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The symmetry properties of theS matrix in a fully relativistic distorted-wave treatment of electron-impact
ionization are investigated. It is shown that the square modulus of the scattering matrix element in which the
spin states of all four electrons are determined is not invariant under the reversal of the direction of alignment
of all spins. The largest of two contributions to this noninvariance originates from the relativistic modifications
of the continuum wave functions induced by the distorting potential of the target atom. A second smaller
contribution is manifested on reducing the eight-dimensional matrix elements of the QED covariant propagator
to purely spatial two-electron integrals. The triple differential cross sectionsTDCSd exhibits a spin asymmetry
unless the entire scattering process occurs in a single plane. There will be a difference in the TDCS between an
se,2ed event in which the initial beam is polarized parallel or antiparallel with respect to the beam direction
even if the target is unpolarized and the final spin states are not determined. The TDCS will remain unchanged
if, in addition to reversal of the direction of spin alignment, one appropriate momentum component of one of
the two outgoing electrons is reversed.
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I. MOTIVATION

The correct quantum-mechanical description of scattering
processes is important in many branches of physics ranging
from electron-electron scatteringf1g to experiments involv-
ing hadronic targets and projectilesf2g. The present paper
addresses some of the symmetry properties of the scattering
matrix describing these,2ed process in which a target atom
is ionized by a single incident electron to produce two un-
bound electrons in the final statef3,4g. Such purely elec-
tronic processes form the most suitable subject for initial
studies of symmetry properties of the scattering matrix be-
cause the fundamental field theory of quantum electrody-
namics controlling the scattering is much more firmly estab-
lished and theoretically tractable than the theories underlying
interactions involving hadrons. Furthermore, there is much
current interest, both experimental and theoretical, in obtain-
ing a detailed and sophisticated understanding of such
electron-impact ionization processesf3,4g. This interest is
particularly accentuatedf5g for processes in which electrons
moving with relativistic energies collide with atoms of high
nuclear charge where the behavior of the bound electron is
also substantially modified by relativity.

Triple differential cross sectionssTDCS’sd defining the
probabilities with which the two unbound final-state elec-
trons emerge with specific energies in specific directions for

a known energy of the incident electron have been measured
for copper, silver, gold, and uranium targetsf6–8g. The
highly relativistic nature of the ionizations of gold and ura-
nium atoms was demonstrated inf9g, who showed that the-
oretical calculations could reproduce the experimental TDCS
only if all four electrons were described using Dirac four-
component wave functions and their interaction in the ion-
ization process was treated using a covariant propagator de-
rived from quantum electrodynamics. All these experiments
and comparisons with numerical calculations were restricted
to the coplanar case in which all the three unbound electrons
travel in the same plane. The present paper has four main
objectives and is primarily concerned with describing scat-
tering in noncoplanar geometries.

The first of the four objectives is to elucidate the time-
independent interaction expressed in purely spatial coordi-
nates that is implicit in the photon propagator appearing in
the earlier theoryf9g. This objective is achieved in Sec. II by
showing that this interaction is just that previously derived in
f10g ssee alsof11gd.

The second objective is to answer the question as to
whether the square magnitude of scattering matrix elements
in which the spin states of all four particles are defined
would be invariant under reversal of the spins of all the elec-
trons. These square magnitudes directly determine the
TDCS’s in which the spin states of the outgoing electrons are
not determined. These TDCS’s are simply proportional to the
sums of the scattering matrix element square magnitudes.
Although the wave function for a freely traveling relativistic*Electronic address: CWhelan@odu.edu
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particle is only an eigenstate of a spin operator if the axis of
spin quantization coincides with the direction of propagation,
any linear combination of two such energetically degenerate
spin eigenstates can be uniquely defined by its large compo-
nents. Such a linear combination, although not an eigenstate
of any relativistic spin operator, does, in the nonrelativistic
limit, reduce to an eigenstate of a Pauli spin operatorssqd
although the directionsq=x,y,zd defined by this operator
does not coincide with the direction of spatial propagation.
Furthermore, such a relativistic state would be observed to
have its spin aligned along the direction ±q, becoming an
eigenstate of the operatorSq, defined below, if observed
from the rest frame of the electron. Thus it is always possible
to refer to the limiting spin state of any relativistic free elec-
tron even if the spin is not aligned along the direction of
propagation. It is assumed throughout this paper, except in
Sec. IV C, that the spins are aligned in the scattering plane,
defined by the directions of propagation of the incoming and
one of the outgoing electrons. The second objective of the
present paper is partly achieved by showing that the square
magnitude of the scattering matrix elements is not invariant
under spin reversal except for the coplanar case for which a
proof of the invariance of these square magnitudes can be
advanced. The coplanar case is that in which the entire ion-
ization event occurs in just a single plane. In Sec. IV A it is
further shown that this noninvariance survives summation
over both the spin states of the final electrons as well as that
of the initially bound level. This yields the prediction that the
TDCS for ionization by an incident electron of known spin
would, excepting the coplanar case, change under reversal of
its spin alignment. This result is of interest because such
asymmetries could be measured using currently available ex-
perimental technologiesf12,13g. This lack of invariance was
not manifested in previous numerical computations or ex-
periments because all were restricted to coplanar geometries
f9,14,15g. In Sec. IV C a link is made between our new re-
sults and previous theoretical and experimental studies
f12,14g of scattering processes in which all three unbound
electrons travel in the same plane with the spins of the in-
coming electrons being aligned perpendicular to that plane.

The third objective of this paper, emerging as a conse-
quence of achieving the second, is to elucidate the origin of
the noninvariance of the scatting matrix under spin reversal
in noncoplanar geometries. It is shown in Sec. III C that
there are two causes to this asymmetry, both of which are
found to be relativistic in origin. By far the largest effect is
due to the relativistic interactions between the continuum
electrons and the atom in the elastic channels. To lowest
order this is the “spin-orbit” interaction. A second smaller
contribution is manifested on reducing the eight-dimensional
integral elements of the QED covariant propogator to purely
spatial two-electron integrals. It will be shown, however, that
this contribution also disappears if we use plane waves to
describe the continuum electrons.

The fourth objective of the present paper, achieved in Sec.
III D, is also raised by the non-spin-reversal invariance of the
scattering matrix. This is to elucidate the transformation con-
taining the minimum number of changes, additional to rever-
sal of all spins, under which this matrix does remain un-
changed. We will show that for a kinematical arrangement in

which one of the final-state electrons is detected out of the
scattering plane the TDCS will be sensitive to the direction
of longtitudinal polarization of the impinging electron. We
also predict that the TDCS will be invariant under the simul-
taneous reversal of the direction of polarization and the out-
of-plane component of the momentum of the detected elec-
tron.

The relativistic distorted wave Born approximation
srDWBAd, as described in detail below, was introduced by
Keller et al. f9g as a means to understand the inner-shell
ionization of heavy-metal targets. Nakel and his collabora-
tors had measured absolute triple differential cross sections
in both asymmetric and symmetric geometries on a range of
high-Z targets, including cooper, silver, gold, and uranium.
Until the first rDWBA calculation agreement between theory
and experiment was very poor. However, agreement between
the rDWBA in coplanar symmetric and asymmetric geom-
etries f9,16g and for spin-polarized electron experiments in
the planef14g is extremely good.

All evidence indicates that the interaction between the
nucleus and incoming and exiting electrons has a dominant
effect on the cross section. Explicitly it was shown that, un-
like the nonrelativistic low-Z case, the effect of final-state
electron-electron interactions is negligiblef17g. The proper-
ties of the atomic target enter the calculation through the
effective static potential generated by the nucleus and bound
electrons. In the rDWBA the static potential is used to gen-
erate the wave functions for the contiuuum electrons. An
important question, therefore, is whether the method of gen-
erating the static potential influences the TDCS. Inf18g, we
explored using different ways of generating this potential. In
particular, we used the Dirac-Fock approachsseef19gd and
the density functional method off20g. We found negligible
difference between the calculations for a range of neutral
targets and geometries and found no sensitivity to any real-
istic discription of the ground target state.

The rDWBA is the only approximation to include the ef-
fect of scattering of the incident and outgoing electrons in
the field of the nucleus which is the dominant physical effect,
and also this approximation is the only one that includes the
full QED photon propogator and thus includes magnetic and
retardation effects in the electron-electron interaction which
is important if we are to get the correct maximum position
for the TDCSf21g.

II. PHOTON PROPAGATOR AND THE
CONFIGURATION-SPACE INTERACTION

In the relativisticse,2ed process a fast incoming electron
in the state denoted by the symbol 0 ionizes a bound electron
in the state denotedb to produce a final state containing two
continuum electrons in states labeled 1 and 2. The time-
dependent wave functioncwsxd for all four statessw=0, b, 1,
or 2d satisfies the time-dependent Dirac equation containing
a spatial potential energy operatorVwsr d, which can in prin-
ciple be either local or nonlocal. These wave functions sat-
isfy

i
dcwsxd

dt
= fca · p̂ + bc2 + Vwsr dgcwsxd, s1d

wherea j s j =1,2,3d andb are the usual 434 Dirac matrices
f22g. Atomic units for whichs"=me=e=4p«0=1d are used
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throughout the paper andx is the four-vector:

x = sx0,x1,x2,x3d = sct,x,y,zd = sct,r d. s2d

The scalar product between the arbitrary four vectorsv and

V̂
W

AB
† 8 is defined by

v . v8 = gmnv
mv8n, s3d

where gmn=diags1,−1,−1,−1d. Equations1d has the usual
solution

cwsxd = cwsr de−iEwt, s4d

where cwsr d is the solution to the time-independent Dirac
equation

fca · p̂ + bc2 + Vwsr dgcwsr d = Ewcwsr d. s5d

At large distancesr from the target atom, each of the
three wave functionscwsr d, w=0, 1, or 2, takes the form of
a relativistic plane wave having a momentumkw and large
components defined by the quantum number«w= ± 1

2 corre-
sponding to nonrelativistic plane waves having, respectively,
spin up or spin down so thatcwsr d;ukw«wl. The bound state
has the usual central-field form and is therefore defined by
specifying the principal kappaskbd and mj smd quantum
numbers so thatcbsr d;ukbml, leaving the principal quantum
number as understood. All spin states are defined with re-
spect to thez axis even though, in general, none of the as-
ymptotically free wave functions has its spatial linear mo-
mentum aligned along this axis. For the case of bounds or
p1/2 orbitals,m can only take the two values ±1

2 and could
therefore, as previouslyf9g, be denoted as«b.

The TDCS for a spin-averaged scattering process is given
by f9g

ds

dV1dV2dE2
=

s2pd2

c6

k1k2

k0
E0E1E2

1

2

NB

N

3 o
«1«0«2m

ukk2«2,k1«1uŜuk0«0,kmlu2, s6d

whereŜ is theS-matrix operator describing the two-electron
interaction mediated by exchange of a photon. The scalarkw
sw=0,1,2d is the magnitude of the asymptotic momentum of
the wave functioncw. The TDCS is averaged over the two
possible asymptotic spin states of the incoming electron, thus
generating the factor of 2 in the denominator. Furthermore,
we have summed over all asymptotic final spin states. The
quantity NB is the number of electrons in subshellB in the
target atom, the factorNB/N enabling Eq.s6d to describe
ionization from a subshell which is not closed. The maxi-
mum number of electrons that could be accommodated in
subshellB is denotedN, so that for ionization from a closed
subshellNB/N reduces to unity.

Since the electronic states are taken to be eigenfunctions

of a Dirac equation including an external potential and theŜ
operator is applied to first order, evaluation of the TDCS
through Eq. s6d corresponds to using the relativistic
distorted-wave Born approximationf9g. Thus, although the
ionizing electron-electron interaction is retained only to first

order, the elastic electron-atom interactions in the incident
and final channels are implicitly included to all orders by
using distorted waves.

TheS-matrix element describing the scattering of the rela-
tivistic electrons by their attendant electromagnetic fields is
derived from QED and found using the previous assumptions
f9g to be

kk2«2,k1«1uŜuk0«0,kml = Sdir − Sex, s7d

where the directsSdird and exchangesSexd matrix elements
are given by

Sdir = i E d4xAE d4xBc1
†sxAdg0sAdgmsAdc0sxAd

3 DmnsxA − xBdc2
†sxBdg0sBdgnsBdcbsxBd, s8ad

Sex= i E d4xAE d4xBc2
†sxAdg0sAdgmsAdc0sxAd

3 DmnsxA − xBdc1
†sxBdg0sBdgnsBdcbsxBd. s8bd

HerexA is the four-vectorsctA,r Ad containing the coordinates
of electronA andg msAd are the Dirac matrices acting on the
wave functions for this electron. These matrices are given by

g0sAd = bsAd, s9ad

g jsAd = bsAda jsAd, j = 1,2,3. s9bd

The QED photon propagatorDmnsxA−xBd is given in Feyn-
man gaugef23g as

DmnsxA − xBd =
4p

c
igmnE d4q

s2pd4

e−iq·sxA−xBd

q ·q + ih
, h → 0,

s10d

whereq is the momentum four-vector with components

q = sq0,q1,q2,q3d = sc−1E,px,py,pzd = sc−1E,pd. s11d

In order to obtain a useful expression for the interaction
operator, we consider first Eq.s8ad. Inserting the expression
for the photon propagator Eq.s10d, and separating the time
variables in the wave functions, noting thatdq0=c−1dE and
dxA

0 =cdtA, gives

Sdir = − 4pgmnE eiE1tAc1
†sr Adg0sAdgmsAde−iE0tAc0sr Ad

3E dEdp

s2pd4

e−iEstA−tBdeip·sr A−r Bd

E2c−2 − upu2 + ih

3E eiE2tBc2
†sr Bdg0sBdgnsBde−iEbtBcbsr Bddr Adr BdtAdtB.

s12d

This can be written as

Sdir = − 4pgmnE fmnsr A,r BdIsr A,r Bddr Adr B, s13d

where
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fmnsr A,r Bd = c1
†sr Adg0sAdgmsAdc0sr Adc2

†

3sr Bdg0sBdgnsBdcbsr Bd, s14ad

Isr A,r Bd =E e−isE0−E1dtAe−isEb−E2dtBe−iEstA−tBdgsEddEdpdtAdtB,

s14bd

with

gsEd =
1

s2pd4

eip·sr A−r Bd

E2c−2 − upu2 + ih
, s15d

with gsEd implicitly depending onr A, r B, and p. One can
perform the time integrations inIsr A,r Bd by rearranging the
corresponding variables to obtain an integration over Dirac-
delta functions:

Isr A,r Bd =E eisE1−E0−EdtAeisE2−Eb+EdtBgsEddE dp dtAdtB s16ad

=s2pd2E dsE1 − E0 − EddsE2 − Eb + EdgsEddE dp.

s16bd

We have to consider the product of two delta functions in Eq.
s16bd. One can show that the product of a functionfsEd with
a delta functiondsE−DEd is given as

fsEddsE − DEd = fsDEddsE − DEd. s17d

Defining the two positive energy differencesDEA=E0−E1
and DEB=E2−Eb and replacingE in Eq. s17d by E+DEB
while also substitutingDEB−DEA for DE yields

dsE + DEBddsE + DEAd = dsDEB − DEAddsE + DEAd,

s18d

where the functionf in Eq. s17d has itself been taken to be a
delta function. Substitution of this result into Eq.s16bd ren-
ders trivial theE integration so that one has

Isr A,r Bd = dsDEB − DEAd
1

s2pd2 E eip·sr A−r Bd

v2 − upu2 + ih
dp,

s19d

wherev=DEAc−1. The quantitydsDEB−DEAd represents the
condition of energy conservation. The remaining integration
over p in Eq. s19d can be evaluated by a transformation of
coordinates. Assuming thatr A−r B lies along thez axis and
denoting ur A−r Bu by rAB and upu by p, the scalar product
becomes

p · sr A − r Bd = prAB cosu, s20d

whereu is the angle betweenp and the vectorsr A−r Bd. After
performing the integrations overu andf, Eq. s19d becomes

Isr A,r Bd = dsDEB − DEAd
1

2p

1

ir AB
E

−`

`

p dp
eiprAB

v2 − p2 + ih
,

h → 0. s21d

To evaluate Eq.s21d one can apply the residue theorem and
evaluate the integral in the upper half plane. There is a pole
of order 1 enclosed and the integral is therefore given by

Isr A,r Bd = − dsDEB − DEAd
1

2

eivrAB

rAB
. s22d

Substitution of this result and the definitions14ad into Eq.
s13d yields

Sdir = 2pdsE0 + Eb − E1 − E2dgmnE c1
†sr Adg0sAdgmsAdc0sr Ad

3 c2
†sr Bdg0sBdgnsBdcbsr Bd

eivrAB

rAB
dr 1dr 2. s23d

Using the relationss9ad ands9bd and noting thatb2=1 yields

Sdir = 2pdsE0 + Eb − E1 − E2d

3E c1
†sr Adc2

†sr BdĤc0sr Adcbsr Bddr Adr B, s24d

where the operatorĤ is defined as

Ĥ = f1 − asAd · asBdg
eivrAB

rAB
s25ad

=f1 − asAd · asBdg
cossvrABd + i sinsvrABd

rAB
. s25bd

A similar derivation holds true for the exchange matrix ele-
ment but with the labels 1 and 2 for the outgoing electrons
interchanged. The operators25ad is just the configuration-
space interaction originally derived inf10g ssee alsof11gd.

The results24d shows that the TDCS for spin-averaged
energy-conserving processes can be expressed as

ds

dV1dV2dE2
= cE

1

2

NB

N
o

«1«0«2m

uk1,2uĤu0,bl − k1,2uĤub,0lu2,

s26d

where

cE =
s2pd4

c6

k1k2

k0
E0E1E2 s27d

and

k1,2uĤu0,bl =E c1
†sr Adc2

†sr BdĤc0sr Adcbsr Bddr Adr B.

s28d

For slowly moving electronsE0=E1=E2=c2, Ĥ reduces to
rAB

−1, thus showing that Eq.s26d reduces to the standard non-
relativistic expression.
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III. SPIN-RESOLVED SCATTERING MATRIX ELEMENTS

A. Overview

The scattering process controlled by theSmatrix depends
on the spin states of the free electrons andmj, the quantum
number of the bound level. This collection of four quantum
numbers is denoted by the symbols=s«1«2«0md. We can
always choose a coordinate system in which the momentum
vectors of the incoming and fast scattered electrons define
the scattering plane, chosen to be thexz plane. Hence, these
two electrons havey momentum components equal to zero.
There are two distinct cases, in which the spins are aligned in
the scattering plane, which, however, do not need to be dis-
tinguished in the following treatment because they follow
exactly the same theoretical development. In the first of these
the incoming particle travels along thez direction, so that its
direction of propagation is the same as the axis of spin align-
ment. The second case is physically different because the
spin alignment axisszd is perpendicular to the directionsxd
along which the incoming electron is traveling. Furthermore,
we introduce the symbolk2y

which denotes the asymptotic
y-momentum component of the slow electron at large dis-
tances from the nucleus.

The square magnitude of any scattering matrix element
entering a TDCSs26d will be denoted bySss,k2y

d so that

Sss,k2y
d = uMss,k2y

d − MExss,k2y
du2, s29d

where the direct and exchange matrix elements in Eq.s29d
are denoted

Mss,k2y
d = k«1,«2k2y

uĤu«0,ml, s30ad

MExss,k2y
d = k«1,«2k2y

uĤum,«0l. s30bd

Consequently, the square magnitude of the scattering matrix
elements in which all four quantum numbers specified by the
symbol s are reversed will be denoted bySs−s,k2y

d. This
process of changing the spins of all four quantum numbers
defining the symbols will be called spin reversal, it being
understood that this also involves changing the signs of the
appropriate angular momenta in the bound orbital.

The spin-upfcpl
+ sr dg and spin-downfcpl

− sr dg plane waves
to which the distorted waves tend at large distancer are
given by

cpl
± sr d = S x±1/2

Asss · p̂dx±1/2Deik·r , s31d

where thex±1/2 are the usual two-component spin functions
defined on p. 12 off24g and As is the constant defined by
As=csE+c2d−1. Heresx, sy, andsz are the usual 232 Pauli
matrices whose 434 equivalentsSx, Sy, andSz are related
f25g to the Dirac matrices bya j =r1Sq with q=x for j =1,
etc. Although thecpl

± sr d are not eigenstates of the relativistic
operatorSz, they are the relevant energy eigenstates with
spin states uniquely defined by the large components as al-
ready discussed in Sec. I.

For distorted yet still unbound wave functions, which as-
ymptotically become plane waves of momentumk traveling

along the direction defined by the polar angular variableVk,
one must distinguish between incominguk in«l and outgoing
ukout«l solutions. For the statesuk0«0l, uk1«1l, and uk2«2l,
these superscripts are not required sinceuk0«0l is clearly and
incoming state whileuk1«1l and uk2«2l are outgoing ones. It
is convenient to expand theuk i/o«l as a sum of partial waves
each having the standard relativistic central-field form thus
carrying the labelk. This expansion takes the formf9,24g

uk i/o«l = s2pd−1/2 o
j=1/2

`

o
l=j−1/2

j+1/2

i le±idk8 o
m=−j

j

CSl,
1

2
, j ,m− «,«,mD

3fYl,m−«sVkdg*S gkxk,m

if kx−k,m
D . s32d

Here a positive sign is taken ine±idk8 for an outgoing wave
si /o=outd and the negative sign for the incoming casesi /o
= ind. Eachxk,m is a standard two component spin-angular
function which is an eigenfunction ofj2 with eigenvalue
js j +1d and l is the orbital angular momentum entering the
large components of the partial wave defined by the quantum
number k. The spatial angular variablessu and fd upon
which thexk,m andx−k,m depend are implied by the notation
in Eq. s32d as is the radial distance argument upon which
both gk and fk depend. Fork=−1, the quantitiesx−1,±1/2
reduce to the pure spin functionsx±1/2 introduced in Eq.s31d.
The real quantitydk8 is the difference between the phase shift
dk and that equal to −psl +1d /2 occurring in the plane-wave
case, so that for the latter,dk8=0. The phase shiftdk, defined
and discussed more fully on pp. 205–207 off24g, can include
the logarithmic Coulomb contribution arising when the po-
tential experienced by the electron reduces to a Coulomb
field at large distances from the nucleus.

B. Transformations under pure spin inversion

1. Spin reversal operator

In physical terms, time reversal changes the sign of both
the spin and spatial linear momentum of a particle. The ob-
servation that a subsequent purely spatial inversion would
restore the spatial linear momentum to its original value sug-

gests that the operatorV̂
W

for spin reversal is the product of
that for time reversal with that for spatial inversion, so that

V̂
W

= ÎDT̂
W
. s33d

The relativistic operators, denotedÎD andT̂
W
, corresponding to

spatial inversion and time reversal are given byf26g

ÎD = bÎ , s34ad

T̂
W

= iSyK̂
W

, s34bd

where Î is the operator for purely spatial inversion andK̂
W

is
the complex conjugation operator acting to the right as de-
noted by the arrow.

The spin-reversing properties ofV̂
W

in the simplest case,
that of the plane-wave statescpl

± sr d, is demonstrated by using
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the anticommutation relations obeyed by the Pauli matrices
and the result isisyx

±1/2= 7x71/2. It then follows that

V̂
W

cpl
± sr d = bÎ iSyK̂

W
cpl

± sr d

= bÎ iSyS x±1/2

Ass− sxp̂x + syp̂y − szp̂zdx±1/2De−ik·r

s35ad

=bÎS 7x71/2

Asss · p̂disyx
±1/2De−ik·r s35bd

=bS 7x71/2

±Asss · p̂dx71/2Deik·r = 7 cpl
7sr d. s35cd

2. Transformations of atomic eigenstates under spin
reversal

The action ofV̂
W

on a single Dirac central field orbital,
such as theuk ,ml bound state, is derived by combining the

resultss2.18d and s2.16d of f27g for T̂
W uk ,ml with the phase

factor s−1dl arising whenÎD acts onuk ,ml f19g. This yields

V̂
W uk,ml = s− 1dls− 1dm+1/2s− 1ds1−ad/2uk,− ml. s36d

Here l is the orbital angular momentum associated with the
large components anda=1 for k,0 and a=−1 for k.0.

Thus the phase factor is always ±1. We note thatV̂
W

flips the
spin of a plane wave and reverses themj quantum number of
a bound state.

The effect of theV̂
W

operator on the unbound states is
elucidated by considering the partial-wave expansions32d.
For a spin-up«= 1

2 state, it follows that

V̂
W Uk i/o1

2
L = s2pd−1/2 o

j=1/2

`

o
l=j−1/2

j+1/2

s− idle7idk8

3 o
m=−j

j

CSl,
1

2
, j ,m−

1

2
,
1

2
,mD

3 Yl,m−1/2sVkdV̂W S gkxk,m

if kx−k,m
D s37ad

=s2pd−1/2 o
j=1/2

`

o
l=j−1/2

j+1/2

s− idle7idk8

3 o
m=−j

j

CSl,
1

2
, j ,m−

1

2
,
1

2
,mD

3 Yl,m−1/2sVkds− 1dls− 1dm+1/2s− 1ds1−ad/2

3S gkxk,−m

if kx−k,−m
D s37bd

=s2pd−1/2 o
j=1/2

`

o
l=j−1/2

j+1/2

i le7idk8

3 o
m=−j

j

CSl,
1

2
, j ,− m−

1

2
,
1

2
,− mD

3 Yl,−m−1/2sVkds− 1d−m+1/2s− 1ds1−ad/2

3S gkxk,−m

if kx−k,−m
D , s37cd

where Eq.s36d was used in the second step and the order of
summation over the dummy variablem has been reversed in
the third step. By using the two results

CSl,
1

2
, j ,− m−

1

2
,
1

2
,− mD

= s− 1d j−l−1/2CSl,
1

2
, j ,m+

1

2
,−

1

2
,mD , s38ad

s− 1d−m−1/2Yl,−m−1/2sVkd = fYl,m+1/2sVkdg* s38bd

and then noting that for botha=1 s j = l + 1
2

d and a=−1 s j = l
− 1

2
d

s− 1d j−l−1/2s− 1ds1−ad/2 = 1, s39d

it follows that Eq.s37cd can be developed as

V̂
W Uk i/o1

2
L = s− 1ds2pd−1/2 o

j=1/2

`

o
l=j−1/2

j+1/2

i le7idk8

3 o
m=−j

j

CSl,
1

2
, j ,m+

1

2
,−

1

2
,mD

3 fYl,m+1/2sVkdg*S gkxk,m

if kx−k,m
D . s40d

Comparison of this result with that provided by Eq.s32d for
uk i/o− 1

2l shows that Eq.s40d differs from uk i/o− 1
2l only in the

overall −1 phase factor and in that the sign of every phase-
shift term has become reversed. This shows that

V̂
W uk in1

2l = − ukout − 1
2l , s41ad

V̂
W ukout1

2l = − uk in − 1
2l . s41bd

Thus the action ofV̂
W

on a incoming spin-up state produces
an outgoing spin-down one. This might have been expected

in view of the time reversal operatorT̂
W

component ofV̂
W

. An
essentially identical calculation to that just presented shows
that

V̂
W uk in − 1

2l = ukout1
2l , s42ad

PYPER, KAMPP, AND WHELAN PHYSICAL REVIEW A71, 052701s2005d

052701-6



V̂
W uk in − 1

2l = ukout1
2l . s42bd

For the case of plane waves,dk8 vanishes so that the results
s41d and s42d then become identical to those Eq.s35cd de-
rived directly.

3. Transformation properties of the scattering matrix elements

One can attempt to relate the states in the matrix elements
Mss,k2y

d to their spin-reversed counterparts by introducing

the operatorsV̂
W

followed by using Eqs.s41d, s42d, ands36d.
It follows immediately from the definitions33d that the

square of theV̂
W

operator containing the coordinates of any
one electron is −1. Inserting into Eq.s30ad this representa-
tion of −1 for both electrons and then invoking Eqs.s41d,
s42d, ands36d yields

Mss,k2y
d = k«1,«2k2y

uĤfV̂W sAdg2fV̂W sBdg2u«0,ml s43ad

=s− 1dDak«1,«2k2y
uĤV̂

W sAdV̂W sBdu− «0
out,− ml,

s43bd

whereDa is a phase factor resulting from a combination of
those in Eqs.s36d, s41d, ands42d. Here the stateu−«0

out,−ml
differs from the stateu−«0,−ml, in which the incoming elec-
tron has spin −«0, only in that the unbound wave function is
that for an outgoing state still with momentumk0 and spin

state −«0. The operator productV̂
W sAdV̂W sBd, to be denoted

V̂
W

AB, must be moved to the left ofĤ in Eq. s43bd before one
can attempt to reverse the spins in the final state by invoking
Eqs. s41d, s42d, and s36d. It is therefore necessary to define

the transformed operatorĤ8:

Ĥ8 = V̂
W

AB
† ĤV̂

W
AB. s44d

Multiplication of both sides of this equation from the left by

V̂
W

AB and noting thatV̂
W

AB
† V̂

W
AB=1 yields

ĤV̂
W

AB = V̂
W

ABĤ8. s45d

Substituting back the definition ofĤ8 in Eq. s45d yields

ĤV̂
W

AB = V̂
W

ABV̂†W
ABĤV̂

W
AB. s46d

It is useful to decompose the operatorV̂
W

AB into the product

of a linear operatorÛAB and the complex conjugationK̂
W

which, acting on any two-electron function appearing on its
right, changes factors ofi into −i regardless of whether these
originated from the wave function of electronA or that of
electronB. Thus

V̂
W

AB = ÛABK̂
W

, s47d

where the linear two-electron operatorÛAB is given by

ÛAB = − bsAdÎsAdSysAdbsBdÎsBdSysBd. s48d

Using the expression forV̂
W

AB given by Eq.s47d, Eq. s46d can
be developed as

ĤV̂
W

AB = V̂
W

ABÛAB
† K̂

W †ĤK̂
W
ÛAB s49ad

=V̂
W

ABÛAB
† Ĥ*ÛAB. s49bd

The only imaginary unit in the Møller interactions25bd is
that multiplying sinvrAB because, althougha2sAd anda2sBd
are both imaginary, their product is real. Standard manipula-
tions using the anticommutation properties of the Dirac ma-

trices shows thatÛAB commutes withĤ* which, after noting

that ÛAB
† ÛAB=1, yields

ĤV̂
W

AB = V̂
W

ABÛAB
† ÛABĤ* = V̂

W
ABĤ* . s50d

Use of this result in Eq.s43bd shows that

Mss,k2y
d = s− 1dDak«1,«2k2y

uÛABK̂
W Ĥ* u− «0

out,− ml. s51d

Using the relationkauK̂W ubl=kauK̂Q ubl* sseef26gd and the result
for both electrons thatsbiSyd†=−biSy followed by invoking
the adjoints of Eqs.s41d, s42d, ands36d yields

Mss,k2y
d = s− 1dDak«1,«2k2y

uÛABK̂
Q Ĥ* u− «0

out,− ml* s52ad

=s− 1dDak«1,«2k2y
uV̂Q †sAdV̂Q †sBdĤ* u− «0

out,− ml*

s52bd

=s− 1dD̃ak− «1
in,− «2

ink2y
uĤ* u− «0

out,− ml* . s52cd

The same type of relation with the same phase factor

s−1dD̃a applies toMExss,k2y
d. Substitution of this result and

Eq. s52cd into the expressions29d for the quantitySss,k2y
d

shows that this can be written as

Sss,k2y
d = uk− «1

in,− «2
ink2y

uĤ* u− «0
out,− ml

− k− «1
in,− «2

ink2y
uĤ* u− m,− «0

outlu2. s53d

However, relationss29d and s30d show thatSs−s,k2y
d with

all the spins reversed is given by

Ss− s,k2y
d = uMs− s,k2y

d − MExs− s,k2y
du2 s54ad

=uk− «1,− «2k2y
uĤu− «0,− ml

− k− «1,− «2k2y
uĤu− m,− «0lu2. s54bd

Comparison of the resultss53d ands54bd shows that there
are two different and distinct effects which causeSss,k2y

d to
differ from its spin-reversed counterpart. The first of these is
that Eq.s53d contains the outward-going wave function of a
particle with spin state −«0 and asymptotic momentumk0
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rather than the inward-going function that appears in Eq.
s54bd. Similarly, Eq.s53d contains inward-going wave func-
tions with momentak1 andk2 rather than the outward-going
ones appearing in Eq.s54bd. All three of these differences
arise from the complex conjugation in the time reversal op-
erator changing the sign of the exponent in each phase shift

term e±idk8. The second factor causingSss,k2y
d to differ from

its spin-reversed counterpart is the complex conjugation of

the operatorĤ in Eq. s53d. In the event thatV̂
W

AB were to

commute withĤ then the order of these operators in Eq.
s43bd could be reversed. Since standard manipulations using

Dirac matrices show thatÎD andÛAB both commute withĤ,
it is only the complex conjugation in the time reversal op-

erator which preventsV̂
W

AB from commuting withĤ. Thus, if

only the real part of the operatorĤ were to be considered,

V̂
W

AB would commute withĤ with the consequence that only
the first sthe phase shifts in the continuum wave functionsd
factor would causeSss,k2y

d to change under reversal of all
spins.

C. Interactions responsible for spin asymmetry

1. Relativistic contributions to the phase shifts

The first factor, causingSss,k2y
d to differ from its spin

reversed counterpart—namely, the phase shifts in the con-
tinuum wave functions—is seen to be relativistic in origin by
considering the entirely nonrelativistic case. In the latter each
of the four wave functions entering a scattering matrix ele-
ment can be factorized into a product of a purely spatial
function and a spin function which can either bex+1/2 corre-
sponding to spin up orx−1/2 corresponding to spin down as
defined after Eq.s31d. Here the operatorisy alone acts as a
spin-inversion operator; it only failed to fulfill that role in the
relativistic case on account of the small components of the
wave functions in Eq.s31d which necessitated introducing

the more complicated operatorV̂
W

. Since the Møller interac-

tion reduces to just the Coulomb interactionrAB
−1 in the non-

relativistic limit, isysAdisysBd commutes withrAB
−1. This in

conjugation with the resultisyx
±1/2= 7x71/2 immediately

shows, using the methods followed in demonstrating that Eq.
s43ad can be written as Eq.s54bd, that, in the nonrelativistic
theory, the scattering matrix elements are unchanged under
reversal of all spins. This conclusion coupled with the previ-
ous result—that it is the phase shifts in the continuum wave
functions which introduce the spin asymmetry—shows that
this arises from relativistic modifications of the phase shifts.

The conclusion of the previous paragraph is confirmed by
demonstrating that each continuum wave functions32d does
indeed reduce a pure spin-up or a pure spin-down state in the
nonrelativistic limit. In the nonrelativistic limit the small
componentsfk in the partial wave expansions32d become
negligible while thedk8 phase factors and unbound wave
functions depend only onl becoming independent ofj f24g.
The use of these results enables the order of the two outer
summations in Eq.s32d to be interchanged, so that this be-
comes

uk0
i/o«l = s2pd−1/2o

l=0

`

i le±idl8gl o
j=l−1/2

l+1/2

o
m=−j

j

CSl,
1

2
, j ,m− «,«,mD

3fYl,m−«sVkdg*xk,m. s55d

Introducing the explicit form of thexk,m functions as

xl−1/2,m = CSl,
1

2
,l −

1

2
,m+

1

2
,−

1

2
,mDYl,m+1/2ubl

+ CSl,
1

2
,l −

1

2
,m−

1

2
,
1

2
,mDYl,m−1/2ual,

s56ad

xl+1/2,m = CSl,
1

2
,l +

1

2
,m+

1

2
,−

1

2
,mDYl,m+1/2ubl

+ CSl,
1

2
,l +

1

2
,m−

1

2
,
1

2
,mDYl,m−1/2ual s56bd

and substituting these into Eq.s55d converts this to

uk0
i/o«l = s2pd−1/2o

l=0

`

i le±idl8gl o
m=−j

j

fYl,m−«sVkdg*HCSl,
1

2
,l −

1

2
,m− «,«,mD

3FCSl,
1

2
,l −

1

2
,m+

1

2
,−

1

2
,mDYl,m+1/2ubl + CSl,

1

2
,l −

1

2
,m−

1

2
,
1

2
,mDYl,m−1/2ualG + CSl,

1

2
,l +

1

2
,m− «,«,mD

3 FCSl,
1

2
,l +

1

2
,m+

1

2
,−

1

2
,mDYl,m+1/2ubl + CSl,

1

2
,l +

1

2
,m−

1

2
,
1

2
,mDYl,m−1/2ualGJ , s57d

which can be rearranged as
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uk0
i/o«l = s2pd−1/2o

l=0

`

i le±idl8gl o
m=−j

j

fYl,m−«sVkdg*HFCSl,
1

2
,l −

1

2
,m− «,«,mDCSl,

1

2
,l −

1

2
,m+

1

2
,−

1

2
,mD

+ CSl,
1

2
,l +

1

2
,m− «,«,mDCSl,

1

2
,l +

1

2
,m+

1

2
,−

1

2
,mDGYl,m+1/2ubl

+ FCSl,
1

2
,l −

1

2
,m− «,«,mDCSl,

1

2
,l −

1

2
,m−

1

2
,
1

2
,mD

+ CSl,
1

2
,l +

1

2
,m− «,«,mDCSl,

1

2
,l +

1

2
,m−

1

2
,
1

2
,mDGYl,m−1/2ualJ . s58d

However, one can write

o
j

CSl,
1

2
, j ,ml,ms,ml + msDCSl,

1

2
, j ,ml8,ms8,ml + msD

= o
j

o
M

CSl,
1

2
, j ,ml,ms,MDCSl,

1

2
, j ,ml8,ms8,MD

3dml,ml8
dms,ms8

, s59d

where the last step uses a standard resultf28g. This converts
Eq. s58d into

uk0
i/o«l = s2pd−1/2o

l

i le±idl8glo
m

Yl,m−«sVkdfd«,−1/2Yl,m+1/2ubl

+ d«,1/2Yl,m−1/2ualg, s60d

where all the implicitly referredYl,m8 with um8u. l are de-
fined to be zero. This result shows that

Uk0
i/o1

2
L = s2pd−1/2o

l

i le±idl8glo
m

fYl,ml
Yl,ml

* sVkdgual,

s61ad

Uk0
i/o −

1

2
L = s2pd−1/2o

l

i le±idl8glo
m

fYl,ml
Yl,ml

* sVkdgubl,

s61bd

as would be expected sinceuk0
i/o1

2l is purely aual spin and
uk0

i/o− 1
2l is a pureubl spin.

The overall conclusion of this subsection is that it is the
relativistic modifications of the phase shifts in the continuum
wave functions which provide one mechanism for introduc-
ing spin asymmetry into the scattering matrix elements.
Since the phase shiftsdk8 are zero for relativistic plane waves,
it follows that this mechanism would not arise if all the con-
tinuum states were described by such functions. This shows
that it is the relativistic modifications of the distortions of the
continuum wave functions induced by the potential originat-
ing from the target atom which generates the first mechanism
producing spin asymmetry.

2. Non-time-reversal-invariant part of the Møller interaction

It is apparent from the arguments advanced in Sec. III B 3
that the forms25bd for the Møller interaction is particularly
useful. Furthermore, if sinvrAB is expanded as its power
series, the leading term proportional tovrAB contributes zero
to the matrix elementsMss,k2y

d andMExss,k2y
d due to the

orthogonality between the initial and final states. We can
therefore, without changing the overall result, subtract this

term from the operatorĤ, which can then be written as

Ĥ = ĤTI + ĤNTI, s62d

where

ĤTI = rAB
−1f1 − asAd · asBdgcosvrAB, s63ad

ĤNTI = ir AB
−1fsinvrAB − vrAB − asAd · asBdsinvrABg = iĤR.

s63bd

It is readily shown using the commutation properties of the

Dirac matrices that bothĤTI andĤR are invariant under time
reversal because both these operators are entirely real, so that

T̂
W†ĤTIT̂

W
=ĤTI and T̂

W†ĤRT̂
W

=ĤR. The results62d thus decom-

posesĤ into its time-reversal-invariantsĤTId and non-time-

reversal-invariantsĤNTId parts. It is only the explicit imagi-

nary unit iniĤR which rendersĤNTI noninvariant under time

reversal and makesĤ* different fromĤ, thus introducing a

noncommutation betweenĤ and V̂
W

AB and thereby introduc-
ing, as described in Sec. III B 3, the second factor causing
the spin-reversed quantitySs−s,k2y

d to differ from Sss,k2y
d.

The operatorĤNTI is of higher order in 1/c than the well-
known Breit interaction which is of order 1/c2 fsee, for ex-

ample, Eq.s3.5d of f19gg. Thus, whenĤNTI is expressed as its
power series expansion invrAB, the leading term is of order
1/c3. This shows that the second factor introducing a spin
asymmetry into the quantitySss,k2y

d is relativistic in origin.

The contribution fromĤNTI to the direct matrix element is
nonzero but only if the distorting effect of the potential on
either of the incoming or the fast-outgoing electron is con-

SYMMETRY PROPERTIES OF THES MATRIX IN A … PHYSICAL REVIEW A 71, 052701s2005d

052701-9



sidered. If both these wave functions are plane waves, then

the matrix elements ofĤNTI will contain kernels of the form

Iksr Bd =E eik·r A sinsvur A − r Bud
ur A − r Bu

dr A. s64d

It has been shownf29g that for the case considered here in
which k corresponds to the vector of momentum transferk
=k0−k1, the integral is given by

Iksr Bd =
2p2

uk u
eik·r Bfdsuk u − vd + dsuk u + vdg, s65d

which clearly is zero sinceuk u is never equal to the positive

v. HenceĤNTI does not contribute to the scattering matrix
elements unless at least one of the continuum functions is not

defined as a plane wave. Similarly, the contribution ofĤNTI
to the exchange scattering matrix elements vanishes if both
the incoming and slow-outgoing electrons are described by

plane waves. Thus,ĤNTI does not contribute to the scattering
matrix elements if all three continuum wave functions are
described by plane waves.

Since the distinction in Eq.s53d between incoming and
outgoing states disappears for plane waves for which the
phase shiftdk8 is zero, it follows that no spin asymmetry

arises from theĤTI term, as described in the previous sec-
tion. Thus coupled with the vanishing contribution from the

ĤNTI term this shows that there is no spin asymmetry in the
all-plane-wave case and hence that all spin asymmetries must
arise from the effect of the distorting potential on the un-
bound electrons.

D. Invariance under reversal of spin and ay-momentum
component

It has been shown above that the simplest operator revers-
ing the spins of all the wave functions does not leave the
quantity Sss,k2y

d unchanged. To examine possible symme-
tries in spin-resolved two-electron scattering experiments,
one seeks an operator which reverses the spins of all the
wave functions while containing the minimum number of
such other transformations as is needed to leave theS-matrix
element invariant. Such an operator will allow us to identify
a symmetry property ofSss,k2y

d which would have experi-
mentally observable consequences.

For a single electron, the relativistic equivalentsĤy,Dd of
the operator for spatial reflection in thexz plane is given by
f30g

Ĥy,D = iSybĤy, s66d

whereĤy acting on any function depending onr reverses its

y component. It can be shown thatĤy,D converts a spin-up
plane wave into a spin-down state but having a negative
y-momentum component:

Ĥy,Dcpl
s±dsr d = iSybĤycpl

s±dsr d s67ad

=iSybS x±1/2

Asfsxp̂x − syp̂y + szp̂zgx±1/2Deifkxx−kyy+kzzg

s67bd

=bS isyx
±1/2

Asf− sxp̂x − syp̂y − szp̂zgisyx
±1/2D

3eifkxx−kyy+kzzg s67cd

= 7 S x71/2

Asss · p̂dx71/2Deifkxx−kyy+kzzg ; 7 cpl8
s7dsr d.

s67dd

Herec8sr d denotes a wave function in which they compo-
nent of the momentum is reversed compared with that in

csr d. It has been shownf30g that the action ofĤy,D on a
Dirac central-field state is given by

Ĥy,Duk,ml = s− 1dm+1/2s− 1d1/2s1−aduk,− ml. s68d

Thus, althoughĤy,D reverses all the electron spins in the

same fashion asV̂
W

, the former also changes they-momentum
components.

The results68d taken in conjunction with the partial-wave
expansions32d can be used to show that distorted continuum

waves are interconverted underĤy,D in exactly the same way
as plane waves:

Ĥy,DUk,
1

2
L = s2pd−1/2 o

j=1/2

`

o
l=j−1/2

j+1/2

i le±idk8 o
m=−j

j

CSl,
1

2
, j ,m

−
1

2
,
1

2
,mDYl,m−1/2

* sVkdĤy,DS gkxk,m

if kx−k,m
D s69ad

=s2pd−1/2 o
j=1/2

`

o
l=j−1/2

j+1/2

i le±idk8 o
m=−j

j

CSl,
1

2
, j ,m

−
1

2
,
1

2
,mDYl,m−1/2

* sVkd

3 s− 1dm+1/2s− 1ds1−ad/2S gkxk,−m

if kx−k,−m
D s69bd

=s2pd−1/2 o
j=1/2

`

o
l=j−1/2

j+1/2

i le±idk8 o
m=−j

j

CSl,
1

2
, j ,− m

−
1

2
,
1

2
,− mDYl,−m−1/2

* sVkd

3 s− 1d−m+1/2s− 1ds1−ad/2S gkxk,m

if kx−k,m
D s69cd

PYPER, KAMPP, AND WHELAN PHYSICAL REVIEW A71, 052701s2005d

052701-10



=s2pd−1/2 o
j=1/2

`

o
l=j−1/2

j+1/2

i le±idk8 o
m=−j

j

CSl,
1

2
, j ,m+

1

2
,

−
1

2
,mDs− 1d j−l−1/2Yl,−m−1/2

* sVkd

3 s− 1d−m+1/2s− 1ds1−ad/2S gkxk,m

if kx−k,m
D . s69dd

The operatorĤy for purely spatial reflection in thexz plane
reverses the sign of thek2y

so thatVk becomesVk8, so that
one has

ĤyYl,m+1/2sVkd = Yl,m+1/2sVk8d. s70d

Use of the resultf30g

ĤyYl,m+1/2sVkd = s− 1dm+1/2Yl,−m−1/2sVkd s71d

shows that

s− 1d−m+1/2fYl,−m−1/2sVkdg* = − fYl,m+1/2sVk8dg
* . s72d

Substitution of this result into Eq.s69dd shows after invoking
Eq. s39d that

Ĥy,DUk,
1

2
L = − s2pd−1/2o

j ,l
i le±idk8CSl,

1

2
, j ,m+

1

2
,−

1

2
,mD

3 Yl,m+1/2
* sVk8dS gkxk,m

if kx−k,m
D . s73d

Comparison of the right-hand side of this result with Eq.s32d
yields

Ĥy,DUk
1

2
L = − Uk8 −

1

2
L , s74ad

Ĥy,DUk −
1

2
L = Uk8

1

2
L . s74bd

The transformation properties of theS-matrix elements
related to reflection in thexzplane are derived by first noting

that the square of the operatorĤy,D is −1. Introducing this

result for the squares of the operatorsĤy,DsAd and Ĥy,DsBd
for the electronsA andB and then using Eqs.s74d and s68d
shows that

Mss,k2y
d = k«1,«2k2y

uĤfĤy,DsAdg2fĤy,DsBdg2u«0,ml s75ad

=s− 1dDbk«1,«2k2y
uĤĤy,DsAdĤy,DsBdu − «0,− ml.

s75bd

Using the properties of the Dirac matrices, it is readily
shown that the Møller interaction commutes with the product
of the two transformation operators occurring in Eq.s75bd,
so that

fĤ,Ĥy,DsAdĤy,DsBdg = 0. s76d

By introducing this result into Eq.s75bd and then using the
adjoints of Eqs.s74d and s68d yields

Mss,k2y
d = s− 1dDbk«1,«2k2y

uĤy,DsAdĤy,DsBdĤu − «0,− ml

s77ad

=s− 1dD̃bk− «1,− «2 − k2y
uĤu − «0,− ml. s77bd

Since the matrix element in the last line is seen from the
definition s30ad to be nothing butMs−s,−k2y

d, it follows
that the spin-resolved quantitySss,k2y

d satisfies the equality

Sss,k2y
d = Ss− s,− k2y

d. s78d

The equalitys78d holds true whether the direction of spin
alignment is along or perpendicular to the direction of propa-
gation of the incoming electron. For the coplanar case only,
this result shows thatSss,k2y

d is invariant under just the
reversal of all spins because here they momentum compo-
nentsk2y

d of the slow-outgoing electron is zero. This identity
has been observed in previous numerical calculationsf14g.

E. Global symmetry

The presence in the Møller interaction of a non-time-
reversal-invariant part does not imply that time reversal in-
variance is violated. Thus, considering the entire ionization
event, time reversal would produce the process in which two
electrons of momenta −k1 and −k2 impinge on an ion which
captures one of these electrons while scattering the other into
a state of momentum −k0. Direct consideration of this pro-
cess would introduce a Møller interaction differing from Eq.
s25d only in that the sign of the complex exponential in Eq.
s25ad is changed because the sign of the energy changeDEA
is reversed. However, the scattering matrix elements29d for
this entire process can be directly generated from Eq.s30d by
introducing the time reversal operatorss34bd which would
convert each of the statesuk1«1l, uk2«2l, uk0«0l, andukml into
u−k1−«1l, u−k2−«2l, u−k0−«0l, and uk−ml, respectively
while changing the sign of the exponent in theeivrAB term.
This shows that time reversal invariance is not violated on
the fundamental level. This should have been expected given
that the origin of the Møller interaction might be regarded as
lying in either QED or, even more fundamentally, in classical
relativistic theory coupled with standard quantum mechanics,
all theories invariant under time reversal.

In problems involving time dependences, the derivation of
an effective operator acting within a subspace of the states
needed to define a complete theory often yields effective
operators which are not Hermitian, like the Møller interac-
tion s25d. In this case one derivation of this interactionf11g
involves eliminating the field variables from the full QED
description to produce an operator acting entirely within the
subset of non-second-quantized electronic wave functions.

Arguments can be advanced that the origins of the Møller
interaction lie in classical relativistic theory coupled with
standard quantum mechanics. In this event, the Møller inter-
action should not be regarded as a specific consequence of
QED but rather as a result that this theory must of necessity
generate. Thus, for example, no one would regard Coulomb’s
law as a consequence of covariant QED even though the
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former could be derived from the latter. The origins of the
non-time-invariant part of the Møller interaction lie in the
retarded potentials of classical electromagnetic theory. Thus,
as discussed inf31g, the electrostatic interaction between the
charge densityrsr 2,td with that characterized by a density
rsr 1,td at time t involves the product ofrsr 2,td with the
retarded potential generated atr 2 by the charge density
rsr 1,td. This retarded potential is given byer12

−1rsr 1,t
−r12/cd dr 1. Substitution for rsr 1,t−r12/cd of the time-
dependent quantum-mechanical charge densityca

*sr 1d
cbsr 1dexphisEa−Ebdst−r12/cdj then yields a factor of the
type exph−isEa−Ebdr12/cj entering the Møller interaction. A
similar treatment of the interaction between two currents
yields the retarded current-current interaction in Eq.s25d af-
ter also introducing the Dirac current operators.

IV. SPIN-AVERAGED FINAL STATES

A. Experimental outlook for measuring TDCS spin reversal
asymmetries

The measurement of cross sections where themj quantum
number of the bound level and the spins of all the free elec-
trons are resolved would not currently appear to be feasible.
However, TDCS’s, so far in entirely coplanar geometries,
have been measuredf12,13g for known spin states of the
incident electron. In the experiments inf13g spin-polarized
electrons were used to ionize spin-polarized Li targets at
nonrelativistic energies, while in the experiments inf12g
spin-polarized fast electrons were fired at heavy-atom targets
and the spin asymmetry arising from the ionization ofj
=3/2 electrons in theL shell was resolved. Although the
spins of the incoming electrons were aligned perpendicular
to the scattering plane, there would appear to be no funda-
mental reasons against experiments with spin alignments in
the scattering plane corresponding to the processes of pri-
mary concern here. It is therefore of great interest to see if
the results of such experiments would reflect the spin asym-
metries in the matrix elements of the type elucidated in Sec.
III B 3.

It is convenient to examine the case where the bound
electron, which becomes ionized, resides in ans or p1/2 or-
bital so that itsmj quantum numbers± 1

2
d is defined solely by

its sign. It is then apparent from Eq.s29d that there are 16
possible spin configurations as labeled in Table I. The con-
figuration bearing the label −s is derived from that labeleds
by reversal of all spins. The TDCS for processes in which
only «0 and m are defined is derived from the fully spin-
resolved quantitiesSss,k2y

d by summing over the possible
spin states of the two outgoing electrons and multiplying by
the factorcE given by Eq. s27d. This process generates a
result for the TDCS differing from Eq.s26d only in the omis-
sion of the sums over«0 andm with their attendant statistical
factor of NB/ s2Nd. The four different TDCS’s measurable in
such experiments are therefore given by

T s+ + ,k2y
d = cEhSs1,k2y

d + Ss2,k2y
d + Ss3,k2y

d + Ss4,k2y
dj,

s79ad

T s+ − ,k2y
d = cEhSs5,k2y

d + Ss6,k2y
d + Ss7,k2y

d + Ss8,k2y
dj,

s79bd

T s− + ,k2y
d = cEhSs− 5,k2y

d + Ss− 6,k2y
d + Ss− 7,k2y

d

+ Ss− 8,k2y
dj, s79cd

T s− − ,k2y
d = cEhSs− 1,k2y

d + Ss− 2,k2y
d + Ss− 3,k2y

d

+ Ss− 4,k2y
dj. s79dd

The first two arguments1 or 2 of the partially averagedsTd
cross sections denote, respectively, the spins of the incoming
and bound electrons. Each of the contributions on the right-
hand side of Eq.s79dd is derived from the corresponding
term in Eq.s79ad by reversal of all the spins, with Eqs.s79bd
and s79cd being similarly related.

Consideration of reflections in thexz plane yields some
equalities between the partially spin-resolved cross sections.
Application of the results78d to each of the four contribu-
tions in both Eqs.s79ad and s79bd immediately yields

T s+ + ,k2y
d = T s− − ,−k2y

d, s80ad

T s+ − ,k2y
d = T s− + ,−k2y

d. s80bd

The main purpose of this section, probing possible spin
asymmetries in the partially spin-averaged TDCS, is
achieved by first considering the two differencesT s+
+ ,k2y

d−T s−−,k2y
d and T s+−,k2y

d−T s−+ ,k2y
d. The first of

these two is seen to contain the sum of the four differences
Sss,k2y

d−Ss−s,k2y
d having s=1, 2, 3, and 4. The quantity

T s++ ,k2y
d−T s−−,k2y

d is nonzero because there are no spe-
cial relations between the differencesSss,k2y

d−Ss−s,k2y
d

having different values ofs which would causeT s++ ,k2y
d

−T s−−,k2y
d to vanish. This has been confirmed by numerical

computations. The differenceT s+−,k2y
d−T s−+ ,k2y

d is simi-
larly nonzero.

TABLE I. Possible spin configurations of Eq.s29d. Each labels
defines the spin configuration appearing immediately to its right,
with 1 and 2 representing spin-up and spin-down states, respec-
tively. Each configuration is given in the order of fast-scattered,
slow-ejected, incoming, and bound electrons.

Label s 1 2 0 m Label s 1 2 0 m

1 1 1 1 1 −1 2 2 2 2

2 1 2 1 1 −2 2 1 2 2

3 2 1 1 1 −3 1 2 2 2

4 2 2 1 1 −4 1 1 2 2

5 1 1 1 2 −5 2 2 2 1

6 1 2 1 2 −6 2 1 2 1

7 2 1 1 2 −7 1 2 2 1

8 2 2 1 2 −8 1 1 2 1
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It might not be easy to perform an experiment on a highly
relativistic system in which the spin of the bound electron to
be ionized is known in addition to that of the incoming elec-
tron because it would be necessary to prepare hydrogenlike
or lithiumlike ions of species having very high nuclear
charges. Consequently, the experimentsf12g involving tar-
gets of very high nuclear charge have involved ionization
from an inner shell of a neutral or near-neutral species with
consequent averaging over the two possiblemj states of thes
or p1/2 electron which becomes ionized. It is therefore inter-
esting to consider the TDCS for the process in which only
the asymptotic spin of the incident electron is known. The
sums

T 8s+ ,k2y
d = T s+ + ,k2y

d + T s+ − ,k2y
d, s81ad

T 8s− ,k2y
d = T s− − ,k2y

d + T s− + ,k2y
d s81bd

denote the TDCS for the processes corresponding to known
up- and down-spin states of the incident electron. Since there
is no special relationship between the two differences
T s++ ,k2y

d−T s−−,k2y
d and T s+−,k2y

d−T s−+ ,k2y
d, the

TDCST 8s+,k2y
d is still different fromT 8s−,k2y

d for nonco-
planar geometries.

B. Numerical results

Here we consider the ionization of a 1s electron from
hydrogenlike uranium. The incoming electron has an impact
energy ofE0=500 keV, the fast-scattered electron has an en-
ergy of E1=285 keV, and the slow has an energy ofE2
=100 keV. The momentum vector of the incoming electron,
k0, is aligned along thez axis and it is assumed that the
momentum vector of the fast scattered,k1, lies in the xz
scattering planeas shown in Figure 1. We assume that the
fast electron has been scattered through an angle ofu1
=−10°. In Fig. 2 we present spin-resolved cross TDCS’s. The
slow-outgoing electron is assumed to be in a plane that forms
an angleup to the scattering plane. In each case the cross
section is shown as a function of the anglef2 of the slow-
outgoing electron. All calcualtions are performed in the
rDWBA approximation with Coulombic boundary condi-
tions. The points havingf2=0,180° are the points in com-
mon with the scattering plane and, as expected, the TDCS for
these points is unchanged under reversal of spins. We have

confirmed numerically that in all casesT ss1,s2,k2y
d

=T s−s1,−s2,−k2y
d. These results together with the predic-

tions presented earlierf32g for spin asymmetry offer an im-
mediate test of the theory developed here.

C. TDCS in coplanar geometries for incident electrons spin
resolved perpendicular to the scattering plane

The main objective in this subsection is to examine the
spin dependence of the TDCS for scattering processes in
coplanar geometries with the electron spins aligned perpen-
dicular to the scattering plane. This situation is of interest as
that examined in previous workf14g.

The incident electron will always be taken to be traveling
along thez direction with the scattering occurring entirely in
the xz plane. The partially spin-resolved TDCSfT q8s±dg in
which the spin of the incident electron is aligned either par-
allel or antiparallel to the directionq sq=x,y,zd can be cal-
culated by summing over the possible spin states of the other
three electrons. Consequently, the states of these three elec-
trons can be taken to be those defined in Sec. III A withz
taken to be the axis of spin alignment. Hence, from Eq.s29d
one has, suppressing the labelk2y

which is always zero for
the coplanar case considered here,

T q8s±d = cE o
«1,«2,m

uk«1,«2uĤu ± q,ml − k«1,«2uĤum, ± qlu2.

s82d

Here the incident statesu±ql asymptotically become plane
waves with the spin states of the large components aligned
along the directions ±q. For q=x,y, these states are given in
term of those Eq.s32d in which the spin is aligned alongz by

u ± xl =
1
Î2

SUk0,
1

2
L ± Uk0,−

1

2
LD , s83ad

u ± yl =
1
Î2

SUk0,
1

2
L ± iUk0,−

1

2
LD . s83bd

The states in Eq.s83bd differ from those used previouslyf14g
by the omission of a phase factor which is irrelevant here.
For the case in Eq.s82d whereq=z the matrix elements are
just those defined by Eqs.s30ad and s30bd.

The two TDCS’s corresponding to the processes in which
the spin of the incident electron is aligned asymptotically
along the +y and −y directions are found by substituting Eq.
s83bd into Eq. s82d. The results are

T y8s±d = cE o
«1,«2,m

UMS«1,«2,
1

2
,mD

± iMS«1,«2,−
1

2
,mD − MexU2

. s84d

Here all four quantum numbers defining the symbols intro-
duced in Sec. III A have been introduced explicitly andMex

denotes the corresponding matrix elements that arise from

the exchange termk«1,«2uĤum, ±ql. By extracting an irrel-
evant factor ofu−i u, T y8s−d can be written as

FIG. 1. The scattering geometry and the definition of the mo-
menta for the incoming, fast-scattered, and slow-ejected electron.
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FIG. 2. The spin-resolved TDC’s forse,2ed on hydrogenlike uranium withE0=500 keV,E1=285 keV,E2=100 keV, andu1=−10°. The
slow-outgoing electron is calculated in a plane that forms an angleup with the scattering plane. The cross section is shown as a function of
the anglef2 of the slow-outgoing electron. The points havingf2=0° andf2=180° are the points in common with the scattering plane and,
as expected, the TDCS for these points is unchanged under reversal of spins.sad T8s+,k2y

d ssolidd and T8s−,k2y
d sdashedd up=64°,

sbd T8s+,k2y
d ssolidd and T8s−,k2y

d sdashedd up=32°, scd Ts++ ,k2y
d ssolidd and Ts−−,k2y

d sdashedd up=64°, sdd Ts++ ,k2y
d ssolidd and

Ts−−,k2y
d sdashedd up=32°, sed Ts+−,k2y

d ssolidd andTs−+ ,k2y
d sdashedd up=64°, sfd Ts+−,k2y

d ssolidd andTs−+ ,k2y
d sdashedd up=32°.
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T y8s− d = cE o
«1,«2,m

UMS«1,«2,−
1

2
,mD

+ iMS«1,«2,
1

2
,mD − MexU2

. s85d

The bound electron will initially be taken to reside in ans
orbital. The terms in Eq.s85d in which either only one of«1,
«2, or m is −1

2 or all three of theses quantities are −1
2 will be

denoted by a prime. For such terms, the results77bd with

k2y
=0 shows after calculating the phase factors−1dD̃b using

Eqs. s67dd and s68d that Ms«1,«2, 7
1
2 ,md= ±Ms−«1,

−«2, ± 1
2 ,−md. For the remaining terms in Eq.s85d, to be

denoted by a double prime, one hasMs«1,«2, 7
1
2 ,md

= 7Ms−«1,−«2, ± 1
2 ,−md. Use of these results in Eq.s85d

yields

T y8s− d = cE o
«1,«2,m

8UMS− «1,− «2,
1

2
,− mD

− iMS− «1,− «2,−
1

2
,− mD − MexU2

+ cE o
«1,«2,m

9U
− MS− «1,− «2,

1

2
,− mD

+ iMS− «1,− «2,−
1

2
,− mD − MexU2

s86ad

=cE o
«1,«2,m

UMS− «1,− «2,
1

2
,− mD

− iMS− «1,− «2,−
1

2
,− mD − MexU2

. s86bd

Since the three summations are over all possible spin states,
Eq. s86bd can be written as

T y8s− d = cE o
«1,«2,m

UMS«1,«2,
1

2
,mD

− iMS«1,«2,−
1

2
,mD − MexU2

, s87d

where the changed signs merely cause the terms in the sum-
mation in Eq. s86bd to be generated in a different order.
Sinceuz1+ iz2uÞ uz1− iz2u if z1 andz2 are complex, this result
shows, when compared with that Eq.s84d for T y8s+d, that the
differenceT y8s+d−T y8s−d is nonzero. The resulting expres-
sion for this difference becomes identical with that given in
the previous density matrix formulationf14g when the polar-
ization parameterP in that work is set to unity.

In the formulation in this Sec. IV C in which the incident
electron propagates along thez direction, the difference
T x8s+d−T x8s−d is found using Eqs.s82d and s83ad to be

T x8s+ d − T x8s− d = cE o
«1,«2,m

UMS«1,«2,
1

2
,mD

+ MS«1,«2,−
1

2
,mD − MexU2

− cE o
«1,«2,m

UMS«1,«2,
1

2
,mD

− MS«1,«2,−
1

2
,mD − MexU2

. s88d

By relating the matrix elementsMs«1,«2,«0,md to those in
which all the spins are reversed by using the equalities de-
scribed in the last paragraph, it readily follows from the ab-
sence of the explicit imaginary unit which appears in Eq.
s84d that T x8s+d−T x8s−d is zero. This agrees with the more
direct derivation in Sec. III D using the coordinate system
with the x andz axes interchanged.

For ionization from subshells other than those ofs sym-
metry, arguments differing from those just presented only
through the occurrence of a different phase factor in Eq.s68d
yield the same overall conclusion. Thus in coplanar geom-
etries, althoughT x8s+d remains equal toT x8s−d, T y8s−d differs
from T y8s+d.

V. SUMMARY

In the relativistic theory ofse,2ed scattering as presented
previously f5g, the TDCS is expressed in terms of eight-
dimensional matrix elements of a covariant propagator which
was derived from QED. In the present paper, it has been
shown that these matrix elements reduce to two-electron in-
tegrals of the interaction derived by Møller in 1931. These
integrals contain purely spatial variables and Dirac matrices
but no time coordinates.

It has been shown, for cases in which the spins of the
electrons are aligned in the scattering plane as defined in Sec.
III A, that the quantitySss,k2y

d differs from its counterpart
Ss−s,k2y

d in which both themj quantum number and spins of
all asymptotically free electrons have been reversed. The dif-
ference between these two scattering matrix elements, called
the spin asymmetry, has been shown to vanish in coplanar
geometries. Two factors generating spin asymmetry in non-
coplanar geometries have been elucidated. The first of these
is the relativistic modification of the distortion of any one of
the three continuum wave functions induced by the potential
originating from the target atom. The particular distortions
giving rise to the spin asymmetry are those originating from
the relativistic modification of the difference between the
partial-wave scattering phase shift with the distorting poten-
tial and that for the corresponding plane wave. This contri-
bution to the spin asymmetry is therefore predicted to vanish
if all the continuum wave functions are described by relativ-
istic plane waves. The second factor generating spin asym-
metry is the presence in the Møller interaction of a non-time-

reversal-invariant partĤNTI. Since the orders of this term of
1/c3 and higher are larger than thats1/c2d of the leading
relativistic modifications of the phase-shift differences, the
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first factor generating spin asymmetry is predicted to make a
larger contribution than the second. Since both the first and
second contributions to the spin asymmetry have been shown
to vanish if all three continuum wave functions are described
by plane waves, it follows that it is the effects of the distort-
ing potential on the continuum wave functions which are
ultimately responsible for any spin asymmetries.

The extra conditions required to produce scattering
matrix-element-square moduli unchanged under reversal of
all spins have been elucidated. It has been shown that these
quantities are invariant under inversion of both all spins and
the y momentum component of the slow-outgoing electron
when the incoming and fast-outgoing electrons are propagat-
ing in the scatteringxz plane in which the spins of the elec-
trons are aligned. This explains why, in coplanar geometries
necessarily having zeroy-momentum components, the
moduli of the scattering matrix elements are unchanged un-
der reversal of just all spins, provided these are aligned in the
scattering plane. However, as shown previouslyf14g the
TDCS’s in such coplanar cases with the incoming beam po-
larized along they axis perpendicular to the plane do change
under reversal of all the spins.

We have also considered TDCS’s with spins polarized in
the scattering plane in which only the spins of the electrons
in the initial state have been specified. Such TDCS’s are
therefore generated from the fully spin-resolved quantities
Sss,k2y

d by summing over all possible spin states of the elec-
trons in the final state. It has been shown that the difference
between such a TDCS and that produced by reversal of the
two spins in the initial state remains finite in noncoplanar
geometries. The same result has been shown to hold even if
one sums over the spin states of the bound electron leaving
specified only that of the incident electron. Thus consider the
ionization process in which an electron is produced with an
asymptotic spin alignment parallel to its direction of propa-
gation. This electron is used to eject a further one from theK

shell of an unpolarized atom and the two outgoing electrons
are detected in coincidence with their spins not resolved.
Consequently, the TDCS for this process is not the same as
for a scattering event where the initial spin alignment is cho-
sen to be antiparallel to the beam direction, unless all the
electrons travel in the same plane. However, the TDCS will
remain unchanged under the combination of reversal of the
initial spin alignment and reflection with respect to the scat-
tering plane such thatk2y

→−k2y
. From the analysis presented

in this work one would expect to observe the same phenom-
ena if the direction of the spin alignment is chosen to be
perpendicular to the direction of propagation but still in the
scattering plane. These properties of the TDCS’s are of in-
terest because it would appear to be feasible to detect them
using the technologies available in currently existing experi-
mental setups. Our conclusions are based on a detailed study
of the relativistic distorted-wave Born approximation but
given that this approximation fully contains the effect of
elastic electron nuclear scattering, as well as the retardation
and magnetic terms in the propagator for the electron-
electron interactions, and that the earlier work shows that
these are the dominant effects at high energies and for high-
Z targets where there is the near-perfect agreement between
theory and all existing measurements, we are encouraged to
believe that the effects predicted in this paper will be observ-
able and recommend that our experimental colleagues seek
them out.
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