46) can
(41) and (42) then become identical to those E@50 de-  be developed as
rived directly. - - - o
HOppg = QapUhaK " HKU zp (493
3. Transformation properties of the scattering matrix elements
One can attempt to relate the states in the matrix elements
M(s,kzy) to their spin-reversed counterparts by introducing

A ; The only imaginary unit in the Mgller interactiof25b) is
the operatorg) followed by using Eqs(41), (42), and(36). L X
It follows immediately from the definition(33) that the that multiplying sinwr xg because, althoughi;(A) and a;(B)

are both imaginary, their product is real. Standard manipula-

squartle of the() operator containing é;‘ea)cohmdmates of any tions using the anticommutation properties of the Dirac ma-
one electron is —1. Inserting into EER09 this representa-
tion of ~1 for both electrons and then invoking Eql), trlce§ TshAows_thdU_AB commutes with" which, after noting
(42), and(36) yields thatU,gUap=1, yields

=0Vl eH Ung. (49b)

A R 2 - G- G SR "
Misky) = (e300 [HIOATIOB Pleom) (439 Hilag= Daeladlas?t = st - (50
Use of this result in Eq43b) shows that
— Ag oA _ out ~
=(0 1K es e [HOUAQB)- &5~ m), M(skg) = (= 1 *e,ek
(43b

-3 -m). (51)

Using the relatioda|k|b>=<a|k|b>* (see[26]) and the result
for both electrons thatgiz,)'=-pi%, followed by invoking
the adjoints of Eqs(41), (42), and(36) yields

whereA, is a phase factor resulting from a combination of
those in Eqs(36), (41), and(42). Here the statg-s3",—m

differs from the staté—ey,—m), in which the incoming elec
tron has spin &g, only in that the unbound wave function is
that for an outgoing state still with momentukg and spin

state =, The operator producfl(A)fl(B), to be denoted

M(sky) = (= 1)*er, ek |UngKH'[- 68" -m)"  (52a)

= ~ —(= 1)4 A out *

Qg Must be moved to the left 6 in Eq. (43b) before one (= De(esead, g0 =M

can attempt to reverse the spins in the final state by invoking (52b)

Egs.(41), (42), and(36). It is therefore necessary to define

the transformed operatdt’: =(- 1) a(— gl — &l k2 |H |- &8~ m)”. (520
= QLB’HQAB (44) The same type of relation with the same phase factor

(-1)%a applies toM (s, kzy) Substitution of this result and
Multlpl|cat|0n of both S|des of this equation from the left by Eq. (52¢) into the expressiori29) for the quantityS(s, kz)

QAB and noting thaQABQAB_]_ yields shows that this can be written as

- > — out
Fidaa= Opgft’ (45) S(s, kzy) =[(- &7, - &} k2 —&g ,—M)
ou
Substituting back the definition 6%’ in Eq. (45) yields (el edlgH -m-ef)f. (53
. R R However, relationg29) and (30) show thatS(-s, k2) with
HOps= QO asHOng. (46)  all the spins reversed is given by
> _ — _ _ Ex(_ 2
It is useful to decompose the operafdgg into the product SCsky) = Mskg) - MHsko)| (543
of a Iinea_r operatorlAJAB and the Comp_lex conjugatio}:( _ =|(- &1,— £k, |7‘{|_ £6,— M)
which, acting on any two-electron function appearing on its y
right, changes factors @finto —i regardless of whether these — (=81, £k |7A{|_ m,— eg)l2. (54b)
originated from the wave function of electragxor that of y
electronB. Thus Comparison of the result$3) and(54b) shows that there
. . are two different and distinct effects which caus{s,k, ) to
Qpp=UnsK, (47)  differ from its spin-reversed counterpart. The first of these is
. that Eq.(53) contains the outward-going wave function of a
where the linear two-electron operatdyg is given by particle with spin state 5 and asymptotic momenturkg
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rather than the inward-going function that appears in Eqtion reduces to just the Coulomb interactiogs in the non-
(54b). Similarly, Eq.(53) contains inward-going wave func- relativistic limit, ioy(A)io,(B) commutes withr;\lB. This in
tions with momentz, andk rather than the outward-going conjugation with the resultoyx*?= = y**/2 immediately
ones appearing in Eq54b). All three of these differences shows, using the methods followed in demonstrating that Eq.
arise from the complex conjugation in the time reversal op{43a can be written as E¢54b), that, in the nonrelativistic
erator changing the sign of the exponent in each phase shifieory, the scattering matrix elements are unchanged under

term &% The second factor causirgs, k, ) to differ from reversal of all spins. This conclusion coupled with the previ-
y ?us result—that it is the phase shifts in the continuum wave

its sp|n—reve[sed counterpart is the comple>§ conjugation ofctions which introduce the spin asymmetry—shows that
the operatorH in Eq. (53). In the event thaf),g were to  this arises from relativistic modifications of the phase shifts.
commute with?{ then the order of these operators in Eq. The conclusion of the previous paragraph is confirmed by

(430 could be reversed. Since standard manipulations usindeémenstrating that each continuum wave func®g does
< deed reduce a pure spin-up or a pure spin-down state in the

Dirac matrices show thap andUg both commute wit,  nponrelativistic limit. In the nonrelativistic limit the small
it is only the complex conjugation in the time reversal op-componentsf,. in the partial wave expansiof82) become

2 A Pe : 5
erator which prevent& g from commuting with{. Thus, if negligible while the s, phase factors and unbound wave

~ ) functions depend only ohbecoming independent ¢f[24].
only the real part of the operatGt were to be considered, The se of these results enables the order of the two outer

Qs would commute witHH with the consequence that only Summations in Eq(32) to be interchanged, so that this be-
the first(the phase shifts in the continuum wave functjons COmMes

factor would caus6(s,k2y) to change under reversal of all o 1+1/2 1
spins. k%) = (2m) V2> iletag > > C(I,—,j,m—s,s,m)
1=0 j=1-1/2 m=—j 2
C. Interactions responsible for spin asymmetry ><[Yl,m—s(Qk)] Xie,m- (55
1. Relativistic contributions to the phase shifts Introducing the explicit form of they, functions as
) . . , . 1 1 1 1
The first factor, causmg?(s,kzy) to differ fro.m |t-s spin XI—1/2,m:C(I1E!I - §,m+ > éam)YI,m+1/2|B>
reversed counterpart—namely, the phase shifts in the con-
tinuum wave functions—is seen to be relativistic in origin by 1 1 11
considering the entirely nonrelativistic case. In the latter each + C("E’l - E’m_ > Eim)Yl,m—l/2| @),

of the four wave functions entering a scattering matrix ele-
ment can be factorized into a product of a purely spatial (563
function and a spin function which can either p&/2 corre-

sponding to spin up oy *? corresponding to spin down as _ 1 1 1 1

defined after Eq(31). Here the operatoio, alone acts as a Xi+1/2m=C I’E’l TomT LT om Yime1dB)
spin-inversion operator; it only failed to fulfill that role in the

relativistic case on account of the small components of the +C<I 1 | + 1 m-— 11 m>Y| _a) (56b)
wave functions in Eq(31) which necessitated introducing 220 2'2 m

the more complicated operat()A}. Since the Mgller interac- and substituting these into E5) converts this to

% j
kiCe) = (2m) 23 ilefid g 3 [Y|,m—g(Qk)]*{C<|é’| - },m— 8’8'm>
1=0 m=—j

2
1
2

X[C(I}I—}m+}—1m)Y| |ﬂ)+C<I I—}m—zim)Y _ |a)}+C<|}|+}m—ssm)

121 21 21 ’ ,m+1/2) 1~ 21 212! |,m-1/2] 12! 21 10,

X {C(I,E,I +1,m+l,—},m>YI rml,2|,8>+C<I,l,l +l,m—1,},m>Y| wl,ja)“, (57)
2 2 2 2 ' 2 2 22 '

which can be rearranged as
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k%) = (2m) 1’22|'€+'5Ig|2 [Ylm(ﬂk)]ﬂ ( 5,|—%,m—s,g,m)c<| i-tm %,—%,m)

1=0 m=-j ‘2 2™
+C<Ill+lm— m)C(I1I+1m+1 lm)}Y |8
!21 21 &,¢, 2 2 21 2! I,m+1/2]
1 1 1 1 11
+|Cll,z,l—z,m-g,em|C|l,Z,| ——,m—-=,—,m
2 2 2 2 22
1 1 1 1 11
+C |,5,| + E,m—e,s,m C |,§,| + i,m— E 5 m Y| m_1/2|a'> (58)
[
However, one can write 2. Non-time-reversal-invariant part of the Mgller interaction
1 1 It is apparent from the arguments advanced in Sec. Il B 3
> C<I,—,j,m|,ms,m| + ms>C< L=, j,my,ml,m + ms) that the form(25b) for the Mgller interaction is particularly
i 2 2 useful. Furthermore, if simr,g is expanded as its power
1 1 series, the leading term proportionaldo,g contributes zero
=>> C('":J':mlyn“s,M)C(',—.j'm. ) to the matrix elements\(s, k2) and MEXs, kzy) due to the
i M 2 2 orthogonality between the initial and final states. We can

(59) therefore, without changing the overall result, subtract this

X 5m|,m|’ §ms,m’ ) ~ . .
s term from the operatot{, which can then be written as

where the last step uses a standard rg¢&8L This converts

Eq. (598) into H=Hy + Hym, (62
N where
k%) = (2m) 1/22 i'et '5'9|2 Y1 mee (UL 8e -1/2Y1 me1/2l B)
Hr=rag1-a(A) - a(B)|cosor g, (639
+ 8, 121 mevd )], (60)
where all the implicitly referredy, ,, with |m’|>1 are de- ﬂNT,:irz\lB[sin Wl ag— o pg — a@(A) - a(B)Sin wf pg] :ifiR.
fined to be zero. This result shows that (63b)
|/o > (2m)" 1/22 ilgtial 9|2 v, mYI m,(Qk)]|a> It is readily shown usmg the commutation properties of the
! Dirac matrices that bothiT. andHR are invariant under time

(613 reversal because both these operators are entirely real, so that

T HT|T HT, andT HRT HR The result(62) thus decom-

, » . poses’H into its time-reversal- mvanar(lHT,) and non-time-
I"o/o‘ §> = (277)_1/22 ileﬂﬁ'gIE [YL"\YLM(QK)]L&' reversal-lnvarlantHNT,) parts. It is only the explicit imagi-
nary unit ini?A{R which render§:[NT, noninvariant under time
reversal and make®" different from’l:{, thus introducing a

as would be expected singe(°3) is purely ala) spin and  noncommutation betweeH and g and thereby introduc-
||<'/°‘l is a pure|B) spin. ing, as described in Sec. Ill B 3, the second factor causing
The overall conclusion of this subsection is that it is thethe spin-reversed quantit§(-s, k ) to differ from S(s, kz)
relativistic modifications of the phase shifts in the continuum . | operatofy, is of hlgher order in 1¢ than the WeII—
wave functions which provide one mechanism for introduc- = o mterggtmn which is of order &7 [see, for ex-

ing spin asymmetry into the scattering matrix elements.
Since the phase shift are zero for relativistic plane waves, 2mple, Eq(3. 5) of [19]]. Thus, wherfy, is expressed as its

it follows that this mechanism would not arise if all the con- POVIET series expansion r g, the leading term is of order
tinuum states were described by such functions. This showk/C’. This shows that the second factor introducing a spin
that it is the relativistic modifications of the distortions of the @8ymmetry into the quantitg(s, kp ) is relativistic in origin.
continuum wave functions induced by the potential originat- The contribution fronHNT, to the direct matrix element is
ing from the target atom which generates the first mechanismonzero but only if the distorting effect of the potential on
producing spin asymmetry. either of the incoming or the fast-outgoing electron is con-

(61b
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sidered. If both these wave functions are plane waves, theﬂ <+>(r) IEy,BH 1//(+)(r) (673
the matrix elements OHNT, will contain kernels of the form
« | | Xﬂ/z
el Ta Sin(wr -r ) :|2 ( )ei[kxx_kyy+kzz]
l(rg) = f |I’ —r A| 2 dra. (64) WP Adoypy— O'yﬁy + UzﬁﬂXillz
A B
(67b)
It has been showf29] that for the case considered here in
which k corresponds to the vector of momentum trangfer ( io th/2 )
=kg—k4, the integral is given by B AdL- 0yp, - ayp, - aplic, 2
X ei [kex=kyy+k,z] (6 7 C)

Y
(1) = %ek-fs[amd —w)+ok[+w)] (65

112
— = X ikx—-ky+k,z] — — 17 (F)
which clearly is zero sincék| is never equal to the positive - (As(a _ ﬁ)X+l/2)el TP = S gy ().

w. HenceHyr, does not contribute to the scattering matrix (674d)
elements unless at least one of the continuum functions is not

defined as a plane wave. Similarly, the contributiorVCQfT. Here /' (r) denotes a wave function in which tlyecompo-
to the exchange scattering matrix elements vanishes if bothent of the momentum is reversed compared with that in
the incoming and slow-outgoing electrons are described pr(r) It has been showfi30] that the action 01HyD on a
plane waves. ThuﬁiNT, does not contribute to the scattering Dirac central-field state is given by
matrix elements if all three continuum wave functions are
described by plane waves. " - m+1/2 1/2(1-a)
. S T . . m=(-1 -1 ,—m). 68

Since the distinction in Eq(53) between incoming and yD|K )=1) =D [« ) (68)
outgoing states disappears for plane waves for which th
phase shifts, is zero, it follows that no spin asymmetry

arises from thef{y, term, as described in the previous sec-Same fashion a8, the former also changes tienomentum
tion. Thus coupled with the vanishing contribution from the COmponents.

The result(68) taken in conjunction with the partial-wave
Hy term this shows that there is no spin asymmetry in the ansion(32) can be used to show that distorted continuum
all-plane-wave case and hence that all spin asymmetries mugtP

arise from the effect of the distorting potential on the un-Waves are interconverted undey, in exactly the same way
bound electrons. as plane waves:

EI"hus althoughl:|yD reverses all the electron spins in the

D. Invariance under reversal of spin and ay-momentum

©  j+1/2 j
> (2m)" 1/22 E |'e¢'5'KE C(, Jj,m

component j=121=j-1/2 m=-]

It has been shown above that the simplest operator revers- 11 ) * " ( 9iXiem )
. - . -—,=.m}Y, QH, bl . 69
ing the spins of all the wave functions does not leave the 22 - E)Hy0 it X—sem (693
quantityS(s,kzy) unchanged. To examine possible symme-
tries in spin-resolved two-electron scattering experiments, w  j+12 j
one seeks an operator which reverses the spins of all the =2m S > ||e;.a;z C( im
wave functions while containing the minimum number of iST21=-1/2 M\ 2’
such other transformations as is needed to leav&inatrix
element invariant. Such an operator will allow us to identify - },},m>Yf )
a symmetry property o8(s, kz) which would have experi- 22 m
mentally observable consequences JX o

. ~ 1/2 —a)2[ Xk~

For a single electron, the relativistic equivaléht, ) of X (- Ym A=)t <|f ) (69b)
the operator for spatial reflection in thxe plane is given by WXorm
[30] .

o j+1/2
~ . . _(277 1/22 E i +I5 2 C(
Hy’DzlzyBHy, (66) j=1/121=j-1/2 m=—j
- 11 *

whereH, acting on any function depending orreverses its ToT MY —me1/2(E)
y component. It can be shown the, , converts a spin-up
plane wave into a spin-down state but having a negative X (= 1) (- 1)(1—a)/2< 9icXie,m ) (699
y-momentum component: it X-m
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o j+1/2

j
=2m 12y Y jletin C(I,},j,m+},

j=1/21=j-1/2 me-j 2 2

1 ) N
- §'m>(_ 1)J_|_1/2Y|,—m—1/2(9k)

X (= 1)"™2(— 1)(1—a)/2< 9icXim )

. (69d)
it X

The operatori:|y for purely spatial reflection in thez plane
reverses the sign of tHQy so that(), becomed),., so that
one has

HyYi 1o = Y1 oo Q). (70)
Use of the resulf30]
H Y o) = (- D™, () (7D)
shows that
(= D™, o1 Q)T = = [V e Q)] (72)

Substitution of this result into E¢69d) shows after invoking
Eq. (39) that
1

1 Lo 1 1
k,=)=—(m) 12 "€+'5KC<I,—,',m+—,——,m)
2> (2m) %' 21275

Hyp

% Y*lkvmllz(Qk’)(-gKXK,m ) (73)

it X—,m .

Comparison of the right-hand side of this result with E3R)
yields

(748

(74b

1 1
k-2 =‘k’— .
2> 2

The transformation properties of tig@matrix elements

Hyp

related to reflection in thez plane are derived by first noting

that the square of the operatﬁlg,,D is —1. Introducing this

result for the squares of the operatd;iﬁD(A) and I:|y,D(B)
for the electronsA andB and then using Eq$74) and (68)
shows that

M(s k) = (e1,e2k | HIHy o(A[Hyp(B) Pleo,m) (753

=(= 1)*(ey, 5k [HHy p(AHy p(B)] — £0,~ ).
(75b)

Using the properties of the Dirac matrices,

of the two transformation operators occurring in E@5b),
so that

[7:[! Hy,D('A‘)ﬁy,D(B)] =0.

By introducing this result into Eq.75b) and then using the
adjoints of Egs(74) and(68) yields

(76)

PHYSICAL REVIEW A 71, 052701(2005

M(sky) = (= 1)*(e1, 85k, [Hy p(AHy p(B)H| = 56,~ m)
(779

=(= 1)26(— &7, — £, — k2y|ﬂ| —e-m). (77D
Since the matrix element in the last line is seen from the
definition (309 to be nothing butM(-s,-k; ), it follows

that the spin-resolved quanti@(s,kzy) satisfies the equality
S(S, kzy) = S(_ S, - k2y) . (78)

The equality(78) holds true whether the direction of spin
alignment is along or perpendicular to the direction of propa-
gation of the incoming electron. For the coplanar case only,
this result shows thaS(s,kzy) is invariant under just the
reversal of all spins because here thenomentum compo-
nent(kzy) of the slow-outgoing electron is zero. This identity
has been observed in previous numerical calculatiéd$

E. Global symmetry

The presence in the Mgller interaction of a non-time-
reversal-invariant part does not imply that time reversal in-
variance is violated. Thus, considering the entire ionization
event, time reversal would produce the process in which two
electrons of momentaks; and -k, impinge on an ion which
captures one of these electrons while scattering the other into
a state of momentumkg. Direct consideration of this pro-
cess would introduce a Mgiller interaction differing from Eq.
(25) only in that the sign of the complex exponential in Eq.
(259 is changed because the sign of the energy chaitige
is reversed. However, the scattering matrix eleni@} for
this entire process can be directly generated from(&g). by
introducing the time reversal operatai®4b) which would
convert each of the statéls 1), |K»e2), |Koeo), and|km) into
|-ki=&1), |-Ko—&2), |-Ko—&g), and |k—m), respectively
while changing the sign of the exponent in tH&™A8 term.
This shows that time reversal invariance is not violated on
the fundamental level. This should have been expected given
that the origin of the Mgller interaction might be regarded as
lying in either QED or, even more fundamentally, in classical
relativistic theory coupled with standard quantum mechanics,
all theories invariant under time reversal.

In problems involving time dependences, the derivation of
an effective operator acting within a subspace of the states
needed to define a complete theory often yields effective
operators which are not Hermitian, like the Mgller interac-
tion (25). In this case one derivation of this interactidii]
involves eliminating the field variables from the full QED
description to produce an operator acting entirely within the

, _ it is readily g;pset of non-second-quantized electronic wave functions.
shown that the Mgller interaction commutes with the product

Arguments can be advanced that the origins of the Mgller
interaction lie in classical relativistic theory coupled with
standard quantum mechanics. In this event, the Mgller inter-
action should not be regarded as a specific consequence of
QED but rather as a result that this theory must of necessity
generate. Thus, for example, no one would regard Coulomb’s
law as a consequence of covariant QED even though the
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former could be derived from the latter. The origins of the TABLE I. Possible spin configurations of E9). Each labek
non-time-invariant part of the Mgller interaction lie in the defines the spin configuration appearing immediately to its right,
retarded potentials of classical electromagnetic theory. Thugvith + and — representing spin-up and spin-down states, respec-
as discussed ifB1], the electrostatic interaction between the tively. Each configuration is given in the order of fast-scattered,
charge density(r,,t) with that characterized by a density Slow-ejected, incoming, and bound electrons.

p(rq,t) at timet involves the product op(r,,t) with the

retarded potential generated Bt by the charge density _ L-@pels 120m Labels 120m
p(ry,t). This retarded potential is given byriap(ry,t 1 N -1 -
-ry,/c) dry. Substitution forp(rq,t-ry,/c) of the 'Eime- > L4 2 4
dependent quantum-mechanical charge density(r,) 3 44 3 b
p(rexpli(E;—Ep)(t—ryp/c)} then vyields a factor of the 4 L 4 o
type exg—i(E,—Ep)rio/c} entering the Maller interaction. A
similar treatment of the interaction between two currents S T S R
yields the retarded current-current interaction in Ef) af- 6 ot 6 -ttt
ter also introducing the Dirac current operators. 7 -t + - -7 -7
8 - —+ - -8 ++ -+
IV. SPIN-AVERAGED FINAL STATES
A. Experimental outlook for measuring TDCS spin reversal T(+- ,kzy) =celS(G k) + S(6,ky ) + 5(7,k2y) + 5(8,k2y)},
asymmetries (79b)

The measurement of cross sections wherenthguantum
number of the bound level and the spins of all the free elec- T (= + Ky ) = Ce{S(= 5,ky ) + S(= 6,ky ) + S(= 7,ky )
trons are resolved would not currently appear to be feasible. Y Y y y
However, TDCS's, so far in entirely coplanar geometries, +S(- 8.k, )}, (790
have been measurdd2,13 for known spin states of the Y
incident electron. In the experiments [ib3] spin-polarized
electrons were used to ionize spin-polarized Li targets at  7(=~.kp) =CelS(=1kp) +S(=2kp) + S(= 3.k
nonrelativistic energies, while in the experiments [i2] _
spin-polarized fast electrons were fired at heavy-atom targets + S 4’k2y)}' (799

and the spin asymmetry arising from the ionization jof ! .
=3/2 electrons in theL shell was resolved. Although the N first two arguments- or — of the partially averaged’)

spins of the incoming electrons were aligned perpendiculaf’0SS sections denote, respectively, the.spirjs of the inco'ming
to the scattering plane, there would appear to be no fungnd boynd electrons. E_ach o_f the contributions on the _nght-
mental reasons against experiments with spin alignments iAand side of Eq(79d is derived from the corresponding
the scattering plane corresponding to the processes of pri€'™M in EQ.(793 by reversal of all the spins, with Eq&.90)
mary concern here. It is therefore of great interest to see i#nd (799 being similarly related. ,

the results of such experiments would reflect the spin asym- Consideration of reflections in thez plane yields some

metries in the matrix elements of the type elucidated in Secqualities between the partially spin-resolved cross sections.
1B 3. Application of the resul{78) to each of the four contribu-

It is convenient to examine the case where the boundions in both Eqs(793 and(79b) immediately yields
electron, which becomes ionized, resides insaor py, Or-
bital so that itsm; quantum numbekt3) is defined solely by T+ +kp)=T(-—,~k), (803
its sign. It is then apparent from EQ9) that there are 16
possible spin configurations as labeled in Table I. The con- T+ = k) =T (= + k) (80D)
figuration bearing the labelsdis derived from that labeled R Y
by reversal of all spins. The TDCS for processes in which  The main purpose of this section, probing possible spin
only gy andm are defined is derived from the fully spin- asymmetries in the partially spin-averaged TDCS, is
resolved quantitiesS(s,k, ) by summing over the possible achieved by first considering the two differencas(+
spin states of the two outgoing electrons and multiplying by+ , )-7(-- k, ) and 7(+-,k, )=7 (- +,k, ). The first of
the factorce given by Eq.(27). This process generates a hese two is seen to contain the sum of the four differences
result for the TDCS differing from Eq26) only in the omis- S(s,ky ) -S(=s,k, ) havings=1, 2, 3, and 4. The quantity
sion of the sums overy andm with their attendant statistical R : .
factor of Ng/(2N). The four different TDCS’s measurable in g;T J;é:(;ti)onz(bet’le(/zey)e r:S t?]c;nz(?;rzrt;iigsselfzh)e _r(z?_r: E:)spe

Y.

such experiments are therefore given by having different values o which would causeZ (++ ,k, )

-7 (--,k, ) to vanish. This has been confirmed by numerical

T(++ ’kzy) - CE{S(l’kzy) * 8(2’k2y) * S(3,k2y) * 8(4'k2y)}’ computatiyons. The differenc®(+-,k, ) =7 (- + ,k ) is simi-
(799 larly nonzero. ’ ’
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confirmed numerically that in all caseg(s;,s;.k;)
:T(—si,—sz,—kzy). These results together with the predic-
tions presented earli¢B2] for spin asymmetry offer an im-
mediate test of the theory developed here.

C. TDCS in coplanar geometries for incident electrons spin
resolved perpendicular to the scattering plane

The main objective in this subsection is to examine the
spin dependence of the TDCS for scattering processes in
coplanar geometries with the electron spins aligned perpen-
dicular to the scattering plane. This situation is of interest as

FIG. 1. The scattering geometry and the definition of the mo-that examined in previous wofld4].
menta for the incoming, fast-scattered, and slow-ejected electron.  The incident electron will always be taken to be traveling

along thez direction with the scattering occurring entirely in

It might not be easy to perform an experiment on a highlythe Xz plane. The partially spin-resolved TDAS ¢(+)] in
relativistic system in which the spin of the bound electron towhich the spin of the incident electron is aligned either par-
be ionized is known in addition to that of the incoming elec-allel or antiparallel to the directiog (q=x,y,z) can be cal-
tron because it would be necessary to prepare hydrogenlikeulated by summing over the possible spin states of the other
or lithiumlike ions of species having very high nuclear three electrons. Consequently, the states of these three elec-
charges. Consequently, the experimdfitg] involving tar- ~ trons can be taken to be those defined in Sec. Il A with
gets of very high nuclear charge have involved ionizationtaken to be the axis of spin alignment. Hence, from @)
from an inner shell of a neutral or near-neutral species witfPne has, suppressing the latigl which is always zero for
consequent averaging over the two possibjetates of thes  the coplanar case considered here,
or py» electron which becomes ionized. It is therefore inter- - -
esting to consider the TDCS for the process in which only 7 g()=Ce 2 [(en,e2H| £ 0,m) = (e, e,/ H|m, + ).
the asymptotic spin of the incident electron is known. The epeam
sums (82)

T'(+,k)=T(+ + ,kzy) +7T(+= k), (813  Here the incident statelsq) asymptotically become plane
Y Y waves with the spin states of the large components aligned
along the directions ¢. For g=x,Y, these states are given in

T'(= k) =T~ ko) + T(= + kg) 81D term of those Eq(32) in which the spin is aligned alorgby

denote the TDCS for the processes corresponding to known 1 1 1
up- and down-spin states of the incident electron. Since there |+ x)= —_( Ko=) £ |Kog,— = > (839
is no special relationship between the two differences V2 2 2

T(++,kp)=T(-= ko) and T(+=k;)=T(=+ky), the
TDCS Ty(+,k2y) is still different from%’(—,kzy) for' nonco- 4y)= i(
planar geometries. ty)=—=

k 1 ik 1 ) (83b)
\;”2 012 - 0 2 .

The states in Eq83b) differ from those used previous|it4]

) o by the omission of a phase factor which is irrelevant here.
Here we consider the ionization of & Blectron from  £or the case in Eq82) whereq=z the matrix elements are

hydrogenlike uranium. The incoming electron has an |mpac}ust those defined by Eq§30a and (300).

energy ofE,=500 keV, the fast-scattered electron has an en- The two TDCS's corresponding to the processes in which

ergy of E;=285 keV, and the slow has an energy Bf  he spin of the incident electron is aligned asymptotically

=100 keV. The momentum vector of the incoming electron gjong the  and -y directions are found by substituting Eq.
ko, is aligned along the axis and it is assumed that the (83b) into Eq. (82). The results are

momentum vector of the fast scatterdd, lies in the xz
scattering planeas shown in Figure 1. We assume that the
fast electron has been scattered through an angl®), of
=-10°. In Fig. 2 we present spin-resolved cross TDCS’s. The
slow-outgoing electron is assumed to be in a plane that forms + iM(s oo — 1 m) — M
an angled, to the scattering plane. In each case the cross - LE2 o

section is shown as a function of the angle of the slow- . _
outgoing electron. All calcualtions are performed in theH€re all four quantum numbers defining the symbattro-

rDWBA approximation with Coulombic boundary condi- duced in Sec. Il A have been introduced explicitly af¢f*
tions. The points having,=0,180° are the points in com- denotes the corresponding matrix elements that arise from

mon with the scattering plane and, as expected, the TDCS fdhe exchange terney, s,/ H|m, +q). By extracting an irrel-
these points is unchanged under reversal of spins. We hawant factor of—i|, T{,(—) can be written as

B. Numerical results

[zvesm)
M81,82,_,m

Ty(x)=ce > >

£1,€9,M
2
(84)
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FIG. 2. The spin-resolved TDC's fde, 2e) on hydrogenlike uranium witky=500 keV,E; =285 keV,E,=100 keV, andd;=-10°. The
slow-outgoing electron is calculated in a plane that forms an afgeth the scattering plane. The cross section is shown as a function of
the angle¢, of the slow-outgoing electron. The points havigg=0° and¢,=180° are the points in common with the scattering plane and,
as expected, the TDCS for these points is unchanged under reversal of (8piffs(+,k, ) (solid) and 7'(-,k, ) (dashedl 6,=64°,
(b) 7' (+, k2) (solid) and 7' (- ,k, ) (dashedl 6,=32°, (c) T(++, k2) (solid) and 7(—-, kz) (a’asheai 6,=64°, (d) 7{++ k2) (solld) and
iGN kz) (dasheai 6,=32°, () 7{+ kzy) (SO|Id) and7(—+ kzy) (dasheai 6,=64°, (f) 7(+ k2) (solid) and?( + k2 (dashe(d 6,=32°.
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1
M(el,sz,—z,m>

2

Ty(-)=ce >

£1,€2,M

(85)

+i/\/l(s 1 )— ex
1182!21m M

The bound electron will initially be taken to reside in an
orbital. The terms in Eq(85) in which either only one o,
£, ormis —3 or all three of theses quantities aré will be
denoted by a prime. For such terms, the resuith with
k2 =0 shows after calculating the phase fadtet)r using
Eqs (67d and (68) that M(sl,sz, ¥5 2, m=+M(- £1,
sz,_i,—m) For the remaining terms in Eq85), to be
denoted by a double prime, one hasl(e;,e,, :%,m)
=¥ Ml(-e;,-¢,, £3,-m). Use of these results in E¢85)

yields
, 1
_):CE E M(_sl’_SZ!El_m>
€1,€p,M
2
—i./\/l(—sl,—sz,——,—m>—,/\/lex tee 2
£1,69,M
1
_M _81,_82,5,_m
1 2
+iM(‘ 81,—82,—5,—m> - M (863
1
:CE 2 M<_81,_82,_,_m)
£9,69,M 2
1 2
_i./\/l<_81,_82,_§,_m> _Mex (86b)
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1
M(gl,sz,é,m>

+M<8 1 )— ex
1:€2, 2!m M

1
M(Sl,SZ,E,m>

1
_M<811821_ E:m) - MGX

T(+)-Ty-)=ce >
£1,€2,M
2

-ce >

£1,€9,M

2

(88)

By relating the matrix element81(eq,&,,&q,m) to those in
which all the spins are reversed by using the equalities de-
scribed in the last paragraph, it readily follows from the ab-
sence of the explicit imaginary unit which appears in Eq.
(84) that 7,(+)-7,(-) is zero. This agrees with the more
direct derivation in Sec. Ill D using the coordinate system
with the x andz axes interchanged.

For ionization from subshells other than thosesafym-
metry, arguments differing from those just presented only
through the occurrence of a different phase factor in(E§).
yield the same overall conclusion. Thus in coplanar geom-
etries, although? ;(+) remains equal t@,(-), T)’,(—) differs
from 7'(+).

V. SUMMARY

In the relativistic theory ofe, 2e) scattering as presented
previously [5], the TDCS is expressed in terms of eight-
dimensional matrix elements of a covariant propagator which
was derived from QED. In the present paper, it has been
shown that these matrix elements reduce to two-electron in-
tegrals of the interaction derived by Mgller in 1931. These
integrals contain purely spatial variables and Dirac matrices
but no time coordinates.

It has been shown, for cases in which the spins of the
electrons are aligned in the scattering plane as defined in Sec.

Since the three summations are over all possible spin statesl A that the quantityS(s,kz ) differs from its counterpart

Eq. (86b) can be written as

1
M(sl,sz,a,m)

T)(-)=ce X
€1,€2,M

2

: (87)

1
- iM(Sl,Sz,_ E,m) - Mex

S(-s, k2) in which both them quantum number and spins of

all asymptot|cally free electrons have been reversed. The dif-
ference between these two scattering matrix elements, called
the spin asymmetry, has been shown to vanish in coplanar
geometries. Two factors generating spin asymmetry in non-
coplanar geometries have been elucidated. The first of these
is the relativistic modification of the distortion of any one of
the three continuum wave functions induced by the potential
originating from the target atom. The particular distortions

where the changed signs merely cause the terms in the surg@iving rise to the spin asymmetry are those originating from
mation in Eq.(86b) to be generated in a different order. the relativistic modification of the difference between the
Since|z; +izy| # |z, -iz,| if z; andz, are complex, this result partial-wave scattering phase shift with the distorting poten-
shows, when compared with that E84) for 7, y(+), that the tial and that for the corresponding plane wave. This contri-
difference 7’ (+) 7( ) is nonzero. The resultmg expres- bution to the spin asymmetry is therefore predicted to vanish
sion for this difference becomes identical with that given inif all the continuum wave functions are described by relativ-
the previous density matrix formulatiga4] when the polar- istic plane waves. The second factor generating spin asym-
ization parameteP in that work is set to unity. metry is the presence in the Mgller interaction of a non-time-
In the formulation in this Sec. IV C in which the incident reversal-invariant part{y7.. Since the orders of this term of

electron propagates along the direction, the difference 1/c¢® and higher are larger than thét/c?) of the leading
T,(+)=T,(-) is found using Eqs(82) and (833 to be relativistic modifications of the phase-shift differences, the
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first factor generating spin asymmetry is predicted to make ahell of an unpolarized atom and the two outgoing electrons
larger contribution than the second. Since both the first andre detected in coincidence with their spins not resolved.
second contributions to the spin asymmetry have been showBonsequently, the TDCS for this process is not the same as
to vanish if all three continuum wave functions are describedor a scattering event where the initial spin alignment is cho-
by plane waves, it follows that it is the effects of the distort-sen to be antiparallel to the beam direction, unless all the
ing potential on the continuum wave functions which areglectrons travel in the same plane. However, the TDCS wiill
ultimately responsible for any spin asymmetries. ~remain unchanged under the combination of reversal of the
The extra conditions required to produce scatteringpjtial spin alignment and reflection with respect to the scat-

n?fltrix—elimentésquarﬁ ”?gd“'jj unchhan%ed unﬁer re\;]ersakll kring plane such th&, — —k, . From the analysis presented
all spins have been elucidated. It has been shown that these,, - y )
quantities are invariant under inversion of both all spins and" this work one would expect to observe the same phenom

the y momentum component of the slow-outgoing electron®"@ if the direction Of. the' spin alignmenf[ Is ChOS?ﬂltO be
when the incoming and fast-outgoing electrons are propagaperpen'dlcular to the direction of propagation but still in th_e
ing in the scatteringz plane in which the spins of the elec- scattering plane. These properties of the TDCS’s are of in-

trons are aligned. This explains why, in coplanar geometrie!rest because it would appear to be feasible to detect them
necessarily having zeroj-momentum components, the USIN9 the technologies available in currently existing experi-
moduli of the scattering matrix elements are unchanged urfental setups. Our conclusions are based on a detailed study
der reversal of just all spins, provided these are aligned in th8f the relativistic distorted-wave Born approximation but
scattering plane. However, as shown previouly] the  9iven that this approximation _fuIIy contains the effect o_f
TDCS's in such coplanar cases with the incoming beam po_elastlc electron nuclear scattering, as well as the retardation
larized along they axis perpendicular to the plane do change®"d magnetic terms in the propagator for the electron-
under reversal of all the spins. electron interactions, and that the earlier work shows that
We have also considered TDCS's with spins polarized irthese are the domlnan_t effects at high energies and for high-
the scattering plane in which only the spins of the electron& t&rgets where there is the near-perfect agreement between
in the initial state have been specified. Such TDCS's ardn€ory and all existing measurements, we are encouraged to

therefore generated from the fully spin-resolved quantitieQ€!i€ve that the effects predicted in this paper will be observ-
S(s,k, ) by summing over all possible spin states of the elec.2ble and recommend that our experimental colleagues seek

trons in the final state. It has been shown that the differencg“em out.
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